The value distribution and uniqueness of one certain type of differential-difference polynomials

The value distribution and uniqueness of one certain type of differential-difference polynomials

Acta Mathematica Scientia 2014,34B(3):719–728 http://actams.wipm.ac.cn THE VALUE DISTRIBUTION AND UNIQUENESS OF ONE CERTAIN TYPE OF DIFFERENTIAL-DIFF...

251KB Sizes 3 Downloads 33 Views

Acta Mathematica Scientia 2014,34B(3):719–728 http://actams.wipm.ac.cn

THE VALUE DISTRIBUTION AND UNIQUENESS OF ONE CERTAIN TYPE OF DIFFERENTIAL-DIFFERENCE POLYNOMIALS∗

܎Œ)

Keyu ZHANG (



Department of Mathematics, Qilu Normal University, Jinan 250013, China Department of Mathematics, Shandong University, Jinan 251000, China E-mail : [email protected]; keyu [email protected]

¤öÊ)

Hongxun YI (

Department of Mathematics, Shandong University, Jinan 251000, China E-mail : [email protected]; [email protected] Abstract In this article, we investigate the distribution of the zeros and uniqueness of differential-difference polynomials G(z) = (f n (f m (z) − 1)

d Y

f (z + cj )vj )(k) − α(z),

d Y

f (z + cj )vj )(k) − α(z),

j=1

H(z) = (f n (f (z) − 1)m

j=1

where f is transcendental entire function of finite order, cj (j = 1, 2, · · · , d), n, m, d, and vj (j = 1, 2, · · · , d) are integers, and obtain some theorems, which extended and improved many previous results. Key words

Meromorphic; uniqueness; value distribution; differential-difference

2010 MR Subject Classification

1

30D35

Introduction and Main Results

In this article, we assume that reader is familiar with the standard notations and results such as the proximity functions m(r, f ), counting function N (r, f ), characteristic function T (r, f ), the first and second main theorems, lemma on the logarithmic derivatives of Nevanlinna theory, see [1–3]. S 1 Let p be a positive integer and a ∈ C {∞}, then we denote by Np (r, f −a ) the counting function of the zeros of f − a, where an m-fold zero is counted m times if m ≤ p and p times if m > p. We also need the following definition: Let f be a nonconstant meromorphic function, we ∗ Received

November 16, 2012; revised April 23, 2013. This article is supported by National Natural Science Foundation of China (11171184). † Corresponding author

720

ACTA MATHEMATICA SCIENTIA

Vol.34 Ser.B

define difference operators as ∆η f (z) = f (z + η) − f (z), ∆nη f (z) = ∆n−1 (∆η f (z)), where η is a η nonzero complex number and n ≥ 2 is a positive integer. If η = 1, we denote ∆η f (z) = ∆f (z). The difference logarithmic derivative lemma, given by Chiang and Feng [4], Halburd and Korhonen [5], plays an important part in considering the difference analogues of Nevanlinna theory. With the development of difference analogue of Nevanlinna theory, many authors paid their attention to the zero distribution of difference polynomials [6–16]. Liu and Yang [9] also considered the zeros of f n (z)f (z + c) − p(z) and f n △c f , where p(z) is a nonzero polynomial, and obtain the following theorem: Theorem A Let f be a transcendental entire function of finite order and p(z) be a nonzero polynomial. If n ≥ 2, then f n (z)f (z + c) − p(z) has infinitely many zeros. If f is not a periodic function with period c and n ≥ 2, then, △c f = f (z + c) − f (z) has infinitely many zeros. In 2010, Zhang [17] considered zeros of one certain type of difference polynomials and obtained the following theorem. Theorem B Let f be transcendental entire function of finite order, α(z) 6≡ 0 be a small function with respect to f (z), cj (j = 1, 2, · · · , d), c be nonzero complex constant, and n be an integer. If n ≥ 2, then, f n (z)(f (z) − 1)f (z + c) − α(z) has infinitely many zeros. In 2012, Chen and Chen [18] considered zeros of one certain type of difference polynomials and obtained the following theorem. Theorem C Let f be transcendental entire function of finite order, α(z) 6≡ 0 be a small function with respect to f (z), cj (j = 1, 2, · · · , d), n, m, d, and vj (j = 1, 2, · · · , d) be integers. If d Q n ≥ 2, then, f n (f m (z) − 1) f (z + cj )vj − α(z) has infinitely many zeros. j=1

