Thermal studies on germanium(IV) complexes of N-alkylcyclohexyl dithiocarbamates

Thermal studies on germanium(IV) complexes of N-alkylcyclohexyl dithiocarbamates

thermochimica acta ELSEVIER Thermochimica Acta 282/283 (1996) W-508 Thermal studies on germanium(IV) complexes of N-alkylcyclohexyl dithiocarbamates...

393KB Sizes 0 Downloads 72 Views

thermochimica acta ELSEVIER

Thermochimica Acta 282/283 (1996) W-508

Thermal studies on germanium(IV) complexes of N-alkylcyclohexyl dithiocarbamates’ Namita

Gandhi,

Reena Jain, N.K. Kaushik

Department

of Chemistry,Delhi

University,

Delhi-210007,

*

India

Abstract Ge(IV) complexes of N-alkylcyclohexyl dithiocarbamates of the type Ge[RCyhxdtc],Cl, _n (Cyhx is cyclohexyl, R is Me, n = 1; R is Pr’, n = 1,4) have been synthesized and characterized by elemental and spectral studies (IR, UV-visible). The course of the thermal degradation of these complexes has been investigated using thermogravimetric (TG) and differential thermal analysis (DTA) techniques. The reaction order of the thermal decomposition was calculated from the TG curves using the Coats-Redfern, Piloyan-Novikova and Horowitz-Metzger methods. Heat of reactions of various steps of decomposition and calibration constants were calculated from the DTA curves. Keywords:

Germanium

(IV) complexes;

Dithiocarbamates;

Thermal

studies

1. Introduction The dithiocarbamates are a class of sulphur-donor ligands [l]. Interest in metal dithiocarbamate complexes derives from their diversified applications, including vulcanization accelerators, antioxidants and, in the biochemical field, correction of

chronic alcoholism, insecticides, pesticides and fungicides [2]. rnmnnllnrlr of 6V”“U”‘ l%=rmlnillm are ErlrI-P althn,,nh ~nme U”’ with .I 1111 clithinlimgnclc U’L”‘““&U”UU UVULvv ..,““‘~“U”UU U’ C”“U~” cI”LIl” organogermanium dithiocarbamates have been prepared [l]. The synthesis, IR and Raman spectra of (Me),M(MeDtc) complexes, where M is Si, Ge, Sn, have

* Corresponding author. ’Dedicated to Takeo Ozawa on the Occasion of his 65th Birthday. 0040-6031/96/$15.00

PII

@; 1996 ~

SOO40-6031(96)02880-8

Elsevier Science B.V. All rights reserved

S’6P

(6L.L) ((ZE’LZ) lb’9

p’6S

(09’9Z)

(ZS’SI) b6’6I)

S’S9 (89’82)

II’Ll

61’52 61’LZ

%

13

PO’81

11’9Z bZ’91) 86’PI ((VLI) 19’91

Tl

S

(L6’S) Z9’P &SE) LO’Z (28.f) 16’2

N

0/,/(‘3[“3)

