Accepted Manuscript Thermodynamic and interaction studies of binary liquid mixtures on the basis of Flory's statistical theory and empirical relations
Vinay Sanguri, Rupali Sethi, Sunil, J.D. Pandey PII: DOI: Reference:
S0167-7322(18)32482-6 doi:10.1016/j.molliq.2018.09.039 MOLLIQ 9645
To appear in:
Journal of Molecular Liquids
Received date: Revised date: Accepted date:
13 May 2018 19 August 2018 8 September 2018
Please cite this article as: Vinay Sanguri, Rupali Sethi, Sunil, J.D. Pandey , Thermodynamic and interaction studies of binary liquid mixtures on the basis of Flory's statistical theory and empirical relations. Molliq (2018), doi:10.1016/j.molliq.2018.09.039
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
ACCEPTED MANUSCRIPT Thermodynamic and interaction studies of binary liquid mixtures on the basis of Flory’s statistical theory and empirical relations Vinay Sanguri1*, Rupali Sethi2, Sunil2, J. D. Pandey2 Department of Chemistry, S. P. M. Government Degree College, (University of Allahabad) Allahabad-211013, India
T
1
2
CR
E-mail:
[email protected]
IP
Department of Chemistry, University of Allahabad, Allahabad- 211002, India
US
Abstract
A number of important and useful thermodynamic properties of seven binary liquid mixtures namely
AN
DPGDME + methanol, 1-propanol, 1-pentanol, 1-heptanol at 298.15K and oxolane + aniline, N-methyl aniline, N-ethyl aniline at 303.15K, 313.15K & 323.15K have been computed on the basis of the most
M
widely accepted Flory’s statistical Theory (FST). The component DPGDME is basically dipropylene glycol
ED
dimethyl ether and oxolane known as tetrahydofuran are the key ethereal liquids with which the interactions of popular solvents are analyzed. Also, some thermodynamics properties of aforesaid mixtures were
PT
calculated from the recently proposed empirical correlations using density and ultrasonic velocity. The theoretical results are compared with the experimental findings yielding quite satisfactory agreement. The
CE
results are discussed in the light of interactions operating in the systems.
AC
Keywords: Thermodynamic properties, Binary mixtures, FST, empirical correlations, interactions.
1. Introduction
The key factor in determining the thermodynamic properties of any pure substance is the intermolecular forces viz. electrostatic forces, induction forces, chemical forces and dispersion forces prevalent between the molecules of a substance depending on the type of molecules in the vicinity of each other. The study of thermodynamic properties of mixture of pure components is intricate and cumbersome due to interaction between similar and dissimilar components which *Corresponding author. Tel.: +91-9415253608. E-mail address:
[email protected] (V. Sanguri).
1
ACCEPTED MANUSCRIPT causes innumerable minute variations for consideration. In a liquid mixture of two or more pure liquids, the intermolecular forces and the liquid structure are the key factors to express the properties of liquid mixtures. The properties of a mixture can be calculated from the properties of pure components [1-10]. The mixture of non-polar liquids, having complex structure, varying in
T
size and shape can well be studied from its excess thermodynamic properties [11-12]. The most
IP
widely accepted Flory’s statistical theory (FST) has been successfully applied to evaluate various
CR
important thermodynamic properties of liquid mixtures due to its simplicity and validity [13-18]. It is best applicable to pure liquids, binary and multi-component liquid systems of metallic,
US
molecular nature and ionic liquids [19-26]. During the recent past industrial and biological
velocity and density measurements.
Highly sophisticated instruments are employed to get
accurate results.
M
AN
importance of binary liquid mixtures has gained exceeding importance on the basis of ultrasonic
ED
Recently, accurately and precisely measured values of density (ρ) and ultrasonic velocity
PT
(u) of DPGDME (dipropylene glycol dimethyl ether) with 1-alkanols at 298.15K by Pal and Gaba [27] and the work of Oswal et al [28] on binary mixtures of oxolanes with aniline and substituted
CE
anilines at 303.15K, 313.15K and 323.15K has been an area of key interest to calculate the
AC
thermodynamic properties through our established relations of FST and empirical relations and its comparison with experimental values have been done so that more light can be thrown on the properties of binary mixtures and the system finds multifaceted industrial and biological applications. DPGDME [29] is a propylene based diether, a versatile and environmental friendly solvent, hygroscopic in nature. The system (ether + alcohol) has great relevance in industry as a
2
ACCEPTED MANUSCRIPT water entrainer as they form an excellent azeotropic mixture thereby enhancing the solubility of the monomers. Ethers and alcohols are preferred solvents in chemical industry especially for acrylic paints as a binder and coalescing agent, electronic cleaner, in wood and furniture coating. They are a perfect solvent and the combination increases the octane rating of oil and petrol. The
T
chemical structure of DPGDME reveals that it is an aprotic solvent (inert) as it does not have free
IP
hydroxyl groups that readily donate or accept protons (finds use in electro deposition coating) but
CR
its interaction with alcohols, a protic solvent with labile hydrogen is due to strong hydrogen bonds. As the size of the alkyl groups of alcohol increases (from –CH3 to –C7H15), the van der
US
Waals interaction increases to a point where they can dominate the hydrogen bonding and thereby
AN
making the alcohols largely hydrophobic or lipophilic in nature.
M
Oxolane (popularly Tetrahydrofuran, THF) [30], a cyclic ether with oxygen as hetero atom is an aprotic solvent with no labile hydrogen, moderately polar, water miscible, finds use in permeation
chromatography
for
ED
gel
dissolving
polymers,
in
reversed-phase
liquid
PT
chromatography, biofuels while amines have labile hydrogen atoms which forms strong hydrogen bonds with oxygen of oxolane. The donating tendency of hydrogen in amines depends on electron
CE
displacement effects viz. +I effect (inductive effect) and steric hindrance which in turns either
AC
enhances or diminishes the inductive effect residing on the molecule. In the present work we have calculated various important thermodynamic properties of binary mixtures [viz. dipropylene glycol dimethyl ether (DPGDME) + aliphatic primary alcohol and oxolane + aniline and N-substituted anilines] at different temperatures by using Flory’s statistical theory and with the help of empirical relations. The obtained theoretical results are compared with experimental findings.
3
ACCEPTED MANUSCRIPT 2. Theoretical In recent past Flory’s statistical theory [13-26] has been applied for computing various thermodynamic and transport properties of liquids and solution. The equilibrium properties of a liquid are strongly dependent on what may be loosely called its local structure, often expressed in
T
terms such as packing density, free volume or, more exactly, in terms of radial distribution
IP
function. Flory et al used a simple partition function proposed by Erying and Hirschfelder to get
CR
the reduced equation of state, which is based on van der Waals potential energy model. They assume that the intermolecular energy depends only on the volume.
US
For computing various thermodynamic properties of ternary and binary liquid mixtures,
AN
~ ~ the required parameters V , V*, P*, T and T* of pure components can be obtained from the knowledge of and V of pure components. Segment fraction Ψ site fraction (θ) and reduced
M
~ volume ( V ) of the mixture are calculated by the method described by earlier workers [19]. With the help
ED
of reduced volume of mixture various thermodynamic properties viz. thermal expansivity (α),
PT
density (ρ), isothermal compressibility (βT), internal pressure (Pi), heat capacity at constant pressure (CP), adiabatic compressibility (βS), ultrasonic velocity (u), heat capacity ratio (γ), heat
CE
capacity at constant volume (CV), Gruneisen parameter (Г) and non-linearity parameter (B/A) of binary mixtures (DPGDME + methanol, 1-propanol, 1-pentanol and 1-heptanol and oxolane +
AC
aniline, N-methyl aniline and N-ethyl aniline) have been calculated using Flory’s statistical theory at 298.15, 303.15K, 313.15Kand 323.15K with the help of Eqs. (1) to (11). The detailed methods for computing the aforesaid properties are given in our earlier papers [20-26].
3(V1/3 1) T (1 3(V 1/3 1))
(1)
4
ACCEPTED MANUSCRIPT x1 M 1 x 2 M 2 ~ x1V1* x 2V2* V
T
(2)
TV 2 P*
(3)
T
T T
IP
Pi
CR
𝛼2 𝑇𝑉 𝐶𝑃
)
AN
𝛽𝑆 = 𝛽𝑇 − (
US
CP (x1CP,1 x 2 CP,2 ) C EP
1/ 2
CP
1 T
AC
PT
CV
ED
T S
CE
(5)
(6)
(7)
M
1 u S
(4)
(8)
(9)
(10)
General formulation for the non-linearity parameter in terms of the acoustical parameters of liquids has been made using the expression for the sound velocity (u), and introducing the contribution due to isobaric acoustic parameters (K) and the isothermal acoustic parameter (K). The expression for the calculation of B/A of mixture has been expressed as [31]
5
ACCEPTED MANUSCRIPT B 2 K 2K " A
(11)
Computations of K and K require only the knowledge of thermal expansion coefficient, (. Detailed method of calculation is given in literature [32-33].
velocity,
thermal
expansion
coefficient,
isothermal
compressibility,
adiabatic
CR
sound
IP
T
We have also calculated different thermodynamic properties of mixtures (viz. density,
compressibility, internal pressure , heat capacity at constant pressure , heat capacity ratio, heat
US
capacity at constant volume and pseudo Gruneisen parameter under the present investigation from the sound velocity and the density data on the basis of recently developed empirical relations for α
1.71X 103 T 4/9 u 2 4/3
PT
T
AC
CE
5715.36 X 104 MuT 11/9 CP (17.1 2/3 )T 4/9 Pi 44.2 XT 4/3u 3/2
M
75.6 X 103 T 1/9u1/2 1/3
ED
(0.0191X T )1/4
AN
and βT in terms of u and ρ by the aid of the Eqs. (12) to (17).
(12)
(13)
(14)
(15)
1.71X 103 T 4/9 1/3
(16)
1 T
(17)
6
ACCEPTED MANUSCRIPT where u is in m sec-1 and in g cm-3. These relations have been obtained on the dimensional basis and applied successfully to various class of organic liquids and solutions during recent years [3439]. Marcus highlighted these relations very recently in his review [40].
T
3. Results and discussion
IP
The target of the most widely accepted Flory statistical theory here is to estimate a number
CR
of important and useful thermodynamic properties of dipropylene glycol dimethyl ether (DPGDME) + 1ο alcohols ( methanol, propanol, pentanol, heptanol) mixture at 298.15K and
US
oxolane + amines (aniline, N-methyl aniline and N-ethyl aniline) over a wide range of
AN
compositions. An interesting application of this theory is to assess ultrasonic propagation parameters of such systems. The calculated properties include density (ρ), sound velocity (u),
M
thermal expansion coefficient (α), isothermal compressibility (βT), adiabatic compressibility (βS),
ED
internal pressure (Pi), heat capacity at constant pressure (CP), heat capacity ratio (γ), heat capacity at constant volume (CV) and pseudo Gruneisen parameter (Г) and non-linearity parameter B/A.
PT
The theoretical results were compared with the experimental findings of recent paper of Pal and
CE
Gaba [27] and Oswal et al [28]. In another attempt we have also calculated thermal expansion coefficient (α) and isothermal compressibility (βT), internal pressure (Pi), heat capacity ratio (γ),
AC
Gruneisen parameter (Г) and heat capacity at constant pressure (CP), of binary liquid mixtures using recently proposed empirical Eqs. (12) to (17) respectively. The empirical relations are calculated from experimental ultrasonic velocity (u) and density (ρ) data in both the above systems. The results are found to be quite satisfactory.