Theorem D Let f and g be two transcendental entire functions of finite order, α(z) 6≡ 0 be a common small function with respect to f and g, c be nonzero finite complex numbers. If d Q n ≥ m + 8σ, n, m, d, and vj (j = 1, 2, · · · , d) are integers, and f n (f m (z) − 1) f (z + cj )vj and j=1

g n (g m (z) − 1)

d Q

g(z + cj )vj share α(z) CM, then, f = tg, where tm = tn+σ = 1.

j=1

In this article, we investigate the following difference polynomial: (f n (f m (z) − 1)

d Y

f (z + cj )vj )(k) and (f n (f (z) − 1)m

j=1

d Y

f (z + cj )vj )(k) ,

j=1

where f is transcendental entire function of finite order, cj (j = 1, 2, · · · , d), n, m, d, and vj (j = d P 1, 2, · · · , d) are nonnegative integers, and σ = vj . j=1

Theorem 1 Let f be transcendental entire function of finite order, α(z) 6≡ 0 be a small function with respect to f , cj (j = 1, 2, · · · , d) be distinct finite complex numbers, and n, m, d, and vj (j = 1, 2, · · · , d) be nonnegative integers. If n ≥ k + 2, then, the differential-difference d Q polynomial (f n (f m (z) − 1) f (z + cj )vj )(k) − α(z) has infinitely many zeros. j=1

Remark 1 If k = 0, we can easily get Theorem C. Theorem 2 Let f be transcendental entire function of finite order, α(z) 6≡ 0 be a small function with respect to f , cj (j = 1, 2, · · · , d) be distinct finite complex numbers, and n, m, d, and vj (j = 1, 2, · · · , d) are nonnegative integers. If one of the following conditions holds:

No.3

K.Y. Zhang & H.X. Yi: THE VALUE DISTRIBUTION OF DIFFERENCE POLYNOMIALS

721

(i) n ≥ k + 2 when m ≤ k + 1, (ii) n ≥ 2k − m + 3 when m > k + 1. Then, the differential-difference polynomial (f n (f (z)−1)m

d Q

f (z+cj )vj )(k) −α(z) has infinitely

j=1

many zeros. Theorem 3 Let f and g be transcendental entire functions of finite order, α(z) 6≡ 0 be a common small function with respect to f and g, cj (j = 1, 2, · · · , d) be distinct finite complex numbers, and n, m, d, and vj (j = 1, 2, · · · , d) are nonnegative integers. If n ≥ 2k + m + σ + 5, d Q and the differential-difference polynomial (f n (f m (z) − 1) f (z + cj )vj )(k) and (g n (g m (z) − j=1

1)

d Q

vj (k)

g(z + cj ) )

share α(z) CM, then, f = tg, where t

m

= tn+σ = 1.

j=1

Theorem 4 Let f and g be transcendental entire functions of finite order, α(z) 6≡ 0 be a common small function with respect to f and g, cj (j = 1, 2, · · · , d) be distinct finite complex numbers, and n, m, d, and vj (j = 1, 2, · · · , d) are nonnegative integers. If n ≥ 4k − m + σ + 9, d Q and the differential-difference polynomial (f n (f (z) − 1)m f (z + cj )vj )(k) and (g n (g(z) − j=1

1)m

d Q

g(z + cj )vj )(k) share α(z) CM, then, f ≡ g.

j=1

2

Some Lemmas

Lemma 1 (see [1]) Let f and g be two transcendental meromorphic function, n ≥ 1, n ∈ Z. Let αi , i = 1, 2, · · · , n be meromorphic functions and T (r, αi ) = S(r, f ). Let P (f ) = an f n + an−1 f n−1 + ... + a1 f, an 6= 0. Then, T (r, P (f )) = nT (r, f ) + S(r, f ). Lemma 2 (see [4])

(2.1)

Let f be transcendental meromorphic function of finite order, then, T (r, f (z + c)) = T (r, f ) + S(r, f ).

