J. Quant. Spectrosc.
Radiat. Transfer. Vol. 2, pp. 97-199. Pergamon Press Ltd. Printed in Great Britain
THE ULTRAVIOLET
BANDS OF OH
FUNDAMENTAL G. H. DIEKE AND H. M.
DATA*? CROSSWHITB
Department of Physics, The Johns Hopkins University, Baltimore 18, Maryland (Received 20 December 1961) Abstract-The OH bands are of great importance for temperature measurements in flames and other combustion processes, as well as for a general exploration of the physical conditions in flames. A knowledge of the structure of the bands and the availability of certain band constants are prerequisites for such use. In the past such data were either completely unavailable or not sufficiently accurate or so spread over a large number of individual papers in various stages of progress that their use for application was very difficult. In the present report a new survey of these bands is presented. This consists of (1) new measurements of the whole wavelength region 2800-3550 A which are believed to be more complete and more accurate than those hitherto available (Table 14); (2) a revised analysis and classification of nine bands (Tables 13 and 14) ; (3) new intensity determinations and a location of all blends which may give rise to trouble in temperature measurements; (4) a recalculation of all band constants (Table 2); (5) a calculation and tabulation of rotational-transition probabilities necessary for the applications (Tables 4 and 5); (6) a table of the rotational and vibrational-energy levels (Tables 11 and 12); (7) a presentation of a simplified method for routine temperature measurements and tables for its use (Table 8); (8) a table of the infrared bands of OH as calculated from the data obtained from the ultraviolet bands. This report presents thus the fundamental data which are necessary for temperature measurements or other applications. The results of such temperature measurements and a further discussion of the special methods employed will be presented in a subsequent report.
I. INTRODUCTION
hardly necessary to review the older literature of the discovery of the OH-bands or earlier attempts to unravel their structure. Details can be found in KAYSER, Handbuch der Spektroskopie, Vol. V. (See also JACK(~).) The nature of the molecule responsible for the bands was long uncertain. The bands were most often ascribed to water vapor, sometimes to 02, but there can be no doubt now that the neutral OH radical is the emitter. That a diatomic molecule with an odd number of electrons must be responsible follows unambiguously from the structure of the bands, and the evidence is overwhelming in favor of OH being this molecule. All the bands considered here belong to one electronic transition. The lower state must be the ground state of the molecule as the bands can be obtained in absorption. IT IS
* Most of the wavelength measurements were carried out by F. T. Byrne; Rev. M. J. Wolf aided in the calculations of the transition probabilities and intensities. t Editor’s Note-The paper of Dieke and Crosswhite first appeared as Bumblebee Series Report No. 87 in November 1948. The decision to publish this document in the open literature at this late date is based on the observation that the basic data have remained an essential reference source over the years. It is our hope that publication in JQSRT will assure new generations of investigators easy access to this valuable material. A
97
G. H. DIEKEand
98
H. M. CROSSWWTE
The vibrational structure of the system was gradually recognized.@-41 It is given in Table 1 which lists the heads of all the bands found until now with an estimate of their intensities according to TANAKAand KOANA(4). For the bands that are underlined, new measurements and a revision of the analysis are given in this report. For the other bands the references indicate where the most complete data can be found. More accurate data on the intensities of a number of bands are given further on in this report (Table 6). TABLE1 V”
\ V’
___-__0
0
1
2
3 ---_-_____-
1
2811 (9)
-____ 3428 (7)’ 3122 (9)
2
2609 (4)4
2875 (9)3
3
2444 (1)2*3
2677 (5)2p3
3185 (6)3s5 2945 (7)3 3254 (4)3
2517 (2)3
2753 (4)3
4
3064 (10)
4
3185 (6)l
3022(5)3
3331 (4)3
For a proper study of the rather complicated rotational structure, measurements on plates of high dispersion and resolving power are necessary. GREBE and HOLTZ@) obtained such measurements in 1912 for the 3064 band (0 -+ 0), the strongest of the system, but did not attempt an analysis. Almost all the lines were arranged into series by HEURLINGER@). Although proven entirely correct by subsequent investigations, this was only a formal classification. The significance of the regularities could not be recognized because the theory of band spectra was not enough advanced. The next important step was made when WATSON photographed also the 2811 band (1 + 0) under high dispersion and classified the lines. This made it possible to establish combination relations and get a better idea of the interpretation@? lo). Further progress was made by measurements and analysis of additional bands, JACKET3) studied the 2 --f 0 and 0 --f 1 bands and the rest of the bands were obtained by TANAKAand SIRAN( TANAKAand KOANA(~* 11) and others.@. 12) Unfortunately these measurements were made on plates with less dispersion and were taken mainly with prism spectrographs. The results of different observers do not always agree in the details. In the meantime the theoretical interpretation of the structure also progressed. The SOcalled satellite series played an important part in this.@, 1%1%15) The theory had been developed chiefly by HUND, KEMBLE, HILL and VAN VLECK(~~)and MULLIKEN(~~).In Mulliken’s paper a detailed account of the structure of the bands is given which, except for minor details, is still considered correct. Another series of investigations deals with the behavior of the OH-bands under different light source conditions. OLDENBERGet al. (1~0) studied the bands in absorption * Prism spectrograph dispersion 4.4 A/mm, discharge tube.@) t Dispersion 8.3 &mm at 2550 A, discharge tube. $ Prism spectrograph, oxy-hydrogen flame, dispersion 4.3 A/mm at 2880.c4*7, 5 2 + 0 band, prism spectrograph, dispersion 3.4 &mm, discharge in HzO.(l)
The ultraviolet bands of OH
99
and used them for a determination of the OH concentration in flames and other reactions. They noticed also that in emission the rotational-intensity distribution may be quite abnormal under certain conditions, and this was further explored quantitatively by LYMAN@~). As OH is present in almost any type of combustion either as an essential product or an impurity, the OH bands may be used conveniently to obtain important data on the properties of the reaction. Almost all of these are derived from the intensity distribution either of the various rotational lines within one band or of the bands within the system. For any such use of the bands a clear understanding of their structure is essential and certain molecular constants must be known such as the rotational-transition probabilities. Unfortunately what can be found in the literature concerning this is not of much use for anyone who is not an expert in the theory of molecular spectra. The data are scattered over more than twenty papers. The interpretation and notation were often changed and there is nowhere an up-to-date comprehensive account of what is known about the bands which also gives the necessary numerical data. To this must be added that most of the measurements on which the data in the literature are based are not the best that can be obtained. The measurements of GREBE and HOLTZ, and WATSON,which are as good as, or better than, most of the other ones and from which the most important data were derived, were given to 0.01 cm-l but there are discrepancies of as high as O-6 cm-r in the combination relations. These large discrepancies are chiefly due to the fact that unresolved line pairs were used. Watson, for instance, did not resolve line pairs less than 0.8 cm-i apart. Such unresolved pairs are particularly common for lines with low rotational quantum numbers which are most important for the evaluation of the constants. The theoretical formulae used for such calculations are usually not good approximations for high quantum numbers. Also the question of the satellite branches has never been settled entirely satisfactorily. Rotational-transition probabilities, which are necessary for a reliable evaluation of temperatures are not known at all. Such probabilities were needed for the data presented in LYMAN’Spaper( but the author did not publish the constants that were used so that they are not available for the use of anyone else. For these reasons we believed that we were justified in taking the trouble to rephotograph the principal bands, measure them, calculate the necessary constants and gather together everything that is needed for an understanding of the structure of the bands and their use in the study of reactions and light sources. Preliminary investigations showed that it was not difficult to obtain plates of considerably better quality than those on which most measurements given in the literature were based. It is evident from a study of the measurements of GREBEand HOLTZ(*) and WATSON~~)that in both cases the full resolving power of the spectrographs employed by these authors are not reached. This may have been due to the poor quality of the lines in the light sources used by them or more likely due to poor definition, because of the required long exposure times (6-8 hours). We could shorten the exposure times considerably and obtain stronger exposures at higher resolution and dispersion. This may be due partly to the light source employed, partly to the spectrograph. Although we obtain considerably better resolution than the previous observers and consequently more accurate measurements, it is quite evident that in our case also we do not come near the theoretical resolving power of the spectrograph. This is due to the fact that the line-width sets a limit to the
100
G. H. DIEKE and H. M. CROSSWHITE
possible resolution so that there would be no point in going to a spectrograph of even higher resolution (see Fig. 1). In order to obtain better resolution, it would be necessary to employ light sources of different character. It is, however, more than doubtful whether a light source with sufficiently sharp lines would have the high intensity necessary for a spectrograph of high dispersion. II. STRUCTURE
OF 2X +zrI
BANDS
For the description of the rotational states of a diatomic molecule either the total angular momentum (in units h/2rr) may be used or the angular momentum K when the electronic spin is disregarded. K is a good constant of the motion only when the interaction between the electron spin and the rest of the molecule is small, but it may be used in any case with the understanding that it will represent the angular momentum without spin of the interaction between spin and the orbital motion is removed. K is always an integer. When we use K for the description of the rotational states we use the nomenclature appropriate for HUND’S case (b). This is always the best way for a X-state for which the resulting orbital angular momentum A along the internuclear axis is zero. For states with A # 0 (II, A, etc. states) the rotational states are usually between cases (a) and (b) and the nomenclature of either case is appropriate. We use here wherever possible the nomenclature of case (b), with K used for numbering the rotational states. In the OH-radical the electronic spin has the value l/2 which produced doublets. We characterize the two components of the doublet by subscripts 1 and 2 so that K(K); ji(K)
: J = K+1/2
Fs(K); fi(K)
: J = K-1/2.
Fl and F2 are used for the rotational
levels of the 2X state, fr and fs for those of the
211 state. (1) The 2S state There is no resulting orbital momentum A along the internuclear axis so that the electron spin is always coupled to the rotation axis. The two doublet components Fl(K) and Fs(K) nearly coincide for K = 0, but there is a so called p-type doubling for K #O due to the magnetic coupling of the spin and the momentum created by the rotation of the nuclei.(22) The rotational energies are K(K)
= BK(K+1)-D@(K+1)2+R(K+i)
A(K)
= BK(K+l)-D@(K+1)2-R(K+$)
F(K)
= BK(K+1)-DK2(K+1)2+
(1)
the average ...
(2)
should have the form of the energy of a lZ state. All constants are, of course, functions of the vibrational quantum number V. (2) The 2ll state
If A # 0, we can according to Hund consider two extreme cases.
101
The ultraviolet bands of OH
Case (a). The spin is coupled through the orbital angular momentum to the internuclear axis. The rotation is slow enough not to disturb this state of affairs. The rotational energy, except for an additive constant, is approximately BJ(J+ l), where J is the total angular momentum of the molecule. Case (b). The rotation is so strong that the spin is coupled to the rotational axis rather than the internuclear axis. In first approximation the rotational energy is B[K(K+ l)- AZ]. There are two states A(K):
J = K+&
fi(K):
J=
K-4.
Most actual slI states are close to case (a) for slow rotation and close to case (b) for fast rotations so that the intermediate case must also be considered. It has been treated by HILL and VAN FLECK. Hill and Van Vleck found that the rotational energy of a 2lI state is ji.z(J)
=
B[(J+g)2-1
~~2/{(2J+1)2+a(u-4)}l
(3)
where c1is the so-called coupling constant. Expressed in K the rotational ji(K)
= B[(K+1)2-1-~~{4(K+1)2+u(u-4)}]-DK2(K+1)2J-~
h(K)
= B[Kz--1+&/{4K2+u(u-4)}]-DK2(K+1)2
levels are = K
j++
= K1
(4)
The term K2(Kf 1)2 is correct only for case (b). It makes itself felt however only for large enough values of K, where usually case (b) is closely approximated. A-doubling. Bothji andfa are double. In first approximation the difference is proportional to K(K+ l), c22)The two components are calledfs andf$‘. They have opposite symmetry with respect to inversion at the origin of co-ordinates jl&+ and II,-). (3) 2B + 211 transitions The selection rule for J is : J -+ J and J+ 1 --+J. It must be strictly satisfied for the free molecule for dipole transitions. For case (b) there is also the selection rule K + K and K+ 1 --f K. Transitions that satisfy both selection rules form strong branches, those that violate the K rule are weak except for small values of K. In addition there is the symmetry selection rule even e odd which also is strict for the free molecule. With these rules we obtain the following twelve possible branches. They are named for case (b) which is most convenient here. O-branch P-branch Q-branch R-branch S-branch
for for for for for
K-2 -+ K K- 1 --f K K--f K K+ 1 -+ K K+2 + K
The branches are labelled by the indices of the initial and the final levels; if both these indices are the same, it is given only once. It is easily seen that the branches with only one index are those for which both the J- and K-selection rules are satisfied. They are called the main branches. The others, with two indices, are called the satellite branches. The twelve possible branches are:
G. H.
102
DIEKE
and H. M. CROSSWHITE
012(K) = a(K--2)-f’z(K)
J-l+J
A(K)
= F1(K-
I>--_fl(K)
J-l+J
A(K)
= NK--
l)--_fYdK)
J-l-+J
&2(K)
= r;l(K--
l)-fi(K)
J+J
@a) t5b) (W (W W (50
QdK) = K(K)-.f’dK) Q=(K) = A(K)-.71(K) QdK) = r;;(K)-.72(K)
J-l J+J
tw
Q1dK)
J+l+J J+l--+J
t5h) W
J+J
(3)
l)-_UK)
J+l-+J
(W
= Fz(K+2)-.71(K)
J+l+J
(51)
Rl(K)
= K(K)-_f’dK) = K(K+
R21(K) = A(KS R2(K) S2l(K)
J-+J
= Ei(K+
1)-ji(K) I)--ji(K)
-+J
The following remarks will make it easier to utilize the results of the earlier papers. In the previous publications often different notations were used. In the papers by HEURLINGER@), WATSON(~~Y14), FORTRAT( DIEKEf2), the numbering of the lines is K+ 1 of the final state and the indices 1 and 2 of the levels are interchanged, e.g. R2(5) of the present paper was R1(6). . MULLIKEN(~~) uses the notation for case (a), i.e. he numbers the lines, and names the branches by their J values. He indicates by a prefixed superscript the type of branch as follows : Present paper 012 P1 PZ P12 QI Q21 Q2 Q12 RI RZI R2 &I Mulliken PPP P1 P2 PQ QlQp Q~QB RIRQ R$RR The later papers usually use a notation similar to Mulliken’s notation or the one adopted in the present paper. (4) Combination relations From the equations (5a)-(51) follow immediately the following combination relations: Rl(K)--A(K)
= Q12(K+l)-012(K+l)
= K(K+l)-P1(K-1)
R2(K)-P2(K)
= S21(K-l)-Q21(K-1)
= K(K+l)--F2(K-1)
S21(K- 1) - Q1( K-
1) = Q2( K+ 1) - 012( K+ 1) = R2( K) - P12(K)
= R21(K)-A(K) RdK--l)-A(K+
(7)
= Fl(K+l)--A(K-1)
1) =ji(K+l)-ji(K-1)
S21(K-- 1) - Q21(K+ 1) = f’1( K+ 1) -f’1( R2(K-
(64 t6b)
(84 K- 1)
1) - P2( K+ 1) = f2( K+ 1) -fi( K-
1)
WI (94 tgb)
1)
Q12(K- 1) - 012( K+ 1) = f’2( K+ 1) -f’z(KQ1(K-1)-A(K)
= S21(K-l)-R21(K)
=ji(K)-f’l(K-1)
(lOa>
R1(R--l)-Q1(K>
= R21(K-l)-Q21(K)
=f-‘l(K)--ji(K--1)
(lob)
Qz(R--l)-P2(K)
= Q12(K-l)-Az(K)
=fi(K)-f’z(K-1)
(114
103
The ultraviolet bands of OH
Rz(K-l)-Qz(K)
=
Pl2(K--1)-012(K)
R1(K-l)--Rn(K-1)
=
=f’z(K)-fi(K-1)
Q1(K)-Q2dK)
=Ra(K+l)-P2(K+1)
=
=
(lib)
Q12(K)-122(K)
Fl(K)-fi(K)
(12)
(6), (7) and (12) are identical for bands with the same initial vibrational state, (8)-(1 l), for those with the same final state. The identities must, of course, hold within the errors of measurement. They are useful for testing the correctness of classification and may be used also to form an estimate of the accuracy of the measurements. The expressions are used as the first step in calculating the constants and obtaining the values for the energy levels.
(5) Transition probabilities The relative transition probabilities were calculated by EARLS from formulae first obtained by HILL and VAN VLECK~~).They are, except for an arbitrary constant, common to all of them: (The values of J are those of the slI state). R2
gi{(2J+
1) f U[(2J+
2{(2J+
1) f U[(2J+ 1)2+ 2(a - 4)]}
W)
1)2-2a]}
s21 Rl
WI
Q12
Q2
(2J+ 1)2-a+
U[(2J+ 1)3-8J-2al J
R21
(13c)
I
Ql
2J+l
Pl2
2J+2
4
2J+l 2J{(2J+
1) + U[(2J+ 1j2-2al)
We)
2Jfl ?{(2J+
1) + U[(2J+ 1)2+2(a - 4)]}
(139
(2J+1)2-2+
U[(2J+1)3-8J+2(1-4)] J
I
(134
012 PZ
Q21
where U-1 - 1/{(2J+1)2+a(a-4)} in these formulae the + sign before the U always refers to the main branches, the - sign to the satellite branches. The formulae are arranged in pairs. The second member is identical with the first except that a is replaced by -(a-4). In other words, one root of the equation a(a - 4) = constant is replaced by the other one. For J = l/2 the following special assignment is valid.
All others are zero.
a c 2: Rs = Q1s = S/3
Q2 = A2 = 16/3
a > 2: RI = Ss1 = S/3
Q1 = Rs1 = 16/3
G. H. DIEKE and H. M. CROSSWHITE
104 III.
WAVELENGTH
MEASUREMENTS
The oxy-acetylene flame is a light source in which the OH-bands appear with maximum intensity. As this source can be very easily produced it was used for all those photographs on which wavelength measurements were made. In the inner cone of the oxy-acetylene flame we f?nd also bands of Cs and CH. The CH-band at 3143 A appears with great intensity and is confused with some of the principal OH-bands. Therefore, the inner cone must be avoided and the bluish outer cone used. In it the OH bands appear practically free from superpositions. The wavelength region 2800-3550 was photographed in the second order of a 21-ft concave grating with 30,000 lines per inch in a Paschen mounting. The linear dispersion is about 0.6 A/mm. Fully exposed plates in the 3100 A region usually could be obtained with exposure times of about 30 min. This compares with Grebe and Holtz’s plates which were obtained with one quarter the dispersion (2.4 A/mm) in 6-8 hr and were nevertheless considerably weaker than ours. Tanaka and his co-workers had to use exposures of 10-20 hr. The plates were measured under the comparator in the customary way between iron standards. Two or more plates from different exposures were measured throughout the 281 l-3400 region. The measurements usually agreed to within a few thousandths of an Angstrom unit. The averages are listed in Table 14. Some of the weakest lines were only recorded on one plate. Beyond this wavelength region only one plate taken under some what less favorable conditions was measured. As the 0 + 1 and 1 --f 2 bands which fall in this region do not furnish any essential information that cannot be obtained also from the other bands, the deficiencies are of no serious consequences. A number of very weak lines measured on the strongest plates have been omitted from the tables. They are probably due to unidentified impurities. All the omitted lines would have an intensity of one or less on the intensity scale of Table 14. In comparing our measurements with those of previous observers, we see that many lines recorded as unresolved doublets previously can be resolved on our plates. This removes some of the worst discrepancies in the combination relations present in the earlier tables. Also for free lines the accuracy of our new measurements is considerably higher. Tables 9 and 10 show that combination relations now agree to within a few hundredths of a wavenumber. Occasional larger discrepancies are due to blends that remain unresolved. The limit for the accuracy of the measurements and the resolution of the lines is not given by the performance of the spectrograph. The resolving power of the latter is better than 300,000 which means that it should be possible to resolve lines about 0.01 A apart, whereas in general no lines closer than 0.03 A are actually resolved. This is due to the width of the lines caused probably by pressure and resonance broadening. This broadening can be clearly seen in Fig. 1. In order to get narrower lines and higher resolution it would be necessary to work at much lower pressures of OH. This would reduce the intensity to such an extent that it would be impossible to employ spectrographs of the required high resolving power. While undoubtedly some improvement would be experimentally feasible it is doubtful whether the gains would be commensurate with the efforts necessary to produce them. Table 13 lists all the bands, each arranged into twelve branches. The classification is essentially that of the previous papers with some changes and additions due to the more
The ultraviolet bands of OH
105
complete and accurate experimental data. In particular the six satellite branches are now observed with great completeness. For comments on the intensity data in Tables 13 and 14, see section VI. In Table 13 the column headed “blends” gives the intensities of the line or lines which coincide with the line in question. The listing of the blends is probably complete except for possible coincidences with impurity lines which are quite weak in all cases. In the regions where the 4 -+ 3, and 4 --f 4 bands are located there is probably a number of additional blends. Blends should of course always be avoided if the intensity measurements are used for temperature measurements or any other purpose. The six observed satellite branches are exactly those required by the theory. WATSON(~*’ and others have reported other satellites. There is no evidence on our plates that satellites other than the six branches demanded by the theory exist. Some of the extra satellites have been interpreted as even + even and odd -+ odd transitions which are strictly forbidden as dipole transitions in the undisturbed molecule. Such forbidden lines may appear with appreciable intensity in strong electric fields which may be present in a spark like discharge but certainly would be absent in a flame. We have tried unsuccessfully to locate them in discharges under spark-like conditions. The correctness of the classification is proved by the way the combination relations are fulfilled. These are listed in Table 9 and 10. It may be seen that the relations hold within the limits of experimental errors and these tables give an idea about.the accuracy of the measurements that is actually achieved. Whenever there are serious discrepancies (more than a few hundredths wavenumbers) they can be attributed to blends, particularly when the superimposed line is considerably stronger. There are a few cases where the differences in one band differ systematically by a few hundredths of wavenumber from the same differences in another band, This is due to small systematic errors in the wavelength measurements which are caused by uncertainties in the iron comparison spectrum. It was not thought worth while to go to the very considerable trouble of eliminating such small shifts completely. Tables 9 and 10 list only those combination relations involving directly the differences Fjj(K+ 1) - Fj(K-
l), fi(K+ 1) -jXK-
1) and Fl(K) - FzQ.
These are the relations (6a), (6b), (8a), (9a) and (12). Other similar relations according to equations (6) to (12) have been omitted to save space. IV.