Pm

(89.L) (ZZ‘IS) 19’9

61’6P

at)*S”NZLH0+3

~~~‘lb’dN3zSlFI

‘f

(OS+) (WOE) PO‘E (Z8.f) 19.2 H

91.82

‘13~f>zSN8’H013

(ZZ’9Z) IE’SZ

E13~9ZSN+‘H83

‘13[xYb,“dN3%laD

‘Z

E~3C~~Ww~3Zsl~‘3‘I

3

pU"OJS!Sd[“Uv

S~tlUIJOJ Ieqduq

punoduros

saxaIdwo3

.ON

aq] JO s!s.+?ue IevIauIaIrJ I aI9v.

aql 01 anp uo$aJ ~fl ay] u! suogdlosqv AlyIalu! q%q MOYS SaAgEapap .I!aql pur! salcuwq.w~o!ql!a ‘1 a[q”L u! uaa$ ale saxaIduro3 aql3o IWP s!sdlw~t? Icwawalg tulo3o~olqD-[ouvqla u! spu~%q aql30 suoglodold %J&II?A I#M ap!lo[q3wlal uuyueur -la8 30 uogcwalu! aql icq paledaId aJaM paljodal saxaldr_uoD aleur~qle3o!ql!p-l~~a~ aqi 11~ ‘[ET] ‘1~ la !p!vz dq pallodal poqiatu aql Icq pa.wdaId aJaM saxalduro3 aqJ .[zr] a.uw~alq aql u! palloda1 se paledaId alaM sp!~ 3!tueqlwoyl!p 30 SJIES uunpos saxqdwoa

pus uo!y?.wdard

JO uo!)az!.~a~aa.~aya

‘c

‘[I I] Zoag sB pau!walap sefi urn! -uewaS pue appolq~ lay!s se iCIp+4au+w8 pau!waiap SBMauPolq3 .[or] poqlaur sgai??uassa~ icq *ose$j se ~I[e+IlaLuyAe.I8 pau!ur.Iaiap SBMJnqdIns ~p+Iawu aXIa.Ia3a.T aql sv (aInd %66) w!uuqe-xl ~I!M pasn SBM aIqyJ3 Id v ‘via .IO~ .alaqdsourlr? .y yels e u! 1 _U!UI y 01 SBM ale1 Ekyeaq aqL %!ssaDo.Id slvp 103 lalnduroyu!ur 3gN r2 04 paqww .IasiCleue p2uI~aql os~8-ny&!~ 12uo pap.IoDal a.raM (via pue f)~) sarpws [wu~aql aql II.IU u! passaldxa suopdJosqe pue lalauroloqdo.wads 09~ in nzpwuIqs 1?uo pap.toDal alaM ewads cyuo.walg .T_LIID u! passaldxa sanp_?n ‘=l”,t aql pue lalauroioqdowadc; 81 sdq!qd 90&j nd 1! uo pap.IoDaI aJaM vwads ~1

leurlaql aql uro.13 palp1n3Iv3 uaaq os~e aAvq slalaurwvd cylau!x .saleurvq.wDoyq$yp ~kxaqo@#yp+~ 30 saxaIdwo3 (AI)ag 30 uo@!lsaizu! Ivurlaql aql saq!lDsap ladEd wasaId aql ‘[6-g] salw_ugq.wDo!q$!p IeiaU uo sa!pn]s Ino 30 uopcnuguo3 UI .[p] pIa!iC aizyelywnb y la$sao!q$!p Iep!oI[t?$aur e aA!8 01 aul?ur.Iai?i ~Aqlauy~ -0loIq3 qly wea1 ICIIpvaI a~e.hQnqosyo!q~~p uIn!u!p!.‘ad!d .auwu.Ia8 ~ICqiauIo.Io~q~ qi$t sppEo!qi!p 30 sires auyre d.wgJai JO hpuo3as 30 luaurieali icq pa.Iadald uaaq ahcq sppvoiqlip 30 slaisa (8AI)Iclaur IAqlauy awes Q] pallodaJ uaaq OSIV 805-105

(9661)

C?Z/ZSZ VIJV a?lu!W’una~_l/~lv Ia !W”3

‘N

zos

N. Gandhi et al.lThermochimica

Acta 2821283 (I 996) 501-508

503

chromophore group NCS, [14]. Band I in the 240 nm region is most intense and it attributed to the intraligand ~-7-r* transition of the N=C=S group [l&16]. Band II in the 300 nm region appears as a shoulder and is assigned to the n-z* electronic transition located on the S atom [16]. In the case of complex Ge[S,CNPr’Cyhx],, the co-planarity of the molecule is lost due to the four bulky groups. Consequently the n--n* transition of the N---C---S group is absent and two bands at 206 and 307 nm are observed. In the IR spectra, the 1430- 1440 cm ’region is assigned to the v (C-N) vibration of the S,C-NR, bond. The doublet in the region of lOOO- 1060 cm- ’ is associated with v (C--S) vibrations. The doublet separated by > 20 cm _ ’is indicative of the monodentate nature of the ligand [17].