(2.2)

Lemma 3 (see [18]) Let f be entire function of finite order and F = f n (f m (z) − 1)

d Y

f (z + cj )vj .

j=1

Then, T (r, F ) = (n + m + σ)T (r, f ) + S(r, f ), σ =

d X

vj .

(2.3)

j=1

Lemma 4 Let f be entire function of finite order and F = f n (f (z) − 1)m

d Q

f (z + cj )vj .

j=1

Then, T (r, F ) = (n + m + σ)T (r, f ) + S(r, f ), σ =

d X j=1

vj .

(2.4)

722

ACTA MATHEMATICA SCIENTIA

Proof

Vol.34 Ser.B

Applying the same method of Lemma 3, we can easily proof it.

Lemma 5 (see [1]) fuction of f . Then,

Let f be nonconstant meromorphic function, αi (i = 1, 2, 3) be small

T (r, f ) ≤

3 X

N (r,

i=1

Lemma 6 (see [19]) Then, Np (r,



1 ) + S(r, f ). f − ai

(2.5)

Letf be nonconstant meromorphic function, k, p be positive integer.

1 1 ) ≤ T (r, f (k) ) − T (r, f ) + Nk+p (r, ) + S(r, f ), f f (k)

(2.6)

Lemma 7 (see [20]) Let H=



2F ′ F ′′ − ′ F F −1







 2G′ G′′ − , G′ G−1

(2.7)

where F and G are nonconstant meromorphic functions. If F and G share 1 CM and H 6= 0, then, 1 1 ) + N2 (r, ) F G +N2 (r, F ) + N2 (r, G)) + S(r, F ) + S(r, G). T (r, F ) + T (r, G) ≤ 2(N2 (r,

(2.8)

Lemma 8 Let f and g are nonconstant entire functions, n, m, k be positive integers, and let F = (f n (f m (z) − 1)

d Y

f (z + cj )vj )(k) , G = (g n (g m (z) − 1)

j=1

d Y

g(z + cj )vj )(k) .

j=1

If there exist nonzero constants a1 ,a2 such that N (r,

1 1 1 1 ) = N (r, ), N (r, ) = N (r, ), F − a1 G G − a2 F

(2.9)

then n ≤ 2k + 2 + m + σ. Proof By the second fundamental theorem, we have 1 1 ) + N (r, ) + S(r, F ) F F − a1 1 1 ≤ N (r, ) + N (r, ) + S(r, F ). F G 1 1 ≤ N1 (r, ) + N1 (r, ) + S(r, F ). F G By Lemmas 3 and 6, we have T (r, F ) ≤ N (r,

T (r, F ) ≤ T (r, F ) − T (r, f n (f m (z) − 1)

d Y

f (z + cj )vj )

j=1

+T (r, G) − T (r, g n (g m (z) − 1)

d Y

g(z + cj )vj )

j=1

+Nk+1 r,

1 f n (f m (z) − 1)

d Q

j=1

f (z + cj )vj

!

(2.10)

No.3

723

K.Y. Zhang & H.X. Yi: THE VALUE DISTRIBUTION OF DIFFERENCE POLYNOMIALS

1 r, d Q g n (g m (z) − 1) g(z + cj )vj

+Nk+1

!

+ S(r, f ) + S(r, g).