7
ACCEPTED MANUSCRIPT Table 1 enlists all the required parameters of pure components diproylene glycol dimethyl ether (DPGDME), methanol, 1-propanol, 1-pentanol, 1-heptanol at 298.15K and oxolane, aniline, N-methyl aniline, N-ethyl aniline at 303.15K, 313.15K and 323.15K. The necessary data needed, for the calculation, have been taken from different sources [27,28,41].The most widely accepted
T
Flory’s statistical theory (FST) has been employed to evaluate theoretically density, ultrasonic
IP
velocity, thermal expansivity, isothermal compressibility, adiabatic compressibility, internal
CR
pressure, heat capacity at constant pressure, heat capacity ratio, heat capacity at constant volume, Grunisen parameter and non-linearity parameter B/A at 298.15K of binary system of DPGDME
US
with methanol, 1-propanol, 1-pentanol and 1-heptanol respectively in Table 2. Table 3 lays its
AN
emphasis on percentage deviation of density, ultrasonic velocity and adiabatic compressibility, alongwith (APD) average percentage deviation values of binary system DPGDME and primary
M
alcohols at 298.15K. Table 4 compiles the calculated values of α, βT, Pi, γ, Г and Cp through
ED
empirical relations of binary system (DPGDME + methanol, 1-propanol, 1-pentanol and 1-
PT
heptanol) at 298.15K.
The structure of DPGDME (commonly known as Purum), Bis (methoxypropyl) ether as
CE
obtained by the software ChemDraw Ultra 10.0 are represented in 2D and 3D form in Figure 1
AC
and Figure 2 respectively where red balls are the oxygen atoms, dark grey balls are the carbon atoms and light grey balls are the hydrogen atoms.
8
ACCEPTED MANUSCRIPT O
T
O
IP
O
Figure 2:
CR
Figure 1:
Structure of DPGDME in 3D
US
Structure of DPGDME in 2D
The interaction study of intermolecular hydrogen bond between, two similar electronegative
AN
atoms, oxygen atom of DPGDME and the oxygen atom of 10 alcohols (O……H……..O) viz. methanol, propanol, pentanol, heptanol has been clearly explained by 2D (Figure 3) and 3D
M
(Figure 4) structures.
ED
O
O
H O
AC
O
CE
R
R
PT
H
O
O
H
R
Figure 3: Interaction of DPGDME+alkanols in 2D
Figure 4: Interaction of DPGDME+alkanols in 3D
9
ACCEPTED MANUSCRIPT The values of ultrasonic velocity and density increase whereas βs decrease as the mole fraction of DPGDME increases in the binary mixture as calculated by FST and empirical relations as compared to experimental values computed in Table 3 which indicates as the mole fraction of DPGDME increases its bonding with alcohol molecules increases, leading to more compact and
T
highly dense structure which is viscous in flow. Since βS is inversely proportional to density and
IP
ultrasonic velocity it decreases proportionally. In case of DPGDME and 10 alcohols (methanol,
CR
propanol, pentanol, heptanol) as the size of alkyl (R = -CH3, -C3H7, -C5H11, -C7H15) group increases the hydrogen bonding decreases which eventually decreases the dipole-dipole attraction.
US
Thus density and ultrasonic velocity decreases on increasing numbers of alkyl (–CH2) group. The
AN
APD values of u, βS and ρ are in excellent agreement with the experimental values.
M
Table 5 compiles the calculated values of ρ, u, α, βT, βS, Pi, γ, Г CV, Cp and B/A through FST of binary system (oxolane + aniline, N-methyl aniline and N-ethyl aniline) at 303.15K,
ED
313.15K and 323.15K. Table 6 lays its emphasis on percentage deviation of density (ρ), ultrasonic
PT
velocity (u) and adiabatic compressibility (βs), alongwith APD values of binary system (oxolane+ aniline, N-methyl aniline and N-ethyl aniline) at 303.15K, 313.15 and 323.15K. Table 7 compiles
CE
the calculated values of α, βT, Pi, γ, Г and Cp through empirical relations of binary system (oxolane
AC
+ aniline, N-methyl aniline and N-ethyl aniline) at 303.15K, 313.15K and 323.15K. The structure of oxolane in 2D and 3D are represented in Figure 5 and Figure 6 respectively where red balls indicate the oxygen atom, blue balls are the nitrogen atoms, pink balls are the alkyl groups –CH3, -C2H5. The interaction of oxolane with amines namely aniline, Nmethyl aniline, N-ethyl aniline is depicted diagrammatically in 2D and 3D form in Figure 7 and Figure 8.
10
ACCEPTED MANUSCRIPT
O Figure 6: Structure of oxolane in 3D
CR
IP
T
Figure 5: Structure of oxolane in 2D
O H
R
AN
US
N
Figure 8: Interaction of oxolane + N-substituted aniline in 3D
ED
aniline in 2D
M
Figure 7: Interaction of oxolane + N-substituted
PT
In the binary system of oxolane with aniline, N-methyl aniline and N-ethyl aniline the value of ultrasonic velocity and density, decreases whereas βs increases as the mole fraction of oxolane
CE
increases in the binary mixture as calculated by FST and empirical relations and compared to
AC
experimental values computed in Table 6. As the mole fraction of oxolane increases its binding with aniline and substituted anilines decreases making it less dense, lighter, less viscous, easy in flow. Since βs is inversely proportional to u and ρ thus correspondingly it increases. In addition in case of oxolane and amines (aniline, N-methyl aniline, N-ethyl aniline) the order of decreasing hydrogen bonding is aniline > N-methyl aniline > N-ethyl aniline. As the +I effect is maximum in
11
ACCEPTED MANUSCRIPT N-ethyl aniline more electron pairs are available on nitrogen which decreases the polarity between hydrogen and oxygen atom of oxolane which results in δ-
δ+
δ-
diminished hydrogen bonding (N…..H….O) between oxolane and N-ethyl aniline. Similar is
IP
T
the case of N-methyl aniline while in case of aniline maximum hydrogen bond strength as no inductive effect is prevalent. The APD values are in excellent agreement with the experimental
CR
values hence prove that the desired parameter fit well in the proposed equations of FST and
US
empirical relations. It is closely observed that with increasing temperature the value of u, ρ decreases while βS increases remarkably, indicates that rise in temperature leads to less
AN
interactions, increased bond length, more hydrogen bonding as expected in the aforesaid system.
M
4. Conclusions
ED
As the average percentage deviation (APD) values is in quite good agreement keeping in view the various approximations and uncertainties in the experimental values FST gives quite satisfactory
PT
results for all the binary systems undertaken. The variation of other properties (α, βT, CP, Cv, Pi, ϒ
CE
and Г) with composition and temperature is highly satisfactory. The empirical relations 100% satisfy and support the experimental data in all the binary systems. The results have been
AC
confirmed and supported by diagrammatic illustrations of hydrogen bonding in two and three dimensional forms and inductive effect of alkyl groups between binary liquids which are in vicinity of each other. This work enhances the understanding and critical thinking in chemistry, throw light on the use of software to determine the structure and interaction relationship which is highly
12
ACCEPTED MANUSCRIPT supported by data calculations of FST and empirical relations. This is a stepping stone in collaboration of liquid state, thermodynamic and software ChemDraw Ultra 10.0 and we will further incorporate softwares like SPSS 10.0 to make interpretation of interactions more strongly
AC
CE
PT
ED
M
AN
US
CR
IP
T
supportive.
13
ACCEPTED MANUSCRIPT
Internal pressure
CP
Heat capacity at constant pressure
CV
Heat capacity at constant volume
CPE
Excess heat capacity at constant pressure
u
Ultrasonic velocity
V
Molar volume
V*
Characteristic Volume
𝑉̃
Reduced Volume
CR US
Excess Volume
AN
VE
IP
Pi
T
Nomenclature
Temperature in Kelvin
𝑇̃
Reduced temperature
T*
Characteristic Temperature
P*
Characteristic Pressure
x1
Mole fraction of Component 1
x2
Mole fraction of Component 2
M1
Molecular weight of Component 1
M2
Molecular weight of Component 2
Vmix
Molar Volume of Mixture
AC
CE
PT
ED
M
T
B/A Non-linearity parameter K
Isobaric acoustic parameter
Kʹʹ Isothermal acoustic parameter
14
ACCEPTED MANUSCRIPT
Abbreviations Flory’s statistical theory
DPGDME
Dipropylene glycol dimethyl ether
THF
Tetrahydrofuran
T
FST
ρ
Density
βT
Isothermal compressibility
βs
Adiabatic compressibility
γ
Heat capacity ratio
Г
Gruneisen parameter
Ψ
Segment fraction
Site fraction
US
Thermal expansivity
AC
CE
PT
ED
M
AN
α
CR
IP
Greek letters
15
ACCEPTED MANUSCRIPT References [1]
W. E. Acree Jr., J. Phys. Chem. 86 (1982) 1461-1465.
[2]
W. E. Acree Jr., Thermodynamic properties of non-electrolyte solutions. Academic Press, New York, 1984. G. L. Bertrand, W. E. Acree Jr., J. Phys. Chem. 83 (1979) 2355-2558.
[4]
E. L. Taylor, G. L. Bertrand, J. Solution Chem. 3 (1974) 479-491.
[5]
G. L. Bertrand, W. E. Acree Jr., T. E. Burchfield, J. Sol. Chem. 12 (1983) 327-346.
[6]
W. Brostow, J. S. Sochanski, J. Material Sci. 10 (1975) 2134-2145.
[7]
J. D. Pandey, T. Bhatt, R. L. Mishra, Acustica 38 (1977) 83-85.
[8]
J. D. Pandey, R. D. Rai, R. K. Shukla, J. Chem Soc. Faraday Trans.1 85 (1989) 331-341.
[9]
J. D. Pandey, A. K. Shukla, R. K. Shukla, R. D. Rai, J. Chem. Thermodyn. 21 (1989)125-
AN
US
CR
IP
T
[3]
M
129.
ED
[10] P. P. Singh, V. K. Sharma, Can. J. Chem. 61 (1983) 2321-2328. [11] K. Arakawa, O. Kiyohara, Bull. Chem. Soc. Jpn. 43 (1970) 975-984.
PT
[12] J. S. Rowlinson, Liquids and Liquid Mixtures, second ed., Butterworth, London, 1969.
CE
[13] P. J. Flory, R. A. Orwoll, A. Vrij, J. Am. Chem. Soc. 86 (1964) 3507–3514. [14] P. J. Flory, J. Am. Chem. Soc. 87 (1965) 1833-1838.
AC
[15] A. Abe, P. J. Flory, J. Am. Chem. Soc. 87 (1965) 1838-1846. [16] V. A. Bloomfeld, R. K. Dewan, J. Phys. Chem. 75 (1971) 3113-3119. [17] R. K. Dewan, V. A. Bloomfeld, P. B. Berget, J. Phys. Chem. 75 (1971) 3120-3124. [18] J. D. Pandey, D. M. Alec David, J. Phys. Chem. 85 (1981) 3151-3152.
