Theoretical study of the molecular ions SiH−5 and SiH−3

Theoretical study of the molecular ions SiH−5 and SiH−3

Physics 8 (1975) 384 -390 0 North.Holland Publishing Company Chcmicd THEORETICAL STUDY 01: THE MOLEClJLAR IOKS SiHg AND SiH3 ‘BH, - BzH6. 38...

621KB Sizes 0 Downloads 38 Views

Physics 8 (1975) 384 -390 0 North.Holland Publishing Company

Chcmicd

THEORETICAL

STUDY

01: THE MOLEClJLAR

IOKS SiHg AND SiH3

‘BH,

-

BzH6.

385

mum for the DJ, geometry. 3 short-lived

i.e.. !h

SiHf

may form

comples.

IIon $I!,‘) I$;),

since

(+R’ @‘lHl

$g’ *f’,

The product 2. hlethod

$A.$ I$:)

douhlc substitutions

=Ef)

f EL:).

conlains,

Ilowever.

311quadruples

bcsidcs the

ansing from SIIIIUI-

laneous double SU~SII~U~IO~Son system A and B. As

of electron correlarlon

For the treatment from ;! standard

Cl

according

Elccr ron corrclanon

treatment.

Tl~e canonical HF

HF computalmn.

hlOs nre then localized

Boys [6].

we sl;1rl

to the method 01

1s Jscounlcd

ry. w

Since only doubly sthst~~u~cd confjgll.

espcct lo xcounl

in an obvious

I~ICD-

3 Cl WI~II lhc

AIIS~LZ

(4).

In Ills prcsenl

work wc Iluve included

rl~c vA2nce

AE”)

irom

111[he lrealnienl

of rexiion

hciween

rhc tlcvlaIion

Anorher

l PNOsl of

by wlllch

IlIe

corrclarion

1l1e corrcspondmg

lrealmenl sIra!o

(2 ).

but consisienr

way rhe

WIIICII arc due to

and lligher substitutions

clusIers arising from rhe doubles.

This IS

(CEP.4) proposed by Meyer

p31r iurlc-

171. s,ec Aso [SLjl. In this

c3sc one 113s3clu311y (see. e.g.. ref. [JI): tcrl’!\

A*D

= EcI;P,\

A

+

EcEi’,~ II .

(8)

for the bulk of

(9)

it is still soniewl~31 uns2Iisfx~oQ

since c(2) has an incorrect of electrons

lo AEi of rexl1on

[7.R],

the Ansntz (4~ xcoun~ effects

IO 6.8 kcal/

done in the coupled elccrron par approsimalion

slldl noI concern us here. the reader

IO 111elirerature

Although

(7) it bus been shown 1113i

(6) and (7) miotms

way to avoid 111cproblem just discussed is

hon. I.e.. \ve perform 3. so callcd PNO Cl c0nipu131101i.

is referred

(7)


Ibc unlinked

of IIIC Cl cqua.

gL, and p,

For the delails Jnd more recllnical matIers of Ihis rnerhod. which

distance.

= E”,

quddruplc

HF lUOs <, and q, arc replaced 3s the pair

n3Iur31 orbilals

doubles only for lhc sys-

large in[crnuclcar

IO include in 3n approximaIc

only.

[ion we choose the orbitals

occupied

3 Cl wilh

lion of electron correlation (jl

IO redusc 111~ dunension

In order

manner

mol since in this cxc E,\2j, - (E.f) t f$)) = 6.8 kcal/ mol. corrcspondmg roughly lo 4.3’;;~of rile coniribu-

+ E(Z)_

shell correlaIion

lions and perform

Iems A + B at sufficien4y

,JEf’,

WIIICII y~eltls rhe encr: = El,,

1101

neglrct I~C quadruple subsr~tu-

NL’cun conswenlly

compute

noration.