(2.11)

j=1

Hence, 1

(n + m + σ)T (r, f ) ≤ Nk+1 r,

f n (f m (z) − 1)

d Q

f (z + cj )vj

!

j=1

+Nk+1

1 r, d Q g n (g m (z) − 1) g(z + cj )vj

!

+ S(r, f ) + S(r, g)

j=1

≤ (k + 1 + m + σ)(T (r, f ) + T (r, g)) + S(r, f ) + S(r, g).

(2.12)

By the same method, we have (n + m + σ)T (r, g) ≤ (k + 1 + m + σ)(T (r, f ) + T (r, g)) + S(r, f ) + S(r, g).

(2.13)

(n − 2k − 2 − m − σ)(T (r, f ) + T (r, g)) ≤ S(r, f ) + S(r, g).

(2.14)

Hence,

The proof of Lemma 8 is completed.



Lemma 9 (see [18]) Suppose that f and g are transcendental entire function of finite order, cj (j = 1, 2, · · · , d) are distinct finite complex numbers, and n, m, d, vj (j = 1, 2, · · · , d) are integers. If n > m + 5σ, we have f n (f m (z) − 1)

d Y

f (z + cj )vj = g n (g m (z) − 1)

j=1

d Y

g(z + cj )vj .

j=1

Then, f = tg, where tm = tn+σ = 1.

3

Proofs of the Theorems Let F = f n (f m (z) − 1)

Proof of Theorem 1

d Q

f (z + cj )vj . From Lemma 3, we know

j=1

that (2.3) holds. Which means that F is also a transcendental entire function. Suppose that F (k) − α(z) has only finitely many zeros, then, we obtain N (r,

1 ) = O(log r) = S(r, f ). F (k) − α(z)

(3.1)

From Lemma 5, we have T (r, F (k) ) ≤ N (r,

1 F (k)

) + N (r,

F (k)

1 1 ) + S(r, f ) = N1 (r, (k) ) + S(r, f ). − α(z) F

(3.2)

By applying Lemma 6 to the right side of (3.2), we have T (r, F ) ≤ Nk+1 (r,

1 ) + S(r, f ). F

From (2.3) and (3.3), we have (n + m + σ)T (r, f ) + S(r, f ) = T (r, F ) ≤ Nk+1 (r,

1 ) + S(r, f ) F

(3.3)

724

ACTA MATHEMATICA SCIENTIA

Vol.34 Ser.B

1 ) + mT (r, f ) + σT (r, f ) + S(r, f ) f ≤ (k + 1 + m + σ)T (r, f ) + S(r, f ). ≤ (k + 1)N (r,

(3.4)

From (3.3)and (3.4), we have (n − k − 1)T (r, f ) ≤ S(r, f ). Which contradicts assumption n ≥ k + 2. The proof of Theorem 1 is completed.



Applying the same method of Theorem 1, we have

Proof of Theorem 2

(n + m + σ)T (r, f ) + S(r, f ) = T (r, F ) ≤ Nk+1 (r,

1 ) + S(r, f ). F

(3.5)

If m ≤ k + 1, Nk+1 (r,

1 1 ) ≤ (k + 1)N (r, ) + mT (r, f ) + σT (r, f ) + S(r, f ) F f ≤ (k + 1 + m + σ)T (r, f ) + S(r, f ).

(3.6)

From (3.5) and (3.6), we have (n − k − 1)T (r, f ) ≤ S(r, f ). Which contradicts assumption n ≥ k + 2. If m > k + 1, Nk+1 (r,

1 1 ) ≤ (k + 1)T (r, ) + (k + 1)T (r, f ) + σT (r, f ) + S(r, f ) F f ≤ (2k + 2 + σ)T (r, f ) + S(r, f ).

(3.7)

From (3.5) and (3.7), we have (n + m − 2k − 2)T (r, f ) ≤ S(r, f ). Which contradicts assumption n ≥ 2k − m + 3. The proof of Theorem 2 is completed. Let

Proof of Theorem 3 (f n (f m (z) − 1) F =



d Q

f (z + cj )vj )(k)

j=1

α(z)

(g n (g m (z) − 1) , G=

d Q

g(z + cj )vj )(k)

j=1

α(z)

.