16
ACCEPTED MANUSCRIPT [19] J. D. Pandey, N. Pant, J. Am. Chem. Soc. 104 (1982) 3299-3302. [20] J. D. Pandey, V. Sanguri, Phys. Chem. Liq. 46 (2008) 417-432. [21] J. D. Pandey, V. Sanguri, J. Chem. Research (S) (2001) 344-345. [22] V. Sanguri, Nidhi Singh, J. Ind. Chem. Soc. 88 (2011) 163-171.
T
[23] J. D. Pandey, S. B. Tripathi, V. Sanguri, J. Mol. Liq. 100/2 (2002) 153-161.
IP
[24] J. D. Pandey, V. Sanguri, B. D. Bhatt, J. Chem. Research(S) (2003) 430-432.
CR
[25] R. Dey, N. K. Soni, R. K. Mishra, V. Sanguri, J. D. Pandey, J. Mol. Liq. 124 (2006) 102105.
US
[26] Vinay Sanguri, Jyotsna Chhabra, A. K. Srivastava, J. D. Pandey, J. Mol. Liq. 206 (2015)
AN
300-308.
M
[27] A. Pal, R. Gaba, J. Chem. Thermodyn. 40 (2008) 818-828.
508 (2010) 27-34.
ED
[28] S. L. Oswal, V. Pandiyan, B. Krishnakumar, P. Vasantharani, Thermochimica Acta 507-
PT
[29] M. Tejraj, Aminabhavi, H. T. S. Phayde, R. S. Khinnavar, B. Gopalakrishana, K.C. Hansen, J. Chem. Eng. Data 39(2) (1994) 251-260.
AC
CE
[30] Muller, Herbet, THF, Ulmann’s Encylopedia of Industrial Chemistry, Weinhein WeileyVCH 2005. [31] B. K. Sharma, Pramana – J Phys, 37 (1991) 489-496. [32] J. D.Pandey, R. Dey, B. D. Bhatt, PhysChemComm., 5(6), (2002) 37-39. [33] J. D. Pandey, R. Dey , J. Chhabra, PhysChemComm 6(14), (2003), 55-58. [34] J. D. Pandey, R. Verma, Chem. Phys. 270 (2001) 429-438. [35] J. D. Pandey, R. Dey, M. Upadhaya, Acoustics Letters 21 (1997) 120-125. [36] J. D. Pandey, J. Chhabra, R. Dey, V. Sanguri, R. Verma, Pramana – J. Phys 55 (2000) 433-439.
17
ACCEPTED MANUSCRIPT [37] J. D. Pandey, V. Sanguri, M. K. Yadav, A. Singh, Ind. J. Chem. 47A (2008) 1020-1025. [38] B. B. Nanda, Binita Nanda, P. C. Mohanty, J. Mol. Liq. 171 (2012) 50-53. [39] J. D. Pandey, A. K. Singh, Ranjan Dey, Ind. J. Chemical Technology 12 (2005) 588-592. [40] Y. Marcus, Chemical Reviews, 113 (2013) 6536-6551.
T
[41] CRC Handbook of Chem. & Phys. seventy eighth ed., CRC Press, Boca Raton, New York,
AC
CE
PT
ED
M
AN
US
CR
IP
1997-98.
18
ACCEPTED MANUSCRIPT Table 1:
~ Value of molar volume V, thermal expansivity α, reduced volume V , characteristic volume V*, reduced
~
temperature T , characteristic temperature T*, isothermal compressibility T, characteristic pressure P*, density ρ, heat capacity at constant pressure CP and ultrasonic velocity u of pure components at different temperatures.
K-1
K
DPGDME
180.54 32
298. 15
1.0 50
1.25 79
143.53 11
0.05 85
5094. 04
96.2 3
Methanol
40.735 0
298. 15
1.2 01
1.28 75
31.638 4
0.06 27
4751. 61
1-propanol
75.156 4
298. 15
1.0 03
1.24 83
60.206 0
0.05 71
1-pentanol
108.69 28
298. 15
0.8 93
1.22 53
88.703 7
1-heptanol
141.90 62
298. 15
0.8 45
1.21 50
116.79 15
Oxolane
82.195 4
303. 15
1.2 48
83.152 7
313. 15
N-methyl aniline
~ T
T*
P* x 10-6 N m2
x 10-3/ kg m-3
514. 74
CP / J mol-1 K-1
u/ m s-1
0.898 6
303.08
1204. 97
470. 56
0.786 5
81.21
1102. 62
5222. 50
101. 63
458. 51
0.799 7
144.01
1206. 00
0.05 35
5577. 85
88.0 1
454. 21
0.811 0
208.40
1277. 00
0.05 17
5762. 80
80.4 4
462. 37
0.818 9
271.70
1327. 27
63.209 5
0.06 45
4702. 70
103. 31
619. 21
0.877 3
125.00
1255. 90
1.31 22
63.369 5
0.06 60
4745. 74
111. 30
614. 77
0.867 2
128.00
1211. 70
1.2 91
1.32 42
63.571 4
0.06 75
4788. 84
120. 03
609. 49
0.856 6
130.00
1170. 90
1.2 69
AN
M
ED
PT
1.30 04
US
126. 15
CE
Aniline
323. 15
AC
84.181 6
V* x 106/ m3 mol-1
T
K
Component
T x 1011/ m2 N-1
~ V
IP
T
x 103/
CR
Vx 106/ m3 mol-1
91.953 0
303. 15
0.8 51
1.21 94
75.407 6
0.05 25
5777. 41
48.4 2
792. 32
1.012 8
191.00
1615. 20
92.675 9
313. 15
0.8 58
1.22 71
75.525 4
0.05 37
5827. 54
50.7 4
797. 26
1.004 9
194.00
1582. 60
93.279 2
323. 15
0.8 66
1.23 50
75.530 9
0.05 50
5874. 56
52.7 3
809. 48
0.998 4
197.00
1558. 20
109.53 79
303. 15
0.8 16
1.21 17
90.399 3
0.05 12
5924. 14
53.1 2
683. 69
0.978 2
211.00
1548. 30
19
ACCEPTED MANUSCRIPT
0.8 22
1.21 90
90.637 1
0.05 24
5975. 83
56.0 0
682. 98
0.969 8
214.00
1512. 40
111.49 84
323. 15
0.8 30
1.22 67
90.889 3
0.05 37
6019. 73
59.0 7
683. 37
0.961 0
218.00
1477. 30
127.30 33
303. 15
0.8 85
1.22 68
103.76 84
0.05 37
5646. 27
60.1 7
671. 09
0.951 9
227.00
1497. 40
128.32 79
313. 15
0.8 93
1.23 48
103.92 29
0.05 50
5695. 15
63.4 6
671. 89
0.944 3
230.00
1462. 20
129.47 96
323. 15
0.9 02
1.24 31
104.15 86
0.05 63
5741. 31
66.8 3
674. 03
0.935 9
233.00
1430. 50
CE
PT
ED
M
AN
US
CR
IP
T
313. 15
AC
N-ethyl aniline
110.48 67
20
ACCEPTED MANUSCRIPT
S x 1011/
Pi x 106 /
x 103 /
K-1
m2 N-1
m2 N-1
J mol-1 K-1
N m-2
kg m-3
86.32
284.62
96.86
286.89
98.68
110.31
290.38
97.15
117.39
292.29
95.05
127.61
93.27
136.90
297.44
91.32
148.05
300.19
89.30
160.88
303.16
87.92
170.57
305.25
86.46
181.93
307.54
85.22
192.41
309.52
84.20
201.87
311.19
82.65
217.84
313.80
82.01
225.05
314.90
80.95
238.13
316.77
CP /
DPGDME + methanol
u/
1.211 0 1.218 9 1.226 5 1.229 7 1.233 6 1.236 6 1.239 6 1.242 4 1.244 2 1.246 0 1.247 4 1.248 6 1.250 3 1.250 9 1.252 0
1100.8 4 1101.9 1 1108.1 2 1112.4 3 1119.1 6 1125.4 8 1133.0 2 1141.4 0 1147.4 4 1154.1 7 1160.0 4 1165.0 5 1172.9 2 1176.2 5 1181.9 6
Cv /
B/A
J mol-1 K-1
m s-1
US
0.795 3 0.810 3 0.825 3 0.831 8 0.840 0 0.846 4 0.853 0 0.859 5 0.863 8 0.868 3 0.872 0 0.875 0 0.879 4 0.881 3 0.884 3
AN
M 295.03
ED
103.7 6 101.6 4
PT
125.6 5 123.8 9 121.0 3 119.4 6 117.2 5 115.3 4 113.2 0 110.9 5 109.3 9 107.7 2 106.3 1 105.1 3 103.3 4 102.5 9 101.3 4
CE
1.20 0 1.19 2 1.17 9 1.17 1 1.16 0 1.15 1 1.14 0 1.12 8 1.12 0 1.11 1 1.10 4 1.09 7 1.08 8 1.08 4 1.07 7
AC
0.023 0 0.070 5 0.131 2 0.163 2 0.209 4 0.251 4 0.301 8 0.359 8 0.403 6 0.454 9 0.502 2 0.544 9 0.616 9 0.649 4 0.708 3
IP
T x 1011/
CR
x1
x 103/
T
Table 2: Calculated values of density ρ, ultrasonic velocity u, thermal expansivity α, isothermal compressibility T, adiabatic compressibility S, internal pressure Pi, heat capacity at constant pressure CP, heat capacity ratio , heat capacity at constant volume CV, Grünisen parameter and non-linearity parameter (B/A) of binary mixtures (DPGDME + methanol, 1-propanol, 1-pentanol, 1-heptanol) calculated through Flory theory at 298.15 K
0.590 0 0.616 0 0.644 6 0.657 9 0.675 3 0.689 6 0.705 0 0.720 6 0.731 2 0.742 5 0.752 0 0.759 8 0.771 7 0.776 6 0.784 9
71.28 79.46 89.93 95.46 103.44 110.71 119.44 129.49 137.10 146.01 154.24 161.68 174.23 179.91 190.21
7.32 6 7.33 1 7.33 5 7.33 7 7.33 9 7.34 1 7.34 2 7.34 3 7.34 4 7.34 5 7.34 5 7.34 6 7.34 7 7.34 7 7.34 7
21
80.15
248.73
318.18
99.41
79.31
261.05
319.72
98.70
78.71
270.47
320.82
97.90
78.04
281.83
322.08
97.43
77.64
288.89
322.83
97.22
77.47
292.17
323.16
86.05
154.49
296.31
85.91
161.47
297.78
85.70
167.27
299.03
85.16
178.03
84.61
187.14
303.36
84.25
192.67
304.55
0.886 5 0.888 9 0.890 6 0.892 4 0.893 5 0.894 0