CALCULATION
OF
CONSTANTS
(1) Initial state 2E The differences in Table 9 can be used to calculate the rotational constants occurring in equation (1). To obtain the most reliable results it is best to use enough differences so that one accidentally bad value will not effect the results too seriously. On the other hand, large values of K should be avoided because (1) is a good approximation only for small values of K. Accordingly, the constants were calculated from the differences for K = 2 to K = 8. The first difference was excluded because the lines from which it was calculated were usually not satisfactorily resolved. The values of the constants so obtained are listed in Table 2. The p-doubling of the 28 state which according to (1) is K(K)-F2(K)
= 2R(K+#
G. H. DIEKE and H. M. CROSSWHITE
106
can be most easily found from the doublet separations given in Table 9. The values of R given in Table 2 are determined from the separations from K = 2 to K = 9. The observed p-doubling is represented up to about K = 10 by the linear term alone, within the limits of experimental errors. For higher K-values there is a small systematic decrease in the observed splittings compared to the calculated values. This difference is presumably due to higher terms which have been neglected. The doublet separation decreases systematically with the vibrational quantum number c. This decrease is small but unmistakable and is what should be expected, as for a given K the rotation is actually slower for higher values of V. The values of B and D given in Table 2 are those obtained when an expression like (1) is assumed to represent the rotational levels, and this gives quite satisfactory agreement between the observed and calculated energy levels. However, small systematic differences persist. Better agreement is obtained by adding a linear term to the averages. If we have F(K) = A(K+$)fBK(K+1)-DKz(K+1)2 and calculate the three constants from the first eight rotational A B v=o - 0.0894 16.978 1
+ 0.0078
16.123
differences we obtain D 0.002 11 0~00200
The values of the other vibrational states, because of many blends, are hardly sufficiently accurate to make the calculations with sufficiknt accuracy. Before concluding that the constants given above are better than those given in Table 2, it would be necessary to investigate carefully whether such small differences might not be due to systematic errors in the measurements. Such errors might arise because many of the lines with small K-values are very close doublets. Unless this is done it would be premature to speculate on the significance of the particular values for the constants. (2) Final state 2II The constants of the final state are calculated from the expression (4). This gives us 21(K) =fi(K)+fi(K-1) which is independent have
= 2B(Kz-l)-2DP(Kz+l)
of the coupling constant a. By taking the appropriate
2[f(K+l)-f(K-1)]
= 2Af(K) = Afi(K)fAji(K-1)
differences we
= 8BK-8D(2Ks+3K).
These differences are obtained from Table 10 and are used to calculate B and D. From (4) we also get h(K)--fi(K-1)
= B1/{4K2i-a(a-4)}-4DK3
(14) in which the term with D only gives the order of magnitude of the corrections and may be neglected in first approximation. These differences can be obtained directly within the limits given by the errors of measurements from the values of Table 12. For V = 0 the values of a(a-4) calculated from (14) for successive values of K are K= a(a -4)
2
3
4
5
6
86.62 86.68
86.96 87.21
86.87 87-51
86.84 87.27
86.04 88.57
The ultraviolet
107
bands of OH
The first row is obtained by omitting the term with D in (15); the second one by including it. The true value of a(a - 4) lies probably between the two. The agreement is very good considering the apfiroximations. A weighted average is ~(a-4)
= 87.17
which gives us a=
- 7.547 or + 11.547.
The second value is excluded as the structure of the OH bands requires that a be negative. A synopsis of all the other constants of the final state is given in Table 2. TABLE 2. SYNOPSISOFBAND
V 0 --___--___ B 16.961
2C state 2
1 16.129
CONSTANTS
3
15.287
-__-~
14.422
Be=
17.355
D
OGO204
OW203
0.00208
0.00206
G( = -0.807
R
0.1122
0.1056
0.0997
0.098
/!I = -OX)0825
WJ
2988.60
2792.92
2593.36
w = 3184.28 x = 97.84
Q
state
W
0
1
2
3
B
18.515
17.807
17.108
16.414
D a WI bl
0~00187 - 7.547 3569.59 0.0417
00.X82 - 7.876
0.00182 - 8.214
Be= 18.871 cc = -0.714
- 8.568
3403.97
p = 0.0035 w = 3735.21
0.0399
0.0377
0.0351
x = 82.21
B,,a and /I are as usual the constants occurring in B, = Be+a(Y+4)+B(V+&)2,
while the vibrational
(15)
energy is written w( v+Jr> -X( v+j#.
wV are the differences between the successive vibrational doubling of the fr state can approximately be written f’l(K) -fi(K)
=
blK(K+
levels V and I/+ 1. The A-
1).
The values of bl are not very accurate as the interaction of spin- and A-doubling has not been taken into account. The dependence on V however is significant.
108
G.
H. DIEKEand H. M. CROSSWHITE
Table 2 shows that the absolute value of the coupling constant a increases regularly with the vibrational quantum number V. This is as it should be as a expresses the departure from sphericalsymmetry of the force field acting on the electron spin, due to the separation of the nuclei. If there is more vibration this influence of the internuclear axis should be stronger, resulting in a higher value of a. The influence on the A-doubling should be in the opposite direction. The reason for the A-doubling is the gradual uncoupling from the internuclear axis of the orbital angular momentum due to the rotation of the molecule. The stronger the influence of the internuclear axis, the less the decoupling and, therefore, the smaller the A-coupling. This is in agreement with the facts, as according to Table 2 the A-doubling decreases regularly with the vibrational quantum number. The A-doubling of the fs state is smaller than that for thef1 state as it should be. It does not follow a simple formula, but it also decreases with the vibrational quantum number V. V. CALCULATION
OF THE
ENERGY
LEVELS
With the help of the combination relations and the values listed in Tables 9 and 10, all the energy levels involved in the bands can be found with nearly the accuracy of the measurements and with practically no use of any particular formula for the rotational or vibrational energies. Such a table of energy levels is quite useful for many purposes. It can be used to find other lines and bands involving the same energy levels. For temperature measurements the energies of certain levels are required and can be obtained from the table. The compilation of such a table is extremely simple. The only requirement is to make use of the empirical material in such a way as not to cause small errors of the individual measurements to add up to produce relatively large errors in the final results. The procedure is as follows: As all energies are defined only apart from an additive constant we can choose one level arbitrarily. It is convenient to give the lowest levelf1(1) the value zero. Then we have A(1) = F1(0) -f1(1) = K(0) = 32440.60 which fixes the value of F1(0). From the A Fl differences of Table 9 we get successively all the even K(K) values, as K(2) = Fl(O)+AFl(l) K(4) = K(2) + AK(3) etc. To obtain the odd K(K) values we must make use of expression (1) for the rotational energies. This formula serves here only as interpolation formula and is required to give only one value, e.g. F1(1). We know that the formula represents the energies for small values of K within the limits of experimental errors which means that Fdl) is known now with such accuracy. With the help of the rest of the differences AFI of Table 9 we can now find successively K(3), K(5), etc., so that now all the K(K) levels for V = 0 are known. The F2(K) levels can now be obtained from the doublet separations of Table 9 or, for the higher values of K where they are not available, with the AFz differences of Table 9. All rotational levels for Y = 0 of the aI: state are now known. With the help of the wavenumbers of the band lines of the 0 + 0 band all thefi andf’t(K) levels of the V- 0,
The ultraviolet bands of OH
109
sll state can be found by subtraction. After this the 1 + 0 band will furnish the V= 1, sC levels, then the 1 --f 1, the V = 1, sll levels, etc. Sometimes several ways of getting the same level are possible which should give the same result but because of the errors in the measurements they are slightly discrepant. In the compilation of Tables 11 and 12 these discrepancies were removed by averaging, or discarding one of the discrepant values in such a way that important differences as, e.g., the A-doublings of the sll state or the p-doublings of the sZ state have as nearly as possible their true values. VI.
INTENSITIES
(1) General considerations While the wavelengths of the individual band lines remain essentially constant when conditions in the light source are changed, the intensities change a great deal. These intensities, therefore, can be used to explore the physical conditions in the light source. When there is statistical equilibrium in the source and, therefore, a temperature exists, the intensity distribution may be used to determine the temperature. In other cases deviations from temperature equilibrium can be studied that may be of importance for information on the elementary processes taking place in the reaction. As OH occurs as an essential ingredient or impurity in most combustion processes, the practical importance of the study of the OH bands for an understanding of combustion processes in general, is great. The intensities of a line due to a transition n + m are given by I w,, = N&n,,, . hvn,
(16)
where Annz is the transition probability for the transition n + m and Nn the number of molecules in the initial state. Anm is a molecular constant that can be calculated theoretically in many cases. Nn depends on the particular conditions in the light source. For temperature equilibrium Nn = Noes
(17)
where NO is a constant, E,, the energy of the state n and T the absolute temperature. (17) is true without qualifications if the levels are not degenerate. For degenerate states Nn expresses the number of molecules in each substate. The transition probabilities A, are then obtained by summing over the transitions between the individual substates. The A,‘s carry, therefore, the so-called probabilities a priori. The total number of molecules in the degenerate state is N,* = (23+ 1)Nn when the degeneracy is due to spatial degeneracy. When the bands have been analyzed the energy values En are known. In our particular case they are contained in Table 11. If also the Anm’s have been calculated (see below) and the temperature is known, the intensities are also known through (16) and (17) except for a common constant which is of no practical importance, as only the relative intensities have any physical significance. The Inm. values can be measured. If everything else is known a comparison of the measured and calculated intensities provides a check for the correctness of all the assumptions and calculations. More usually, however, the situation is different, because Nn is
110
G. H. DIEKEand H. M. CROSSWHITE
not known. As it is the only unknown quantity in (16) if the intensities are determined experimentally and the transition probabilities known theoretically, NB can be determined as a function of the quantum number n (in our case K and V) or of the energy En. If Nn satisfies a relation of the form (17) there is a good chance that temperature equilibrium exists and the value of the temperature can be directly determined. The most practical ways of carrying out the temperature determinations will be discussed in section VII. Temperature equilibrium exists when (17) holds for all energies including translational energies whereas (17) is usually tested only as function of the rotational energies, sometimes also of the vibrational energies and electronic energies. In general there is no simple spectroscopic way of checking (17) for dependence on translational energies. If (17) holds for the rotational energies we may speak of a rotational temperature TR. If there is other evidence that there is general temperature equilibrium, the rotational temperature is equal to the gas temperature. However, there are cases when a rotational temperature exists though there is no general statistical equilibrium. In such cases there may be also a translational temperature TT which is different from the rotational or vibrational temperatures. The chances that such a complicated state of affairs exists are particularly great in a combustion zone or at low pressures. Great care must then be taken not to confuse the rotational temperature, determined from (17), with the gas temperature. Greater assurance, though not complete certainty, that general temperature equilibrium exists is obtained if the dependence of (17), also on the vibrational and electronic energies, is checked. Examples of this will be given in a subsequent report. In any case if the relation (17) does not even hold for rotational energies, we know that certainly no temperature equilibrium can exist in the light source. Each individual case then must be studied in order to evaluate the significance of the deviations from equilibrium. In general the deviations from equilibrium can furnish more detailed information on the mechanism of the reactions occurring in the light source. When there is thermal equilibrium only the temperature can be determined, but we can find out nothing about the mechanism by which energies are transferred as the equilibrium distribution is independent of any detailed mechanism of the reactions. (2) Experimental The intensity measurements were carried out photographically. The emulsion was calibrated with the help of iron lines of known intensity. Such iron lines also were used for determining the sensitivity of the plate and the response of the spectrograph as function of the wavelength.* In general photoelectric intensity measurements are preferable to photographic measurements and they have been used extensively in other parts of this work. However, in this particular case circumstances are less favorable for photoelectric determinations. Rather high dispersion and narrow slits are required at least for these exploratory investigations. The wavelength region around 3100 A is not as favorable for photoelectric * The data necessary for this are contained in Report W-54 and W-128 by G. H. DIEKEof the Office df Production Research and Developments and in Photoelectric Intensity Measurements in the Iron Arc, IS. M. CROSSWHITE Spectrochimica Acta 4, 122 (1950).
The ultraviolet bands of OH
111
measurements as longer wavelengths. While the necessity for photographic plate calibration somewhat complicates the procedure, there is an advantage in getting so many lines simultaneously. This is a real advantage as long as many lines must be investigated as to their suitability for routine measurements. Such routine measurements can be done with only a few lines and for the method reported in section II, plate calibration is unnecessary. Intensity measurements in the OH-bands have been reported by LYMAN@~).Unfortunately the details which would make it possible for others to make use of Lyman’s results were not published. For this reason it was necessary to duplicate a great deal of Lyman’s work. (3) Transition probabilities The expressions for the rotational-transition probabilities as calculated by EARLS from the general expressions of HILL and VAN VLECK were listed on p. 103. The only constant that must be known is the coupling constant a. Numerical values of the transition probabilities were calculated for a = 0 (Table 3) and a = -7.547 (Table 4), the actual value of a for the 2l-l state of OH. For most applications the logarithms of the values of Table 4 are required. These are listed in Table 5. The values listed in Tables 3-5 are proportional to the squares of the matrix elements of the dipole moment. In order to obtain numbers directly proportional to the transition probabilities the values in the tables must be multiplied by 9, in order to obtain intensities by v4. In all cases the proportionality constants which are omitted contain the vibrational and electronic-transition probabilities, besides some general physical constants.
112
G.H.DIEKE
and H. M. CROSSWHITE
TABLE 3. ROTATIONAL-TRANSITIONPROBABILITIESFOR A~X -+W TRANSITION WITH THE COUPLING CONSTANT a = O(K VALUES ARE THOSE OF THE FINAL STATE)
Qlz Q=
Rzl
5.33 1.60 0.91 0.64 0.49
2.67 1.60 1.14 0.89 0.73
0.53 0.46 0.38 0.32 0.28
22.15 26.13 30.12 34-l 1 38.10
0.39 0.33 0.28 0.25 0.22
0.62 0.53 0.47 0.42 0.38
0.25 0.22 0.20 0.18 0.17
45.76 49.78 53.79 57.81 61.82
42.09 46.08 50.07 54.07 58.06
0.20 0.18 0.17 0.15 0.14
0.35 0.32 0.30 0.28 0.26
0.15 0.14 0.13 0.13 0.12
127.76 135.76 142.79 151-80 159.80
65.83 69.84 73.85 77.85 81.86
62.06 66.06 70.05 74.05 78.05
0.13 o-13 0.12 0.11 0.11
0.24 0.23 0.22 0.21 0.20
0.11 0.11 0.10 0.10 0.09
175.82 183.83 191.85 199.86 207.84
167.81 175.83 183.64 191.84 199.84
85.87 89.87 93.88 97.88 101.89
82.05 86.04 90.88 94.04 98.04
0.10 0.10 0.09 0.09 0.08
0.19 0.18 0.17 0.16 0.16
0.09 0.08 0.08 0.08 0.07
215.85 223.88 231.84 239.85 247.90
207.85 215.86 223.86 231.86 239.87
105.89 109.90 113.90 117.90 121.91
102*04 106.04 110.04 114.03 118.03
0.08 O-08 0.07 o-07 0.07
0.15 0.15 0.14 0.14 0.13
0.07 0.07 0.07 0.06 0.06
Pl
P2
Ql
10.67 14.40 18.29 22*22 26.18
8.00 12.80 17.14 21.33
13.33 22.40 30.86 39.11 47.26
5.33 14.40 22.85 31.12 39.27
9" 10
30.15 34.13 38.12 42.10 46.09
25.45 29.54 33.60 37.65 41.68
55.39 63.47 71.56 79.58 87.63
11 12 13 14 15
50.09 54.09 58.07 62.07 66.06
45.71 49.74 53.76 57.78 61.79
16 17 18 19 20
70.06 74.06 78.05 82.05 86.05
i: 23 24 25 26 27 28 29 30
K
6 7
QZ
Rl
RZ
PlZ
4.80 9.14 13.33 17.46 21.54
2.67 6.40 10.29 12.22 18.18
47.38 55.47 63.53 71.61 79-72
25.60 29.65 33.68 37.71 41.74
95.65 108.68 111.70 119.72 127.74
87.66 95.68 103.71 111.73 119.74
65.80 69.82 73.83 77.84 81.84
135.75 143.77 151.79 159.79 167.80
90.04 94.04 98.04 102.04 106.04
85.86 89.86 93.86 97.88 101.88
110.04 114.04 118.03 122.03 126.03
105.88 109.89 113.89 117.89 121.89
The ultraviolet
TABLET.
K
ROTATIONAL-TRANSITIONPROBABILITIESPOR ARC +2II TRANSITION WITHTHE CONSTANT U = - 7.55 (THE K-VALUES ARE THOSE OF THE FINAL STATE)
Ql
012
Pl2
Q21
s21
12.8 16.7
1.3 l-7 l-8 l-8
5.3 6.0 6.3 6-2 5.9
6.3 5-l 5.3 4.9 4-4
2.8 3.8 4.2 4.2 4.0
3.9 5-l 5.4 5.3 5.1
0.8 1.2 l-4 l-4 1.4
22.7 26.9 31-l 35.3 39.5
20.7 24.8 28.8 32.9 37.0
l-7 1.6 l-5 1.4 1.3
5.5 5.1 4.7 4.3 4.0
4.0 3.7 3.4 3.1 2.8
3.7 3.5 3.2 3.0 2.8
4.8 4.4 4-l 3.8 3.6
1.4 l-3 1.2 1.1 I.1
84.2 92.5 loo-7 108.9 117.1
43.7 47.8 51.9 56.0 60.2
41.0 45.1 49.1 53-2 57-2
:I:
3.5 3.7
2.5 2.6
2.4 2.6
3.2 3.4
1-O
1-O
3.3
2.3
2.3
3-O
:I:
2.9 3.1
2.0 2.2
2.0 2.1
2.6 2-8
0.8 0.9
133.3 141.5 149.6 157.7 165-8
125.2 133.4 141.5 149.6 157.7
E 72.4 76.5 80.5
61-3 65.3 69.3 73-4 77.4
O-9 0.8 0.8 0.7 O-7
2-7 2.6 2.4 2.3 2.2
1.9 1.8 1.7 1.7 1.6
1.9 1.8 1.7 1.6 1.6
2.5 .2.4 2-3 2.2 2-l
0.8 O-7 O-7 O-7 O-6
84.5 88.5 92.6 96.7 LOO.7
173.9 182.0 190.1 198.2 206.7
165-S 173-9 182.0 190.1 198.2
84-6 88.7 92.7 96.8 100.8
81.4 85.4 89.5 93.5 97-5
0.7 0.6 0.6 0.6 0.6
2-l 2.0 1.9 I.9 I.8
l-5 1.4 l-4 1.3 1.3
l-5 1*4 l-4 1.3 l-3
2-O I.9 1.8 1.8 l-7
0.6 0.6 0.6 0.5 0.5
104.8 108.8 112.9 116.9 120.9
214.3 222.4 230.4 238.4 246.5
206.2 214.3 222.4 230.4 238.4
104.9 108.9 112.9 117.0 121-o
101.5 105.5 109.6 113.6 117.6
;:; 0.5 O-5 0.5
::‘7 1.6 1-6 l-5
l-2 1.2 1.2 1.1 1.1
l-2 1.2 1.2 1-l 1.1
1.6 l-6 1.5 l-5 l-4
0.5 0.5 0.5 0.5 0.4
0.5
l-5
P2
1 2 3 4 5
9.4 12.7 16-5 20.5 24-5
4.4 8.6 12.9 17.4
17.0 25.3 33.7 42-2
5.3 11.0 18.2 26-l 34.4
10-l 14.2 18.4
6 7 8 9 10
28.6 32.7 36.8 40.9 44.9
21 *a 26.1 30.5 34.8 39-o
50.6 59.1 67.5 75.8 84-l
42.6 51 *o 59.3 67.7 76.0
11 12 13 14 15
49.0 53.1 57.1 61.2 65.2
43.3 47.5 51-6 55.8 59.9
92.4 100.6 108.8 117.0 125.2
16 17 18 19 20
69.3 73-3 77.3 81.4 85.4
64-O 68.1 72.2 76.3 80.4
21 22 23 24 25
89-4 93-4 97.5 101.5 105.5
26 27 28 29 30
109.5 113.5 117-5 121.6 125.6
0.0
125.0
Q2
246-O
COUPLING
R21 -~-
Pl
31
113
bands of OH
Rl
Ra
2.7 ;:;
121.6
Q12
I.0
G. H. DIEKE and H. M. CROSSWHITE
114
TABLE 5. LOGARITHMSOF THE TRANSITIONPROBABILITIES LISTEDIN TABLE 4
Ql
Q2
0.64 0.94 1.11 1.24
0.95 l-23 140 1.53 1.63
l-46 1.51 l-57 1.61 1.65
1.34 1.42 1.49 1.54 1.59
11 12 13 14 15
1.69 1.73 1.76 l-79 1.81
16 17 18 19 20
Pl
PZ
0.97 1.11 1.22 1.31 1.39 6 7 8 9 10
Q21
Rl
R2
012
PI2
O-72 l-04 1.26 1.42 1.54
0.42 0.79 1.00 1.15 1,27
0.43 0.75 0.95 l-11 1.22
0.10 0.23 0.25 0.25
0.73 0.78 0.80 0.80 0.77
0.80 0.77 0.72 0.69 0.65
1.70 1.77 1.83 1.88 1.93
1.63 l-71 1.77 1.83 1.88
1.36 1.43 1.49 1.55 1.60
1.32 1.39 l-46 1.52 1.57
0.23 0.20 0.16 0.13 0.10
0.74 o-71 0.67 0.64 0.60
164 1.68 l-71 l-75 1.78
1.97 2.00 2.04 2.07 2.10
1.93 1.97 2.00 2.04 2.07
164 1.68 1.72 1.75 l-78
1.61 1.65 1.69 1.73 1.76
0.07 0.04 0.01 9.98 9.96
l-84 1.87 1.89 1.91 1.93
1.81 i-:83 1.86 1.88 1.91
2-13 2.15 2.18 2.20 2.22
2.10 2.13 2.15 2.18 2.20
1.81 1.84 1.86 1.88 1.90
l-79 1.82 1.84 1.87 1.89
21 22 23 24 25
1.95 1.97 1.99 2.01 2.02
1.93 1.95 l-97 l-99 2.00
2.24 2.26 2.28 2.30 2.31
2.22 2.24 2.26 2.28 2.30
1.93 1.95 1.97 1.99 2.00
26 27 28 29 30
2.04 2.06 2.07 2.09 2.10
2.02 2.04 2.05 2.07 2.08
2.33 2.35 2.36 2.38 2.39
2.31 2.33 2.35 2.36 2.38
2.02 2.04 2.05 2.07 2.08
K
R21
s21
0.43 0.58 0.62 0.62 0.60
0.60 0.71 0.74 0.73 0.71
9.88 O-08 0.14 0.16 0.15
0.60 0.56 0.53 0.49 0.45
0.57 0.54 0.51 0.48 0.45
0.68 0.65 0.62 0.58 0.55
0.13 0.11 0.08 0.06 0.03
0.57 0.54 0.51 0.48 0.46
0.42 0.39 0.36 0.34 0.31
0.42 0.39 0.36 0.33 0.31
0.53 0.50 0.47 0.45 0.42
9.00 9.98 9.95 9.93 9.90
9.94 9.91 9.89 9.86 9-85
0.44 0.41 0.39 0.37 0.34
0.29 0.26 0.24 0.22 0.19
0.28 0.26 0.24 0.22 0.20
0.40 0.38 0.36 0.34 0.32
9.88 9.86 9.84 9.82 9.81
1.91 l-93 1.95 1.97 1.99
9.83 9.81 9.79 1.77 9.75
0.32 0.31 0.29 O-27 0.25
0.18 0.16 0.14 0.12 0.11
0.18 0.16 0.14 o-12 0.11
0.30 0.28 0.26 0.25 0.23
9.79 9.77 9.75 9.73 9.72
2.01 2.02 2.04 2.06 2.07
9.73 9,72 9.71 9.69 9,67
0.24 0.22 0.21 o-19 0.18
0.09 0.08 0.06 0.04 0.03
0.09 0.08 0.06 0.04 0.03
0.22 0.20 0.19 0.17 0.16
9.71 9.69 9.67 9.66 9.64
Q12
It is useful to inquire to what extent the values of Table 4 can be relied upon. The model, used for the derivation of the formulae on p. 103, contains the following approximations. The distortion.of the molecule by vibration and rotation is neglected except for the gradual decoupling of the electron spin from the internuclear axis with increasing rotation. The latter has been fully taken into account. Furthermore, the type of distortion of the electronic motion that gives rise to the so-called A-doubling (L-decoupling) has been disregarded. It would not be too difficult to include the effect of these neglected interactions on the intensities. It would, however, complicate the formulae considerably, and it is doubtful whether the difference will be significant in most cases. It should be added that all others that have used the rotational-transition probabilities of diatomic molecules in general have employed the same or even rougher approximations. (4) General check of the formulae In the oxy-acetylene flame there appeared to be definitely temperature equilibrium with temperatures around 3OOO”K,the precise value depending on the particular conditions.