(1)

fl2,

in penrr2l

Iiwe denote Ihe resulring energy by E.y.&,“!,,u’e rlwn

ior the bulk ofcorrclulion

cfcecrs by JUSI performmg

in E&is one an

rhaI rq. (5) yields reliable reaction rncrgieb. In

order IO Ireal AB and A f B in a compaable

for by ;I

rations contribulc’ irl firs! order of perlurlarion

Ilie lotler are negleclcd rxpccl

[-l.Sb].

which

of rexlioil

dependence

on tl~e number

may be quite ScrIouS in IlIe

sl~oulll be close to lhc rcsulls from cq. (7).

energies. In order lo dcmon-

this shortcoming we consider 3 reaction A + B -

AB. where A. B and AB have closed shell stxcs.

sponding wave functions Ilk2 Ansal or activarion

and energies obtained

(4). One may then c3lcul3te energ)’ M?(z)

according

Let

from

this way

AB on an unequal Ihe energy !$I)

one treats footing.

t ,!$)

he

the reaction

type functions

to

systems

A + B snd

This is due to the fact 11~1

corresponds

For Ihe present compuMions set of contrxted

(6) Proceeding

3. Basis set considerations

IO Ihe wavefunc-

we used an extended

gaussian lobe functions. were construcccd

[Ol. For silicon we starled with 3 HuzinJga 7pJ WI conlructed 3X!).

p-. d- and f-

as described in ref. (101 ( I Is,

lo a (7,-l) set nanielyf5.6X1/4.

This basis was IlIen augmented

by two com-

plete d sets w1tl17 = 0.69 and q = 0.73 and an fsct

with n = 0.48. For hydrogen we used ;1 Huzinaga 5s (3 I 1) and 3 P set with q = 0.4. This basis set for Si and H ~3s determined ;II optimizing 111s HF t valsnce shdl Codation energy ol’.%H4. It was used for SiHi ( D31, 3lld Qv

geome[ry)

-H-

and

computation.

for the

SiH4

For the H-

f’ragment

SitlOOlh

S fuM-

tion with 7j = 0.03 and 3150 usd rj = 0.1 (insrul Of 7 = 0.4) for the p Set on H. These sh3nges arr: nccess3ry to get an accuratr’ descrtptlon d H- \V~IK~ has 3 rather spread 0u1 electron distribution. Our HF and to131 encrgles ior H- xc Ellr(H) = -o.-%7j 3U 3nd E(2)

= -O.j’l

1 3~ \v[litjl n1.1)’ be comP.ircd

tu the COT-

respondmg +SZIC~vslues ol’-0.-%79!

3U (HF IlKlIt) [I I] and -0.fi177 j au [ I?]. respectively. \Vllllite and Spialtcr obtained E,,,(H-) = -0.-17.. Ti which is Jbour 9 kcai/mol above the HF limit whsreby one overestlmates iEr of reaction ( I) by roughly the s3me amount. The addittonai

smooth

5 functions

are oilittle

im-

portance in SIHJ. Addillon oi IIIM functions at the ~a1 H atoms In tllc Djh structure lowers the HF CYIerg? by 0.1 k~l/mol only which is clearly ne$lgible. The negative charge in SiH; IS more or kss drlocalircd over the whole molecule and IIIC 5s b3sij is obviousI> fleslble enough to give 3 proper dessriprlon of a shghtly charged hydrogen. For the SIH~ computation

X

( I .63 A);

@i-tlb,)

= I.55

.d

( I .63 .A).

lI(Si-H,,)

= I .57 A (not given).