1.252 7 1.253 5 1.254 0 1.254 6 1.254 9 1.255 0
0.812 3 0.819 7 0.825 4 0.834 9 0.842 0 0.846 1 0.849 5 0.855 2 0.861 2 0.865 1 0.868 7 0.873 7 0.876 3 0.880 0 0.883
1.191 4 1.197 0 1.201 3 1.208 5 1.214 0 1.217 1 1.219 8 1.224 2 1.228 8 1.231 9 1.234 6 1.238 5 1.240 5 1.243 4 1.245
AN
301.38
ED
PT
102.5 2 102.8 3 102.9 4 102.9 2 102.7 2 102.5 4 102.3 4 101.9 5 101.4 2 101.0 3 100.6 3 100.0 1
83.90
197.74
305.63
83.28
206.57
307.48
82.54
216.89
309.59
82.01
224.19
311.03
81.50
231.24
312.39
80.75
241.96
314.39
99.66
80.34
247.89
315.46
99.14 98.69
79.73 79.22
256.88 264.68
317.03 318.34
CE
1.01 9 1.02 7 1.03 2 1.04 0 1.04 5 1.04 7 1.04 9 1.05 1 1.05 3 1.05 4 1.05 4 1.05 5 1.05 4 1.05 4 1.05
AC
0.065 3 0.108 9 0.145 1 0.212 4 0.269 4 0.304 1 0.335 9 0.391 3 0.456 1 0.502 0 0.546 4 0.613 9 0.651 3 0.708 0 0.757
US
DPGDME + 1propanol
1186.2 9 1191.0 1 1194.4 1 1198.3 0 1200.6 0 1201.6 4
0.791 0 0.797 5 0.802 1 0.807 3 0.810 4 0.811 7
T
100.4 1
IP
1.07 2 1.06 6 1.06 2 1.05 8 1.05 5 1.05 4
CR
0.756 0 0.811 4 0.853 7 0.904 7 0.936 4 0.951 1
M
ACCEPTED MANUSCRIPT
1196.0 9 1191.6 8 1189.0 3 1185.9 4 1184.7 3 1184.4 6 1184.4 7 1184.9 6 1186.1 0 1187.2 0 1188.4 4 1190.5 6 1191.8 3 1193.8 4 1195.6
0.630 0 0.643 3 0.653 8 0.672 2 0.686 8 0.695 2 0.702 7 0.715 1 0.728 8 0.737 9 0.746 4 0.758 6 0.765 0 0.774 4 0.782
198.55 208.26 215.68 224.64 230.21 232.80
129.67 134.90 139.25 147.32 154.15 158.30 162.11 168.75 176.50 181.99 187.30 195.36 199.83 206.60 212.47
7.34 7 7.34 8 7.34 8 7.34 8 7.34 8 7.34 8
7.33 3 7.33 3 7.33 3 7.33 4 7.33 6 7.33 6 7.33 7 7.33 8 7.34 0 7.34 1 7.34 2 7.34 3 7.34 4 7.34 5 7.34
22
ACCEPTED MANUSCRIPT
78.69
273.01
319.70
97.88
78.33
278.69
320.61
97.35
77.75
288.34
322.09
96.91
77.28
296.38
323.28
96.76
77.13
299.07
323.67
94.62
82.04
209.78
283.00
95.24
82.28
212.65
284.37
96.27
82.61
218.46
287.16
96.92
82.73
223.05
289.36
97.57
82.74
229.04
97.80
82.70
231.74
293.49
98.16
82.54
237.05
295.98
98.35
82.36
241.18
297.91
7 1.248 1 1.249 6 1.252 0 1.254 0 1.254 6
0.812 8 0.816 4 0.823 4 0.828 7 0.835 2 0.838 1 0.843 5 0.847 6 0.850 5 0.853 0 0.857 5 0.861 6 0.863 9 0.869 4 0.873 2
1.153 4 1.157 4 1.165 4 1.171 5 1.179 3 1.182 6 1.189 1 1.194 0 1.197 6 1.200 6 1.206 3 1.211 3 1.214 3 1.221 2 1.226 1
AN
M 292.21
ED
PT
CE
0.89 8 0.90 8 0.92 7 0.94 1 0.95 6 0.96 3 0.97 4 0.98 3 0.98 8 0.99 3 1.00 1 1.00 8 1.01 2 1.02 0 1.02 5
98.45
82.20
244.23
299.32
98.51
82.05
246.88
300.53
98.57
81.71
251.92
302.83
98.56
81.37
256.56
304.91
98.53
81.14
259.36
306.15
98.40
80.58
265.97
309.05
98.25
80.13
270.86
311.16
AC
0.014 3 0.044 1 0.104 5 0.152 3 0.214 9 0.243 1 0.298 6 0.341 9 0.374 0 0.401 8 0.454 9 0.503 8 0.533 4 0.603 4 0.655 3
US
DPGDME + 1pentanol
6 1197.6 4 1199.0 2 1201.3 7 1203.3 4 1203.9 9
2 0.790 1 0.795 3 0.803 8 0.810 6 0.812 8
T
98.21
0 0.886 0 0.888 0 0.891 1 0.893 6 0.894 4
IP
4 1.05 3 1.05 3 1.05 2 1.05 1 1.05 0
CR
2 0.809 8 0.845 7 0.906 7 0.957 6 0.974 6
1224.6 3 1220.1 1 1212.5 1 1207.7 5 1202.9 1 1201.1 7 1198.4 3 1196.8 6 1195.9 7 1195.3 7 1194.6 2 1194.3 5 1194.3 5 1194.7 9 1195.4 6
0.572 8 0.581 3 0.598 4 0.611 7 0.628 7 0.636 3 0.651 0 0.662 3 0.670 6 0.677 7 0.691 1 0.703 2 0.710 4 0.727 3 0.739 5
218.74 223.02 230.29 236.36 238.38
181.88 183.72 187.45 190.39 194.23 195.95 199.34 201.98 203.93 205.62 208.84 211.80 213.58 217.80 220.91
5 7.34 6 7.34 7 7.34 7 7.34 8 7.34 8
7.36 2 7.35 8 7.35 1 7.34 7 7.34 4 7.34 2 7.34 1 7.34 0 7.33 9 7.33 9 7.33 9 7.33 9 7.33 9 7.34 0 7.34 1
23
ACCEPTED MANUSCRIPT
274.76
312.82
97.89
79.28
279.80
314.93
97.68
78.85
284.09
316.70
97.40
78.33
289.20
318.78
97.10
77.80
294.44
320.87
96.86
77.41
298.21
322.35
96.79
77.29
299.36
322.80
70.15
273.65
313.78
83.01
70.86
275.43
314.33
83.85
71.34
276.73
84.95
71.96
278.47
315.30
85.86
72.46
279.97
315.80
86.87
72.99
281.69
316.37
87.59
73.36
282.98
316.81
88.50
73.81
284.63
317.38
89.28
74.19
286.12
317.91
90.12
74.58
287.77
318.49
90.84
74.89
289.22
319.01
91.45
75.16
290.52
319.48
92.00 93.14
75.39 75.83
291.71 294.27
319.92 320.87
314.74
ED
PT
0.824 5 0.829 6 0.833 2 0.837 9 0.841 9 0.846 4 0.849 7 0.853 9 0.857 5 0.861 5 0.865 0 0.868 1 0.870 8 0.876
AN
81.81
CE
0.86 1 0.87 5 0.88 5 0.89 8 0.90 9 0.92 2 0.93 1 0.94 2 0.95 2 0.96 3 0.97 2 0.98 0 0.98 7 1.00
AC
0.060 9 0.116 4 0.157 0 0.211 7 0.259 0 0.313 2 0.353 9 0.406 0 0.453 3 0.505 6 0.552 0 0.593 5 0.631 6 0.713
M
DPGDME + 1heptanol
0.876 2 0.879 9 0.883 0 0.886 5 0.890 0 0.892 5 0.893 2
1.229 9 1.234 7 1.238 7 1.243 4 1.248 1 1.251 3 1.252 3
1196.1 8 1197.3 3 1198.4 7 1200.0 1 1201.7 6 1203.1 2 1203.5 4
0.749 2 0.761 5 0.771 8 0.784 0 0.796 2 0.804 9 0.807 6
1314.8 4 1304.3 1 1297.0 5 1287.8 4 1280.3 5 1272.2 9 1266.5 7 1259.6 5 1253.7 3 1247.5 6 1242.4 1 1238.0 3 1234.2 0 1226.5
0.647 3 0.657 0 0.664 2 0.673 9 0.682 2 0.691 8 0.699 1 0.708 4 0.716 8 0.726 2 0.734 5 0.742 0 0.748 9 0.763
T
79.77
IP
98.10
CR
1.02 9 1.03 4 1.03 8 1.04 1 1.04 5 1.04 7 1.04 8
US
0.696 8 0.750 5 0.796 2 0.850 9 0.907 1 0.947 6 0.960 0
1.166 2 1.171 4 1.175 3 1.180 5 1.185 0 1.190 1 1.194 0 1.199 0 1.203 5 1.208 4 1.212 8 1.216 8 1.220 4 1.228
223.40 226.61 229.33 232.59 235.92 238.31 239.05
234.66 235.12 235.45 235.89 236.27 236.69 237.00 237.40 237.75 238.13 238.47 238.76 239.03 239.59
7.34 2 7.34 3 7.34 4 7.34 5 7.34 6 7.34 7 7.34 8
7.37 6 7.36 9 7.36 5 7.36 0 7.35 7 7.35 3 7.35 1 7.34 9 7.34 7 7.34 6 7.34 5 7.34 4 7.34 4 7.34
24
ACCEPTED MANUSCRIPT
295.91
321.48
94.32
76.25
297.12
321.94
94.85
76.42
298.47
322.46
95.48
76.61
300.10
323.08
95.78
76.70
300.92
323.40
96.04
76.77
301.64
323.68
1 1221.9 5 1218.7 4 1215.3 6 1211.4 7 1209.6 1 1208.0 3
7 0.773 3 0.780 5 0.788 5 0.798 2 0.803 1 0.807 4
T
76.08
2 1.233 3 1.237 0 1.241 2 1.246 2 1.248 7 1.251 0
IP
93.83
6 0.880 3 0.883 0 0.885 9 0.889 3 0.891 1 0.892 6
239.94 240.19 240.48 240.81 240.98 241.12
4 7.34 4 7.34 4 7.34 5 7.34 6 7.34 7 7.34 7
CE
PT
ED
M
AN
US
CR
2 1.01 2 1.01 8 1.02 6 1.03 5 1.03 9 1.04 3
AC
7 0.766 6 0.805 9 0.849 5 0.902 6 0.929 3 0.952 7
25
ACCEPTED MANUSCRIPT Table 3: Percentage deviation values of density ρ, ultrasonic velocity u and adiabatic compressibility βs, of binary mixtures (DPGDME + methanol, 1-propanol, 1-pentanol, 1-heptanol) calculated through Flory theory at 298.15 K alongwith APD values. x1
u/ ms
S x 1011/ m2 N-1
x 10-3/ kg m-3
exp
exp
exp
% Deviation
CE AC
1.38 3.21 4.33 4.61 4.78 4.78 4.64 4.39 4.16 3.84 3.54 3.26 2.76 2.53 2.13 1.79 1.39 1.09 0.72 0.47 0.38 2.87
-3.35 -8.02 -11.03 -11.81 -12.28 -12.27 -11.90 -11.24 -10.61 -9.77 -8.98 -8.25 -6.98 -6.40 -5.44 -4.57 -3.60 -2.87 -2.00 -1.41 -1.20 7.33
0.52 1.19 1.60 1.70 1.77 1.77 1.72 1.65 1.57 1.48 1.38 1.30 1.14 1.07 0.97 0.85 0.73 0.64 0.53 0.47 0.44 1.17