The ultraviolet bands of
OH
115
values given in Table 14 are the intensities with temperature equilibrium at 3000”K, which we may consider as the standard condition for any oxy-acetylene flame. The values given in the tables are not purely empirical values. There are so many superimposed and confused lines for which accurate measurements are impossible, that a great percentage of the empirical values would be useless unless special precautions are taken, which would add greatly to the burden of making the measurements, without giving really satisfactory results. The following procedure was therefore adopted. In the 0 --f 0 band the relative intensities of all lines were calculated for T = 3000” with the help of (16), (17) and the transition probabilities of Table 4. The proper wavelength dependence (“4 factor) was taken into consideration. It was checked experimentally with representative free lines that these calculated values agreed with the observed ones within the limits of experimental errors. The absolute values of the intensities were so adjusted that the strongest line has the value 1000. For all blends in the table the intensities of the individual components are given in the same order that the lines appear in the classification column to the right. Table 14 (or Table 13) makes it therefore immediately possible to see how much the intensity of a line is affected by that of a superimposed line. Naturally in this way only blends can be dealt with where the interference is by other classi$ed lines. There may be additional blends with lines of unknown origin. These are of two types. In the region where the 4 --f 3,4 -+ 4, etc. bands fall, many additional blends may be expected. The lines of these unclassified bands, however, must be expected to have only weak lines in general of intensity 2 or below. They occur from 3022 and 3331 to longer wavelengths. In these regions therefore the intensities of weak lines are quite uncertain. In addition there may be impurity lines. Any such measured unclassified lines of intensity greater than 1 have been included in Table 10. They are relatively few, so that the chance of a blend with such a line is slight. They have in general intensities below 2 and therefore such unknown blends cannot affect appreciably the intensities of the stronger lines in the oxy-acetylene flame. This may, of course, be different for other types of light sources where the influence of impurities is stronger. It would require a special investigation in such cases to establish the effect of impurities.* The relative intensities of the lines in the other bands can be calculated in the same way except for a common constant in each band. The fact that the coupling constant is slightly different for different vibrational states is of little significance if the lines with very low K-numbers are disregarded. This common constant is determined experimentally
The intensity
TABLE 6 V”
\ 0
: 3
0
1
2
1000 86 -
4 156 35 -
2 23 8
3 1 r
* It should be noted that the intensity distribution may be quite different from that given in Table 14 with other excitation conditions. This is true for instance for the OH-band produced by an electrical discharge in water vapor at low pressures. This will be dealt with in a subsequent report.
G. H. DIEKE and H. M. CROSSWHITE
116
by measuring a number of suitable lines with respect to the 0 + 0 lines. Of course, for all such measurements, the actual temperature for that particular flame was used and the intensity distribution for that temperature. The results were then recalculated for T = 3000°K. In this way the relative intensities of the individual bands are found. They are listed in Table 6. This is the vibrational-intensity distribution for temperature equilibrium at 3000°K. From this the vibrational-transition probabilities are found and listed in Table 7. The values within parenthesis are proportional to the actual values of the transition probabilities which include the ~3factor. The other values are proportional to the square of the dipole matrix elements. TABLE7 V”
\V’
0 loo0 (1ooo) 220 (315) -
0 1 2 3
1
2
5 (4) 700 (650) 400 (500) -
ii (9) 450 (400) 335 (415)
3
1 350(300)
Self-reversal. The values of the intensities actually measured as compared to the calculated values are affected by self-absorption. This is due to the absorption of the line while the light travels through the light source and the surrounding region containing OH molecules. Self-absorption affects different lines to a different degree and therefore distorts the relative intensities. When self-absorption is very strong the center of an individual line is weaker than the sides and we have self-reversal. Self-reversal can easily be recognized immediately while self-absorption of smaller amount can only be discovered by careful measurements. There is considerable self-absorption in the OH bands coming from a flame. This is shown in Fig. 1 which gives the portion near the head of the 0 -+ 0 OH band from an oxy-acetylene flame when observations are made along the axis of the flame. This increases the amount of gas containing OH molecules which the light has to traverse and therefore the amount of self-absorption. On the upper part of the figure the classification of the lines is indicated. On the lower part the intensities of the unreversed lines divided by 10. All lines with intensities 200 or higher show clearly self-reversal and lines of considerably lower intensities would still show appreciable self-absorption. Self-absorption is chiefly a function of the intensity of the line, being stronger for the stronger lines. (24)This shows that when intensity measurements are used for temperature measurements or similar applications, the stronger lines should be avoided, unless evidence is obtained first that self-absorption plays no important role. VII.
TEMPERATURE
DETERMINATIONS
In this section only the essential points necessary for making temperature measurements with the help of intensity measurements in the OH bands are dealt with. The results actually achieved in different types of flames and also a discussion of the intensity distribution when there is no equilibrium will be dealt with in a subsequent report.
117
The ultraviolet bands of OH
All spectroscopic temperature determinations of the kind of interest here are based on equations (16) and (17). As we have seen, a knowledge of the relative transition probabilities An, is essential. In our case they are obtained from Table 4, with corrections for wavelength dependence, if necessary. (1) Fundamental method By taking common logarithms, (16) can be written log ZK-log
AK = const.-
Bog
e;
(18)
the constant will depend on the wavelength in a known way. The left side is known, as ZK is measured and AK obtained from Table 4. The EK values are also known (Table 11). The left side is then plotted as function of EK. This plot should be a straight line with the slope -log e/(kT). If the slope is measured the temperature T is known. Discussion of this method. This method, which has been used extensively in the past for a great variety of molecules, has its advantages and drawbacks. For large scale applications the latter usually outweigh the advantages. Advantages. (1) By taking many lines, the accuracy can be increased and the influence of an occasional bad line (blends or otherwise defective) eliminated. (2) A check is obtained in each case on whether rotational temperature equilibrium exists. This is so if actually a straight line is obtained. If the plot is not a straight line, this may be due to one or more of the following causes. (a) No equilibrium in source. (b) Influence of self-absorption. (c) Influence of continuous background. (d) Improper plate calibration. (e) Considerable temperature gradients in flame. If (a) applies, no proper temperature exists and therefore no temperature measurements are possible. For (b) strong lines are avoided. For (c) corrections may be applied for continuous background. (See below.) For (d) proper calibration techniques are used. For (e), in general, the more outlying portions of a flame will have lower temperatures than the central part. The light falling on the spectrograph slit comes from different parts of the flame and therefore the temperature found is a certain average which depends on the exact way the analysis is made. The influence of this will be disregarded for the present though, at times, it may be quite important. Disadvantages. The fact that a plate calibration is necessary is the greatest disadvantage. This adds greatly to the burden of making the measurements and, unless done with great care, may affect the accuracy seriously. Figure 2 illustrates the application of this method and shows at the same time the influence of the continuous background and of self-absorption. When the log ZK-log AK values for the R2 branch of the 0 + 0 band are plotted as function of the energy, the dotted curve results which is far from being a straight line. At first sight one might be inclined to consider this evidence for there not being any
118
G. H.
DIEKE
and H. M.
CROSSWHITE
temperature equilibrium. The deviations from the straight line are however mostly due to the continuous background. If the intensity of the continuous background is measured and subtracted from the intensities IK of the lines, and the thus corrected log I values are plotted, the unbroken curve of Fig. 2 results, which is now a straight line. Note that the points for low and high K-values fall on the same straight line whereas the intermediate points fall slightly below it. These belong to the strongest lines which are somewhat selfabsorbed and therefore show up in the measurement weaker than they should be. 2.0 I.9 14 I.7 I.6
---
correctionfor Continuousbackground
without
1.5 I.4 I.3 c? 1.2 3
1.1
A k0 s 0.9 0.6 0.7 0.6 0.5 0.4 0.3 0.2 0.1
t
4
6
8
IO
I4
12
I6
I6
20
K
Fig. 2.
(2) Iso-intensity method The intensity distribution in any one branch has the form of Fig. 3 which shows the distribution for two different temperatures. If we take one particular line with a low Kvalue (b), we find that there is another K-value toward the tail of this branch which has the same intensity. This K-value, Kb, is not necessarily an integer; that is, it does not necessarily correspond to an actual line, but it can be determined by interpolation if the intensity curve is known in the vicinity of Kb. This value Kb = x, for a fixed b, is a function of only the temperature, and the form of this function can be determined with relative ease. We have -& -6 kT Abe
Or
&-& -----log kT
7 =
A,e
e = log A, --log Ae
(IL - Edlog e K(log As -log
Aa) =
T
(1%
119
The ultraviolet bands of OH
Everything except T is known for integer values of x and therefore T can be calculated as function of x for x an integer. For non-integer values of x, T can be found by interpolation. In Fig. 3, b = 1 is chosen as an example. x for T = 1000 is between 9 and 10 and for T = 3000 it is between 19 and 20. Advantages and disadvantages. For this method* the temperature determination depends only on the determination of equality of intensity. This is independent of plate calibration. For this reason no plate calibration is necessary. This is a great advantage. On the other hand, because only a few lines are used, the inclusion of a bad line would affect the results seriously. Furthermore there is no way of making sure that a temperature, that is, equilibrium, actually exists. Therefore, in each case the application of this
0
5
IO
20
15
25
K
Fig. 3.
method should be preceded by a careful analysis of the lines that are to be used and an investigation, with the fundamental method, whether the proper conditions are fulfilled. This has been done for the OH bands for this report. The results are also independent of continuous background provided the background does not change in intensity over the wavelength interval covered. (3) Application to OH bands Choice of lines. Obviously the lines to be used should be free from superpositions. Furthermore they should be as close together in wavelength as possible. This is in order not to encounter trouble due to change of plate sensitivity with wavelength and similar * This method is in principle very similar to the one described by KNAUSSand McCAY.(~“)
120
G. H. DIEKE and H. M. CROSSWHITE
effects. The Re lines from K = 1 to 20 of the 0 + 0 OH band satisfy these conditions very well. In the first place they are single lines, not accompanied by satellites. The branch has its maximum intensity near the head for the ordinary range of temperatures. This means that the two lines to be compared are quite close together on the plate.* A number of Rs-lines must, however, be excluded because they are too close to other lines. These nonusable lines are for spectrographs of moderate dispersion K = 5,6,9,10,11,12. For small dispersion even more lines might have to be excluded, particularly K = 2 and 16. Finally the effects of self-reversal are negligible except in extreme cases. In the first place all strong lines can be avoided. Furthermore, even should there be a remnant of the
’
2
4
6
IO
12
14
16
I8
20
22
X
Fig. 4.
influence of self-absorption for the lines in question the effect will cancel in first order approximation, as lines with the same intensity are affected to this approximation in the same way by self-absorption. In Table 8 the temperatures calculated according to (18) as functions of x for various values of b are tabulated. These values are then plotted for the temperature region of interest as in Fig. 4. * For T = 3OOO“K,for instance, R(1) and R(20) are 5 A apart, R%(2) and Rz(l6) less than 5 A. I&(3) and I&(14) 6 A, R2(4) and Ra(12) 5-5 A. The point R&x) where the intensity would be equal to that of the first line in each pair is less than the stated interval from the first line.
The ultraviolet TABLE 8. TEMPERATUREFROM X
~SO-INTENSITYMETHOD
TI
121
bands of OH Rz-BRANCHOF
Ta
0 -+O
TS
2-4
BAND OF OH
--
2 3 4 5
195 283 371 475
430 532 669
658 839
1091
6 7 8 9 10
590 716 851 996 1150
818 980 1153 1337 1531
1025 1222 1430 1649 1880
1307 1538 1781 2037 2305
11 12
1313 1485 1664 1852 2047
1736 1950 2173 2406 2646
2121 2373 2634 2904 3184
2585 2875 2176 3486 3806
;;
2249 2458 2673 2894 3121
2895 3151 3413 3683 3959
3471 3767 4069 4379 4695
4134 4470 4814 5165 5523
21 22 23 24 25
3353 3591 3833 4079 4328.
4241 4528 4820 5116 5415
5018 5345
5887 6256
26 27 28
4582 4839 5098
:: 15 16 17 18
Use of Table 1. Select line Ra(b) at beginning of Ra branch. 2. Determine which line R (x) in tail of Ra branch has the same intensity as Ra(b). 3. Find the temperature from column To (b = 1, 2, 3, 4).
(4) The practical application
Photograph the spectrum so that the reference line b has a suitable density (0.3 to 1.0 for most plates), obtain microphotometer deflections for line b and the tail lines which are in intensity just above and below line b. (In Fig. 3 for T = 3000” and b = 1 these would be the lines K = 19 and 20.) Plot IK as function of K and determine the K-value (x) for which the intensity is equal to that of the reference line b. Read on a plot like Fig. 4 the temperature belonging to this x-value. VIII.
INFRARED
SPECTRUM
OF
OH
It is to be expected that in investigations of flames in the infrared the rotationvibration bands or the pure rotation bands of the OH radical will be encountered either in emission or absorption. These bands have a fairly complex structure and when investigated with only moderate resolving power, might show a quite perplexing picture
122
G. H. DIEKE and H. M. CROSSWHITE
unless it is fairly well established what is to be expected. Fortunately the position of all the lines in the infrared bands can be calculated with high precision from the data obtained from the ultraviolet bands. The lines of the vibration-rotation bands 1 + 0, 2 -+ 1 and 2 + 0 are given in Table 15, those of the pure rotation bands in Table 16. Structure of the infrared bands As the lowest electronic state of the OH level is asll state, the infrared bands represent 211 + VI transitions and the selection rules for such bands must hold. The transition scheme listed on p. 102 for a sZ -+ sI’I transition also holds for a VI -+sII transition with a few simple modifications. Because of the fact that now both states show A-doubling, each of the branches on p. 102 is double. There are thus altogether twentyfour branches arranged as close pairs. The pair separation is the difference of the A-doublings of initial and final level for the P and R branches and their sum for the 0, Q, and S branches. Again those branches are strong for which the change in J and K are the same. These need only one index and they are arranged in the tables as follows :
A
P2
Ql
Q2
RI
R2
P’I
PI2
Q’l
Q’2
R’l
R’Z
In contrast to a sX --+ sll transition only the P and R branches are strong for a 211 --f 211 transition. The Q branches are weak except for very low values of K. Besides the twelve main branches there are the twelve satellite branches.
Q12
Pl2
Q12
Q21
Q’12
P’l2
Q’IZ
Q’21
’
R21
s21
R’21
s21
which should be very much weaker and probably will escape detection. They are nevertheless given for the 1 -+ 0 band in order to show the general structure of the bands. It is to be noted that in these bands the satellite branches are not close to the main branches. The 1 + 0 band should of course be the strongest band. The 2 --f 1 band may be quite strong in emission under proper conditions and there might be indications even of the 3 --f 2 band. The latter has not been included in the tables but can, of course, be easily calculated with the data contained in Table 10. The 2 -+ 0 band, although to be .expected much weaker than the 1 -+ 0 band, falls in a more favorable region and might be observed. The present infrared spectrographs will be able to resolve the band structure only incompletely. In particular they would not be able to resolve the A-doubling in the P and R branches. The Q branches, for the Kvalues where they can be expected with appreciable intensity, probably would also be unresolved and appear as a strong central line. The R branches show sharp heads in the vicinity of which the resolution also is incomplete. It would be possible to calculate the rotational-intensity distribution for the infrared bands but with the present state of affairs the labor involved would hardly be justified.
1. 2. 3. 4.
REFERENCES D. JACK, Proc. Roy. Sot. B115, 373 (1927). G. H. DIEKE,Proc. Roy. Acad. Amsterdam 28, 174 (1925). D. JACK, Proc. Roy. Sot. B118, 647 (1928); 120, 222 (1928). T. TANAKA and Z. KOANA, Proc. Phys. Math. Sot. Japan 15,272 (1933).
The ultraviolet bands of OH 5. H. L. JOHNSTON,D. H. DAWSON and M. K. WALKER, Phys. Rev. 43, 474 (1933). 6. K. CHAMBERLAIN and H. B. CUTHER,Phys. Rev. 44, 927 (1933). 7. T. TANAKA and M. SIRAISI,Proc. Phys. Math. Sot. Japan 15, 195 (1933). 8. L. GREBEand 0. HOLTZ, Ann. Phys. 39, 1243 (1912). 9. T. HEULINGER,Diss. Lund, Untersuchungen uber die Struktur der Bandenspektra. 10. W. W. WATSON, Astrophys. J. 60, 145 (1924). 11. T. TANAKA and Z. KOLNA, Proc. Phys. Math. Sot. Japan 16, 365 (1934). 12. H. L. JOHNSTONand D. H. DAWSON, Phys. Rev. 43, 580, (1933). 13. R. FORTRAT,J. Phys. 5, 20, (1924). 14. W. W. WATSON, Nature 117, 157 (1926). 15. G. H. ALMY, Phys. Rev. 35, 1495 (1930). 16. E. L. HILL and J. H. VAN VLECK, Phys. Rev. 32, 250 (1928). 17. R. S. MULLIKEN,Phys. Rev. 32, 388 (1928). 18. 0. OLDENBERG, J. Chem. Phys. 3,266 (1935). 19. A. A. FROSTand 0. OLDENBERG, J. Chem. Phys. 4, 642 (1936); 4,781 (1936). 20. 0. OLDENBERG and F. F. RIEKE,J. Chem. Phys. 6,439 (1938); 6,779 (1938); 6,169 (1938). 21. E. R. LYMAN, Phys. Rev. 53, 373 (1938). 22. J. H. VAN VLECK, 1929, Phys. Rev. 33, 467 (1929). 23. L. T. EARLS,Phys. Rev. 48,423 (1935). 24. R. D. COWAN and G. H. DIEKE, Rev. Mod. Phys. 20,418 (1948). 25. H. P. KNAUSSand M. S. MCCAY, Phys. Rev. 52, 1143 (1937). A. FOWLER,Proc. Roy. Sot. B94,472 (1918). G.‘H. ALMY and G. D. RAHRER,Phys. Rev. 38, 1816 (1931). R. M. SHAW, Astrophys. J. 76, 202 (1932). 0. OLDENBERG, Phys. Rev. 46,210 (1934); J. Chem. Phys. 2,713 (1934). R. W. SHAW and R. C. GIBBS,Phys. Rev. 45. 124 (1934). M. ISHAG, Proc. Roy. Sot. Blg9, il0 (1936).. A. A. FROST.D. W. MANN and 0. OLDENBERG. J. Ont. Sot. Amer. 27.I 147 (1937). M. ISHAG,Proc. Nat. Inst. Sci. Zndia 3, 389 (19j7). _ 0. OLDENBERG and F. F. RIEKE,J. Chem. Phys. 7,485 (1939). M. ISHAG,Proc. Nat. Inst. Sci. India 5, 309 (1939). M. ISHAG,Proc. Phys. Sot. Lond. 53, 355 (1941).
123
124
G. H. DIEKE and H. M. CROSSWHITE
TABLE 9. COMBINATION
DIFFERENCES OF THE INITIALSTATE:
4(K+ 1) - fi(K-
1)
I/’ = 0
K
---~1
RI-PI o+o
QUA- 012 o-to
-----
RI-PI
Ra-Pa
o-+1
o-+0
S21-
QH
o-to
_____----
Ra-Pa o-+1
101.96 169.54 236*92* 304.04 37064
101.58t 168*28t 236.98* 304.61t 370.57t
169.64 237.01 304.06 370.52
101.32 168.94 236.52 303.57 370.19
169.08 236.48 303.56 370.19
168.94 235.891 303.63 370.24*
f 10
436.68 502*07* 566.81t 630.69’ 693.71t
436.97t 502.15 566.58t 630.66t 693.71
436.65 502.15* 566.81 630.66 694.7 1
436.27 501.70 566.45’ 630.27 693.24
436.38 501*73* 566.067 630.24 693 -25
436.11 501.68 566.32 630*26* 692*70*
11 12 13 14 15
755.59’ 816.48* 876.17 93444t 99164
755*88t 816.55t 876.24 934.65t 991.61t
755.70 816.53 876.25 934*51*
755.31 816.10 875.77 934.21 991.26
755.14 815.73t 875.70 934.22
755.33 816.21 875.85 934.27 991*17*
1046.90 1101.03’ 1153.53 1204.41’ 1253.52’
1046.79t 1100.78? 1153.637 1204.46
2 3 4 5 6 7
16 17 18 19 20
26 27 28 29 30
1047.26 1101.42 1153.86 1204.76 1253.83
1047.23 1101.2 1153.93
1301.13 1346.53 1389.96 143144 1470.63
1300.85 1346.24 1389.58* 1431*20* 1470.45
1507*98* 1542.79 1575.42 1605.48 1633.16
1507.58 1542.46 1575.07** 1605.34 1632.96
$ A t in Tables 9 and 10 means that one or both of the lines used in forming the differences is superimposed by another line stronger than itself. Such differences may be very unreliable. A* means that the superimposed line has from 20 per cent to 100 per cent of the intensity of the line, and ’ means that it has less than 20 per cent.
125
The ultraviolet bands of OH
TABLE g-continued
Qn-
RI-PI K
l-+0
1 2
96.96 161.20
: 5
225.26 288.97 352.28
6 7
414.99 477.14
: 10
l-+1 9740
l+O 97.09
l+l
161.24 225.35 289*4Ot 352.31
161.67t 225.33
161*22**
288.99
288.92
538.50 599.04 648.66
415.04 477.16 538.56 599.15’ 658.73
11 12 13 14 15
717.32 774.86 831.35’ 886*37* 940.12
717.39 774.96 831.42 886.46’ 940*23*
16 17 18 19 20
992*94* 1043.25 1092.42 1139*99* 1185.69’
;: 23
1229.54 1271.53 1311.95t
E
1384.94 1349.36
26
&I - Qar
Ra-Pz
Ola l+O
l+l
352*33**
160.89t 224*83t 288.51’ 351.85
160.81 224.88 288.63 351.92
415+-m 477.09 538.217 599.07 658.84
415.03 477.11 538*62* 599.07t 658*8Ot
414.62 476.69 538.09 598.65 658.31
414.65 476.75 538.14 598.66 65840
717.31 775.08
717.38
716.94 77444* 830.81* 885*91* 939.80
716.98’ 774*58* 830.96 886.11 939.84
992.57 1043*40t 1092.41’ 1139.94 1185.72
992*19* 1042.90 1092.16 1139.62 1185.34
992.06 1042.91* 1092.18 1139.61 1185.42*
1229.58 1271.53 1311*55* 1349.30 1384.95t
1229*32* 1271.29 1311.261 1349.31
1229.30 1271.27 1311.16 1349*04* 1384.79*
352.22
1418.82t
l-+1 160.74 224.82 288.55
G. H. DIEKE and H. M. CROSSWHITE
TABLE g-continued &(K+
RI = PI
K
2-+1
1)-F&cV’ = 2
Qla- 012 2+2
2+1
91*41t 1.52*44* 213.41’ 273*84t 33357*
152.78 213*54* 274.01 333.72’
152.54t 213*10t 273.86 333.55t
6 7 8 9 10
393.12 451*78* 509.83 567*05* 623.28
393.13 451.81 509.84 567.05 623.29’
392.81t
11 12 13 14 15
678.54 732.66’ 785.65’ 837.31’ 885.57t
678.56* 732.57t 785.43t 837.33 887.59
1 2 3 4 5
16 17 18 19 20
936.40 983.70 1029.28 1073.13 1115.17
21 22
1155.23 1193.53t
1)
936.40 983.65
Ra-Pa 2-+1
Szl2+2
91.33 152.22t 213.05 273.45 333.66t
91.42 152.23t 212.67t 273.48 332.777
392.71 451.35* 509.45* 566.69 622.89
392.6Ot 45 1.42* 509.43 566.63 622.89’
678.16 732.28 785*33* 836.99 886.87t
678.16 732.30 785.10 836*93* 887.21
936.07 983.32 1028.97 1073.267 1114.84
936.14 983.39 1028*81* 1072.71 1114.93
1154.82 1193.01
Qzl
2+1
152.23t 212.96 273.89t
392.55t 451.467 509.29
The ultraviolet
127
bands of OH
TABLE g-continued 1) - Fi(K- 1) v’=3
Fi(K+
Ra-Pa
RI-PI 3-+3
3+3
1 2 3 4 5
3+2 -______-86.36* 144.15 20144* 258.22 314.69
87*32t 144*30t 201.41t 258.29 314*79*
143*41t 200.647 257.85 313*94*
314.09t
6 7 8 9 10
370*72t 425.75* 480.35 533.93 586.66
370*25* 425.83 480.27’ 533.89 586.54
370*39* 425.42 479.74s 533.67t 586.26
370.02* 425.15t 479*92* 533*35t 586.04*
11 12 13 14 15
638.35 688.92* 738*13t 786.31 t 832.60
638.46 689.14*
637.97 688.47 737.78 785.55* 832.28
638.10
16
877+4t
K
3+2
DOUBLET
-__
SEPARATIONS
F&O-JGQ 041
0+-o
PZ
Ql
1 2 3 4 5
0.57 0.78 1.00
0.30 0.58 0.83 1.01 1.37
6 7 8 9 10
1.47 1.74 1.94’ 2.11 2.31
1.91 2.23 2.29
11 12 13 14 15
2.53* 2.73 2.94 3.15 3.33
16 17 18 19 20
3.52 3.73 3.90 4.02 4.25
21 22
4.41
K 0
Qa
Rl
Pa
QI
Qa
Rl
0.25
0.27 0.57 0.82 1.00 1.30
: 0.98 1*13t
0.57 0.85 1 *Ol 1.24
1.42 1.66 1.88 2.09 2.24t
1.47 1.54t 1.93 2*09t t
2.72 3*03t 3.18 3.33
2.50 2.69 2.94 3.13 3.26t
2*61t 2.72 2*95* 3.14
3.37 3.68 3.96 4.05
3 *42t 3.69 3.89 4.07
3.51 3.71 3.84 4.00 4.11
3.47 3.70 3.90 4.04 4.18
4.28 4.53
4.34 4.53
1.50
t
t
0.56 0.99
Ave.