4. Thermal studies 4.1. Results and discussion 4.1 .I Trichloro (N-methylcyclohexyl dithiocarbamato) germanium(IV) The TG curve for this complex (Fig. 1, curve a) shows that almost 50% mass loss occurs up to 673 K. The initial thermal decomposition step is over the range 400-673 K. At this temperature, the intermediate Ge(SCN),Cl, was formed (calculated Mass loss, 28.1%; found, 30%). The subsequent step at 956 K shows a mass loss; germanium oxide (GeO,) is the end product (calculated mass loss 71.50%; observed, 73%). The DTA curve (Fig. 2, curve a) shows an exothermic peak at T,,, = 605.8 K, which is due to the formation of Ge (SCN), Cl,. An endothermic peak at 872.6 K corresponds to complete decomposition of the complex [9].

0

Fig. 1. TG curves:

200

400 TEMPERATURE

a, Ge[S,CNMeCyhx]Cl,;

600 ( *Cl

000

___+

b,Ge[S,CNPr’Cyhx]Cl,;

c, Ge[S,CNPr’Cyhx],.

N. Gandhi et al./Thermochimica

504

Acta 2821283 (1996) 501-508

1 END0

0

I

I

I

200

400

600

TEMPERATURE

Fig. 2. DTA curves:

a, Ge[S,CNMeCyhx]Cl,;

(‘C)

-

b, Ge[S,CNPr’Cyhx]Cl,;

c, Ge[S,CNPr’Cyhx],

4.1.2. Trichloro (N-isopropyl cyclohexyl dithiocarbamato) germanium(ZV) The TG curve (Fig. 1, curve b) for this complex shows a gradual initial mass loss which accelerates around 454 K and terminates around 545 K. The curve shows almost 50% mass loss at this temperature. At 545 K, the intermediate Ge (SCN),Cl, is formed (calculated mass loss, 33.3%; found, 35%). A further mass loss is observed in the second step to 1073 K. GeO, is the final product after decomposition but the mass loss should be 73.59% (calculated) and actually it is found out to be 65% from the thermogram, which suggests incomplete conversion to oxide at 1073 K. The DTA profile (Fig. 2 curve b) shows a shallow endothermic peak at 493 K, which is due to the initial decomposition of the complex. There is a small exothermic peak at 553 K which is due to further reaction of the intermediate. 4.1.3. Tetrakis (N-isopropyl cyclohexyl dithiocarbamato) yermanium(ZV) The TG curve (Fig. 1, curve c) for this complex shows a completely different trend. The thermal decomposition commences with the increase in temperature. The compound is highly volatile and by 550 K, 100% of the complex is volatilized. The DTA profile (Fig. 2, curve c) for this complex shows an endothermic peak at T max= 483 K, which is due to melting of the complex. The second endothermic peak is = 538.8 K, which is due to the volatilization of the complex. at T,,, Thus from the TG trends it is revealed that the thermal stability of the complexes is in the order: Ge(S,CNPr’Cyhx), < Ge(S,CNMeCyhx)Cl, < Ge(S,CNPr’Cyhx)Cl,. From the TG curves, the reaction order (n) for the first thermal decomposition step has been determined by the methods of Coats and Redfern (Figs. 3 and 4) [lS], Piloyan and Novikova (Figs. 5 and 6) [19] and Horowitz and Metzger (Figs. 7 and 8) [20]. The heat of reaction (AH) can be read directly in microvolts from the DTA curve, obtained from the computer attached to thermoanalyser; this can be converted to kJ

0 0

-/

0

L-

I 2.129

I 2.128

1

2.127

p

Fig. 3. Coats-Redfern

I

I

2.139

-

plot for Ge[S,CNMeCyhx]CI,.

60

b

. ,L-------+.

/

,

18

Fig. 4. Coats-Redfern

I.9

20 lx 103 r

22

21

,

plot for: a, Ge[S,CNPr’Cyhx]Cl,;

b, Ge[S,CNPr’Cyhx:

N. Gandhi et ul./Thermochimica

506