0.8152 0.8240 0.8306 0.8411
1.23 1.74 2.05 2.41
-2.87 -4.12 -4.90 -5.78
0.36 0.52 0.63 0.74
AN
US
0.7994 0.8201 0.8387 0.8462 0.8551 0.8616 0.8680 0.8739 0.8776 0.8813 0.8842 0.8864 0.8896 0.8908 0.8930 0.8941 0.8954 0.8963 0.8972 0.8977 0.8979 APD
CR
ED
M
100.39 94.09 88.88 86.88 84.65 83.08 81.61 80.28 79.49 78.76 78.20 77.79 77.26 77.08 76.77 76.65 76.55 76.51 76.51 76.56 76.55
PT
1116.23 1138.44 1158.23 1166.24 1175.36 1181.96 1188.14 1193.87 1197.26 1200.27 1202.61 1204.27 1206.21 1206.79 1207.74 1207.93 1207.84 1207.56 1206.96 1206.22 1206.17
IP
DPGDME + methanol 0.0230 0.0705 0.1312 0.1632 0.2094 0.2514 0.3018 0.3598 0.4036 0.4549 0.5022 0.5449 0.6169 0.6494 0.7083 0.7560 0.8114 0.8537 0.9047 0.9364 0.9511
S
u
T
-1
DPGDME + 1-propanol 0.0653 0.1089 0.1451 0.2124
1210.93 1212.77 1213.96 1215.21
83.66 82.51 81.70 80.51
26
ACCEPTED MANUSCRIPT
CE
AC
CR
-6.19 -6.22 -6.20 -6.09 -5.85 -5.63 -5.27 -4.72 -4.37 -3.85 -3.29 -2.71 -2.28 -1.52 -0.89 -0.71
0.79 0.81 0.81 0.81 0.80 0.79 0.77 0.74 0.71 0.67 0.62 0.56 0.51 0.43 0.37 0.35
T
IP
2.57 2.58 2.56 2.52 2.41 2.31 2.16 1.92 1.77 1.54 1.30 1.05 0.87 0.54 0.26 0.17
US
0.8488 0.8529 0.8565 0.8622 0.8682 0.8720 0.8754 0.8802 0.8826 0.8859 0.8885 0.8910 0.8925 0.8950 0.8969 0.8976 APD
1.70
4.17
0.64
0.8132 0.8177 0.8260 0.8321 0.8395 0.8426 0.8486 0.8529 0.8560 0.8586 0.8634 0.8675 0.8699 0.8752 0.8789 0.8817 0.8850 0.8877 0.8908 0.8938 0.8959
3.91 4.08 4.27 4.33 4.32 4.29 4.18 4.06 3.94 3.85 3.62 3.42 3.27 2.88 2.53 2.27 1.95 1.65 1.25 0.76 0.46
-8.38 -8.85 -9.48 -9.71 -9.79 -9.75 -9.56 -9.32 -9.07 -8.88 -8.40 -7.94 -7.61 -6.74 -5.95 -5.35 -4.63 -3.94 -3.03 -1.97 -1.31
0.06 0.16 0.32 0.41 0.51 0.54 0.59 0.63 0.65 0.66 0.68 0.69 0.69 0.67 0.65 0.62 0.58 0.54 0.48 0.42 0.38
AN
75.70 75.59 75.46 75.41 75.36 75.35 75.34 75.34 75.37 75.36 75.39 75.38 75.40 75.49 75.63 75.71 75.77 75.86 76.03 76.29 76.41
PT
DPGDME + 1-pentanol 0.0143 1274.51 0.0441 1271.97 0.1045 1266.64 0.1523 1262.41 0.2149 1257.22 0.2431 1254.96 0.2986 1250.68 0.3419 1247.45 0.3740 1244.96 0.4018 1243.17 0.4549 1239.54 0.5038 1236.62 0.5334 1234.72 0.6034 1230.26 0.6553 1226.53 0.6968 1223.96 0.7505 1221.20 0.7962 1218.59 0.8509 1215.14 0.9071 1211.00 0.9476 1208.65
79.68 79.31 79.01 78.49 77.97 77.64 77.43 77.11 76.98 76.78 76.70 76.61 76.59 76.58 76.60 76.59
M
1215.98 1215.81 1215.64 1215.56 1215.44 1215.32 1214.62 1213.86 1213.24 1212.51 1211.39 1210.35 1209.51 1207.87 1206.44 1206.10
ED
0.2694 0.3041 0.3359 0.3913 0.4561 0.5020 0.5464 0.6139 0.6513 0.7080 0.7572 0.8098 0.8457 0.9067 0.9576 0.9746
27
ACCEPTED MANUSCRIPT 0.9600
1207.77
76.47
0.8965
0.35
-1.07
0.37
APD
2.98
6.85
0.51
0.8251 0.8307 0.8346 0.8397 0.8440 0.8487 0.8522 0.8565 0.8603 0.8644 0.8679 0.8710 0.8739 0.8797 0.8834 0.8861 0.8890 0.8926 0.8942 0.8956
0.22 0.41 0.45 0.59 0.68 0.73 0.77 0.86 0.88 0.89 0.89 0.89 0.90 0.79 0.74 0.64 0.55 0.38 0.28 0.22
-0.53 -0.96 -1.08 -1.40 -1.63 -1.76 -1.86 -2.04 -2.12 -2.14 -2.16 -2.16 -2.18 -1.95 -1.85 -1.65 -1.47 -1.13 -0.91 -0.78
0.07 0.13 0.17 0.21 0.24 0.27 0.29 0.30 0.32 0.33 0.34 0.34 0.35 0.35 0.35 0.35 0.35 0.36 0.34 0.34
1.59
0.29
IP
CR
US
AN M
ED
69.79 70.19 70.58 70.96 71.30 71.72 72.02 72.33 72.65 73.01 73.31 73.57 73.78 74.38 74.70 75.01 75.31 75.76 76.01 76.17
APD
0.64
CE
PT
1317.80 1309.65 1302.97 1295.47 1289.17 1281.70 1276.44 1270.52 1264.90 1258.76 1253.61 1249.18 1245.39 1236.22 1231.03 1226.59 1222.12 1216.11 1213.01 1210.68
AC
0.0609 0.1164 0.1570 0.2117 0.2590 0.3132 0.3539 0.4060 0.4533 0.5056 0.5520 0.5935 0.6316 0.7137 0.7666 0.8059 0.8495 0.9026 0.9293 0.9527
T
DPGDME + 1-heptanol
28
ACCEPTED MANUSCRIPT Table 4: Calculated values of thermal expansivity α, isothermal compressibility T, internal pressure Pi, heat capacity ratio , Grünisen parameter and heat capacity at constant pressure CP of binary mixtures (DPGDME + methanol, 1-propanol, 1pentanol, 1-heptanol) calculated through empirical relations at 298.15 K kg m-3
-2
CP / J mol-1 K-1
Nm
exp
1.295 1.271 1.251 1.243 1.234 1.227 1.221 1.215 1.212 1.208 1.206 1.204 1.202 1.201 1.199 1.199 1.198 1.198 1.198 1.198 1.198
147.01 136.62 128.08 124.84 121.22 118.66 116.28 114.12 112.84 111.65 110.73 110.05 109.18 108.87 108.35 108.14 107.94 107.85 107.81 107.87 107.84
0.8152 0.8240 0.8306 0.8411
1.235 1.229 1.226 1.220
121.71 119.61 118.12 115.92
IP
0.7994 0.8201 0.8387 0.8462 0.8551 0.8616 0.8680 0.8739 0.8776 0.8813 0.8842 0.8864 0.8896 0.8908 0.8930 0.8941 0.8954 0.8963 0.8972 0.8977 0.8979
PT
100.39 94.09 88.88 86.88 84.65 83.08 81.61 80.28 79.49 78.76 78.20 77.79 77.26 77.08 76.77 76.65 76.55 76.51 76.51 76.56 76.55
CE
1116.23 1138.44 1158.23 1166.24 1175.36 1181.96 1188.14 1193.87 1197.26 1200.27 1202.61 1204.27 1206.21 1206.79 1207.74 1207.93 1207.84 1207.56 1206.96 1206.22 1206.17
m N
-1
262.47 277.32 291.06 296.72 303.34 308.23 312.95 317.37 320.07 322.63 324.64 326.14 328.10 328.78 329.97 330.45 330.91 331.12 331.21 331.09 331.15
1.4644 1.4520 1.4411 1.4369 1.4319 1.4283 1.4248 1.4215 1.4195 1.4176 1.4160 1.4148 1.4131 1.4125 1.4113 1.4108 1.4101 1.4096 1.4091 1.4089 1.4087
1.2032 1.1928 1.1830 1.1791 1.1743 1.1707 1.1670 1.1636 1.1613 1.1589 1.1570 1.1554 1.1530 1.1520 1.1502 1.1492 1.1477 1.1467 1.1455 1.1446 1.1443
46.97 56.93 69.66 76.38 86.06 94.84 105.34 117.42 126.51 137.10 146.87 155.65 170.37 176.99 189.00 198.59 209.70 218.14 228.26 234.46 237.40
302.42 306.39 309.28 313.69
1.4549 1.4497 1.4458 1.4398
1.2355 1.2267 1.2201 1.2092
97.85 104.99 110.91 121.85
AC
0.0230 0.0705 0.1312 0.1632 0.2094 0.2514 0.3018 0.3598 0.4036 0.4549 0.5022 0.5449 0.6169 0.6494 0.7083 0.7560 0.8114 0.8537 0.9047 0.9364 0.9511
2
Pi x 10-6/
T
exp exp DPGDME + methanol
K
-1
T x 1011/
CR
m N
-1
x 103/
US
ms
2
x 10-3/
AN
-1
S x 1011/
M
u/
ED
x1
DPGDME + 1-propanol 0.0653 0.1089 0.1451 0.2124
1210.93 1212.77 1213.96 1215.21
83.66 82.51 81.70 80.51
29
ACCEPTED MANUSCRIPT
0.8132 0.8177 0.8260 0.8321 0.8395 0.8426 0.8486 0.8529 0.8560 0.8586 0.8634 0.8675 0.8699 0.8752 0.8789 0.8817 0.8850 0.8877 0.8908 0.8938 0.8959
1.205 1.204 1.202 1.201 1.200 1.200 1.199 1.198 1.198 1.198 1.197 1.197 1.197 1.196 1.197 1.197 1.196 1.196 1.197 1.197 1.198
ED
PT
CE
75.70 75.59 75.46 75.41 75.36 75.35 75.34 75.34 75.37 75.36 75.39 75.38 75.40 75.49 75.63 75.71 75.77 75.86 76.03 76.29 76.41
AC
1274.51 1271.97 1266.64 1262.41 1257.22 1254.96 1250.68 1247.45 1244.96 1243.17 1239.54 1236.62 1234.72 1230.26 1226.53 1223.96 1221.20 1218.59 1215.14 1211.00 1208.65
M
DPGDME + 1-pentanol 0.0143 0.0441 0.1045 0.1523 0.2149 0.2431 0.2986 0.3419 0.3740 0.4018 0.4549 0.5038 0.5334 0.6034 0.6553 0.6968 0.7505 0.7962 0.8509 0.9071 0.9476
114.38 113.67 113.06 112.09 111.08 110.45 110.00 109.35 109.07 108.65 108.43 108.21 108.11 108.01 107.95 107.91