0.79 1.02 1 a25
1.18
t
1.54 1.60
2.89
1.51
1.47 1.70 1.91 2.16 2.30
2.56
2.51 2.71 2.94 3.15 3.33
128
G. H. DIEKE and H. M. CROSSWHITE
TABLE g-continued fiW)--F2(K)
l-+1
----_______
---__--
P2
Ql
Q2
: 5
0.20 0.57 0.78 0.97’ 1.16
0.21 0.54 0.76 0.97 1.16
0*56* 0*72t 0.7ot 1.19
O-587 0.72 0.96 t
6 7 8 9 10
1.41 1.58 1.80 1.94 2.19
1.41 1.67t 2.01 2.22
1.42t 1.63’ 1.81 2.06t 2.16
1.42 1.53’ 1.95* 2.30t 2.30’
11 12 13 14 15
2.44 2*53t 2.81 2.99 3.15
2*27* 2.56 2.80 3.28 2.88t
2.51t 2.65 2.81 3.10 3.25*
3.69t 4.05
4.44t 4.12
K 1 2
16
t
Ql
Q2
Rl
Ave.
0.52 0.77 1.12
0.53 1*20t 1.02 1.13*
0.51 0.77 0.95 1.17
0.21 0.53 0.76 0.98 1.17
2.24
1.20t 1.61 1.80 1.79* 2.18
1.40 1.63 1*56t 2.03 2.23
1.39 1.58 1.82 2.01 2.16
1.40 1.60 1 *SO 2.02 2.20
2.37 2.59 2.72 2.97 3.21
2*53* 2*42* 2.85* 3.00 2.95t
2.41 2.72 2.84 2.88 3.05
2.53 2.64 2.80 3 *09
2.39 2*52t 2.80 3.12 3.24
244 2.63 2.80 3.02 3.16
3 -42 3.66 3 -74
3.39
Rl
t
;;
PZ
0*36t 0.50 0.74 0.99 1.21 1.39 1 a60 1.79
3 *40
2-+2
241
0.56* O-84* 1*16t 1.14
0.43
3 4 5 6 7 8 9 10
1*42* 1.52 1.80 1.92 2.08
11 12 13
2.27 2*51t 2.75
:
0.74 0.92 l-25*
0.877 0*91*
0*98t
0*52* 0.84t 0.89 1.11
0.51 0.72 0.91 1.13
1*26* 1.59t 1+69* 1.87 2.30
1.33 1.52 1.72 1.93 2.20t
1.29 1.50 1 a67 1.94 2.13
1 a32 1.56 1.70 1.92 2.19
1*37* 1.55 1.70 2*10t 2.11
1.31 1.53 1.73 1.91 2.13
2.32 2.44 2.78
2.29*
2.28
1.9w
2.31 2.51 2.70
0.55 0*47t 0.90 1.15
0.92* 1.26t
1 .OSt 1.51 1.77 2.19t 2*15*
1*13t 1*34t 1.74 I.85 2.18*
2.33 2.59
2.33 2.49 2.56
0.94
l-+0
0.71
The ultraviolet
129
bands of OH
TABLE 10. COMBINATION DIFFERENCES FOR THE FINAL STATE fi’“+;),--b”-
Rl(K--
K
o-to
l)-Pl(K+
1) l-+0
1)
Ra(K- l)-Pa(K+ o-+0
1) 1+-o
2 3 4 5
201*87$ 271.36 341.65 412.33
201.97’ 271.37 341.63 412.34
162.54’ 241.69 319.13 395.06
162.67 241.71 319.16t 395.01’
6 7 8 9 10
483*06* 553.77 624.05’ 693.71* 762.73’
483.18 553.78 624.05 693.73 762.77
469.65 543.10 615.39’ 686.70 756.94
469.63 543.11 615.42 686.70 756.96
11 12 13 14 15
831.06t 898.32 964*57* 1029.82 1093*72t
830*94* 898.26’ 964aF 1029.89 1093.84
826.15* 894.3 1 961.12 1026.80 1091.24
826.25* 894*08* 960*98* 1026.82 1091.25
16 17 18 19 20
1156.59 1217.96 1277.99 1336.45 1393.43
1156.55 1218.07* 1278.00’ 1336.47’ 139344
1154.31 1216W 1276.25’ 1334.94’ 1392.12
1154.31 1216.lo* 1276.24 1334.96 1392*12*
21 22 23 24 25
1448.79 1502.53 1554.57 1604.79 1653.27
1448.81 1502.78t 1554.57 1604.92 1653.15
1447.62 1501*38* 1553.61 1603.99 1652.59*
1447.64 1501.52 1553.63 1604.021 1652.73
26 27 28 29 30
1699.80 1744*72t 1787.28’ 1828.01’ 1866.72
1699.67
1699.12 1743.88 1786.72 1827.507 1866.66
31
1903 *49
1903.07
130
G. H. DIEKE and H. M. CROSSWHITE
TABLE lo-continued V” = 1
261.48 328;83 396.79
194.19 261.47 328.98 397.26t
194.14* 261.07t 328.97 397.06t
232.08 306.60 379.39
156.41t 232.05 306.49 379.54
155.99 232.05 306.657 379.49
6 7 8
464.80 532.69 600.15 667.16 733.14
464.90 532.74’ 600.22 667*16* 733.46
464*70* 532.74 600.18* 667.14 734.38
451.18 521.70 591.40* 659.87 727.43
451.27 521.87 591.81 659.98 727.70’
451.357 521 a87 591*33* 659.94 727.50
11 12 13 14 15
798.92 863.57 927.13
798.90 863.62 927.12 989*62* 1051.02
798.87 863.50 927.10’ 989.61 1050.95
793*89* 859.28 923.53
793.97 859.30 923.52* 986.52 1048.23
793.87 859.25’ 923 -49 986*51* 1048 *27
16 17 18 19 20
1111.217 1169.91’ 1227.30 1283.20 1337.66
111.06t 1169.85 1227.26 1283.19 1337.64
1108.75 1167.87 1225.46’ 1281.69 1336.25
1108*37t 1167.80 1225.48 1281.63 1336.59
21 22 23 24 25
1390.55 1441.84 1491.31 1539.16 1585.25
1390.51
1389.37 1440.62 1490.26 1538.21 1584*42*
1389.22 1440.56
26 27
1629.38t 1673.39
-
1628.78* 1671.79t
131
The ultraviolet bands of OH
TABLE IO-continued v”
RdK-
K
2+2
l)-Pl(K+
= 2
1) 3+2
Ra(K.2+2
1)-P‘&+
1) 342
2 3 4 5
186*95* 251.64 316*46* 381.76
187.12* 251 a56 316.60* 381.55
150*45t 222*49t 293.387 364.OOt
150.94t 222.65t 293.83 364.09
6 7
446.83* 511.90
; 10
640.82 576.61 704.40
446.81 512.09t 576.54* 640.84 704.37
433.12 500.84 566*63* 633.46’ 698.25
432.77* 501*06* 566.11 633.24t 698*17*
11 12 13 14 15
767.17’ 829.07* 889.86t 949.58t 1008.53
767.12 829.02 890*2Ot 949*72t 1007.76
16 :;: 19 20
1066.02 1122.20 1177*00 1230.39 1282.24
1063*47* 1120.09* 1175.26t 1228.68 1281-01
21
1332.52
133144
762.01 824.70 886.21 94644 1005.75*
761.93 824.59 885.99* 946.59
132
G. H. DIEKE and H. M. CROSSWHITE
TABLE 11. ROTATIONALAND VIBRATIONALLEVELSOF 2E STATE v=o
v=
1
Fl
FZ
Fl
F!2
0 1 2 3 4 5
32440.61 474.62 542.56 644.22 779.49 948.31
32440.50 474.30 541.98 643.45 718.49 947.05
35429.16 461.50 526.06 622.71 751.30 911.70
35429.06 461.18 525.52 621.95 750.32 910.50
6 7 i 10
33150.14 384.97 652.29 951.80 34282.99
33148.73 383.26 650.38 949.67 34280.64
36103.59 326.11 580.68 865.21 37179.72
36102.19 325.11 578.88 863.21 37177.52
11 12 13 14 15
645.53 35038.61 462.01 914.82 36396.66
642.92 35035.86 459.02 911.59 36393.24
523.85 897.08 38298.85 128.43 39185.24
521a45 894.49 38296.05 725.43 39182.09
16 17 18 19 20
906.50 37443.91 38007.90 591.79 39212.69
902.90 37440.15 38003.93 593.62 39208.99
668.56 40177.74 711.81 41270.16 851.78
665.20 40174.24 708.09 41266.28 841.68
21 ;: 24 25
851.66 40513.79 41198.19 903.18 42629.60
847.20 40509.23 41193.51 898.86 42624.65
42455.86 43081,34 727.39 44392.89 45076.75
42451.64 43076.97 722.90 44388.16 45072.13
26 21 28 29 30
43374.41 44137.43 917.20 45712.85 46522.68
43369.31 44132.26 911.77 45707.33 46517.11
777.83 46495.18 41227.29 973.14
773.00 46490.18 47222.07 967.87
31 32
47356.01 48181.35
47340.29 48175.58
K
133
The ultraviolet bands of OH
TABLE 1l-continued ROTATIONAL
AND VIBRATIONALLEVELSOF~B
v=3
v=2
__--K
FI
;
STATE
-A
FZ
Fl
1
38222.08 252.76
38221.97 252.48
4081544 844.47
-40815.3 844.2
: 4 5
40560 314.03 527.45 679.38
404.83 313.45 526.52 678.24
98864 902.26 41103.58 246.86
987.92 901.8 41102.70 245.82
6 7 :
861.15 39072.48 582.27 312.94
859.81 39070.93 580.37 311.25
418.34 617.50 42097.78 844.09
417.13 616.04 42095.88 842.41
10
879.98
877.80
377.99
375.93
11 12 13
40205.57 558.45 938.14
14 15
41344.06 775.47
40203 -26 555.93 935.51 41341.22 772.42
684.45 43016.38 373.22 754.50 44159.43
682.22 43013.94 370.72 751.80 44156.49
16 17 18
42228.46 708.53 43211.76 737.49 44284.65
587.09 45037.07 508.21
584.09 45033.81
;;
4223 1.63 711.90 43215.33 741.19 44288.43
21 22 23 24 25
856.39 45443.61 46049.70 673.10 47312.67
852.37 45439.55 4604544 668.58 47308.07
--
996.14
,
G. H. DIEKE and H. M. CROSSWHITE
134
TABLE 12. ROTATIONAL AND VIBRATIONALLEVELS OF 211 STATE
v=o K
fl
fl’
fa
f2’
00.03 83.90 202.37 355.87 544.82
126.43 187.71 289.01 429.45 608.15
126.12 187.47 288.83 429.23 608.16
1:
767.45 1026.69 321 a25 650.74 2014.98
769.17 1029.10 324.24 654.50 2019.53
824.49 1077.80 367.56 693.15 2054.26
824.76 1078.47 368.66 694.85 2056.46
11 12 13 14 15
413.51 846.01 3311.83 810.60 4341.70
419.05 852.36 3319.31 819.01 4251.19
450.15 880.46 3344.34 841.51 4371.18
453.05 883.96 3348.75 846.64 4377.25
16 17 18 19 20
904.53 5498.27 6122.51 776.29 7458.98
915.04 5510.05 6135.33 790.32 7474.26
932.80 5525.50 6148.33 801.74 7483.72
939.65 5533.47 6157.63 811.63 7494.57
21 22 23 24 25
8169.71 907.78 9672.22 10462.35 11277.09
8186.27 925.55 9691 a28 10482.57 11298.56
8193.85 931.25 9695.29 10484.97 11299.24
8205.81 944.37 9709.48 10500-07 11315.71
26 27 28 29 30
12115.56 976.82 13860.35 14764.14 15688.36
12138.19 13000.78 885.15 14790.47 15715.53
12137.57 998.41 13881.45 14785.13 15708.95
12154.78 13016.98 900.77 14805.74 15730.39
31 32
16630.86 17591.85
16659.79
16651.78 17612.02
16674.03 17635.73
0040 83.70 201.90 355.09 543.54 6 7 8
The ultraviolet
135
bands of OH
TABLE 12-continued ROTATIONALAND VIBRATIONALLEVELSOF ‘XI STATE V=l K
fl
---_
f2’
f2
fi' --_-
--
-____
2 :
3568.31 649.10 910.55 763.03
3568.49 649.28 911.26 76340
3695.34 754.15 986.14 851.38
3695.03 753.95 985.99 851.10
5
4091.95
4093.10
4157.80
4157.75
6 7 8 9 10
307.39 556.80 840.08 5156.95 507.21
309.03 559.04 842.98 5160.59 511.55
365.62 609.02 887.45 5200.40 547.38
365.88 609.64 888.52 5201.95 549.35
11
890.35
895.67
927.77
930.57
:: 14 15
6306.04 753.81 7233.08 74340
6312.12 760.80 7241.07 752.48
6341 787.03 a27 7264.68 773.50
6344.59 791.17 7269.52 779.19
16 17 18 19 20
8284.07 854.48 945 3 *99 10081*75 737.17
8294.09 865 a62 9466.15 10095*14 751.68
8312.93 882.22 9480.76 10107.66 762.33
8319.52 889.77 9489.09 10117~10 77264
21 22 23 ;:
11419.29 12127.72 861.23 14400.39 13619.06
11435.13 12144.59 879.19 13638.18 14420.69
11443.90 12151.71 884.59 14420.81 13641.99
11455.31 12163.96 897.98 14438.20 13656.30
26
15204.34 16029.76 876.06
15225.70 16052.38
15226.60 16057.60 897.62
15242.87 16069.01 915.75
1
136
G. H. DIEKE and H. M. CROSSWHITE TABLE 12-continued ROTATIONAL AND VIBRATIONALLEVELSOF ZJIISTATE
v=2
K
fl
fl’
---_
f2
--~-_-
f2’
-------~
1 2 3 4 5
697 1.02 7048.85 158.60 300.50 474.98
6971.18 7049.16 159.00 301.24 476.04
7097.38 155.11 248.20 377.48 542.10
7097.30 115.20 248.02 377.32 542.10
6 7 8 9 10
682.14 921.79 8193.99 498.36 834.79
683.63 923 -93 8196.69 501.85 838.91
741.62 975.22 8242.43 542.79 875.89
741.89 975.76 824340 544.28 877.82
11 12 13 14 15
9202.74 601.96 10031.85 491.82 981.51
9207.77 607.62 10038.35 499.35 990.5
9241 *OO 637.88 10065.78 524.05 11012.31
9243.65 640.99 10069.56 528.64 11017.71
16 17 18 19 20
11500.37 12047.54 62260 13224.62 852.97
11509.81 12058.11 634.12 13237.20 866.62
529.78 12075.81 649.93 13250.92 878.66
535.99 12082.91 657.78 13259.91 888.39
21 22 23
14506.90 15185.63
14521.77 15201*00 905.36
14532.17 15210.07
14542.64 15221.60 925.00
ROTATIONAL AND VIBRATIONALLEVELSOF 21T STATE v=3
K
fl’
fl
---__---
---
f2 -~-___-----_
f2’
1 2 3 4 5
10210.31 284-3 1 390.59 526.99 694.61
10210.77 285 *40 390.94 527.54 695.47
10390.2 480.6 605.2 763 .OO
10337.6 392.2 481.3 605.07 763.07
6 7 8 9 10
893.35 11123.54 384.69 676.66 999.34
894.86 11125.42 387.22 679.90 12003.18
954.09 11178.05 434.21 722.05 12041.30
954.51 11178.61 435.06 72344 12043.15
II 12 13 14 15
12352.18 735.00 13147.11 588.01
356.77 740.38 13153.4 595.20 14065.36
391.37 771.81 13181.84
393.93 774.8 13185.39 629.64 14097.8
16
563.24
The ultraviolet
137
bands of OH
TABLE 13. BANDS OF OH BETWEEN2811 AND 3595 A O-+OBand
K
Y
32440.60 390.94 340.69 289.12 235.96
RI-branch
Qi-branch
PI -branch I -__ 252 335 416 492 546
Y
Z
239 437 616 766 884
32542.56 560.48 577.61 593.16 606.60
69 152 234 304 363
380.99 355.88 328.06 297.38 263.45
974 995 1000 973 912
617.51 625.61 630.55 632.25 630.55
397 415 415 402 378
226.47 186.27 142.73 095.83 045.43
842 725 664 569 478
625.11 615.97 602.96 585.84 564.78
346 310 271 230 193
Blends
Y
I
83
32474.58 458.65 441 *go 423 a63 403.47
Blends
Blends
6 7 8 9 10
180.83 123.54 063.74 001 a56 31936.84
582 607 609 531 548
11 12 13 14 15
869.52 799.49 726.79 651.40 573.14
505 459 405 350 297
16 17 18 19 20
492.12 408.19 321.42 231.62 138.83
248 186 164 133 102
31991.48 933.87 872.57 807.44 738.44
399 324 165 205 159
539.38 509.61 475.28 436.38 392.66
159 131 102 80 66
?l 22 23 24 25
042.95 30943.87 841.55 735.83 626.72
78 60 45 33 24
665.38 588.27 506.92 421.22 331.06
122 92 68 50 37
344.08 290.40 231.51 167.27 097.35
47 35 26 19 14
26 27
17 12 9
:; 30
514.00 397.55 277.26 153.06 024.67
236.22 136.65 032.05 30922.38 807.15
26 19 13 9 6
021.98 31940.34 852.68 758.54 657.83
10 7 5 3 2
31 32
29891.82 754.34
3 2
686.32
4
550.49
1
:
111 48
31
3 3
30 43
1
378+44 415+44
83 323
11
I = Intensities of the lines at 3000°K. When blends occur the intensity of the interfering line is given in column “Blends”.
138
G. H. DIEKE and H. M. CROSSWHITE
TABLE 13-continued 0 + 0 Band
PZ - branch
----
Y
I
Blends
1 2 3 4 5
32286.76 252.97 214.01 170.36
114 215 307 384
154 33
6 7 8 9 10
122.52 070.89 015.69 31957.20 895.44
441 481 493 492 475
11 12 13 14 15
830.53 762.53 691.53 617.51 540.50
445 407 363 318 272
16 17 18 19 20
460.48 377.45 291.38 202.23 109.97
228 188 158 124 95
21 22 23 24 25
014.52 30915.87 813.99 708.50 599.58
74 56 42 32 23
26 27 28 29 30
487.11 370.91 250.81 126.65 29998.38
31 32
865.33 728.27
K
Q2 - branch
-----__ Y
Z
32348.15 354.55 354.55 349.29 338.86
139 293 439 589 712
323.96 304.83 281.74 254.86 224.23
868 855 873 860 871
189.94 151.97 110.35 065.05 016.08
---Blends
Ra- branch Y
Z
32415.51 455.70 489.49 517.58 540.55
68 138 ;: 325
558.79 572.59 582.14 587.47 588.68
359 378 383 373 352
763 690 611 527 493
585.84 578.63 567.30 551.72 531.76
323 290 255 218 183
31963.32 906.78 846.40 782.09 713.78
372 305 250 194 151
507.38 478.48 444.91 40664 363.49
151 125 98 77 59
641.40 564.85 484.02 398.78 308.97
115 88 65 48 35
315.37 262.11 203.57 139.70 070.03
45 34 25 18 13
17 12 8 6 4
214.52 115.28 Oll*Ol 30901.59 786.72
25 18 13 9 6
31994.69 913.37 825.88 731.99 631.34
10 7 5 3 2
3 2
666.26 539.85
4 3
523.80
1
16
9
13+13 2 4
35
439f62 293
24
Blends
11
230
14
The ultraviolet
bands of OH
139
13-continued
TABLE
0 -+ 0’ Band
Blends
-Y
I-
Blends
Y
I
32252.97 186.27 113.29 036.08
33 43 44 41
215 752 14
32314.19 286.76 253.54 214.79 171.36
143 154 158 148 131
6 7 8 9 10
31954.81 869.52 781.47 690.39 595.81
36 31 26 21 17
48 505
123.54 072.36 017.43 31959.14 897.55
111 94 76 61 49
11 12 13 14 15
498.73 398.18 296.74 191.94 084.69
14 11 8 6 5
832.84 765.06 694.26 620.45 543.65
38 30 23 17 13
16 17 18 19 20
30975.13 863 -24 148.87 632.23
4 3 2 1
463.81 380.97 295-l 1 206.13 113.99
10 7 5 4 3
K
Qal - branch
PIZ - branch
OFA-branch
143
48
21 22
018.77 30920.28
114
607
15
Y
Z
32474.28 458.07 441.07 422.62 402.10
166 152 130 111 93
379.49 354.55 326.15 295.15 261.16
77 62 50 40 31
224.23 183.55 139.70 092.65 042.10
24 18 14 11 8
31988.11 930.19 868.61 803.39
6 4 3 2
Blends
293+439
871 18
2 1
O+OBAND Qla - branch
K
Y
Ral- branch Blends
I
Y
Z
32541.99 559.53 57660
102 127 126
Sal-branch Blends
3234840 324.55 354.55
70 95 100
293+439 293+439
4 5
340.69 350.27
.94 83
416
605.13 591.92
114 100
6 7 8 9 10
325.38 306.49 283.62 256.97 226.47
71 58 48 38 30
83 68
310
: 31
415+378
842
615.97 623.68 628.46 630.55 627.94
11 12 13 14 15
192.44 154.66 113.29 068.18 019.34
23 18 14 10 8
622.39 613.02 599.82 582.14 561.27
27 20 15 11 9
16 17 18 19 20
31966.74 910.47 850.29 786.16
6 4 3 2
535.67 505.77 471.28 432.27 388.38
6 5 3 2 2
1 2 3
44 63 53
Y 32623.36 694.55 744.63 792.81 838.48
383
Z
---
Blends
19 28 30 :z
881.22 920.61 956.39 988.40 33016.31
22 18 14 11 9
039.96 059.25 073.92 083.82 088.89
7 5 4 3 2
088.89 083.82 073.07
2 1 1
3
1 2+2 2+2 3
G. H. DUKE and H. M. CROSSWHITE
140
TABLE 13-continued
'
0 --f 1 Band* Pr - branch
K
I
-Y
1 2 3 4 5
28872.03 825.25 779.24 733.41 687.42
1 1 1 2 2
6 7 8 9 10
640.68 593.14 544.69 495.14 444.34
; 2 2 2
11 12 13 14 15
392.39 339.13 284.52 228.53
2 2 1 1
Ql -branch ----...--P--______ Z Blends Y 1 28905.89 893.07 1 2 0 88060 868.01 3 854.91 3
16 :: 19 20
1
* In this band the wavelengths 0.2 cm-l higher.