(3.8)

Then, F and G are transcendental meromorphic functions that share 1 CM. Let H be given by (2.7), If H 6= 0, by Lemma 7 we know that T (r, F ) + T (r, G) 1 1 ≤ 2(N2 (r, ) + N2 (r, ) + N2 (r, F ) + N2 (r, G)) + S(r, F ) + S(r, G). F G From Lemma 6 and Lemma 3, we have ! 1 1 N2 (r, ) ≤ N2 r, + S(r, f ) d Q F v n m (k) j (f (f (z) − 1) f (z + cj ) ) j=1

≤ T (r, (f n (f m (z) − 1)

d Y

j=1

f (z + cj )vj )(k) ) − (n + m + σ)T (r, f )

(3.9)

No.3

725

K.Y. Zhang & H.X. Yi: THE VALUE DISTRIBUTION OF DIFFERENCE POLYNOMIALS

1

+Nk+2 r, f n (f m (z)

d Q

− 1)

f (z + cj

)vj

!

+ S(r, f )

!

+ S(r, f ).

j=1

= T (r, F ) − (n + m + σ)T (r, f ) 1

+Nk+2 r, f n (f m (z)

− 1)

d Q

f (z + cj

)vj

(3.10)

j=1

Similarly, we have N2 (r,

1 ) ≤ T (r, G) − (n + m + σ)T (r, g) G ! 1 + Nk+2 r, + S(r, g) d Q g n (g m (z) − 1) g(z + cj )vj

(3.11)

j=1

1

1 N2 (r, ) ≤ Nk+2 r, F

f n (f m (z)

− 1)

d Q

f (z + cj

)vj

!

+ S(r, f ),

(3.12)

!

+ S(r, f ).

(3.13)

j=1

and 1 N2 (r, ) ≤ Nk+2 r, G

1 d Q g n (g m (z) − 1) g(z + cj )vj j=1

Combining (3.10), (3.11), (3.12), and (3.13), we have (n + m + σ)(T (r, f ) + T (r, g)) 1 1 ≤ T (r, F ) + T (r, G) − N2 (r, ) − N2 (r, ) + Nk+2 r, F G

1 f n (f m (z) − 1)

d Q

f (z + cj )vj

!

j=1

+Nk+2

1 r, d Q g n (g m (z) − 1) g(z + cj )vj

!

j=1

1

≤ 2Nk+2 r,

f n (f m (z) − 1)

d Q

f (z + cj )vj

!

j=1

+2Nk+2

1 r, d Q g n (g m (z) − 1) g(z + cj )vj

!

+ S(r, f ) + S(r, g)

j=1

1 1 ) + N (r, )) + (2m + 2σ)(T (r, f ) + T (r, g)) + S(r, f ) + S(r, g). f g Which contradicts the assumption that n ≥ 2k + m + σ + 5. Therefore, H ≡ 0. Integrating twice, we deduce from (2.3) that ≤ 2(k + 2)(N (r,

1 A = + B, F −1 G−1

(3.14)

(3.15)

726

ACTA MATHEMATICA SCIENTIA

Vol.34 Ser.B

where A 6= 0 and B are constants. By (3.15), we have F =

(B − A)F + (A − B − 1) (B + 1)G + (A − B − 1) , G= . BG + (A − B) BF − (B + 1)

(3.16)

Case 1: B 6= 0, −1. From (3.16), we have N (r,

1 ) = N (r, G). F − B+1 B

(3.17)

By the second fundamental theorem, we have 1 1 ) + N (r, ) + S(r, f ) F F − B+1 B 1 1 ≤ N (r, ) + S(r, f ) = N1 (r, ) + S(r, f ). F F Applying the same method with the proof of (3.10), we obtain T (r, F ) ≤ N (r,

N1 (r,

(3.18)

1 ) ≤ T (r, F ) − (n + m + σ)T (r, f ) F 1

+Nk+1 r,

f n (f m (z) − 1)

d Q

f (z + cj )vj

!