316.84 318.33 319.60 321.69 323.87 325.26 326.25 327.71 328.35 329.30 329.80 330.30 330.53 330.76 330.89 330.99
1.4354 1.4331 1.4311 1.4279 1.4247 1.4226 1.4207 1.4182 1.4169 1.4151 1.4137 1.4124 1.4116 1.4103 1.4093 1.4089
1.2013 1.1967 1.1927 1.1866 1.1801 1.1760 1.1720 1.1666 1.1638 1.1599 1.1567 1.1535 1.1515 1.1482 1.1455 1.1447
131.11 136.69 141.80 150.73 161.18 168.58 175.66 186.46 192.40 201.44 209.17 217.45 223.06 232.54 240.42 243.08
110.22 109.86 109.30 108.96 108.57 108.42 108.16 107.97 107.88 107.76 107.60 107.42 107.35 107.25 107.31 107.31 107.25 107.27 107.39 107.65 107.73
325.76 326.56 327.83 328.58 329.47 329.81 330.42 330.84 331.04 331.34 331.71 332.12 332.27 332.50 332.38 332.37 332.51 332.46 332.18 331.59 331.41
1.4560 1.4534 1.4485 1.4450 1.4407 1.4389 1.4356 1.4331 1.4314 1.4299 1.4273 1.4250 1.4237 1.4208 1.4188 1.4174 1.4156 1.4141 1.4125 1.4109 1.4098
1.2698 1.2635 1.2514 1.2425 1.2317 1.2271 1.2185 1.2121 1.2076 1.2038 1.1970 1.1911 1.1876 1.1797 1.1740 1.1699 1.1650 1.1609 1.1561 1.1510 1.1477
137.47 140.90 147.78 153.19 160.27 163.45 169.71 174.59 178.17 181.32 187.28 192.81 196.12 203.92 209.58 214.16 220.15 225.18 231.10 237.03 241.41
T
1.216 1.214 1.212 1.210 1.207 1.205 1.204 1.202 1.201 1.200 1.200 1.199 1.199 1.198 1.198 1.198
IP
0.8488 0.8529 0.8565 0.8622 0.8682 0.8720 0.8754 0.8802 0.8826 0.8859 0.8885 0.8910 0.8925 0.8950 0.8969 0.8976
CR
79.68 79.31 79.01 78.49 77.97 77.64 77.43 77.11 76.98 76.78 76.70 76.61 76.59 76.58 76.60 76.59
US
1215.98 1215.81 1215.64 1215.56 1215.44 1215.32 1214.62 1213.86 1213.24 1212.51 1211.39 1210.35 1209.51 1207.87 1206.44 1206.10
AN
0.2694 0.3041 0.3359 0.3913 0.4561 0.5020 0.5464 0.6139 0.6513 0.7080 0.7572 0.8098 0.8457 0.9067 0.9576 0.9746
30
ACCEPTED MANUSCRIPT 0.9600 1207.77
76.47
0.8965
1.198
107.78
331.28
1.4095 1.1466
242.72
0.8251 0.8307 0.8346 0.8397 0.8440 0.8487 0.8522 0.8565 0.8603 0.8644 0.8679 0.8710 0.8739 0.8797 0.8834 0.8861 0.8890 0.8926 0.8942 0.8956
1.179 1.180 1.181 1.182 1.183 1.184 1.185 1.186 1.187 1.188 1.189 1.189 1.190 1.191 1.192 1.193 1.194 1.196 1.196 1.197
101.12 101.48 101.88 102.23 102.53 102.96 103.25 103.52 103.82 104.17 104.46 104.70 104.88 105.50 105.80 106.14 106.45 106.94 107.23 107.40
347.51 346.60 345.56 344.69 343.92 342.85 342.13 341.47 340.72 339.86 339.16 338.57 338.12 336.64 335.92 335.12 334.38 333.24 332.57 332.16
1.4490 1.4458 1.4435 1.4406 1.4382 1.4355 1.4335 1.4311 1.4290 1.4267 1.4248 1.4231 1.4216 1.4184 1.4164 1.4150 1.4134 1.4116 1.4107 1.4099
190.72 194.15 196.51 199.88 202.78 206.03 208.49 211.75 214.64 217.81 220.64 223.19 225.56 230.44 233.67 235.94 238.53 241.55 243.02 244.39
IP
CR
US
AN
M
ED
69.79 70.19 70.58 70.96 71.30 71.72 72.02 72.33 72.65 73.01 73.31 73.57 73.78 74.38 74.70 75.01 75.31 75.76 76.01 76.17
1.2774 1.2672 1.2595 1.2501 1.2422 1.2334 1.2270 1.2194 1.2125 1.2051 1.1988 1.1933 1.1884 1.1778 1.1714 1.1664 1.1613 1.1547 1.1515 1.1489
CE
PT
1317.80 1309.65 1302.97 1295.47 1289.17 1281.70 1276.44 1270.52 1264.90 1258.76 1253.61 1249.18 1245.39 1236.22 1231.03 1226.59 1222.12 1216.11 1213.01 1210.68
AC
0.0609 0.1164 0.1570 0.2117 0.2590 0.3132 0.3539 0.4060 0.4533 0.5056 0.5520 0.5935 0.6316 0.7137 0.7666 0.8059 0.8495 0.9026 0.9293 0.9527
T
DPGDME + 1-heptanol
31
ACCEPTED MANUSCRIPT Table 5: Calculated values of density ρ, ultrasonic velocity u, thermal expansivity α, isothermal compressibility T, adiabatic compressibility S, internal pressure Pi, heat capacity at constant pressure CP, heat capacity ratio , heat capacity at constant volume CV, Grünisen parameter and non-linearity parameter (B/A) of binary mixtures (Oxolane + aniline, N-methyl aniline, N-ethyl aniline) calculated through Flory theory at different temperatures. S x 1011/
CP /
K-1
m2 N-1
m2 N-1
J mol-1 K-1
Pi x 106 /
x 103 /
N m-2
kg m-3
u/
T
T x 1011/
m s-1
Cv /
B/A
J mol-1 K-1
CR
Oxolane+anili ne
IP
x1
x 103/
0.873
50.93
0.1803
0.898
53.91
0.2735
0.925
57.21
0.3573
0.951
60.50
0.4556
0.985
64.83
0.5638
1.025
70.26
0.6708
1.070
76.48
0.8169
1.141
86.70
0.8812
1.176
91.98
1.0000
1.248
103.32
50.74
39.7 3
CE
AC
166.93
476.49
160.39
460.39
153.24
442.36
146.21
424.19
136.72
398.85
132.58
387.50
125.00
366.19
529.48
1.004 9
532.84
185.10
519.42
178.80
504.82
172.54
AN
0.0870
191.00
M
48.42
490.01
ED
0.851
1.012 8 1.003 2 0.992 6 0.981 5 0.971 2 0.958 6 0.944 0 0.929 0 0.907 1 0.896 9 0.877 3
PT
0.0000
37.8 5 39.5 8 41.6 1 43.8 3 46.0 2 48.8 6 52.3 6 56.2 8 62.5 4 65.6 9 72.2 7
US
At T=303.15 K
1.279 3 1.286 8 1.295 6 1.305 2 1.314 6 1.326 8 1.342 0 1.359 0 1.386 3 1.400 2 1.429 6
1615.1 5 1586.9 1 1556.0 4 1524.5 9 1495.7 6 1461.2 5 1422.3 7 1383.0 0 1327.6 9 1302.7 9 1255.9 0
1.082 5 1.084 0 1.086 1 1.088 6 1.091 3 1.095 1 1.100 2 1.106 4 1.117 2 1.122 9 1.135 6
1.277 2
1582.6 0
1.031 6
87.43
7.35 7 7.35 5 7.35 4 7.35 6 7.35 9 7.36 5 7.37 5 7.39 0 7.42 0 7.43 8 7.47 9
151.90
7.35 5
149.31 143.85 138.01 132.19 126.98 120.88 114.19 107.59 98.62 94.68
At T=313.15 K
0.0000
0.858
194.00
32
0.906
56.69
0.2735
0.934
60.28
0.3573
0.961
63.87
0.4556
0.995
68.59
0.5638
1.037
74.56
0.6708
1.084
81.41
0.8169
1.157
92.73
0.8812
1.193
98.61
1.0000
1.269
111.30
188.08
515.53
181.77
500.35
175.50
484.98
169.89
470.96
163.34
454.28
156.19
435.61
149.17
416.84
139.69
390.68
135.56
378.97
128.00
357.04
0.0870
0.889
55.68
0.1803
0.915
59.19
0.2735
0.943
63.11
0.3573
0.971
67.04
0.4556
1.007
72.23
0.5638
1.050
78.82
0.6708
1.098
86.42
0.8169
1.174
99.07
0.8812
1.212
105.67
1.0000
1.291
120.03
AC
197.00
530.74
ED
52.73
190.98
515.76
184.56
499.50
178.18
483.06
172.48
468.09
165.83
450.32
158.57
430.48
151.45
410.58
141.84
382.95
137.65
370.62
130.00
347.58
PT
0.866
CE
0.0000
M
At T=323.15 K 41.2 5 43.3 4 45.7 9 48.5 0 51.2 0 54.7 1 59.1 1 64.1 0 72.2 0 76.3 5 85.1 5
0.995 2 0.984 3 0.973 1 0.962 6 0.949 8 0.935 1 0.919 8 0.897 5 0.887 2 0.867 2
1.284 3 1.292 5 1.301 5 1.310 4 1.321 8 1.335 9 1.351 7 1.377 1 1.390 0 1.417 1
1553.6 0 1521.8 9 1489.5 5 1459.8 8 1424.3 3 1384.2 4 1343.5 7 1286.3 1 1260.4 8 1211.7 0
1.031 3 1.031 2 1.031 3 1.031 8 1.032 6 1.034 2 1.036 4 1.040 9 1.043 5 1.049 6
0.998 4 0.988 4 0.977 2 0.965 6 0.954 8 0.941 7 0.926 5 0.910 7 0.887 8 0.877 2 0.856 6
1558.2 0 1527.9 7 1494.9 1 1461.1 8 1430.2 4 1393.1 6 1351.3 2 1308.8 4 1249.0 0 1221.9 7 1170.9 0
0.994 0 0.991 9 0.989 8 0.987 8 0.986 1 0.984 3 0.982 7 0.981 6 0.980 8 0.980 9 0.981 8
T
0.1803
41.6 3 43.8 6 46.3 2 48.7 4 51.9 0 55.8 1 60.2 3 67.3 4 70.9 4 78.5 4
IP
53.47
CR
0.880
AN
0.0870
US
ACCEPTED MANUSCRIPT
1.278 2 1.284 9 1.292 6 1.301 1 1.309 5 1.320 2 1.333 4 1.348 3 1.372 1 1.384 2 1.409 6