SIH;

I C,,):

ill the Sill,

1111115lz~ttcr GIST we

augmented the buslj by XI additIona

= I.59

d(SiH,,)

The &H,,,SiH,, very littIc

was fised at 1Ol.j” [ I 1, since it IIJS on the energy. A comparison of

intlucnce

tllc ab inttio with the CNDO/z results shows that tllibond distances by rou_cllly 0.07 ,_I

latter ovcresrimates

on the avrrage. For SiH4 we used the esperimcntal SI-H disrance of I .-!S .a. which dtffers by less rhatl 0.00-l A front the one determined on the HF le~cl In order IO discuss reaction (3) we also had to detcrmlne IIIC stru;lure of SiH; for which no esperimental d2ta are wailable. It turns out Ihat SiHjr has ;Lpyr3n,i~~l structure with C;, symmetry. The Structure pardill. eters .IS obtained on the HF level for the C,, and II~C planar SlHj

case 3re as I’ollows:

D3b IC3,

1:

tl(Si-H1

=

I.575

2IHSiH

=

97”37’;

=

I .-El Ii.

SiWi

(DjhI:

r/iS~-Hj

(where one also expects

3 rath?r spread out b10 as discussed In the treatment of CHi (1311 we added 311addItional s and p set with either n = 0.03 and further a d;-: function with 7 = 0.1 at the silicon atom. In the H, computation required UI the discussion oireastion i;) we used 3 p set with 17= 0.65 (instead of n = 0.4). which is optimal for H,.

In table I we report our HF orbltal energies tor SiHi

and SIH~.

h10 is now lower d le;)

and Spialter

aroms

tion of the

which

allows

the structure parameters of

md Wlter

SiH,

(D3,,).

for CI more

different

is protisbl)’

3 full p set on III? byprecise

&scrlp.

IO this h!O. TIE

contribution

situ-

in PH, where the 7p- CL)D-

stabilizes the 211; more than in SiHi

II131 Ez3i’ = -0.3962

S$ In the &I, and C,, gcornetry WI~~MI tile HF apFrollmalion. The CKD0/3 r?jults obtained by \{‘llbite

and Spialter

we included

hydrogen

ation is somewhat trtbution

to Wilhitc

that

except that the 2ei

the ?a’,’ h10. The lowering oi

than

as compared

dro&cn

4. Results

The order of the c’s is in qremtwI

with that of Wilhite

due 10 the fact

We first redeternnnzd

A.

(note

in planar PH, as compared N

Ez3: = - 0.0083 in planar SiHi ). Consequcnrly Ill? ki’is lower than the Ze’, in PH, even ii p functions on H are not included

arc given in pZk?nllleses for comparison.

The computed HF.

PNO

energies

3s obtained

Cl and CEPA

method

are collected

2 for all systems

giirs for SiH; than

those

[ 141.

total

investigated.

are about reported

Our

computed

IO kcnl/mol=

in ref. [I

]. &hoUph

0.016

wthlrl

the

in tlble

HF ener. 3” kwr

We used an

387

--_____

.._._ ~

la1

-5

32, ?.tt ‘e 2c 5tr

_l--ll-

_.

I.

___.-..

_ ._-.

OS?1I -1.1680

-290.7x4 -290.7707 -291.3193 -291.9153 -291.9-709 -79 I.8929 distance

1’00XI

~-

_.-

I

cm1

-

I_..---..-

8700

-3.977 I -3.9771 - 3.9765 -0.363 1 -rLf334 -0.2314 -0.0605

lc

lc

Iwo Cl km)

_-

-685197

?a*

.

ktu)

. _- - -.

_I__-_-

-0.5111

-1.1680 -390.7429 -290.7847 -29 I.3599 -291.94?9 -29 I .9390 4919115

__“_

-

i3ut in tlic plewr

ewnple. From the RWJI~S CUIII~IIBI in t&k f we following inwrsion barriers -I~, for SiH_; :

obr3ln

tfle

kcai/nlol.

HI-‘:

xi

= ‘7.3

PWCl;

Xi

= 17.1 kcal/mol.