-Blends -____-_____ 1 28994.89 29016.25 037.47 057.94
Z
Blends
840.91 825.68 809.13 791.01 771.22
3 3 3 3 3
077.33 095.29 111.50 125.80 138.05
1 1 1 1 1
749.68 726.26 700.91 673 *54 644.03
3 3 2 2 2
148.09 155.66 160.77 163.04 163.04
1 1 1 1 1
612.12 578-03 541.58 502.44 460.70
1 1 1 1 1
159.54 153.14 143.60 130.68 114.18
1 0 0 0 0
094.14
0
368.96 318.68
0 0
21 ;:
RI - branch
1
0
were taken from one plate only. The wavenumbers
1
1 1
should be about
The ultraviolet
141
bands of OH
TABLE 13-continued O-+lBand* QS - branch
Pa-branch K
---~
I
.Y
--
1 2 3 4 5
28720.12 691.14 657.00 620.43
6 7
581.24 539.49
2”
: 10
495.65 449.77 402.59
2 2
11 12 13 14 15
352.60 301.40 248.65 194.08
2 1 1 1
Blends
Y
I
Blends
28179.24 787.78 792.17 792.17 788.89
0 1
782.58 773.40
3 3
761.71 747.54 731.04
3 3
712.18 691.14 667.73 641.91 613.80
3 ; 2 2
16 17
583.32 550.25
1
18 19 20
514.681 476.5 435.39
1 1
21 22 23
391.71 345.11
8
1 1 :
2 1
* In this band the wavelengths 0.2 cm-l higher.
1 1
RZ- branch
z 3
Y
I
Blends
1: 2 2
28889.08 927.03 960.63 990.67
0 1 1 1
29017.25 041.17
1 1
061.97 808.03 095 *29
1 1
107.93 117.61 124.50 128.35 129.29
1 1 1 1 1
1
126.99 121.56
:,
1 1
112.77 100.59 084.67
8 0
065.08
0
014.17
0
1
were taken from one plate only. The wavenumbers
1
should be about
142
G. H. DIEKE and H. M. CROSSWHITE
TABLE 13-continued 1 --f 0 Band
Ql - branch
Pl-branch
Z
Blends
35461.33 442.18 420.38 395.45 366.88
20 37 52 66 76
14+ 17
50 52 52 52 48
334.35 297.61 256.43 210.44 160.16
83 86 89 85 80
11
766.22 677.96 585.26 488.22 386.72
45 41 36 32 27
104.89 044.71 34979.58 909.39 834.07
74 67 60
16 17 18 19 20
280.75 170.29 055.26 33935.54 811.21
23 19 15 12 10
21 22 23 24 25
682.09 548.09 408.85 265.05 115.78
8 6 5 3 3
26 27 28 29
32961.24 801.05
2 1
Y
Z
1 2 3 4 5
35429.14 377.80 324.13 267.63 207.76
22 28 36 42 47
6 7 ; 10
144.26 076.86 005.47 34929.95 850.24
11 12 13 14 15
K
Blends
3 7
3 1
7
Y
RI -branch
78
2
753.52 667.69 576.50 479.83 377.52
37 30 25 20 15
269.61 155.95 036.11 33910.31 778.21
12 9 7 5 4
63964 494.40 342.14 182.67
: 1 1
18
Y
Z
Blends
35526.10 539.00 549.39 556.60 560.04
6 13 20 26 31
559.25 554.00 543.97 528.99 508.90
34 37 36 35 33
483.54 452.82 416.61 374.59 326.84
31 28 24 21 18
273.33 213.54 147.68 075.53 34996.90
15 12 10 8 6
911.63 819.62 720.70 614.41 500.72
5 4 3 2 1
10
1
The ultraviolet
bands of OH
143
TABLE 13-continued 1 -+OBand Pa- branch
K
”
I
35273.33 236.50 192.51 142.17
10 18 26 33
6 7 8 9 10
086.01 024.39 34957.52 885.66 808.91
38 41 43 44 42
11 12 13 14 15
721.35 640.97 550.21 454.60 354.20
39 36 33 29 25
16 17 18 19 20
249.26 139.69 025.35 33906.35 782.55
21 18 14 12 9
21 22 23 24 25
653.85 520.25 381.65 237.91 088.89
26 27 28 29
32934.49 774.59
Qs - branch
---Blends
15
29+4 23 19+6
21
2+1
2+2
v
Z
Ra - branch
~~ Blends
35335.00 338.01 333.15 321.09 302.39
14 24 31
12
SQ:
12
217.42 246.61 21044 168.31 121.04
69 74 78 75 72
06844 010.49 34947.28 878.74 804.82
7
Y 35399.17 434.22 461.33 481.02 494.02
I
Blends
6 12 17 23 28
85
500.63 501.08 495.61 484.3 1 467.22
31 34 33 32 31
68 62 55 48 41
1
444.29 415.58 381.02 340.5 1 294.00
29 26 23 20 17
725.51 640.97 550.21 454.60 353.12
35 29 23 19 15
36+4 33 29+6
245.86 132.61 013.43 33888.06 756.35
11 9 7 5 4
618.15 743.20 321.30 162.13
: 1 1
241.45 182.59 117.51 045.97 34967.89
14 12 9
883.17 791.54 692.91 587.22
5 3 3 2
20+14 2
3
z
12
G. H. DIEKE and H. M. CROSSWHITE
144
TABLE 13-continued 1 --f 0 Band 012 -branch K
Z
Y
PIZ - branch Blends
1 2 3 4 5
35241.45 172.68 096.78 014*53
3 4 4 4
6 7 a 9 10
3492660 833.24 734.91 632.13 524.20
3
11 12 13 14 1.5
14
10
412.13 295.82 175JMl
11 12 13 14
35335.00 338.54 334.35 322.11 303.52 278.82 248 ~24 212.00 170.34 123.27 070.97 013.13 34350.08 881.83
branch
Y
61
35461.33
14
20+17
13 14 13 11
441.66 419.61 394.67 365.76
13 11 10 8
087.22 025.78 34959.12 887.45 811.15
10 a 7 6 4
333.15 296.00 254.63 208.65 157.98
7
1 1 0
9 11 11 10 9
7 5 4 3 3
557.67 552.18 541.96 526.83 506.51
7 6 5 4 3
2 2 1 1
481.02 450.02 413.49 371.35
2 2 1 1
83
Blends
273.69 237.00 193.25 143.16
3
&I - branch 12
Z
12
35525.59 538.23 54844 555.43 558.65
14 13 11 9 8
Blends
35302.39
252.21 143.08
Qn-
6 7 a 9 10
Z
729.59 643.50 552.63 457.25 357.20
16 17
1 2 3 4 5
Y
QZI - branch
23
102.48 041.99 3476.74 906.51 831.02
: 3 3
ii : 0
37
The ultraviolet
145
bands of OH
TABLE 13-continwd
Ql - branch
PI - branch
Z
Blends
Y
Z
39
39
:: 76 85
31893.01 876.78 859.31 840.07 81860
37 68 96 120 139
31957.78 973 a63 988.34 32001.56 011.67
:; 57
604.30 546.77 486.60 423.71 358.00
92 95 95 95 88
794.56 767.67 737.73 704.62 668.20
152 158 163 156 148
019.34 023.93 025.16 022.86 016.73
:: 67 65 62
28940 217.83 143.17 065.67 30984.97
82 75 67 58 50
628.22 584.96 536.98 487.30 432.83
137 124 110 96 82
374.47 312.12 245.66 175.02 loo*10
69 57 46 37 29
020.73 30936.75 848.20 754.71 656.06
22 17 13 9 7
552.13 442.80 327.68 205.54 078.96
5 3 2 1 1
K 1 2 3 4 5
31860.78 812.39 762.99 712.16 659.36
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
25 26 27 28 29 30
RI - branch
Y
901 *IO 813.99 723.76 630.09 532.97
42 35 29 23 18
432.27 328.14 220.11 108.36 29992.50
14 11
872.41 748.07 619.12
4 3 2
5+4 9+3
42 2+2
4 : 5
Blends -____-
11
133
7 3
10 12
Y
Z
Blends
11 24 531
8
006.79 31992.79 974.59 952.12 925 *20
57 51 45 39 33
893.67 857.39 816.17 770.03 718.69
28 23 18 15 12
661.95 599.67 531.66 457.66 377.45
9 7 5 4 3
9
188+13
G. H. DIEKE and H. M. CROSSWHITE
146
TABLE 13-continued 1 -+ 1 Band Pa-branch
---
K
Y
Qa - branch
Blends
Z
Y
Z
Blends
1 2 3 4 5
31707.01 674.12 635.77 592.51
18 33 48 60
31766.00 771.57 770.85 764.36 752.72
8; 112
6 7 8 9 10
544.86 493.16 43764 378.50 315.80
69 75 78 81 76
736.31 715.47 690.39 661.26 628.22
127 136 143 138 133
11 12 13 14 15
249.76 180.23 107.44 03 1.29 3095 1.88
72 67 60 53 46
590.97 549.90 504.86 455.88 402.83
16 17 18 19 20
869.17 782.97 693.41 600.42 503.90
39 32 27 22 17
21 :: 24 25
403.78 299.95 19240 080.91 29965.35
26 27 28
845.53 721.36 592.56
Z
Blends
9 22 32 43 51
959.51 969.91 975.78 977.16 914.20
57 62 61 60 57
124 114 101 89 76
966.74 954.81 938.40 917.40 891.72
53 48 43 37 31
345.70 284.47 219W 149.18 075.04
64 54 43 35 27
861.28 825.88 785.59 740.03 689.32
26 22 17 14 11
14 10 8 6 5
30996.33 913.01 824.92 731.86 633.70
21 16 13 9 7
1+1
633.38 571.17 503.56 429.95 350.14
8 6 5 4 3
1 1
4 3 2
530.13 421.17 306.32
5 3
264.35
2
3
1
7
10+ 10 16
---
Y 31830.53 867.82 899.0 924.40 944.43
3
22 43
RZ- branch
_--____
8 21 137
14
445
6 36
5
The ultraviolet
bands of OH
147
TABLE 13-continued 1 --f 1 Band 012 -branch
K
Y
Blends
Z
1 2 3 4 5
31610.35 540.50 464.92
7 7 6
6 7 8 9 10
385.40 302.07 215.09 124.70 03 1.29
6 5 4 3 3
11 12 13 14 15
30934.68 835.17
2 2
QP;I- branch
Pla - branch
272
5:
Z
Y 31733.71 707.21 674.60 636.55 593.48
25 23 20
546.02 494.57 439.22 380.30 317.74
18 15 12 10 8
251.95 182.67 109.97 034.10 30954.87
Blends
Qla - branch 11 15 16 15 13
22
4
8
793.15 766.00 736.31 70260 665.98
12 10 8 6 5
625.95 58240 535.18 484.02 429.95
4 3 2 2 1
370.78 308.07
1 1
95
6 7 8 9 10
737.73 717.10 692.20 663.32 630.38
11 9 8 6 5
163
11 12 13 14 15
593.48 552.55 508.67 458.98 406.08
4 3
20
16 17
350.14 288.59
43 30
1 3
31957.20 972.91 987.38 32000.03 010.25
16 20 20 18 16
017.81 021.98 022.86 020.56 014.36
13 11 9 7 6
004*20 31990.07 971.62 948.91 921.78 890.01 853.65
Blends
26 24 20 17 15
Sal- -branch
Ral-branch
31766Gl 722.13 771.57 765.06 753.91
Z
31892.80 876.24 858.55 839.10 81744
872.32
16 17
Y
492
10 65
32053.54 101.06 147.10
3 4 5
22 127
65 4 9
G. H. DIEKE and H. M. CROSSWHITE
148
TABLE 13-continued
Pi - branch
K 1 2 3 4 5 6 7 8 9 10
Y
~---____--__~
Z
28321.95 276.06
1 1
228.78
1
QI - branch Blends
Y
Z
28489.99 476.5 1 463.53 449.77 435.39
RI- branch
Blends --__-__-------1 1 1 2 2 2 2 1
1
11 12 13 14 1.5
402.59 383.80 363.15 340.59
2 2 2 2
34.96 289.16 260.22 228.78 194.92
2 2 1 1 1
2
1
’
16 17 Pa - branch 28305.97 277.63 244.18
0 1 1
Z
Blends
28593.16 611.03 628.37
1 1 1
2
644.03 658.65 668.81 681.23 688.97
1 1 1 1 1
2 1
694.24 696.63 696.63 693.17 686.73
1 1 1 1 0
677.14 664.05
0 0
28373.63 372.77 368.07
1 1 2
28502.44 532.82 559.74
0 1 1
6 7 8 9 10
360.22 349.15 335.25 318.68 299.48
2 2 2 2 2
583.32
1
620.43 634.54 645.37
1 1 1
11 12 13 14
277.63 253.24 226.17 196.50
2 2 1 1
653.09 657.91
1
657.91
1
* In this band the wavelengths 0.2 cm-l higher.
1 1
Re - branch
QS - branch
2
Y
0
1
were taken from one plate only. The wavenumbers
1
I
should be about
The ultraviolet
149
bands of OH
TABLE 13-continued 2 + 1 Band
PI -branch K
Y
I
Blends
1 2 3 4 5
34653.77 603.69 551.04 495.08 435.47
:x 13 16
6 7 8 9 10
371.99 304.35 232.37 155.95 075.06
17 18 18 18 17
:: 13 14 15
33989.57 899.47 804.61 705.03 600.65
16 14 13 11 10
491.39 377.16 257.94 13360 004.03
8 : 5 4
32869.15 728.69
3 2
16 17 :: 20 21 22 23 24 25
Ql - branch
---
7 2 2
9
1 1
8
Y
Z
34684.24 664.70 642.17 616.19 586.29
1: 18 22 26
RI- branch Blends 5
552.12 51344 470.00 421.67 368.48
28
309.99 246.34 177.33 102.98 023.05
26 24 21 19 16
33937.55 846.29 749.16 646.02 536.81
14 11 9 8 6
421 a25 299.42 170.51 034.91 32891.98
5 4 3 2 1
;8
1
:z
11
3
1 2
4
Z
Blends
34745.18 756.13 76444 769.05 769.05
2 4 7 9 10
3 12+4
765.11 756.13 742.20 723.00 698.34
12 12 13 12 12
668.11 632.13 590.26 542.34 488 *22
11 10 9 8 7
Y
10+3 9+3
4+4
2
32
427.79 360.86 287.22 206.73 119.20 024.32 33922.22 811.87 693.55
3 8
150
G. H. DIEKE and H. M.
CROSSWHITE
TABLE 13-continued 2 --f 1 Band Pa-branch P--.....P---_-_-
QZ - branch Y
Z
34557.32 559.53 553.77 540.54 520.46
4 8 13 17 21
13 14 15 15 15
493.95 461.30 422.16 318.44 328.38
24 25 26 26 25
33950.00 861.99 768.91 670.78 567.73
14 13 12 10 9
. 272.70
16 17 18 19 20
459.50 346.23 227.77 104.07 32975.11
8 7 5 4 4
908.96 818.79 722.70 620.43 511.97
21 22 23 24 25
840.74 700.73 555.06
3 2 1
397.08 276.62 147.44 012.32 32867.87
K
Y
Z
34498.46 462.08 418.66 368.48
3 6 8 11
6 7 8 9 10
312.62 250.79 183.46 110.81 032.97
11 12 13 14 15
Blends
4
28
1+1
211.34 144.36 071.65 33993.20
Rz - branch
Blends 2
Y
Z
Blends
34618.07 650.68 675.13 692.11 702.14
: 8 10
705.33 702.14 692.91 677.50 655.86
11 11 12 11 11
3
24 22 20 17 15
628.16 594.27 554.24 507.77 454.60
10 9 8 7 6
3
13 11
395.57 329.55 256.74 177.33 089.95
5 4 4 3 2
33995.62 893.74 783.94 666.08
2 1 1 0
1
2
11
29+19
21
Thd ultraviolet
151
bands of OH
TABLE 13-continued
2 -+ 1 Band 012 - branch
K 1 2 3 4 5 6 7 8 9 10
Blends
Z
Y
3447om 401.70 328.38 247.75
1 1 1 1
161.53 069.83
1 1
30 25
Z
Y
Blends
34526.74 498.46 46264 419.50 369.64 313.76 252.21 184.98 112.61 034.89
11 12 13 14
3 2 1
3 1
33952.08 864.26 771.42 673.53
2
4
: 3 3
8
: 5
34557.32 560.08 554.24 541.48 521.61
6 7 8 9 10
495.08 46264 424.50 380.29 330.56
2 2 1 1 1
13 5
11 12 13
275.03 213.83 146.92
1 1 0
z
Y
Blends
34684.24 664.27 640.97 615.25 585.26
5 4 4 3 3
551.04 511.93 468.23 419.50 366.33
2 2 2 1 1
307.65 243.75
1 1
3
RZI - branch
Qla - branch 1 2
QSI - branch
PIS - branch
&l-branch
34745.18 756.13 763.52 767.79 767.79
3 4 4 3 3
2 12+4 4 3 3
763.52 75444 740.33 720.70 696.02
3 2 2 1 1
4
665.67 629.35
1 1
3
34836.47 877.23 914.86
1 1 1
977.81
1
5002.50 021.22
1 1
7 36+29 36 12
4
G. H. DIEKE and H. M. CROSSWHITE
152
TABLE 13-continued 2 --f 2 Band QI - branch
PI - branch Y
Z
1 2 3 4 5
31250.96 203.85 155.34 104.99 052.42
6 8 10 11 13
6 7 8 9 10
30997.24 939.35 878.47 814.55 747.49
14 14 14 14 13
11 12 13 14 15
677.20 603.61 526.69 446.32 362.54
13 12 10 9 8
16 17 18 19 20
275.12 184.11 089.32 990.76 888.18
21 22 23
781.53 670.76
K
Blends
Y
Z
3+2
31281.46 264.87 24660 226.19 203.34
5 10 14 18 21
RI - branch Blends
Z
31342.84 356.63 368.88 379.00 386.18
2 4 5 7 8
22 24 24 24 22
390.37 391.16 388.31 381.60 370.78
9 10 10 10 9
30997.79 950.83 899.79 844.71 785.44
21 19 17 15 13
355.76 336.18 312.12 283.65 250.13
9 8 7 6 5
7 6 5 4 3
721.82 653.79 581.21 503.90 421.81
11 9 8 7 6
3 2
334.62 242.63 144.34
5 4 3
177.50 148.53 116.24 08044 041 so5
1 1
4
Y
2+2 17
4 3 3 3 2
6 7 8 9 10
176.21 147.03 114.57 078.50 038.92
2 2 1 1 1
11
30995.51
1
3 1 1
1 3 9 57
211.52 167.76 118.57 063.77 003 ~28
6
QSI - branch 31281.46 264.35 245.66 225.30 202.23
Blends
Ral5 2 46 124
branch
31342.84 355.76 367.97 377.45 384.81
3 3 3 3 2
388.82 389.41 386.21 379.49 368.88
2 2 1 1 1
188
8 5
The ultraviolet
153
bands of OH
TABLE13-continued 2 + 2 Band PZ- branch K -pp
Z
Y
Blends
31097.53 065.67 027.31 30984.97
3 5 7 9
; 10
936.75 884.62 828.51 768.41 704.48
10 11 12 12 12
11 12 13 14 15
636.79 565.36 490.25 411.45 328.91
11 10 9 a 7
16 17 18 19 20
242.63 152.65 058.68 29960.78 858.81
6 5
21
752.48 642.30
2 2
6 7
4 58 50+3 17
1
4 3
: 3
:: PM - branch 31124.70 097.53 065.67 028.02 30984.97 6 7 8 9 10
937.73 885.95 830.03 770.13 706.41
11 12
638.59 567.65
4 3 3
3 58 50+9
;
1 1
Z
Y
Blends 10 2
2 1
Z
V
Blends
31216.12 249.76 278.35 300.75 317.74
2 3 5
5 72
:
a
19 20 21 21 20
329.35 336.18 337.94 335.04 327.37
9 9
a
959.61 914.94 865.95 812.58 754.71
19 la 16 14 12
314.95 297.66 275.35 248.38 216.12
692.47 625.62 553.98 477.58 396.26
10 9 a 7 6
309.73 217.95 12044
5 4 3
31155.34 158.54 156.80 149.18 136.04
10
177.96 095.16 067.82 036.09 30999.98
: 14 17
35 4
9 1
31155.34 158.54 157.54 150.10 137.29
2 2 2 2 2
119.28 096.72 069.52 037.97 002.17
2 1 1 1 1
178.77 136.04 087.49 033 *49 973.74
; 9 88 : 5 4 4 3 2 2
1 17
3
QIS - branch
:
1
Ra - branch
Qa - branch
012 - branch 10 6
31067.02 004.78 30936.75 863.24 78544 703 *6o
1 1 1 1 1 1
17+10 3 13 1
G. H. DIEKE and H. M. CROSSWHITE
154
TABLE 13-continued 3 -+ 2 Band
K
--VP Y
PI - branch Z
Ql - branch
Blends
m--v__ Y
Z
1 2 3 4 5
33844.42 795.56 743 ~66 688.15 628.59
2 3 3 4 4
33873.23 853.27 829.67 802.39 770.80
2 3
6 7 8 9 10
564.82 496.47 423 a45 345.68 262.96
5 5 5 5 5
734.75 693.55 647.40 595.95 539.10
8 8 8 8 8
476.71 408.85 334.87 225.12 169.47
7 7 6 5 5
077.33 32978.96 874.09 762.43
4 3 2 1
11 12 13 14 15
175.24 082.50 32984.57 881.22 772.98
4 4 4 3 3
16 17 18 19
659.77
2
22
Blends 1 3
6 7
1
5
Qal - branch 33873.23 853.27 828.95 801.52 768.91 733.63 692.02 646.02
1 1 1 1 1 1 1 1
RI-branch
--Y
Z
33930.78 939.71 945.10 946.37 943.28
1 1 2 2 3
1
93554 922.22 903 -80 879.61 849.61
3
12 1
813.59 771.42 722.70 667.53 605.58
3 3 3 2 2
536.81 460.52
2 1
Blends
1
; 3 3
1 9
6
RSI- branch 2 3+3
12+1
8
33930.78 938.99 944.15 945.10 942.03 933.93 920.66 902.01
1 1 1 1 1 1 :
1
2
The ultraviolet
TABLE
bands of OH
155
13-continued
3+2Band Pa-branch K
Z
Y
33689.28 635.85 61044 560.65 6 7 8 9 10
Qa - branch
504.20 441 a82 373.53 299.42 220.03 134.92 044.37 32948.28 846.85 739.47
:
Blends
1 7
2 3 :
1
4 :
4
4 4 3 2 :
Y
Z
33746.89 746.89 739.98 725.40 703.70
1 2
675.19 640.29 599.06 551.62 498.16
6 7 7 7 7
PIZ - branch
33689.28 653.85 611.18 561 a46 505.23
1 1 1 1 1
375.12
1
Blends 2 1
4 3 2 1
33746.89 746.89 740.60 726.3 1 705.03 676.56 641.75
Z
Blends
33804.61 833.09 854.48 868.29 874.59
13 3
874.59 867.24 853.27 833.09 806.29
3
504.20 428.83 3
Q12 - branch
1 7+2
Y
3
3+1 1
772.89 732.84 686.06 632.40 571.75
438.59 372.89 301.13 223.14 138.81 048.13 32950.90 846.85 736.23
16 17 18 19
Rs- branch
1 1 1 1 1 1 1
2+1+1 2+1+1
11
1 1
3
156
G. H. DIEKE and H. M. CROSSWHITE
TABLE 13-continued 3 -+ 3 Band
K
Ql-
PI -branch
--~-
Z
v
Blends
branch Z
”
PBlends
RI-branch Y
---Z
1 2 3 4 5
30605.15 560.18 511.67 461.67 408.91
1 2 2 2 3
30633.70 616.86 597.70 576.04 551.39
1 2 3
7
::
5
6 7 8 9 10
353.51 294.80 232.81 167.43 098.44
3 3 3 3 3
523.48 492.08 456.87 417.88 374.81
5 5 5 5 5
723 ~76 720.62 713.08 701.32 684.98
2 2 ;