146.45 140.63 134.84 129.65 123.58 116.92 110.36 101.44 97.53 90.32
154.13 148.64 142.78 136.95 131.72 125.61 118.92 112.33 103.37 99.45 92.23
7.35 5 7.35 5 7.35 8 7.36 2 7.36 9 7.38 1 7.39 7 7.42 9 7.44 7 7.49 0
7.35 4 7.35 5 7.35 7 7.36 1 7.36 6 7.37 5 7.38 8 7.40 6 7.44 0 7.45 9 7.50 4
33
ACCEPTED MANUSCRIPT
Oxolane + N-methyl aniline At T=303.15 K
58.04
0.2813
0.892
60.99
0.3782
0.923
64.38
0.4714
0.957
68.09
0.5746
0.998
72.80
0.6956
1.055
79.34
0.7823
1.101
84.89
0.8882
1.166
92.91
1.0000
1.248
103.32
CE
At T=313.15 K
0.834
57.05
0.0831
0.854
59.27
0.1864
0.882
62.34
0.2813
0.910
65.51
0.3782
0.941
69.16
0.4714
0.975
73.15
AC
0.0000
194.57
451.10
186.26
443.14
177.82
434.59
169.74
425.91
160.85
415.75
150.51
403.00
143.16
45.8 0 47.3 0 49.3 6 51.4 5 53.8 2 56.3 7
393.26
134.27
380.59
125.00
366.19
214.15
457.63
206.79
451.22
197.67
442.87
189.34
434.80
180.87
426.13
172.78
417.35
0.967 7 0.962 0 0.954 4 0.946 9 0.938 7 0.930 2
1548.3 0 1528.2 4 1502.3 9 1477.6 9 1451.4 9 1425.2 8 1395.0 7 1357.9 4 1330.1 6 1294.8 5 1255.9 0
0.993 4 0.999 6 1.008 1 1.016 9 1.026 8 1.037 6 1.051 2 1.069 7 1.085 2 1.107 4 1.135 6
1502.1 5 1482.4 6 1457.0 6 1432.7 5 1406.9 0 1381.0 1
0.941 3 0.946 1 0.952 7 0.959 4 0.967 1 0.975 3
T
0.864
459.33
1.245 7 1.253 4 1.264 0 1.274 8 1.287 3 1.300 9 1.318 1 1.342 1 1.362 3 1.391 6 1.429 6
IP
0.1864
203.66
0.978 2 0.972 4 0.964 8 0.957 3 0.949 0 0.940 5 0.930 4 0.917 3 0.907 0 0.893 3 0.877 3
CR
55.19
465.65
US
0.836
211.00
AN
0.0831
42.6 4 44.0 3 45.9 2 47.8 4 50.0 1 52.3 4 55.2 3 59.1 2 62.3 1 66.7 7 72.2 7
M
53.12
ED
0.816
PT
0.0000
1.245 8 1.253 0 1.263 0 1.273 3 1.285 0 1.297 8
169.38 162.49 153.94 146.11 138.13 130.48 122.03 112.15 105.09 96.49 87.43
171.91 165.03 156.51 148.70 140.76 133.14
7.36 8 7.36 3 7.35 8 7.35 5 7.35 5 7.35 7 7.36 4 7.38 0 7.39 8 7.43 0 7.47 9
7.36 0 7.35 7 7.35 4 7.35 4 7.35 5 7.36 0
34
ACCEPTED MANUSCRIPT
78.23
0.6956
1.074
85.30
0.7823
1.121
91.30
0.8882
1.186
99.99
1.0000
1.269
111.30
59.5 4 63.8 4 67.3 8 72.3 5 78.5 4
163.87
407.07
153.52
394.19
146.16
384.35
137.27
371.56
128.00
357.04
215.46
455.93
208.17
448.98
199.15
439.92
190.89
431.17
182.50
421.78
0.920 1 0.907 0 0.896 8 0.883 2 0.867 2
1.313 9 1.336 2 1.355 0 1.382 1 1.417 1
1351.0 7 1314.1 6 1286.4 2 1251.0 1 1211.7 0
0.985 7 0.999 8 1.011 6 1.028 4 1.049 6
T
1.017
124.72 114.89 107.87 99.32 90.32
7.36 9 7.38 8 7.40 7 7.44 0 7.49 0
IP
0.5746
0.1864
0.870
63.94
0.2813
0.901
67.50
0.3782
0.935
71.62
0.4714
0.971
76.14
0.5746
1.017
81.92
0.6956
1.079
90.02
0.7823
1.130
96.91
0.8882
1.201
106.94
1.0000
1.291
120.03
165.63
401.15
155.35
387.26
148.05
376.69
139.21
363.01
130.00
347.58
445.89
0.951 9
174.47
412.26
1.239 0 1.246 2 1.256 2 1.266 4 1.278 1 1.290 9 1.307 0 1.329 3 1.348 0 1.374 9 1.409 6
1488.5 9 1466.9 1 1438.9 1 1412.1 2 1383.6 5 1355.1 7 1322.3 1 1281.9 2 1251.6 9 1213.2 8 1170.9 0
0.902 8 0.906 1 0.910 6 0.915 3 0.920 7 0.926 7 0.934 2 0.944 5 0.953 3 0.965 8 0.981 8
1.284 2
1497.3 9
1.059 3
US
60.53
AN
0.841
0.962 9 0.956 9 0.948 8 0.940 9 0.932 2 0.923 2 0.912 4 0.898 6 0.887 8 0.873 4 0.856 6
M
0.0831
46.8 6 48.5 7 50.9 0 53.3 0 56.0 3 58.9 8 62.6 8 67.7 2 71.8 9 77.7 8 85.1 5
ED
58.07
PT
0.819
92.23
7.35 9 7.35 5 7.35 3 7.35 2 7.35 5 7.36 0 7.37 1 7.39 1 7.41 3 7.44 9 7.50 4
176.76
7.35 5
173.90 167.04 158.54 150.74 142.79 135.16 126.73 116.87 109.83 101.25
AC
CE
0.0000
CR
At T=323.15 K
Oxolane+ N- ethyl aniline At T=303.15 K
0.0000
0.885
60.17
46.8 5
227.00
35
0.923
64.32
0.2813
0.946
66.82
0.3782
0.971
69.70
0.4714
0.999
72.84
0.5746
1.034
76.86
0.6956
1.081
82.46
0.7823
1.120
87.23
0.8882
1.176
94.19
1.0000
1.248
103.32
218.32
441.24
207.57
435.10
197.74
429.08
187.76
422.51
178.19
415.74
167.66
407.68
155.39
397.37
146.66
389.33
136.07
378.65
125.00
366.19
0.0831
0.910
65.37
0.1864
0.932
68.00
0.2813
0.955
70.73
0.3782
0.982
73.89
0.4714
1.010
77.35
0.5746
1.046
81.78
0.6956
1.095
87.98
0.7823
1.136
93.29
0.8882
1.194
101.05
1.0000
1.269
111.30
AC
230.00
440.63
ED
63.46
221.31
435.74
210.54
429.29
200.70
422.96
190.71
416.06
181.14
408.96
170.61
400.51
158.34
389.70
149.62
381.27
139.05
370.08
128.00
357.04
PT
0.893
CE
0.0000
M
At T=313.15 K 49.5 3 50.7 9 52.5 1 54.2 9 56.3 1 58.5 0 61.2 6 65.0 5 68.2 2 72.7 5 78.5 4
0.948 1 0.942 9 0.937 7 0.932 0 0.926 0 0.918 6 0.908 8 0.901 0 0.890 3 0.877 3
1.290 3 1.298 6 1.307 2 1.317 0 1.327 7 1.341 2 1.360 1 1.376 1 1.399 3 1.429 6
1482.6 2 1463.2 4 1444.3 5 1423.8 8 1402.9 9 1378.3 2 1347.1 5 1323.1 6 1291.7 7 1255.9 0
1.062 5 1.066 9 1.071 3 1.076 4 1.082 0 1.089 0 1.098 9 1.107 3 1.119 5 1.135 6
0.944 3 0.940 3 0.935 0 0.929 7 0.923 8 0.917 5 0.909 9 0.899 8 0.891 7 0.880 6 0.867 2
1462.2 0 1447.0 3 1427.0 9 1407.6 3 1386.5 3 1364.9 5 1339.4 3 1307.0 8 1282.1 1 1249.3 4 1211.7 0
1.005 9 1.007 8 1.010 2 1.012 7 1.015 6 1.018 7 1.022 7 1.028 3 1.033 1 1.040 2 1.049 6
T
0.1864
47.9 8 49.5 3 51.1 2 52.9 2 54.8 7 57.3 0 60.6 3 63.3 9 67.3 1 72.2 7
IP
61.91
CR
0.901
AN
0.0831
US
ACCEPTED MANUSCRIPT
1.281 3 1.287 0 1.294 9 1.303 0 1.312 2 1.322 3 1.335 0 1.352 6 1.367 5 1.389 0 1.417 1
169.21 159.85 151.28 142.56 134.21 125.00 114.25 106.58 97.25 87.43
179.51 171.95 162.59 154.03 145.33 136.99 127.80 117.07 109.41 100.11 90.32
7.35 5 7.35 5 7.35 7 7.36 1 7.36 7 7.37 6 7.39 3 7.40 9 7.43 7 7.47 9
7.35 4 7.35 5 7.35 7 7.36 0 7.36 5 7.37 1 7.38 2 7.40 0 7.41 8 7.44 7 7.49 0
36
ACCEPTED MANUSCRIPT
At T=323.15 K
0.942
72.07
0.2813
0.966
75.05
0.3782
0.993
78.51
0.4714
1.022
82.31
0.5746
1.059
87.19
0.6956
1.110
94.04
0.7823
1.152
99.92
0.8882
1.213
108.56
1.0000
1.291
120.03
429.19
213.32
422.49
203.38
415.91
193.28
408.75
183.61
401.38
172.97
392.61
160.60
381.40
151.80
372.66
141.13
361.07
130.00
347.58
0.954 6 0.955 7 0.957 2 0.958 7 0.960 4 0.962 3 0.964 7 0.968 2 0.971 2 0.975 7 0.981 8
T
0.1864
224.21
IP
69.19
1426.5 0 1411.1 0 1390.8 5 1371.0 7 1349.6 1 1327.6 4 1301.6 3 1268.6 2 1243.1 0 1209.5 4 1170.9 0
CR
0.919
434.28
1.278 3 1.283 8 1.291 4 1.299 3 1.308 2 1.317 9 1.330 2 1.347 2 1.361 6 1.382 4 1.409 6
US
0.0831
233.00
AN
67.12
M
0.902
0.935 9 0.931 8 0.926 4 0.920 9 0.914 8 0.908 4 0.900 5 0.890 2 0.881 9 0.870 4 0.856 6
182.28 174.64 165.18 156.53 147.74 139.32 130.03 119.20 111.48 102.09 92.23
7.35 4 7.35 5 7.35 8 7.36 2 7.36 8 7.37 6 7.38 8 7.40 8 7.42 7 7.45 8 7.50 4
AC
CE
PT
ED
0.0000
52.5 1 53.9 0 55.8 0 57.7 7 60.0 1 62.4 6 65.5 4 69.8 0 73.3 8 78.5 3 85.1 5
37
ACCEPTED MANUSCRIPT Table 6: Percentage deviation values of density ρ, ultrasonic velocity u and adiabatic compressibility βs, of binary mixtures (Oxolane + aniline, Nmethyl aniline, N-ethyl aniline) calculated through Flory theory at different temperatures alongwith APD values. x1
u/
S x 1011/