I IO)

CEPA:

xj

= 26.1 kc~l/ntoi.

tx,

IIS)

R:o~h et 31. [ISI qtw~ed an irrvcrsinn barrizr or’>0 6 k~~l/mol without Tl~c dcvistion

giving details of their con~pu[~ti~R.

tiorn our result could be dtv IO the

tkt thst these ~utltors ernpfofed ;i too restr~& (see. e.g.. the discussion in ref. [ 131). \Ye lirsr note the snwll effect of corr~lallon barrier which is analogous to rlle results

for

b3slj un tile

111epseuri~~.

rmtion for SiHT 1or the corresponding harrirrs ior Pli~ ,CH, . NH3 . OHS [ I 7, f 9 I. TIIC ntwrston bxncr in SiHi

is about 8.8 kcrtl/lnol

srxaller tktn for PH,

I~~i

= 35 kcrtllrnnt. dS. [ 1‘).10)). .~l~llOU~l Ill? IllW~ sion bxriers in the second per!od 3x cons~dwbl~ Iargr than in the first period (CHj: _I~~ = I 2 k~i/ rnol, NH3:5-6 kcal/n~ol [1.171) WClind tile SJIW trend in both wes: the barrier decrcxscs in gome from

the

nelnd

t0 th? nQ3tkv IOJJ energy of SiH) is 5 4 I\&‘Iw~

SySIenl

T[le correlation

kirger Ifian for SiHl ~ltllou~il IOO different

in electronic

horh rn~tlca~lzs 315 noi

strtxlure.

The rason ior

tlus is essentially the increased differential

over13Pb+

tween the rather difiuse lone pair and 111~St--H bond pairs in SiH, which results in 3n incrrawd JntrrPfir correlation energy. Due to the snlaller +M-i 67.6’ in SiHi versus 109.5” III SiH4 ) ant aisn IinJj 3n increase in the interbond

ioter3ct~on which appc3rstD

be less imporkmt.

however.

With reference

RlCk. IA comparison

lo rrilclion

ior llle rcxhon

ing results

AEf

IIF:

L’tlcrg~ M,:

= t 5.6 kcul/mol.

AL-(

CEPA:

(3) we ol1t~111tl,e iollo\+

For ihis reaction

(II)

= + 6.3 kcd/moI. WC lid

(12)

311dmos~ ul23nirlgl~js

ClTeClS. 1n cuntrJs1

ence ofcorrddtion

ior rcac‘rion ( I). SCC Cqs.( 13)-t 15). In boll1 reuctikins 1~2 increase tile number of nest negllbour bond InIcr-

aslions which lrcnds lo stabrlits 111o Ml; but due lo lilt unusually large corwhtton SIH~.

3s jus1 discussed.

ior rextion

(3).

tron correlation

TINScsampk

oII ALE’,

if energy

wit11 chuical

differ-

of correl2lion

3ccur32y

by analoflcs

is still

is not stabk

IlIe possiblllry

minimum

beeu shown metry

lhar

by HoTfmunu

allo\rcd

c1 A.

~3111s cxibt

;comc~ry.

[ 2 I 1 IILII

symmetry

small Iwrier

Tl~e endotlwrnliciry

oi rcaclion

sn131lcr than

kcal/mol

tron .i-center 1l1e central

bond

tl1an in PH5. iA = PH3. potential planar

SiHi

tSIHj

PH3

result

jxentcr

) dcpcnds

) = 0.0083

The

smaller

;I”. czaitPHJ

srrongcr is the S-center

since

Ii--A-

h10 of tllC c3js 1112~2,

isoh1hlO 01‘

111eIP - EZ~‘,

b = 0.796::

ilu - ihC

E = 0.0305

II inlruIly ulwur

3u 1n all systelns

cncrgy

of IIIC Ion? p3ir

7:; is still

01’31)out

~onAlcr~blc

(or inlcrbonil) runce from

1101

I7 ;III ISIII,,

0.001

XI (SItI-Sill

SIII,

iu SiH,)

in

10 0.0107

). WC h~vc wriiicd

HU

ly

011 tl~c

cllargc 01’Ills: corrcspondm~ 15 csssntially

vir1ually

IIMI

on tll;

due 10 the chnges

tincr_pics siikc In order

Ilic mtrapar

to cslimlte

terms one could

Icruls

311’

kinds 01

tllc cf’fecl

of Il;l:

iti a iirst upproxi1113~1o~~ as-

1lw1r sum is propor11onaI

pjirb of xljxrn1

rC;tctton

in lhc imcr.