11 12 13 14 15 16
025.81 29949.45 869.27 785.21
3
327.68 276.06 220.11 159.30 094.07 023.85
5 4 4 3 3 2
664.27 638.59 603.61 567.65 526.69
2 2 1 1 1
; 2
8
---_
Pz-
branch
30421.17
1
339.70
2
6 7 8 9 10
291.73 239.12 181.83 12044 054.58
2 2 2 3 2
11 12 13 14 15
29984.56 910.41 832.10
2 2 2
-----~-__---1
Qa- branch
3
4 3
30506.63 509.61 506.63 497.63 482.75
1 1 2 3 4
462.62 437.43 407.35 37244 332.78
4 4 4 4 4
288.29 239.12 185.33 122.16 058.68
4 4 4 3 3
: 1 1 2
:2” 2
2 2 1
2
1 12 1:
Rzl - branch
Qzl-branch 30633.70
30692.47 704.48 713.08 719.96 723.76
Blends
7
-A----2
30691.47 703.60
1 1
718.72
1
Rz - branch
30597.70
1
3
640.62 653.79
1 2
2 9+2
661.75 664.27 661.75 653.79 640.62
2 2 2 2 2
2 2 2 9+2 1
622.66
2
1
2
4
The ultraviolet
157
bands of OH
TABLE 14. THE OH BANDS FROM2811 TO 3546A
Wavelength measurements second order of 21 ft concave grating with 30,000 lines per inch, dispersion 0.6 A per mm. Source oxy-acetylene flame, outer cone. ZLIOOO : Intensities in a flame at 3000°K. The rotational distribution in each individual band has been calculated. These values agree with the observed intensities. For blends the intensities of the individual components are given. The order in which the lines occur in the intensity column is the same as in the classification column. I: Intensities of unclassified lines measured roughly with the plate calibration afforded by the surrounding lines. Chsifcation: For the meaning of the symbols see p. 193. The satellites are indicated by primed numbers and belong to the main lines with the same number just preceding or following them. Wavelength
Z
Zsooo
Wavenumber
1 ---_j
0
-RI5
2811.319 11.382 11.429 11.507 11.591
9 7 20
35560.04 559.25 558.65 557.67 556.60
11.684 11.797 11.941 12.162 12.237
10 37 6 20 11
555.43 554.00 552.18 549.39 54844
4’ R17 7’ R13 3’
12.591 12.750 12.984 13*044 13.776
36 5 13 11 36
543.97 541.96 539.00 538.23 528.99
RI8 8’ R12 2’ R19
13.947 14GO5 14.045 15.368 15.558
4 6 9 33 3
526.83 526.10 525.59 508.90 506.51
Rll 1’ RllO 10’
15.989 16.024 16.423 16.549 17.319
34 31 33 28 33
501.08 500.63 495.61 494.02 484.3 1
;:
R16
5’ 6’ R14
9’
Ra7 Ra6 Ra8 Ra5 Ra9
G. H. DIEKE and H. M. CROSSWHITE
158
TABLE 14-continued
Wavelength 2817.380 17.580 18.677 19.145 19.822
13000
Z
31 2+23 31 20+14+17 28
Wavenumber 3583.54 48 1.02 467.22 461.33 452.82
1 -----f R111 11’ Q11, 1’ R112
20.045 20.501 20.669 20.710 21.302
450.02 444.29 442.18 441.66 434.22
12’
2; 37 13 12
21.706 22404 22.466 22.705 22.787
22 52 11 24 26
429.14 420.38 419.61 416.61 415.58
Pll Q13 3’ R113
22.953 23.456 24.096 24.393 24.455
1
13’
6 66 10
413.49 407.27 399.17 395.45 394.67
25.545 25.802 26.058 26.317 26.674
23 28 21 1 76
381.02 377.80 374.59 371.35 366.88
2
26.764 28.784 28.942 28.984 29.225
8 20 13 24 14+12
365.76 340.51 338.54 338.01 335.00
29.277 29.373 29.879 30.095 30.257
83+11 7+37 18 36 9
334.35 333.15 326.84 324.13 322.11
30.339 3 1.748 31.838 32.222 32.351
50 8 61+12 86 5
321.09 303.52 302.39 297.61 296.00
Ql;
0
R24 R;lO Ra3
Rzll
R22
Rd2
R21 Q14 4’ Rz13 P12 R114 Ql’;’ 5’ R2l4 2’ g;, Q16 6’ R115 P13
1’
Q2i
4
5’
Q24 Qa5, Pal’
Q17 7’
The ultraviolet
159
bands of OH
TABLE 14-continued
Wavelength 2832.512 33.731 33.843 34.143 34.172
Zsooo
Z
Wavenumber 35294.00 278.82 277.42 273 -69 273.33
17 7 69 13 15+10
34.630 35530 35.675 36.189 36.320
42 89 4 5 74
267.63 256.43 254.63 248 *24 246.61
36.736 37.094 37.134 38.984 39.108
14+3 14 18 12 4
241 a45 237.00 236.50 213.54 212*00
39.234 39.378 39.450 40.621 40.681
85+78 3 47 13 26
21044 208.65 207.76 193.25 192.51
41.481 42.282 42.411 42.635 43.294
12 4 3 75 80
182.59 172.68 170.34 168.31 160.16
43.470 44.304 44.581 44.670 44.750
3 10 50 11 33
157.98 147.68 144.26 143.16 142.17
46.280 46.461 46.747 47.771 47.967
3 72 9 74 2
123.27 121.04 117.51 104.89 102.48
48.429 49.206 49.304 49.833 50.046
4 10 38
096.78 087.22 086.01 079.50 076.86
2 52
1 ----+O Rz15 6’ Q26
R116
2’ P22
Pl4 Qlf3
8’ Q2: R2l6, Oa2 3’ Pa3 R117 8’
Q$
Q28
PI5 4’ P24 R217 023 Q2’g Q110 10’ R118 P16
5’ P25 QB’lt Ral8 Qlll 11’ 024 6’ Pa6 PI7
160
G. H. DIEKE and H. M. CROSSWHITE
TABLE 14-continued
Wavelength 2850.154 50.533 50.73 1 52.559 52.662
13000
8 2 68 7 67
-------
Z
Wavenumber 1 -----f ___--_---_R119 35075.53 070.97 06844 045.97 044.71 Q1l2
52.883 54.204 54.317 54.576 55.120
2 8 41 1 4
041.99 025.78 024.39 021.22 014.53
55.234 55.450 55.859 56.102 56.559
2 62 52 1 6
013.13 010.49 005.47 002.50 34996.90
57.974 58.118 58.206 58.929 59646
60 1 1 6 7
979.58 977.81 976.74 967.89 959.12
59.777 60.386 60.615 62.035 62.309
43 1 55 52 3
957.52 950.08 947.28 929.95 926.60
63.271 63.536 63.720 63.956 65.521
1 5 52 1 6
914.86 911.63 909.39 906.5 1 887.45
65.668 65.873 65.983 66.237 66.361
44 5 1 48 1
885.66 883.17 881.83 878.74 877.23
68.581 69.715 69.913 69.981 70.164
48 1 44 3 1
850.24 836.47 834.07 833.24 831.02
0
2+1
Ra19
12’
7’ P27 s17 025 QE P18
S16 R120 Q1l3 5-15 13’
R220 8’ P28 Q2?3 PI9 026 s13 R121 Q114 14’
9’ Pa9 R221 Q& s12
PllO Sll
Q1l5
027 15’
161
The ultraviolet bands of OH
TABLE 14-continued
Wavelength 2871.103 71.822 71.987 72.324 73.421
Zaooo 4 4 42 41 3
75.279 75.383 75513 15.605 75.660
9+10 3+3 45 12 7
75.737 76.348 76.488 76.564 77.255
4+3 4+4+12 2 37 2+3
Z
Wavenumber 34819.62 811.15 808.91 804.82 791.54 769.05 767.79 766.22 765-l 1 764.44 763.52 756.13 75444 753.52 745.18
77.502 77.657 78.106 78.548 78.733
13 2 2 3 39
742.20 740.33 734.91 729.59 727.35
78.885 79.093 79.283 80.559 80.825
35 12 3+1
725.51 723.00 720.70 705.33 702.14
81.139 81.332 81.590 81.657 82.311
lO?ll 12 1 3+12 8 7+5 41 11 6 11 30
677.96 677.50 675.13 668-l 1 667.69
83.854 83.935 83.971 84.671 84.845
1:
665.67 664.70 664.27 655.86 653.77
C
4 11 7
R122 10’ Pal0 Q215 Ra22 R14, R15 4’, 5’ PI11 R16 R13 3’, 6’ R12, 2’, R17
7’ Q116 Rll,
1’
R18 8’ 0a8 11’
Pall Qa16
R19 9’
R123
Ra6 Ra5, Ra7 R110 10
698.34 696.02 692.91 692.11 684.24
82.833 82.871 83.067 83.651 83.686
2 ----+1
1 -+O
Ra23
Ra8 Ra4 Qd,
P112
1’
. Ra9 Ra3 Rlll
Q117
RalO Pll
G. H. DIEICEand H. M. CROSSWHITE
162
TABLE 14-ccqtinued
Wavelength Zaooo ____---___--i885iO2 .-.. 4 85.700 3 8.5*811 18 85.911 29+36+4 86648 2+10 86*880 86.979 81.822 87.977 88.055 88.125 89.021 89.807 90.142 90.396
<
Z
Wavenumber
l ---+
34650.68 643.50 642.17 640.97 632.13
1 10 2 22 3
629.35 628.16 618.07 616.19 615.25
2 10 9
614.41 603 *69 594.27 590.26 587.22
90.474 90.566 91.292 92.666 92.712
26 36+3 25 3 8
586.29 585.26 576.50 560.08 559.53
92.897 93.155 93.194 93.290 93.332
4+2 8+3 13 2 28
557.32 554.24 553.77 552.63 552.12
93.423 93.492 94.152 94.224 94.303 95.461
12+2 23+33 8 3 17 4
551.04 550.21 542.34 541.48 540.54 526.74
95.672 95.890 95.986 96.575 96.702
2 3 21 30 2
524.20 521.61 520.46 513.44 511.93
97.051 97.643 97.833 98.117 98.212
7 1 3+4 13+2 24
507*77 500.72 498.46 495.08 493.95
0
__-------
2 ----+ --__---_
1 Ra2
12’ Qa17, Ps12 029
Q13 3’ R112 12
Q$.
Rall Ral
R124 P12
Ra12 R113 Ra24 Q15 5’
P113 Q118
Qa”2 Qal, 1’ Ra13, 3’
Qa3
13’
Q16 P13, 6 Q218, Pal3 R114 Q*i Pal’ OalO Q*:
Ra14 R125 Pa2, 2’ P14 Qa66
The ultraviolet
bands of OH
163
TABLE 1Aontinued
Wavelength 2898.694 99.399 99.926 2900.225 00.374 00.845 00.892 00.958 01.299 01.522
Zsooo
Z
Wavenumber
2
34488.22 479.83 472.37 470*00 468.23
32+7 20 30+1 2 2+5 6 25 2 29+19+6 16 6 1 26 29
435.47 427.79 424.50 422.76 $21.67
04.481 04.552 05.103 05.984 06.502
1+4, 8 1 1 5
419.50 418.66 412.13 401.70 395.57
07.250 07.785 07.950 08.028 08 *496
27 1 26 15 17
386.72 380.29 37844 377.52 371.99
08.695 08.793 08.975 09.438 09.748
4 28+11 : 1
36964 368.48 366.33 360.86 357.20
10*002 10.094 12~006 12.091 12.190
25 15 1 4 25+1
354.20 353.12 330.56 329.55 328.38
3 13 26 1 18
313.76 312.62 309.99 307.65 304.35
2 -----+l R115
P114 Q119
Q$
46264 462.08 461.30 45725 454.60
03.134 03.781 04.059 04.206 04.298
13.432 13.529 13.752 13.951 14,231
l---+0
022
7’, 3’ Pa3 Qr7
14 Pr14, Qa19
Ra15 P15 R116
QJ Q19 9’
4’ Pa4
0811 Oa3 Ra16 P115
0120 P16
QdO
5’ P25
10’ R117 15’ Ps15 Qs20 10’ Ra17 QalO, 024
Qd, P,:l
6’ Pa6
164
G. H. DIEKE and H. M. CROSSWHITE
TABLE lrl-continued
Wavelength
Zzooo
Z
Wavenumber
2914.955 15.688 16.237 16.724 16,922
1 4 23 1 24
34295.82 287.22 280.75 275.03 272.70
17.185 18.282 18.668 18.789 18.919
12 4 1+3 14 21
269.61 256.74 252.21 250.79 249.26
19.048 19.168 19.209 19.389 20.359
1 24 11 1 18
247.75 246.34 245.86 243.75 232.37
21.942 22.154 22.548 24407 24.537
1 22 3 2 15
213.83 211.34 206.73 184.98 183.46
25.062 25.262 25.665 26.415 26.894
21+3 1 19 1 9+18
177.33 175.00 170.29 161.53 155.95
1 ---_j
0
2 ----+
l
0212 R118 P116
Q121 Ra18 7’ P27
16’ Pal6
025 Q112 Qs21 12’ P18
QZE R119 8’ P28 Q1l3
Ra19
0213 P117 Oa6 P19
Q122
27.668 27.887 27.997 28.288 28.895
0 20 1 18 9
146.92 144.36 143.08 139.69 132.61
30.046 30.612 30.767 3 1.440 32.560
2 2 15 19 2
119.20 112.61 110.81 102.98 089.95
Rx20
33.842 34.135 34.292 35.548 37.199
17 17 1 15 7
075.06 071.65 069.83 055.26 036.11
PllO
17’ Pal7 Qa22
9’ Pa9 Q114 Ra20
Qa14 027 P118 Q123
The ultraviolet
165
bands of OH
TABLE 1Aontinued Wavelength
13000
Z
Wavenumber
2937.304 37.470 38.128 38.217 38.327
14 2 61
34034.89 032.97 025.35 024.32 023.05
39.158 40.697 40.907 41.221 44.470
7 2 15 16 1
013.43 33995.62 993.20 989.57 952.08
44.650 44.964 45.074 45.157 45.232
14 2 2+1 1 3
950*00 946.37 945.10 944.15 943.28
45.341 45.542 45605 45.730 45.904
1 1 1 14 12+3
942.03 939.71 938.99 937.55 935.54
46.044 46.318 47.061 47.197 48.097
1+1 1+3 1 5
933.93 930.78 922.22 920.66 910.31
48.214 48.441 48.663 48.818 49.039
13 12 3 1 14
908.96 906.35 903 *80 902.01 899.47
49.537 SO.032 50.768 51.205 51.324
1 5 3 3+3 2+1
893 -74 888.06 879.61 874.59 873.23
51.754 51.846 52.106 52.304 52.958
2 3 1 13 2
868.29 867.24 864.26 861.99 854.48
1;
l-+0
2+-l
3+2
10 Pal0 Pal8 R121 Q115 Qz23 Ra21 Qal5 Plll 11’ Pall R14 R13, 4 3’ R15 5’ R12 2’ Q116 P119
R16 6’ R122
Rd, 1’ R17 7’
Qr24 Q216 P219
RI8 8’ PI12 R222 Qz24
RI9 Ra5, 6 Qll,
Rs4 Ra7 12 P112
Ra3
1’
G. H. DIEKE and H. M. CROSSWHITE
166
TABLE 14-continued
Wavelength
13000
Z
Wavenumber
2353@3 53.382 53.575 53.673 53.836
3+1+3 3 3 11 2
33853.27 849.62 847.41 846.29 844.42
54.825 55.124 55.187 56.075 56.530
1+3 5 1 11 3
833.09 829.67 828.95 818.79 813.59
56.680 56.737 57.167 57.314 57.509
1 10+ 1 3 13+1 6
811.87 811.21 806.29 804.61 802.39
57.585 58.107 59.124 59.246 59.626
1 3 1 9 4
801.52 795.56 783.94 782.55 778.21
60.093 60.222 60.276 60441 61.543
3 1+3 7 12+1+1 4
62.174 62.373 62.480 62.657 62.925
9 1+1+2+1
772.89 771.42 770.80 768.91 756.35
3 1
749-l 6 746.89 745.67 743.66 740.60
62.980 63 447 63.548 63.607 64.181
3 8 1 3 1
739.98 734.75 733.63 732.84 726.31
64.261 64.499 66.052 66.169 67.063
5 9+3 11+1 6 0+8
725.40 722.70 705 *03 703.70 693.55
l-+0
2+1
3+2 Q12, 2’, Ra8
RdO 10’ Q117 Pll Ra2, 9 Q13 3’ Qa17 Rlll R123 11’
P120
RslO P113
Ral Q14 4 P12
Ra23
Pa20 Q125
13’ Pal3
Rall R112 Q15 5’, 12
Qa25 Q118 Qal, l’, Qa2, 2 P13 3’
g:: 6 Ra12 4
Qa18 P114 R124
Qa4 R1153
The ultraviolet
bands of OH
TABLE 1Aontinued
Wavelength
Is000
2967.198 67439 67539 67.723 68.073
1 1+1 4 2‘ 8
33692.02 689.28 688.15 686.06 682.09
68560 68.681 68.828 69.069 69.356
: 1 10 2
676.56 675.19 673.53 670.78 667.53
0 7+2+1 8 8+1 1
666.08 653.85 647.40 646.02 641.75
71.761 71.818 72458 72.795 73.517
7 3 2 4 7
640.29 639.64 632.40 628.59 620.43
73.719 74.333 74400 74.830 75.267
3 1 2 2 10
618.15 611.18 61044 605.58 600.65
75408 75.683 77.828 78.185 78443
7 8 2 9 5
599.06 595.95 571.75 567.73 564.82
78.741 78.823 79.615 79.929 80.728
1 3 7 6 8
561.46 560.65 551.62 548.09 539.10
69.484 70.563 71.133 71.255 71 a632
I
Wavenumber
l-+0
.-_ 2+1
3+2
--
7’ Pa2, 2’ P14 Ra13 PI21
14 Pa14 R114 Ra24 Pa21
P23, 3’ Q119
Q$
7’ Qa7 Q126 Ra14 P15 Qa19 Qr26 4’ Pa4 R115 PI15
Ra15 Pa15 P16 5’ Pa5
Qa9
PI22 QllO
o-+0
168
G. H. DIEKE and H. M. CROSSWHITE
TABLE 14-continued Wavelength
I3000
2980.93 1 82403 83.140 83.741 83.832
6+2 6 6 1 1+3
33536.81 520.25 511.97 505.23 504.20
84.371 84.521 84.706 84.974 86.282
7 5 2 8 7
498.16 496.47 494.40 491.39 476.71
86.596 87.718 87.819 89.399 89.688
2 1 8 4 7
473 *20 460.52 459.50 441.82 438.59
90.560 91.041 91 a238 92.349 93.404 94.787 95.190 95.373 95.516 95.573
I
1 5 5 5+7 5
428.83 423.45 421.25 408.85 397.08
4 7 1 4 6
381.65 377.16 375.12 373.53 372.89 346.23 345.68 342.14 334.87 321.30
97.969 98*018 98.337 98.990 3000.211 02.029 02.183 04.330 05.285 05.474 05.928 06.183 07.739 OS.657 09.085
Wavenumber
6 4+4 4 3 5 6 5 3 5 5
301.13 299.42 275 ~62 265 ~05 262.96 257.94 255.12 237.91 227.77 223.14
l-+0
2-+1 Q120
3-+2 R116
Pa22 Qa20 6’ Rz16, P26
QalO P17 Q127 P116 Q111 Qa27 R117 P2l6 Pa7 Qell Rs17 P18 Q121 Q112
P123 Qa21 Pa23 P117
8’ P28 Q212 Pa17 PI9 Q128 Q113 Qa28
Q122 Qa22
Q2l3 P89
P124 PllO P118 Q114 Pa24 Pal8 Qa14
o+o
The ultraviolet
169
bands of OH
TABLE 1Aontinued
Wavelength
Zaooo
Z
Wavenumber
l+O
2+1
3+2 Pal0
3009*358 12.746 13.421 13.851
4 1 4 3
33220.03 182.67 175.24 170.51
13.956 14.612 15.948 16.734 17.088
5 1 3 ::
169.47 162.13 147.44 138.81 134.92
17.208 18.832 19.900 21.285 21.749
5 3 4 2+2+2 3fl
133.63 115.78 104.07 088.89 083.82
21.869 22.342 22.652 22.730 23 a994
4 4 4 1 5
082.50 077.33 073.92 073.07 059.25
P112 Q116
25.012 25.356 25.760 26.223 27.927
4 4 7
Qa16 Pal2
f
048.13 044.37 039.96 034.91 016.31
28.293 29.054 30.490 30.842 31.356
2 4 11 4 3
012.32 004.03 32988.40 984.57 978.96
31.710 32.986 33.433 33.938 34~180
4 2 14 3 3
975.11 961.24 956.39 950.90 948.28
2 18 1 3+22 2
934.49 920.61 891.98 881.22 874.09
35.450 36.730 39.373 40.368 41.027
O-+0
Q129
Plll Q123 Q115
Qa29 Qa23
Qs15 Pnll
P119 P125 Pal9 S115, 16 S114, 17
Ps25
s113 S118 IS112
Sill Q124
SllO
Qd4 P120 s19 P113 Q117 Pa20 P126 S18 Qa17 Pa13 Pa26 s17 Q125
P114 Q118
S16
170
G. H. DIEKE and H. M. CROSSWHITE
FABLE 1Aontinued
I
Wavelength
I3000
3041.418 41.484 43 *549 44.115 44.325
1 3 3.+ 2 3 26
45.594 48.565 50.271 50.410 51.393
1 29 1 3 1
801.05 792.81 774.47 772.98 762.43
53.051 53.532 53,834 54.538 57.150
30
744.63 739.47 736.23 728.69 700.73
57.727 60.984 62.523 63.565 63.725
28 2
1 2 2
A4 415+378+44
Wavenumber
l-+0
32869.87 869.15 846.85 840.74 838.48
694.55 659.77 643.36 632.25 630.55
241
3-+2
O-t0
Qe25 P121 Pz14, Qa18
Pa21 s15
P127 s14
Pa27 P115 Q119 s13
P122
Pal5 Qa19
Pa22 s12 P116 S11 R19
R18, R110
63.921 63 -970 64.189 64.236 64.3 70
55 31 415 346 68
628.46 627.94 625.61 625.11 623.68
10’ R17 Rlll 7’
64.491 64.950 65.095 65.372 65.976
27 397 310+ 83 20 363
622.39 617.51 615.97 613.02 606.60
Rl12, 6’ 12’ R15
66,114 66.318 66.613 67.240 67.356
100 271 15 304 114
605.13 602.96 599.82 593.16 591.92
5’ R113 13’ R14 4’
67.661 67.775 67.929 68.277 68.608
352 373 230 + 323 ii+383 290
588.68 587.47 585.84 582.14 578.63
RalO
8’
RI:,
Ra9 R114, Rell 14’, Ra8
Ra12
The ultraviolet
171
bands of OH
TABLE 14-continued
Wavelength
--
Zsooo
Z
Wavenumber _A_
0 -+o ~
3068.704 68.799 69.177 69.675 69.913
234 126 378 255 193
32577.61 576.60 572.59 567.30 564.78
70.244 70.318 70.392 70.478 71.145
9 152 127 359 218
561.27 560.48 559.53 558.79 551.72
15’ R12 2’
72.009 72.063 72.199 72.308 72.660
69 102 325 159 6
542.56 541.99 540.55 539.38 535.67
R11 1’
73 ~028 74.369 75.123 75.334 75.486
183 273 131 151 5
531.76 517.58 509.61 507.38 505.77
77.028 78.071 78.373 78.440 78.468
204 125 102 239 166
489.49 478.48 475.28 474.58 474.28
78.753 79.951 8Ox@6 SO-23 1 81.255
3 437 152 138 98
471.28 458.65 458.07 455.70 444.91
81.541 8 1.620 81.665 81.745 82.065
616 130 252 80
441.90 441.07 440.60 439.75 436.38
82.456 83.278 83.374 84.050 84.894
2 766 111 68 77
432.27 423.63 422.62 415.51 40664
2
-.