Actu 2821283 (1996) 501-508

1x103 r

2.126 t

-5.5

2.127

,

2x0

2,129

I

-

Fig. 5. Piloyan-Novkova

plot for: Ge[S,CNMeCyhx]Cl,.

-56

Fig. 6. Piloyan-Novikova

plot for: a, Ge[S,CNPr’Cyhx]Cl,;

b, Ge[S,CNPr’Cyhx],.

N. Gandhi et al.lThermochimica

507

Acta 2821283 (1996) 501-508

-0.3 _I

Fig. 7. Horowitz-Metzger

plot for Ge[S,CNMeCyhx]CI,.

b

I

-II1

-110

x)

Fig. 8 Horowitz-Metzger

mol-’

ul

(-8)-

+-----c-e)

plot for: a, Ge[S,CNPr’Cyhx]CI,;

b, Ge[S,CNPr’Cyhx],

using the expression AH(kJ mol- I) = AH (pV) x 60 x mol.wt. x 10-6/1000

The temperature-dependent tion [21]

calibration

constant

K = - 1.3 x 10m4 x peak temperature The kinetic parameters

are summarized

was obtained

+ 0.2200

in Table 2.

from the Currel equa-

508

N. Gandhi et al.lThermochimica

Table 2 Kinetic parameters

of the complexes

Acta 2821283 (1996) 501-508

for the first step of thermal

decomposition

No.

Compound

Calibration constant K/(kJ cm-‘)

Equations

Order of reaction n

Heat of reaction AH/(kJ mol ‘)

1.

Ge[S,CNMeCyhx]CI,

0.1412

Ge[S,CNPr’Cyhx]Cl,

0.1481

1 1 1 1

AH, = 20.049 x IO-’ AH, = 10.3178 x lo.-’

2.

Coats-Redfern PiloyanNovikova Horowitz-Metzger Coats-Redfern PiloyanNovikova Horowitz-Metzger Coats-Redfern Piloyan-Novikova Horowitz-Metzger

1 1

Not recorded

3.

Ge[S,CNPr’Cyhx],

0.1572

1 1 1

AH=

11.24526x

lo-’

References and S.J. Lippard (Eds.), Progress in Inorganic Chemistry, Vol. XI, Interscience, Ill D. Coucouvanis London, 1970, p. 233. and Related Compounds, Elsevier, New York, PI G.D. Thorn and R.A. Ludwig, the Dithiocarbamates 1962. and S.J. Lippard (Eds.), Progress in Inorganic Chemistry, Vol. 26, Interscience, [31 D. Coucouvanis London, 1979, p. 301. M S. Kato and M. Mizuta, J. Org. Met. Chem., 55 (1973) 121. c51 M.A. Bernard and M.M. Borel, Bull. Sot. Chim. Fr., (1969) 3066. 161 G.D. Ascenzo and W.W. Wendlandt, J. Therm. Anal., 1 (1969) 423. c71 S. Kumar, N.K. Kaushik and I.P. Mittal, in W. Hemminger (Ed.), Thermal Analysis, Proc. 6th ICTA, Bayreuth, 1980, Birkueuser Verlag, Basel, 1980, p. 137. Acta, 41 (1980) 19. PI S. Kumar and N.K. Kaushik, Thermochim. Acta, 106 (1986) 233. c91 S.S. Gupta and N.K. Kaushik, Thermochim. Delhi, 1985. [lOI T.N. Srivastava and P.C. Kamboj, Systematic Analytical Chem, Vishal Publications, p. 366. of Organometallic Compounds, Part 1, Interscience Publications, Cl11 M. Tsutsui, Characterization London, 1969, p. 62. Cl21 H. Gilman and A.H. Blatt, Organic Synthesis, Collective Vol. 1, Wiley, New York, 1958, p. 448. Cl31 S.A.A. Zaidi, K.S. Siddiqui and N. Islam, Indian J. Chem., 12 (1974) 1197. 1141 C.K. Jorgenson, Inorganic Complexes, Academic Press, London, 1963, p. 138. Cl51 C.K. Jorgenson, J. Inorg. Nucl. Chem., 24 (1962) 1571. Inorg. Chim. Acta, 18 (1976) 35. Cl61 C.A. Tsipis and G.E. Manoussakis, Cl71 F. Bonati and R. Ugo, J. Org. Met. Chem., 10 (1976) 257. 1181A.W. Coats and J.P. Redfern, Nature, 201 (1964) 68. Cl91 G.D. Piloyan and I.S. Novikova, Russ. J. Inorg. Chem., 12 (1967) 313. 1201 H. Horowitz and G. Metzger, Anal. Chem., 35 (1964) 1464. c211 B.R. Currel, in R.F. Schwenker and P.D. Garn (Eds.), Thermal Analysis, Vol. 3 Academic Press, New York, 1969, p. 1185.