JI ICISI for ~hc d1t’fcrcnr

constwl

I I~oiI&.

orhlrals.

O~CICC~~WI correhtton

pair corrcla11on Si -I

ot’ 1hc

cncr_ck!r E,,. i *i.

t Ini tlic magnitude dc,, . i + j. dcpcnds distmse hwccu the wutrords of

cwntiully

sncrp.3

devi~hons

correlation

- lone p3ir irl SIH~

IU 1hc number

bonds or lone pairs. This would

plum tl~c el‘iw~ of corrclatioil

011 AL-f

of cs-

for reaction

(I I

of ( 21wlicre one Ills 3n iucrcssc of nest nc1gMour bond 1111crxt1ons.

Due to the ~~nusually large 1111cr.

pair conlrihution

in Sll-1,. ws find. I~ow~v~r. no net

cl’fccr 0i clcclrun

correl311011

on AE,

ior rc3cliun

(3).

intcrcskd

in

5. Conclihions

In 11~2pr2S2lll work we were mainly IWO kinds oi problems.

rat)’ ofa CEPA

pair corrh silicon

hydrides. to be localized IiF

01 rcx1ion cncrpics [like rcx( I 1and (3) or hxrrcrs for inversion.

cc)nlpuI:lIIon

see eqs. ( I j)-(

eii for the various

Tllc Eij are defined with reference

S1

hiarc

mallcr (6 = 0 027s 3~) tlhu Lx 311

U’c ;i~;d. Iwwcvcr.

(i) Th

6ond.

3 we have summarized

cuiiw-

II

4.3. Pair correluliorr ericryies In table

wllicli

bul this deviation

tion cncrfiea

lion energies [7,8b]

Cl ~‘a

\vliicli

OII tlw wnwtwu

occupied

(in the prescn1

or SiHi).

bond

crucially

and

st.~ble In SIH~

more

IS. of course. expcc1sd

of the highest

molecule

Icvcl 2nd

IWO

too l;ll”C

SIIIW

[ I G] The 4clcc~

tlie a’i131 Iiytlro;c’us

of :1 klectron

(IP)

ed cen1raI

Si- Ii I~I~iIil

imcrpalr

is. howcvcr.

OII the IiF

15 considerably

Tlus

he stability

between

atlIe:

de~ompos~l~o~~ 01

ior the CEPA

atoms

WC clpccts

ior lliis cw.

wluc

1s 4lglitly

Tl~e cfrect

mok-

\Vc bud to CIIOOS~

the interprttt21ion. cncrgics

311 avcrugc

pJlr

may desow

(3)

for tlie corresponding

-, ’ ticul/mol where SE = 4_._ = 36.2

311 ABj

Aon_r whicll

into .AB, + B,. For this mson

PHj.

1’: from

(Ilontl

IWO syw

no1 provide arc. 01 Courw.

of slcctrons

lrs~cd in tal~le 3. Tl~e 1ntrupdir

over 0.0061

II 1~~

hi&

lllc sm3ll cl1angcs of Ilir

p31r rorrelulion

TIIC latter

tlw poLenli31 surl’xC

no or at most 3 ratlier

X

U’e firs1 nolc hd

SIH;)

respect ICI (3).

wtl~

ior the DQ

zulc. with either D3t, or C,, pox

qucnrly would olwurc

inspection SiHj

AIIIIOII~II tllere

on lhc to131 numl)cr

(a11

10 ~eh-

10 llic c3110nic31

would

in tllcse mol~~lcs.)