+ S(r, f ).

(3.19)

j=1

Hence, (n + m + σ)T (r, f ) + S(r, f ) + T (r, F ) 1 ≤ (k + 1)N (r, ) + mT (r, f ) + σT (r, f ) + S(r, f ), f

(3.20)

which contradicts the assumption that n ≥ 2k + m + σ + 5. Case 2: B = 0. From (3.15), we have G + (A − 1) , G = AF − (A − 1). A

(3.21)

1 1 1 1 ) = N (r, ), N (r, ) = N (r, ). A−1 G F G + (A − 1) F− A

(3.22)

F = If A 6= 1, then, N (r,

By Lemma 8, we have n ≤ 2k + 2 + m + σ, which contradicts the assumption that n ≥ 2k + m + σ + 5. So, F = G; that is to say, ak−1 6= 0. By integration, we have (f n (f m (z) − 1)

d Y

f (z + cj )vj )(k−1) = (g n (g m (z) − 1)

j=1

d Y

g(z + cj )vj )(k−1) + ak−1 ,

j=1

where ak−1 is a constant. If ak−1 6= 0, then from Lemma 8, we can get n ≤ 2k + 4 + m + σ, which is a contradiction. Hence, ak−1 = 0. Repeating the same process k − 1 times, we obtain f n (f m (z) − 1)

d Y

f (z + cj )vj = g n (g m (z) − 1)

j=1

From Lemma 9, we know that (i) holds.

d Y

j=1

g(z + cj )vj .

No.3

K.Y. Zhang & H.X. Yi: THE VALUE DISTRIBUTION OF DIFFERENCE POLYNOMIALS

727

Case 3: B = −1, then, F =

(A + 1)F − A A , G= . −G + (A + 1) F

(3.23)

If A 6= −1, then, by the same reason as Case 1 and Case 2, we know that it is a contradiction, d Q so, A = −1. Because F G = α2 (z), that is to say, (f n (f m (z) − 1) f (z + cj )vj )(k) (g n (g m (z) − j=1

1)

d Q

g(z +cj )vj )(k) = α2 (z). Because n ≥ 2k+m+σ +5, then, f has no zeros. Let f (z) = eβ(z) ,

j=1

then,

n

m

(f (f (z) − 1)

d Y

vj (k)

f (z + cj ) )

= (e

nβ(z)

(e

mβ(z)

− 1)

j=1

= (enβ(z)

d Y

d Y

evj β(z+cj ) )(k)

j=1

evj β(z+cj ) )(k) (emβ(z) − 1))(k)

j=1

= (e

nβ(z)+γ(z)

(emβ(z) − 1))(k) = (e(n+m)β(z)+γ(z) − enβ(z)+γ(z) )(k)

= e(n+m)β(z)+γ(z) P1 (β(z), γ(z), β ′ (z)), γ ′ (z) · · · β (k) (z), γ (k) (z)) −enβ(z)+γ(z) P2 (β(z), γ(z), β ′ (z)), γ ′ (z) · · · β (k) (z), γ (k) (z)) = enβ(z)+γ(z) (P1 emβ(z) − P2 ), P where γ(z) = vj β(z + cj ). Obviously, P1 emβ(z) − P2 has infinite zeros, so it is impossible. The proof of Theorem 3 is completed.  Proof of Theorem 4 Applying the same method of Theorem 3, we can prove that f n (f m (z) − 1)

d Y

f (z + cj )vj = g n (g m (z) − 1)

j=1

or F G ≡ α2 (z). Let h(z) = where t is a constant.

f (z) g(z) .