R13 3’ Rs7 Ra13 R115
Rs6 Ra14
R116 16’
R117
Ra5
Ra15 R24 Ra16
17’
2::7
::f8
Pll R119
Ql; Ral Ra19
172
G. H. DIEKE and H. M. CROSSWHITE
TABLE 14-continued Z
Wavelength
Zsooo
3085.196 85.317 86.226 86.390 86.634
884 93 66 335 2
32403.47 402.10 392.66 390.94 388.38
87.338 87.481 87.561 89.008 89.665
974 77
380.99 379.49 378.65 363.49 356.60
89.734 89.861 90.270 90.364 90449
2 59 2 995 62+293+95 +439+100 94 589 70
Wavenumber
355.88 354.55
139 47 416+83 712 1000
348.15 344.08 340.69 338.86 328.06
92.577 92.650 92.786 93609 93.722
50 71 808 45 143
326.15 325.38 323.96 315.37 314.19
94.459 94.618 95 a272 95.342 95,546
58 855
306.49 304.83 298.01 297.38 295.15
96.830 98.520 98.586 98.715 98.807
5 973 40 35 492 114+ 154 48 2 873 2 912 34 31
29040 389.12 286.76 283.62 282.43 281.74 264.14 263.45 262.11 261.16
0
Q15 5’ R120 Pl2
20’ Q16
6’ R220
Q17 7’
350.27 349.29 348.40
90.473 90,862 91.186 91.361 92.394
96.000 96.124 96.349 96.650 96.764
0 ----+
Qa2, 2’, Qs3, 3’
Qai,
R121 P13
Qzl
QS: Q18
8’ Q*: Ra21 Pzl’
Q,‘7
Ql9 9' R122 P14 P22, 2’ 8’
Q28 Q110 R222 10’
The ultraviolet
bands of OH
173
TABLE 1Aontinued
Wavelength 3099.210 99.411 99.538 99.593 3101.229
zsooo
Z
Wavenumber 32256.97 254.86 253.54 252.97 235.96
8:: 158 215+33 546
01 a657 02.142 02.358 03.267 03 0342
26 842+ 30 24+871 148 307
231.51 226.47 224.23 214.79 214.01
04.348 05.421 05.663 06.017 06.220
25 23 763 752+43
203.57 192.44 189.94 186.27 184.16
06.279 06.542 07.457 07.553 07.852
18 582 131 384 19
08.089 08.994 09.069 09.330 09.801
2
183.55 180.83 171.36 170.36 167.27 2 2
18 690 5
607+111 441
142.73 139.70 135.94 123.54 122.52
13.075 13.361 14.262 14.622 14.769
14+44 611 4 14 569
113.29 110.35 101.06 097.35 095.83
15.077 16.324 17.048 17.139 17.191
11 3 94
092.65 079.81 072.36 071.43 070.89
2
2 481
l-+1
Q2Z 3’ P23, 022 P15 R123 Q11l 11’
10’ QalO 4’ Pa4 Ra23
Q112
Qz:: 023
12’ P16 5’ Pa5 R124
164.81 155.45 154.66 151.97 147.10
10.223 10.517 10.881 12.082 12.181
664 14+ 18
0 --to
QiI s13 Q113 13’ PI7
Ra24 6’ P26 13’, Oa4 Qa13 s12
R125 Q114 14 7’ Pa7
G. H. DIEKE and H. M. CROSSWHITE
174
TABLE 14-continued
Wavelength -----~----~-3117.275 17.455 l7.704 17.759 17.886 17.969 18.109 18.745 18.879 19.323 19.437
Loo0
Z
Wavenumber
2
32070.03 068.18 065.62 065.05 063.74
13 10 527 609 2 2 2 3 2 2 2 478 8 41
21.643 21 .I62 21.867 21.953 22.091
67 68 65+9 10+11 7
025.16 023.93 022.86 021.98 020.56
22.210 22.360 22.397 22.465 22.528
8+63 13 76 62 447
019.34 017.81 017.43 016.73 016.08
22.566 22.696 22.958 23.096 23.434
493 6 57 16 51
015.69 014.36 011.67 010.25 006.79
23.687 23.945 24.094 24.616 24.801
4 531+48 18 10 51
24.873 24.929 25 *067 25.236 25.258 .i..
399 3 31 6
046.03 045.43 042.10 036.08 029.41
004.20 001.56 00.03 31994.69 992.79 2
0
992.04 991.48 990.07 988.34 988.11
l----+1
Ra25 14’ Q214 P18
062.89 061 e4.5 054.91 053.54 048.87 047.80
19.610 19.668 19-992 20.578 21.223
2
0 -----+
-------~--
s11
Q115 15’ 02;
R18 R17 R19, 8’ 7’ 9’
R126
15’
R16 6’
8’
RdO Q215 P28 10’
R15 5’ Rlll 11’ R14 4’
P19 Rz26
R112
Q116 12’ R13 16’
The ultraviolet
175
bands of OH
TABLE 1Aontinued
Wavelength --3125.329 26.329 26.464 26.580 26.618 26.674 26.745 26,871 27,038 27.347 27.627 27.682 27.764 27.888 28.055 28.091 28.224 28.281 28.515 28.779 290IO 29.093 29.239 29,532 29.836 29.933 30.123 30-214 30.276 30.567 30.928 31.418 3 1.496 31.753 31.836 32.182 32.578 32.863 33.165 33.225
Zsooo
Z
: 45 57
31987.38 977.16 975.78 974.59 974.20
24 20 3 62 6+53
973.63 972.91 971.62 969.91 966.74
20
2 372 2 2 57 61 11 492+ 16 36+48 39 2 2 51 2 7 43 5 548 324 4 :: 2 5 37 7 4 5
l-------+1
Ra9 Ra8 R113 RalO R12 2 13’
Qr16
Ra6 9’ Pa9 Oa6
917.40 917.37 910.47 907.39 906.78
R11 1’ Ra12 R114
949.86 948.91 947.42 944.43 941.33
930.19 925.20 924.40 921.78 920.94
Ra7 Rail
16’
963 988 963.32 962.48 961.22 959.51
940.34 938.40 937.47 936.84 933.87
--
3’
959.14 957.78 957.20 954.81 952.12
2
305
o-----+0
Wavenumber
14’ Ra5
R127 Ra13 PllO Q117 17’ R115 Ra4 15’
Ra14 Ra27 17’ Qa17
176
G. H. DIEKE and H. M. CROSSWHIIF
TABLE 14-continued Wavelength
zsooo
Z
Wavenumber
2 2 2
3133.308 33440 33.749 33.989 34.132
32 49
31905.93 904.59 90144 899.00 897.55
34.339 34514 34.578 34.599 34.705
475 28 37 26 31
895.44 893.67 893.01 892.80 891.72
34.873 35.016 35.323 35.906 36.174
1 2 2 5 68 24 265 505+31 3
876.24 873.15 872.57 869.51 868.61
37.056 37.705 37.749 37.894 37.969
22 26 39 96 20
867.82 861.28 860.78 859.31 858.55
38.083 38.452 38.547 38.783 39.166
23 1 5 3 250
857.39 853.65 852.68 850.29 846.40
39.371 39.791 39.886 40.503 40.73 1
120 17 38 445+9
41.190 41.585 41.909 42.023 42.142
2
5+22 2 139 15 18
R23 10’ P210 R116
Qll
844.26 840.07 839.10 832.84 830.53 825.88 821.88 818.60 81744 816.17
1’ Ra15 16’
890.01 888.55 885.43 879.51 876.18
36.227 36.531 36.588 36.888 36.978
5
1 -+l
o---+0
Q12 2’ Q118 Plll 18’
027
R22 R216 Pll
R117 17’ R128 QJ
Qli, 11’ P211
Rzl
Rz.28
Rz17 Q15 5’ R118
The ultraviolet
bands of OH
177
TABLE 1Antinued Wavelength ~-3142.301 42.522 42.112 43.011 43.412 43 -476 43.797 44.284 44.424 45.115 45.172 45.365 45.518 45.579 45.730
13000
Z
Wavenumber __--
205 2
31814.63 812.39 810.37 80744 803.39
459 152 12 2
802.74 799.49 794.56 793.15 786.16
52
194 26
45.870 46.504 46.560 46.63 1 46.712
15 43+16 68 15
178.53 772.13 771.57 710.85 770.03
46.946 47.112 47.195 47.274 47.410
158 10+22+11 30+ 15 93 65
767.67 766.90 765.06 764.36 762.99
47.456 47.671 47.851 48.309 48.427
407 3 13 112
762.53 760.36 758.54 753.91 752.72
14 159 163+11
751.89 146.74 740.03 73844 137.73
48.510 49.021 49.687 49.844 49.915 50.056 50.314 50.485 51GOl 51.628
8+127 22 3 405 2
736.31 733.71 731.99 726.79 720.48
-
P12 Q1l9 19’
P112 Ql6
6’ 19’ Rs18
785.59 78364 782.09 781.47 779.95
17
1-l
o--o
Qa19 028
R119
Qsi, 3’ Qa3
Qa’: 1’
12’
Qi P13 P212 R129
Pi
Ra19 6’
QlS
8’
Qe6
P21’ Rz29 P113
G. H. DIEKE and H. M. CROSSWHITE
178
TABLE 1Aontinued
Wavelength
Zsooo
Z
Wavenumber
2
12 9
R120
3151.806 5 1.964 52.074 52.125 52.293
136 151
31718.69 717.10 715.99 715.47 713.78
52.454 52.947 52.967 53.204 53405
76 24 18 156 6
712.16 707.21 707.01 704.62 702.60
54.235 54445 54.507 54.621 54.727
23 8 363 21+ 143 11
694.26 692.20 691.53 690.39 689.32
55.479 56.184 56.241 56.831 57.052
25 33 148 5
681.86 674.69 674.12 668.20 665.98
57.112 57.317 57.454 57.523 57.712
122 6 9 138 85
655.38 663.32 661.95 661.26 659.36
Q121
57.865 58.507 58.720 59.505 59.989
2 530
R130 P114
115 23
657.83 65 1.40 649.26 641.40 636.55
60.067 60.336 60.510 60.605 60.821
48 8 2 5 137+ 133
635.77 633.08 631.34 630.38 628.22
61 @I8 61.598 61.892 62.106 62.609
2
2
4 17 318 2 7
625.95 620.45 617.51 615.37 610.35
l------+1
0 m+O
7’
Q27 Qz20 P14
2’ P22 Q19 9’ 13’
8’ Pa13 029
Qa8 Ra20 3’ P23
QllO 10’
9’ R121 P15
Q29
Q221
4’ P24 R221 R230 Q111
Qa:oo
11’ 14’ Pz14
023
The ultraviolet
179
bands of OH
TABLE 14-continued Wavelength 3163.214 63.678 64.064 64.297 64.394
Zaooo
20114 60 124 92 124 3
66.336 66.534 67.168 67.253 67.389
297 6 88
2
590.97 588-27 584.96 582.40 574.38
;
573.14 571.17 564185 563.90 562.65
: 3 1 114
68,982 69.058 69.174 69.296 69.558
95 18 69 13
69.613 69.866 70.148 70.239 70.502
272+7 110 2
Wavenumber
2
2
5 2
557.38 556.34 552.55 550.49 549.90
P16 R122 OalO
Pall Q1l2 12
Pll5
524.80 523.80 5Chj.67 506.92 504.86
73.329 73.816 74,235 74.377 74.482
5 14 15 75 248
503.56 498.73 494.57 493.16 492.12
Ra22
12’ R131 Q212 P17
6 Pa6
15’
Pal5
540.50 537.98 535.18 534.27 531.66
1 2 68 101
5’, 11’ Pa5
Q122
546.77 546.02 544.86 543.65 541 G4
71.192 71.292 72.815 72.991 73.198
l---l
0 ---+o
31604.30 599.67 595.81 593 *48 592.51
92 7
64.548 64.819 65.151 65.407 66.212
67.918 68.021 68402 68609 68.668
Z
024 0113 13’ R123
Ra31 13’ Q123
Qa13
Ra23 0811
P1l6
7’ Pa7
G. H. DIEKE and H. M. CROSSWHITE
180
TABLE 14-continued
Wavelength 3174.968 75.039 75.299 76.071 76.548
13000
Z
Wavenumber
2 2
31487.30 486.60 484.02 476.36 47164
96 95 65+2
2
0 -+ 0
I+1
Qr23
Q114 P18 14’
2+2
76.679 77.227 77.339 77.075 77.826
6 10 228 2
470.34 464.92 463.81 460.48 458.98
77.960 78.140 79.824 79.984 80.470
4 89 12 78 82
457.66 455.88 439.22 437.64 432.83
R124 Qa14 8’ P28 Q115
80.762 81.393 8 l-645 82.965 83.048
1+4 95 50 186
429.95 423.71 421.22 408.19 407.38
15’, R’, Ra24 P19
83.180 83.509 83.919 84.692 84.772
If1
84.869 84.930 84.981 85.195 85.277 85.337 85.663 85.727 85.795 85.877 85 a927 85.977 86.084 86.387 86.762 86.955
2
487+611 10 9
406.08 402.83 398.78 391.16 390.37
2 2 10 8+1 6 2
389.41 388.82 388.31 386.21 385.40 384.81
10 7 10 1 7
381.60 380.97 380.30 379.49 379.00
81 188+3+13 69 1+9 5+1
378.50 377.45 374.47 370.78 368.88
025 16’ Pal6 14’
Q124 P117
Rz32 Qz24, 0212 R17 R16 7’ 6’ R18 R15, 8’ 026 5’ R19 17’ 9’ .
Pal7
Pa9 R125 Q116 16’
9’ R14 4’ R110 R13, 10’
The ultraviolet
181
bands of OH
TABLE 14-continued Z
Wavenumber
Wavelength
zsooo
3187.047 88.010 88.200 88.289 88.860
3 88 4 9+3 3+1
367.97 358.00 356.63 355.76 350.14
88.312 89.604 90.101 90.280 90.397
64 2+3 9 8+9 9
345.70 342.84 337.94 336.18 335.04
90.802 90.976 91.178 91.784 92.158
37 9 9 164 8+8
331.06 329.35 327.37 321.42 317.74
92.356 92443 92.732 93.053 93.145
76 8 57+7 35 1
315.80 314.95 312.12 308.97 308.07
93.757 93.892 94.207 94.301 94.467
302.07 300.75 297.66 296.74 295-l 1 2
94.732 94.848 95.051 95.133 95.554
152 82 1 54
292.5 1 291.38 289.40 288.59 284.47
95.638 95.862 96.189 96.485 97.557
6 5+4 5 7 10
283.65 281.46 278.35 275.35 264.87
97.610 98.879 98.980 99.065 99.103
3 6 6 5 72+3
264.35 251.95 250.96 250-l 3 249.76
0 -+ 0
2+2
l+l 3’ PllO
R12 R111, 2’ Ra25, 16’ Q216 R11, 1’ Ra8
R112
Ra7 Ra9
Q125
Ra6 RalO P118 10’
Ra5
Pal0 Rail Q117
R1l3
Qa25 17’ Oa7 Ra4 Ra12 Oa13 18’
Pa18 Plll Qa’:7 R114 Q11, 1’
Ra3 Rs13 Q12 2 11’ Pll R115 Pall
Ra2
182
G. H. DIEKE and H. M. CROSSWH~TE
TABLE 14-continued
Wavelength 3199.244 99.426 99.523 3200.489 00.907
Is000 ----____ 6 14 46+3 26
I
Wavenumber
2
31248.38 246.60 245 ~66 236.22 232.15
00.961 00.518 00609 02.255 02.376
133 18 3 43 75
23 1.62 226.19 225.30 219.00 217.83
02.551 02.657 02.715 03.023 03.576
2+5 4 25 5 4
216.12 215.09 214.52 211.52 206.13
03.810 03.863 03.977 05.034 05.986
8 21 124+2 6 5
203.85 203.34 202.23 191.94 182.67
06.237 06.388 06.518 06.651 06.773
67 4 22 2 37
07.521 08.418 08.469 08.572 OS.648
4
08.799 08.951 09.338 09.433 09.500 09.655 10.043 10.262 10.500 10.659
6+2 2 10 10+3+2 2 2 35+14 24 2 67 2
l-t1
2+2
Q118
Ql$
P119
Qnl8 P112 Ral, Ra15 028 Qs26 R116 19’ P12
Q$
P219 0214
12’ Pa12 R2l6 Ql6
6’ Q119
167.76 159.07 158.54 157.54 156.80
R117
155.34 153.86 150.10 149.18 148.53
P13
147.03 143.17 141.14 138.83 137.29
-----
Ra14
Q126
180.23 178.77 177.50 176.21 175.02
2
102 2
0 -+ 0 --_____A-
Q22, 2’ Q2: Q21,l’
Q244
Qzl9 Q17 7’ PI13 P120
5’
The ultraviolet
183
bands of OH
TABLE 14-continued Wavelength
?sooo
Z
Wavenumber
3210,725 10.788 11.958 12.104 12517
19 17+4 3+3 2
136.65 136.04 124.70 123.28 119.28
12.590 12,653 12,831 12.934 13.003
3 19 24 18 1
118.57 117.96 116.24 115.28 114.57
13.063 13,479 13.740 13.993 14.499
3 95+4 60 11 29
113.99 109.97 10744 104.99 loo*10
14.764 14.848 15.009 15.803 16.092
3+4 1 20
097.53 096.72 095.16 087.49 084.69
16.532 16.732 17.091 17.662 17.839
24 1 27 1 21
18.061 18.258 19.435 20.420 20.613
2
53
58+5+4 3 13 78 22
0 -+O
20.834 20.933 21.130 21.335 21.398
1 1 21 3 2
038.92 037.97 036.09 034.10 033.49
21.548 21.627 21.966 22.040 22.750
13 53+3 3 7 22
032.05 031.29 028.02 027.31 020.73
2+2
1
Q127 Qa5, Ra17 Pal’
0a9
6’ R118
Ql8
Qa27
Qs6
8’
13’ Pal3 P14 Q120 Ps2, 2’ Qa’7 Ra18 Oa15
08044 078.50 075.04 069.52 067.82 065.67 063.77 052.42 042.95 041 a05
l--f
Q19 9’ Qs20 as: Pa3, 3’
P114 R119 P15 P121 Q110 10’
QsZ 14’ Ra19 Q128 Pa14, OalO 4 Pa4 Q121
184
G. H. DIEKE and H. M. CROSSWHITE
TABLE 14-continued
Wavelength -3222.927 23.369 23.734 24537 24.653
Zaooo
24.881 25.093 25.166 25.260 25.346
20 21 14 21 1
25.790 25.862 26.443 27.468 27.613 28.086 28579 28 -892 3OGO2 30.729 31.201 31.370 31.473 31.689 32.974
-----____
Z
2 74 13 2 1
30999*98 997.19 997.24 996.33 995.51 20 5
50+9+3 4 2 19 2 46 kz 14 3 17+10+1 2 9
Wavenumber 0 -+ 0 ____---21’ 31018.77 014.52 Pa21 Oll*Ol Qa28 003.28 002.17
991.24 990.55 984.97 975.13 973.74 959.61 954.87 951.88 950.83 943.87 939.35 937.73 936.75 934.68 922.38
l-+1
2-+2
-
---
R120 10’ QalO Q111 Pi6
Qz21 11’
PllS
P85, 5’
0216
Ra20 Qall
15’ Pa15 0112 P122 P17
6’ Pa6, 024 Q129 22 Pa22
33.193 33.654 33.752 33.954 35.149
1 56 18 16 9
920.28 915.87 914.94 913.01 901 as9
35.200 35.338 36.787 36.926 37571
42 17 2 11 14
901.10 899.79 885.95 884.62 878.47
P116
38.216 38.547 38.885 39.170 40.748
2 39 16 3+1 13
872.32 869.17 865.95 863.24 848.20
16 P2l6
Qa12 Qa22 Pa29
0113 7’ Pa7 P18
Qal3 OaS
Oa17 0123
The ultraviolet
bands of OH
185
Table 14-continued Wavelength 3241.115 41441 42.118 42658 42.819
boo0
Z
15 45 2 2 12
Wavenumber 30844.71 841.55 835.17 830.03 828.51
43.196 44.287 44.346 45.495 45.067 47.220 47.355 47.615 48.971 49.153
13 14 42+35 14 6 6 13+1 32 2 12
824.92 814.55 813.99 812.58 807.15 786.72 78544 782.97 770.13 768.41
50600 51.218 51.364 52.597 53.017
9+12 2 13 33 9
754.71 748.87 747.49 735.83 731.86
53.875 54.080 54.207 54.279 54408
29+2+2 11 2 1 1
723.76 721.82 720.62 719.96 718.72
55*006 55.491 55.713 55.918 56.010
1+2 32 1 12+1 1+1
56.253 56.720 57.092 57.192 57.298
2 27 10+ 1 1
701 a32 696.92 693.41 692.47 691.47
57.812 57.987 58.814 59.976 60.187
4 2 13 4 2+2
686.32 684.98 677.20 666.26 664.27
713.08 708.50 706.41 704.48 703 a60
2
0 + 0
l-+1
2+2
3-+3
Q114 P123 OS12 8 Pa8 Qa23 Pa23
P117
P19 Qal4
Q130 Qa30 Q115. 0~6
Pz17 9 P29
O‘d18
Q124
Qal5 PllO
P124 Qa24 P118
R15, 6 Q116 R17 R14 4 R13, 8
Pz24 10 Pal0 027
R12 2 R19
Pa18 Qs16
R1l 1’
Q131 R110 PI11 Q23l Rlll,
Ra7
G. H. DIEKE and H. M. CROSSWHITE
186
TABLE ldontinued
Wavelength -____3260.455 61.061 61.302 62.705 62.920
2+2 7 9+2+2 1+2 1+2
30661.75 656.06 653.79 640.62 638.59
63.112 63.441 63.597 63.826 64.185
11 7+1+1 1 23 24
636.79 633.70 632.23 630.09 626.72
64.302 64.618 65.236 66.486 66.650
9 2 2 1 12t1
625.62 622.66 616.86 605.15 603.61
66.990 67.080 67.280 69.043 69.596
22 23 3+1 8 4
600.42 599.58 597.70 581.21 576.04
70.493 70.738 7 1 a293 71.956 72.154
1+1 10 2 8 5