II,

ed moksulcs.

has 3 local

depend

iiitcrpair

siuce it is too d311gcro1h

r’rror of ;I few kcd/molb. the efl;ct

cncrgy 01

refcrrlng

tllc CEPA c’s for this purpose SIIICC flit

111SIlli

shows ;IgJin that L’LX.

has lo be included

encch arc lo bc compulcd estimate

cowph.

tlbxc IS no ncI ell;-sI

quiIc dificrcnt

~rltlu-

1~ the results

oft,,

hlOs of Sill, _Sil I, and SIII, . . . muA Inlorrn3tlon slncc 1I1cx

for

17). and pscudorotation]

few kcal/mol

11)’ 211d some propertics

In order of SiH<

w1tl1 317 XW-

lo dcrcmiine and SiHi

parisonof ~llescresul1s wit11 those of rchcd pounds Ilke PH,. PHJ . CHI.

Ille skhilsnd comCOIII-

References D.L. H’ilflitc and L. SPiaitcr. J. Am. Chem. Sac. 95 (1973) 2100. A. Rauk, LG. ALICIIand Ii. Clrmenti, J. Chcm. PhYc 52 (1970)4133. A. Dcdwi. A. Vc~fl~d and B. Rooq, in: thcmfc3f sn,f biocl~emiC3t reactivity. The Jcrus&m symposra on 4usn, turn chcmisrry and biochemistry. Vol. VI (fsracf ~~c~,lG_ my OI Scicnccs. Jerusalem. 197-I) p. 371. R. ~Ihlrichs, Thcorcr. Chim. Acts 35 11974159. IS\ C.W. Msppr’s, S.A. Friedman and T.P. Fchlner. J. pfr!, Them. 74 (1970) 3307, see 3Jso J.H. 1fall. D.S. Xtlryniek and 1Y.N. Ltpwomb. Inor: Chtm. 1 I If 97% 3 IX. (61 J.M. Foswr and SF. BOYS.Rev. Uod. Phys. 32 (196(l)

300. i?f W. Skyerr J. Chcm. Phys. 58 (1973) 1017. ISJ a. R. Ahltichr snd F. Driesslq

Throrc!. Chim, ..jctl

36 r1975) 775. b. R. Ahlrichr, H. Lischks, V. Sra~mmler and \\‘. ~ur~~f. nigg. J. Chem. Ph~s. 62 (1975) 1225. 191 F. Drlcsslrr and R. Ahlrichs, Chrm. Phys. LclrL\rb 33 11973) 571. f 101 S. Huzinqa. ~ppro~irn~t~ a10m1c junctions 1, II. Technical Report, Division oi Thcorelical Chenisfr~. Tie Unrvcr~tp of‘Alberta f 1971). f I I { C.J.Roothxin. t&. Sachs 2nd A.W. Wcis,. Rev. !fod Phys. 32 11970) 186. \I?_) C.L. P&ws. Phys. Rev. I I? (1958) 1649. [ 131 F. Dricsslcr, R. Xhlrichs. V. Slxmnrlcr and W. Kurzcl. nig Thcorrt. Chim. Act3 30 (1973) 315. J141 A. Rauk, L.C. Men and K. Mirlow. J. Rm. Chcm. So<. 94 (1971) 3035. [IS\ A. Sttich snd A. Vciflxd. J. Am. Chcm. Sot. 95 (1973) w1. [ 161 r. MI ssd W. Kurzelnigg. J. Am. Chem. Sot.. In press. [ 171R. Ahlrichs. F. Dricssfrr, H. Lischka. V. Stacmmfcr and it’. butz&4gg.

3. AmChem.

Sot. 062 (1975) 1135.

j 181 A. Rwli. C. Allen and i;. Misbw, Angw. Chcmrs 81 I 1970) 453.