d Y

g(z + cj )vj ,

j=1

Applying the same methods of Lemma 9, we obtain h(z) = t,

So, tn+σ g n (tg(z) − 1)m

d Y

(g(z + cj ))vj = g n (g(z) − 1)m

j=1

d Y

g(z + cj )vj ,

(3.24)

j=1

tn+σ (tg(z) − 1)m = (g(z) − 1)m ,

(3.25)

then, 1 m−1 m−1 1 m−1 g (z) · · · + (−1)m , tn+σ (tm g m (z) − Cm t g (z) · · · + (−1)m ) = g m (z) − Cm

(3.26)

tn+σ+m = tn+σ+m−1 = · · · = tn = 1 , so, we know t = 1, then f (z) ≡ g(z). d d Q Q If F G ≡ α2 (z), that is to say, (f n (f (z) − 1)m f (z + cj )vj )(k) (g n (g(z) − 1)m g(z + j=1

j=1

cj )vj )(k) = α2 (z). Applying the same methods of Theorem 3, we know that it is impossible too. The proof of Theorem 4 is completed. 

728

ACTA MATHEMATICA SCIENTIA

Vol.34 Ser.B

References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20]

Yang C C, Yi H X. Uniqueness Theory of Meromorphic Functions[M]. Kluwer Academic Publishers, 2003 Laine I. Nevanlinna Theory and Complex Differential Equations[M]. Berlin: Walter de Gruyter, 1993 Hayman W K. Meromorphic Functions[M]. Oxford: Clarendon Press, 1964 Chiang Y M, Feng S J. On the Nevanlinna characteristic of f (z + η) and difference equations in the complex plane. J Ramanujian, 2008, 16: 105–129 Halburd R G, Korhonen R J. Meromorphic solutions of difference equations, integrability and the discrete Painleve equations. J Phys A, 2007, 40: 1–38 Laine I, Yang C C. Value distribution of difference polynomials. Pro Japan Acad Ser A, 2007, 83: 148–151 Chen Z X. Value distribution of products of meromorphic functions and their differences. Taiwan J Math, 2011, 15: 1411–1421 Huang Z B, Chen Z X. A Clunie lemma for difference and q-difference polynomials. Bull Aust Math Soc, 2010, 81: 23–32 Liu K, Yang L Z. Value distribution of the difference operator. Arch Math, 2009, 92: 270–278 Chen Z X, Huang Z B, Zheng X M. On properties of difference polynomials. Acta Math Sci, 2011, 31B(2): 627–633 Yang C C, Laine I. On analogies between nonlinear difference and differential equations. Pro Japan Acad Ser A, 2010, 86: 10–14 Liu K, Liu X L, Cao T B. Value distributions and uniqueness of difference polynomials. Advances in Difference Equations, 2011, Article ID 234215, pp.12 Liu K. Zeros of Difference Polynomials of Meromorphic Functions. Results Math, 2010, 57: 365–376 Qi X G, Dou J, Yang L Z. Uniqueness and value distribution for difference operators of meromorphic function. Advances in Difference Equations, 2012, 2012: 32 Laine I, Yang C C. Clunie theorem for difference and q-difference polynomials. J London Math Soc, 2007, 76(3): 556–566 Liu K, Liu X L, Cao T B. Some results on zeros and uniqueness of difference differential polynomials. Appl Math J Chinese Univ, 2012, 27: 94–104 Zhang J L. Value distribution and shared sets of diferences of meromorphic functions. Math Anal Appl, 2010, 367: 401–408 Chen M R, Chen Z X. Properties of Diference Polynomials of Entire Functions with Finite Order. Chinese Annals of Mathematics, 2012, 33A: 359–374 (in Chinese) Zhang J L, Yang L Z. Some results related to a conjecture of R. Bruck. J Inequal Pure Appl Math, 2007, 8(1): Art.18 Yi H X, Meromorphic functions that share one or two values. Complex Variables Theory and Applications. 1995, 28: 1–11