567.65 565.36 560.18 553.98 552.13
72.238 73.740 74.208 74.513 74.881
4 3 18 5 10+ 1
551.39 539.85 532.97 530.13 526.69
75 a225 76.243 76.493 76.715 77.035
4 17 2 1 1+2
523.48 514.00 511.67 509.61 506.63
77.328 78.003 78.599 78.795 79.133
17+7 3 5 9 17
503.90 497.63 492.08 490.25 487.11
I8000
---
I
Wavenumber
0 + 0 __--_-_-
1 t
1
2-+2
3+3
-,
Ra6, 8 Q125 Q1l7 11’
Ra5, 9 Ra4, 10 R112
Pall Qa25
Qll,
1’
0219 P119 P125 Qa17 Rail Q12
P112
Pll
R113
Pa19 Ps25 Q13, R22 Q118 Q14 12 P212
R114 P12
Qa18 Q126 Q15 Qn32 P120 Qa26 P113
R115 Q16
P126
P13 ;z, Pa20
Q1l9
Pa13 Pz26
3
187
The ultrqviolet bands of QJ-S
TABLE1Aontinued
Wavelength
la000
Z
Wavenumber
l+l
30482.75 477.58 462.62 461 a67 456.87
3279602 80.158 81.770 81.873 82.389
4 7 4 2 5
83.526 83.906 84.486 85.032 86.172
9 3 4 14 6
446.32 442.80 437.43 432.37 421.81
86.242 86.597 87.291 87.559 87.735
3+1 5 ! 4
421.17 417:88 411.45 408.97 407.35
88.121 88.795 88.934 91.257 91.514
14 12 6 5 4
403.78 397.55 396.26 374.81 37244
91 a679 92.587 93.567 95.066 95.617
12 8 3 2 5
370.91 362.54 353.51 339.70 334.62
95.817 96.238 96.322 96.372 98.325
4 7 11 2+5 5
332.78 3‘28.91 328.14 327.68 309.73
98.695 99.389 99.949 3300.284 00.659
2 10 3 2 4
306.32 299.95 294.80 291.73 288.29
: 7 8 6f4
277.26 276.06 275.12 250.81 242.63
01 a862 01.993 02.095 04.749 05.643
0 -+ 0
2+2
3-+3
Qd9
Qa5 Qa6 P14 Q18
P114 Q127 Qr7
P121 Q120 Qs27 Pal4
Pa3 Q19 PI5 Qa8
P821 P127 Qa20 QdO Qs9 Pa27 P115 P16 P15 Q121
Pal5 PI22 Q128
QnlO
Qdl Qe21
Qa28 P822 PI7 Pe6 Qsll P128 Q112 P116 Pa28 Pa16, Q122
G. H. DIEKE and H. M. CROSSWHITE
188
TABLE lrl-continued
Wavelength
Zsooo
3306.026 06.716 08.106 08.342 11.142
2+4 3 8+4 4 8
11.917 12.051 12.302 13.883 14.776
I
Wavenumber
0 + 0
30239.12 232.81 220.11 217.95 19240
l-+1
6 5 3 6 3
153.06 152.65 144.34 126.65 122.16
19.053 20.385 21.479 21.962 22.485
3+3 6 3 3 5
12044 108.36 09844 094.07 089.32
23.415 25.873 26.326 29.514 29.641
6 4+3 2 3 4
080.91 058.68 054.58 025.81 024.67
29-73 1 32.558 33.212 33405 34.095
: 5 4 2
023.85 29998.38 992.50 990.76 984.56
36.232 36.741 38.004 42.360 44.439
5 4 3 2 3
965.35 960.78 949.45 910.41 891.82
44.846 46.611 46.963 47.371 48.136
3 4 2 3 3
888.18 872.41 869.27 865.33 858.81
3-+3 Pa7, Qal2 P18 Q113
P123 Qa22 Pa23
185.33 184.11 181.83 167.43 159.30
15.462 15.507 16.421 18.369 18.863
2+2
Qa13 P117
Pa8 P19 Q114 P129 Pal7 Q123 Pa29 Qa14 Qa23
Pa9
P124 PllO Q115 P118 Pa24 Pal8
Qa15 Pal0 Pill
P130 Q116 Pa30 P125 P119 Pal 1 Pz25 Pal9 P112 Pal2 P131 P120 P126 P113 Pa31 P220
The ultraviolet
189
bands of OH
TABLE 1Aontinued Wavelength
Wavenumber
Zsooo
3349.627 51.134 56.825 59.892 60.072
4 3 2 2
29845.53 832.10 781.53 754.34 752.48
60.601 62.839 63.621 69.367 72.592
3 2 3 2 2
748.07 728.27 721.36 670.76 642.30
75.232 78 *261
2 2
619.12 592.56
0 + 0
Pz13 P121 Pr32 Pa21 P127 Pz32 Pz27 P122 P222 P128 Pa28
Wavenumber
Wavelength
13000
3428.018 28.285 28.429 28.885 29.182
1+1 1 1 1 0
29163.04 160.77 159.54 155.66 153.14
29.776 30.305 30.959 31.827 31.991
1 0 1 0 1
148.09 143.60 138.05 130.68 129.29
32.101 32.262 32.402 32.555 32.902
1 1 1 1 0
128.35 126.99 125.80 124.50 121.56
33.368 33.772 33.939 34.088 34.510
1 0 0 1 1
117.61 114.18 112.77 111.50 107.93
35.384 36.001 36.138 36.232 37.256
0 1+1 0 0
100.59 095.29 094.14 093.34 084.67
37.804 38.123 39.573 39.941 40.418
1 1 0 1 1
080.03 077.33 065.08 061.97 057.94
42.404 42.843 42.991 45.230 45.361
1 1 0 1 1
041.17 037.47 036.22 017.35 016.25
1
3+3
Pa26
From here on all wavelengths were obtained from one plate only. 0.2 cm-1 higher. Z
2+2
1+-l
The wavenumbers
O+l
-
R114, 15 R113 R116 R112 R117 Rrll R118 RllO R119 Ral5 Ra14 Ra16 R19 Ra13 Ra17 Ra12 R120 Ral8 R18 Rall R17 R121
Ra19 RalO
Ra20 Ra9 R16 R‘S1 Ra8 R15 Ra7 R14 4
Ra6 R13
should be about
G. H. DIBKE and H. M. CROSSWHITE
190
TABLE 14-continued
Wavelength
Is.000
3445.482 45608 47.899 47.994 48401
0 0 1 0 1
51.979 55.988 58.516 60.051 60.118
: 1+1 1 0
I
015.23 014.17 28994.89 994.10 990.67 960.63 927.03 905.89 893 -07 892.5 1 889.08 880.60 879.61 872.03 868.01
60.528 61.545 61.663 62.572 63.054 64.337 64.627 64.768 66.308 68.139
1 3 3 8 1
857.41 854.91 853.73 840.91 825.68 825.25 823.91 809.13 794.30 793.31
68.191 68.352 70.132 71.920 72.038
3
72.175 72.315 72.559 72.705 73.150
2+2 3 3 1 0
792.17 791.01 788.99 787.78 784.09
73.333 73.736 74.441 74.704 75.854
3 1+0 3 3 3
782.58 779.24 773.40 771.22 761.71
77.307 77.567 77.879 79.276 79.563
3 3
749.68 747.54 744.97 733.41 731.04
1 1 1
: 3
O+l
Wavenumber 3’
Rz23 R12 2’ R25 Rr4 R23 Q11, 1’ Q12 2’ R22
Ql$ Pll Q14
Q';,
,e:7” P12
Qlf3
Q23,4
Q19 g:
P13
6’
;::, Q27
Q1lO Qa8 Qlll Q29 Pal’ P14 QalO
The ultraviolet
bands of OH
191
TABLE ldontinued Wavelength 3480.142 80.887 81 a539 8 l-849 83.217 83.384 83.567 83.736 83.888 84.026
Zsooo
Z
3 1 0 3 2
Wavenumber 726.26 720.12 714.74 712.18 700.91
1
699.53 698.02 696.63 695.38 694.24
84.156 84403 84.666 84.854 84.938
1 1+2 1 2 0
693.17 691.14 688.97 687.42 686.73
85607 86.104 86.542 86.669 87.117
1 0 2 1
681.23 677.14 674.54 672.50 668.81
87.247 87.695 88.353 88443 88.554
2 0 1 1+1 1
667.73 664.05 658.65 657.91 657.00
89.030 89.970 90.134 90.288 90.387
1+0 1 2+1
653 -09 645-37 644.03 642.76 641.91
90.542 91.291 92.044 92.224 93.012
2 1 1 0 1+1
93.523 93.831 94.026 94.160 96.346
2 1 1 2+1
1 0 1+1 1
2
2”
640.68 634.54 628.37 626.89 620.43 1
616.24 613.80 612.12 611.03 593.16
' O-----t
1
1 -+2
Q1l2
Q113
13’ R112, 13 R111 R1l4
Pd, Qa12 R110 P15
R115 R19 R116
Q114
R18 Qs13 R117 R17 Re12, 14 Pe4 Rsll,
RalO R16
Q115 R16’ Qa14 P16
Ra9 R15 R15’ Pz5
RS8
Qs15 Q116 P17
R14 R13
15
G. H. DIEKE and H. M. CROSSWHITE
192
TABLE 14-continued
Wavelength -3497.541 97.802 97.869 98.194 3500.439 01.598 02.281 02.662 02.730 02.919 03.057 03.228 03.348 03.738 05.500
Loo0
Z
Wavenumber --------
1 1
28583.32 581.24 580.71 578.03 559.74
1 2 1 0 2
550.25 544.69 541.58 541.03 539.49
1+1 2 1
1
+1 __----__---
1 --_j
Qa16 P26
1 1+0 0 2 2
514.68 50244 497.25 495.65 495.14
09 GO5 10.666 12.184 12.267 12.616
1 1+1
489.99 476.51 464.20 463.53 460.70
13.967 14.637 15.742 17.043 17.457
2+2 2 1+2
449.77 444.34 435.39 424.88 421.53
19.803 19.865 20.928 21.068 21.153
2+2
2 0
402.59 402.10 393.51 392.39 391.71
22.134 23.395 23.502 23.975 24.086
2 1 1 0 2
383.80 373.63 372.71 368.96 368.07
2 Ra6
Q117 R25 Qa17 P18 Q118
I’ P?.l
538.36 536.97 536.00 532.82 526.61
05.966 07 a473 08.110 08.308 08.370
1 1
0 --
R24
Qa18 Ra3
Q119 8’ P28 P19
0219
g:: Q13
Q120 Pa9
Q14
Q220
Q15
Pal0
Q17
PllO
PI11 Qa21 Ql8 Q23 Q-24 Q122 Qr5
The ultraviolet
193
bands of OH
TABLE14-continued Wavelength
Zsooo
Z
3524.497 :
24.552 24.697 25 -062 26.010
; 2
26.353 26.438 26.941 27.503 27.685
2 0 2 2
1
1
28.041 28.168 28.512 29.825 29,991 30.233 30401 30.572 31.818 32.388
E 1 1
0+2
.
1
02 1
Wavenumber 364.76 364.32 363.15 360.22 35260 349.84 349.15 345-l 1 340.59 339.13
318.68 317.33 315.96 305.97 30140
f 1 1+2 1
299.48 289.16 284.52 277.63 276.06
37.536 38.410 38.984 39.545 41.476
: 1 1 1+1
260.22 253.24 248.65 244.18 228.78
1 1
45.835 46.229
1
D
1
1 1 1
Q19 Psll
228.53 226.17 205.98 196.50 194.92 194.08 190*95
Qa6
Qa7
Pa22 Q1lO P112
336.51 335.25 332.49 321.95 320.62
32.628 33.917 34.497 35.357 35.553
41.508 41.803 44.338 45.530 45.729
1 -+2
0 -+l
PI4
Qag
Q123 Qlll
P?2
Pa12
QslO Q112 Pl13
PI5
Pn3, Qall
Q1l3 Qs12 Pa13 P16, Q114 P1l4 Qa13 Qa14 Q115 Pal4
194
G. H. DIEKE and H. M. CROSSWHITE
TABLE 15. INFRAREDVIBRATION-ROTATIONBANDS OF OH-l
K
Pl
P!2
1
Ql
--f 0 BAND-MAIN BRANCHES
Q2
Rl
Ra
3568.49
3568.60 9.22
3649.10 9.25
3627.72 7.83
8.28
2
3484.61 4.59
3507.63 7.56
565.58 5.20
566.24 6.68
679.33 9.50
663.67 3.63
3
447.20 6.91
465.14 5.12
561.50 0.66
562.09 2.55
708.65 8.89
697.13 7.16
4
407.94 7.53
421.93 1.87
556.17 4.68
556.54 6.91
736.86 7.23
728.33 8.52
5
367.01 6.44
377.99 7.83
549.56 7.13
549.60 964
763.85 4.21
757.47 7.72
6
324.50 3.93
333.31 2.99
541.58 38.22
540.39 40.86
789.35 9.87
784.53 4.88
7
280.70 79.93
287.82 7.41
532.35 27.70
531.84 0.55
813.39 3.88
809.65 10-05
8
235.55 4.80
241.46 0.98
521.73 15.84
520.96 18.79
835.70 6.35
832.84 3.27
9
189.34 8.48
194.30 3.67
509.85 2.45
508.80 5.55
856.47 7,05
854.23 4.50
10
141.97 1.06
146.14 5-49
496.57 87.68
495.09 0.92
879.37 6.14
873.51 4.11
11
093-70 2.50
097.23 6.30
482.16 71.30
480.42 74.72
892.53 3.07
891.12 1.54
12
044.34 3.31
047.31 6.61
466.11 43*68
464.13 57.31
907.80 8.44
906.57 7.21
13
2994.21 2.81
2996.93 5.84
448.97 34.50
446.83 38.28
921.25 1.76
920.34 0.77
14
943.21 1.79
945.52 4.53
430.47 14.07
428.01 18.04
932.80 3.47
931.99 2.55
15
891.38 89.88
893.50 2.21
410.98 92.21
408.01 96.25
942.37 2.90
941.75 2.27
The ultraviolet
1 -+
K
Pl
Pa
16
2838.87 7-M
2840.70 39.54
17
785.80 4.04
18
19s
bands of OH
0 BAND-COhUXd
Ql
Qa
R2
3949.85 50.58
3949.42 50.12
787.43 6.05
955.72 6.10
955.26 5.62
731.97 0.29
733.36 2.14
959.24 9-81
958.80 9.47
19
677.70 5.83
679-02 7.44
960.88 1.36
960.59 1 *Ol
20
622.77 0.88
623 -94 2.53
960.31 0.87
960-l 8 o-74
21
567.46 5.41
568.48 6.83
958.01 8.32
957.86 8.15
22
511.51 9.58
512.65 0.94
953.45 3.64
953.34 3.61
23
455.50 3.31
456.42 4.48
946.84 6.90
946.70 6.82
24
398.88 6.62
399.62 7-91
938.04 8.12
937.84 8.13
25
341.97 39.62
342.55 0.59
927.25 7.14
927.36 7.16
26
284.83 2.50
285.24 3.42
914.20 4-19
914xlO 4.23
3389.56 69.03
3386.72 73.28
RI
G. H. DIBKEand H. M. CROSSWHITE
196
1 +
K
O1a
BRANCHES
QIZ
Qzl
RM
3442.06 2.19
3695.03 5.31
3754.15 3.92
3851.10 1.38
3380*60 1.02
461.57 1.63
670.25 0.25
767.08 7.20
902.29 2.24
P1a
1
2
0 BAND--SATELLITE
SZl
3
3279.48 9.48
360.09 o-45
474.39 4.20
649.20 9.01
784.24 3.62
955.85 5-43
4
219.83 9.87
333.58 4-17
481.81 1.32
630.90 0.27
802.71 l-88
4010.79 09.77
5
155.25 4.87
30240 3.10
484.95 3.79
614.21 2.98
822.08 1.06
066.10 4.20
6
086.77 5.79
267.46 8.34
484.54 2.63
598.43 6.47
841.57 o-47
121.07 18.28
7
015.30 3.48
229.59 30.56
481.24 78.33
582.95 79.92
860.76 59-42
175.26 1.30
8
294!*47 8.73
189.24 90.36
475.42 1.42
567.27 3.21
879.15 7-71
228.10 3-14
9
865.89 l-95
146.93 8.13
46744 2.10
551.21 45.90
896.64 4.85
279.83 3.17
2 -+ 1
K
Pl
P2
1
Ql
BAND
QZ
Rl
RZ
3402.87 0.53
3401.96 2.35
3480.54 0.67
3459.77
3321.92 1 *go
3343.23 3.75
400*06 399.57
401.16
509.50 9.72
494.05 4.07
3
285.82 5.76
303.73
395.97 5.20
396.64 7.10
537.47 7.84
526.10 6.22
4
248.05 7.74
262.02 2.03
390.69 89.24
391.18 1.49
564.43 4-78
555.96 6-11
5
208.55 8.14
219.68 9.57
384.09 1.88
384.30 4.35
590.19 0.53
583.82 4.14
2
The ultraviolet
2 -f
K
Pl
Pa
197
bands of OH
1 BAND-continued
Ql
Qa
RI
Ra
6
3167.59 7.01
3176.48 6.22
3376.24 73.11
3376.23 5.74
361440 4.90
3609.60 9.88
7
135.34 4.59
13260 2.25
367.13 62.75
366.74 5.58
637.19 7.65
633.41 3.76
8
081.71 o-95
087.77 7.24
356.61 51.01
355.95 53.91
658.28 8.87
655.34 5.76
9
037.04 6.10
042.03 l-45
344.90 37.77
343.88 40.84
677.84 8.32
675.49 5.87
10
2991.15 0.30
2995.41 4.93
331.70 23 -24
33044 26.54
605.53 6.22
693.62 4.30
11
94444 3 -24
948.12 7.25
317.42 07 *07
315.88 10.43
711.61 1.95
710.11 0.42
12
896.70 5.65
899.73 9-06
301.58 89.84
299.72 93.29
725.81 6.23
724.51 4.97
13
848.15 6.82
850.85 49.82
284.54 71.05
282.53 74.61
738.01 8.55
737.02 7.47
14
798.77 7.28
801.10 0.04
267.27 50.75
263.96 54.53
748.43 8-96
747.63 8.19
15
748.42 6.87
750.75 9.45
756.97 7-33
756.28 6.80
16
697.44 5.94
699.38 8.19
763.47 4.02
762.88 3-39
17
645.89 4.19
647.56 6.22
768.12 8.50
767.71 8.01
18
593.55 1.96
595.05 3.82
770.63 1.05
770.16 O-82
19
540.85 38.98
542.27 O-68
771.22 1.48
771.00 1 a29
20
487.45 5.52
488.59 7.27
769.73 9.09
769.84 0.00
21
433.68 l-49
434.76 3.08
766.34 5.87
766.17 6.29
G. H. DIEKE and H. M. CROWWHITE
198
2 --f 0
K
Pl
PZ
1
Ql
BAND
Qa
RI
RZ
6971.18 0.99
6970.87 1.26
7048.85 9.13
7028.68
2
6887.32 7.28
6909.67 9.83
965.46 4.95
967.49 7.64
074.90 5.10
060.49 0.55
3
846.95 ’ 6.79
886.10
957.10 6.23
959.01 9.37
098.60 8.87
088.47 8.49
4
803.51 3.13
818.75 8.79
946.15 4.63
947,87 8.35
119.89 20.17
112.65 2.87
5
756.96 r 6.42
769.33 9.16
932.50 O-16
933.95 3 *94
138.60 8.81
133.47 3.73
6
707.53 6.87
717.61 7.34
916.18 2.97
917.40 6.86
154.34 4.76
150.73 1 *oo
7
655.45 4.53
663.82 3.42
897.24 2.69
897.96 6.75
167.30 7.59
164.63 4.93
8
600.54 599.69
607.66 7.10
875.44 69.75
875.84 3.77
177.11 7.61
175.23 5.62
9
543.24 2-19
549.28 8.55
851.11 43.86
851.13 47.94
184.05 4-41
182.74 2.97
10
483.38 2.32
488.53 7.82
823.93 15.26
823.56 19.43
187.76 8.24
186.74 7.19
11
421.28 19.86
425.74 4.77
794.26 83.69
793.50 87.95
188.45 8.57
187.73 7.94
12
356.73 5.41
360.54 59.69
761.61 49.60
760.53 53.92
185.84 5.99
185.32 5.60
13
290.13 88.31
293.54 2.24
726.52 12.54
725.22 17.03
179.99 80.04
179.71 9.89
14
221.25 19.34
224.27 2.92
170.91 1.02
170.80 1.07
15
150.12 48.16
152.87 1.39
158.57 8.62
158.60 8-74
16
076.98 4.99
079.51 8.06
143.01 3.07
143.01 3-26
The ultraviolet
199
bands of OH
2 + 0 BAtm-continued
K
Pl
RI
4
RS
17
6002.10 9.76
6004.28 2.52
7124.33 4.07
7124.43 4.31
18
5925.03 2.78
5926.95 5.28
102.11 1.89
102.06 2.28
19
846.31 3.80
848.19 6.15
076.68 6.30
076.92 6.76
20
76564 2.94
767.20 5.31
047.92 7.51
048.45 8.07
21
683 *26 0.35
684.8 1 2.58
015.92 4.73
016.22 5.79
TABLE 16. PURE ROTATIONBAND K
0 -+O
RI
Ra
K
Rl
83 a70 3.87
61.28 1.35
12
465.88 6.97
463.88 4.79
RZ
1
2
118.20 8.47
101.30 1.36
13
498.77 9.70
497.17 7.89
3
153.19 3.50
14044 040
14
531.10 2.18
529.67 30.61
4
188.45 8.95
178.70 8.93
15
562.83 3.85
561.62 240
5
223 a91 4.35
216.34 6.60
16
593.74 5.01
592.70 3.82
6
259.24 9.93
253.39 3.71
17
624.26 5.28
7
294.56 5.14
289.76 90.19
18
653.78 4.99
652.88 4.00
8
329.49 30.26
325.59 6.17
19
682.69 3.94
681.98 2.94
9
364.24 5.03
361.11 1.61
20
710.73 2.01
710.13 1.24
10
398.53 9.52
395.89 6.59
21
738.07 9.28
737.40 8.56
11
432.50 3.31
430.3 1 0.91
22
76444 5.73
764.04 5-11
.
623.26 4.16
-
Authors’ Note-When we were approached by the editor of this journal to have this paper reprinted we had hoped to add a supplement in which the progress made since 1948 in our own laboratory and in other laboratories could have been dealt with. Unfortunately, preoccupation with other matters made this impossible, and therefore the present paper is an exact reprint of the original report. We offer this with apologies.