exp
exp
1615.00 1592.00 1565.00 1535.00 1509.00 1476.00 1438.00 1393.00 1334.00 1306.00 1256.00
37.86 39.28 41.04 43.10 45.02 47.61 50.88 55.12 61.74 65.24 72.26
1.0128 1.0044 0.9948 0.9848 0.9754 0.9641 0.9505 0.9350 0.9101 0.8987 0.8773
-0.01 0.32 0.57 0.68 0.88 1.00 1.09 0.72 0.47 0.25 0.01
0.02 -0.76 -1.38 -1.71 -2.22 -2.62 -2.91 -2.11 -1.29 -0.69 -0.02
0.00 0.12 0.23 0.34 0.43 0.57 0.68 0.65 0.33 0.20 0.00
APD
0.66
1.74
0.39
1.0049 0.9975 0.9882 0.9785 0.9694 0.9578 0.9439 0.9287 0.9040 0.8922
0.03 0.47 0.60 0.70 0.89 1.09 1.27 1.14 0.98 0.51
-0.05 -1.19 -1.60 -1.97 -2.52 -3.07 -3.55 -3.30 -2.72 -1.61
0.00 0.23 0.39 0.55 0.70 0.83 0.93 0.96 0.72 0.56
T
u
AN
M
ED
PT CE 1583.00 1561.00 1531.00 1500.00 1473.00 1440.00 1402.00 1359.00 1299.00 1267.00
AC
0.0000 0.0870 0.1803 0.2735 0.3573 0.4556 0.5638 0.6708 0.8169 0.8812
39.71 41.14 43.17 45.42 47.54 50.35 53.90 58.30 65.56 69.82
CR
US
At T=303.15 K
At T=313.15 K
exp
kg m-3
Oxolane+aniline
0.0000 0.0870 0.1803 0.2735 0.3573 0.4556 0.5638 0.6708 0.8169 0.8812 1.0000
S
m N
IP
-1
% Deviation
-1
ms
2
x 10-3/
38
ACCEPTED MANUSCRIPT 1.0000
1212.00
78.50
0.8672
0.02
-0.05
0.00
APD
0.85
2.39
0.65
0.9984 0.9915 0.9816 0.9718 0.9624 0.9516 0.9379 0.9226 0.8985 0.8850 0.8566
-0.01 0.59 1.00 1.14 1.36 1.68 2.01 1.89 1.50 1.21 0.01
0.03 -1.51 -2.49 -2.97 -3.60 -4.54 -5.42 -5.24 -4.31 -3.39 -0.02
0.00 0.32 0.45 0.63 0.79 1.04 1.22 1.29 1.19 0.88 0.00
1.38
3.72
0.87
0.9782 0.9731 0.9660 0.9591 0.9515 0.9435 0.9332 0.9194 0.9082 0.8934 0.8773
-0.02 -0.02 -0.03 0.02 0.10 0.19 0.07 -0.07 -0.09 -0.14 0.01
0.04 -0.04 -0.07 -0.23 -0.47 -0.70 -0.44 -0.09 0.04 0.28 -0.02
0.00 0.07 0.12 0.19 0.26 0.31 0.30 0.23 0.13 0.01 0.00
APD
0.08
0.26
0.18
0.9698
0.65
-1.54
0.22
APD
42.66 44.01 45.89 47.73 49.78 51.98 54.99 59.07 62.34 66.95 72.26
AC
CE
PT
1548.00 1528.00 1502.00 1478.00 1453.00 1428.00 1396.00 1357.00 1329.00 1293.00 1256.00
ED
At T=303.15 K 0.0000 0.0831 0.1864 0.2813 0.3782 0.4714 0.5746 0.6956 0.7823 0.8882 1.0000
IP
M
Oxolane + N-methyl aniline
CR
41.26 42.69 44.68 47.11 49.42 52.34 56.07 60.91 69.22 73.84 85.13
US
1558.00 1537.00 1510.00 1478.00 1450.00 1417.00 1379.00 1334.00 1268.00 1237.00 1171.00
AN
0.0000 0.0870 0.1803 0.2735 0.3573 0.4556 0.5638 0.6708 0.8169 0.8812 1.0000
T
At T=323.15 K
At T=313.15 K 0.0000
1512.00
45.10
39
46.49 48.55 50.55 52.83 55.30 58.56 63.11 66.81 72.03 78.50
0.9649 0.9583 0.9514 0.9440 0.9360 0.9260 0.9122 0.9008 0.8857 0.8672
0.71 0.61 0.64 0.64 0.65 0.51 0.29 0.20 0.08 0.02
APD
0.48
0.30 0.41 0.48 0.56 0.62 0.64 0.56 0.44 0.28 0.00
1.46
0.48
-0.78 -0.54 -0.41 -0.36 -0.19 -0.09 -0.02 0.01 0.02 -0.02 0.01
1.75 1.10 0.71 0.46 0.00 -0.28 -0.44 -0.46 -0.42 -0.23 -0.02
-0.20 -0.03 0.11 0.27 0.39 0.45 0.49 0.44 0.37 0.27 0.00
APD
0.19
0.46
0.31
0.9519 0.9478 0.9438 0.9395 0.9345 0.9293 0.9219 0.9131
-0.03 -0.04 0.39 0.53 0.64 0.78 0.63 0.94
0.05 0.11 -0.88 -1.25 -1.56 -1.94 -1.63 -2.40
0.00 -0.03 0.09 0.19 0.27 0.36 0.36 0.47
AN
0.9610 0.9566 0.9499 0.9434 0.9358 0.9274 0.9169 0.9026 0.8911 0.8758 0.8566
M
47.70 49.11 51.27 53.54 56.03 58.82 62.40 67.41 71.59 77.60 85.13
ED
1477.00 1459.00 1433.00 1407.00 1381.00 1354.00 1322.00 1282.00 1252.00 1213.00 1171.00
CE
PT
0.0000 0.0831 0.1864 0.2813 0.3782 0.4714 0.5746 0.6956 0.7823 0.8882 1.0000
US
At T=323.15 K
-1.74 -1.65 -1.78 -1.87 -1.94 -1.68 -1.16 -0.85 -0.44 -0.05
IP
1493.00 1466.00 1442.00 1416.00 1390.00 1358.00 1318.00 1289.00 1252.00 1212.00
CR
0.0831 0.1864 0.2813 0.3782 0.4714 0.5746 0.6956 0.7823 0.8882 1.0000
T
ACCEPTED MANUSCRIPT
Oxolane+ N- ethyl aniline
AC
At T=303.15 K
0.0000 0.0831 0.1864 0.2813 0.3782 0.4714 0.5746 0.6956
1497.00 1482.00 1469.00 1452.00 1433.00 1414.00 1387.00 1360.00
46.88 48.04 49.10 50.49 52.11 53.82 56.38 59.21
40
ACCEPTED MANUSCRIPT 1326.00 1291.00 1256.00
63.05 67.35 72.26
0.9021 0.8908 0.8773
0.21 -0.06 0.01
-0.55 0.06 -0.02
0.12 0.06 0.00
APD
0.47
1.15
0.22
AC
CE
PT
ED
M
AN
US
CR
IP
T
0.7823 0.8882 1.0000
41
ACCEPTED MANUSCRIPT At T=313.15 K -0.01 0.20 0.55 0.73 0.89 1.02 0.86 1.20 0.38 0.13 0.02
APD
0.66
0.9359 0.9328 0.9291 0.9252 0.9206 0.9157 0.9081 0.8995 0.8877 0.8742 0.8571 APD
M
52.18 53.17 54.60 56.10 58.13 60.28 63.49 67.22 72.10 77.49 85.09
CE
PT
ED
1431.00 1420.00 1404.00 1388.00 1367.00 1346.00 1317.00 1286.00 1250.00 1215.00 1171.00
0.00 0.05 0.18 0.29 0.41 0.55 0.58 0.73 0.41 0.24 0.00
1.73
0.38
0.31 0.63 0.94 1.22 1.27 1.36 1.17 1.35 0.55 0.45 0.01 0.99
-0.63 -1.37 -2.20 -2.96 -3.24 -3.61 -3.23 -3.83 -1.78 -1.34 -0.08 2.62
0.00 0.10 0.29 0.46 0.63 0.80 0.83 1.03 0.66 0.43 0.06 0.58
AC
0.0000 0.0831 0.1864 0.2813 0.3782 0.4714 0.5746 0.6956 0.7823 0.8882 1.0000
AN
At T=323.15 K
0.03 -0.46 -1.29 -1.77 -2.23 -2.63 -2.33 -3.20 -1.18 -0.51 -0.05
T
0.9443 0.9408 0.9367 0.9324 0.9276 0.9226 0.9152 0.9064 0.8954 0.8828 0.8672
IP
49.54 50.56 51.84 53.34 55.08 57.00 59.87 63.03 67.43 72.38 78.50
CR
1462.00 1450.00 1435.00 1418.00 1399.00 1379.00 1351.00 1323.00 1287.00 1251.00 1212.00
US
0.0000 0.0831 0.1864 0.2813 0.3782 0.4714 0.5746 0.6956 0.7823 0.8882 1.0000
Table 7: Calculated values of thermal expansivity α, isothermal compressibility T, internal pressure Pi, heat capacity ratio , Grünisen parameter and heat capacity at constant pressure CP of binary mixtures (Oxolane + aniline, N-methyl aniline, N-ethyl aniline) calculated through empirical relations at different temperatures. x1
m s-1
S x 1011/ m2 N-1
exp
exp
u/
x 10-3/
x 103/
kg m-3
K-1
T x 1011/ m2 N-1
Pi x 10-6/ N m-2
CP / J mol-1 K-1
exp
42
ACCEPTED MANUSCRIPT
1.0128 1.0044 0.9948 0.9848 0.9754 0.9641 0.9505 0.9350 0.9101 0.8987 0.8773
0.993 1.003 1.015 1.028 1.040 1.056 1.075 1.098 1.132 1.149 1.181
39.71 41.14 43.17 45.42 47.54 50.35 53.90 58.30 65.56 69.82 78.50
1.0049 0.9975 0.9882 0.9785 0.9694 0.9578 0.9439 0.9287 0.9040 0.8922 0.8672
1.002 1.011 1.024 1.038 1.051 1.067 1.087 1.110 1.146 1.165 1.203
52.72 54.75 57.64 60.84 63.88 67.92 73.06 79.46 90.16 96.44 109.46
1.008 1.018 1.030 1.045 1.058 1.074 1.094 1.119 1.158
54.14 56.14 58.95 62.36 65.64 69.77 75.11 82.04 94.07
0.0000 0.0870 0.1803 0.2735 0.3573 0.4556 0.5638 0.6708 0.8169
AC
At T=323.15 K
1558.00 1537.00 1510.00 1478.00 1450.00 1417.00 1379.00 1334.00 1268.00
41.26 42.69 44.68 47.11 49.42 52.34 56.07 60.91 69.22
M
ED
PT
1583.00 1561.00 1531.00 1500.00 1473.00 1440.00 1402.00 1359.00 1299.00 1267.00 1212.00
CE
0.0000 0.0870 0.1803 0.2735 0.3573 0.4556 0.5638 0.6708 0.8169 0.8812 1.0000
AN
At T=313.15 K
0.9984 0.9915 0.9816 0.9718 0.9624 0.9516 0.9379 0.9226 0.8985
50.85 52.92 55.47 58.44 61.25 65.02 69.81 76.04 85.96 91.20 101.83
591.67 574.28 554.38 533.10 514.65 492.10 466.54 437.56 399.14 381.79 351.51
1.3434 1.3471 1.3514 1.3560 1.3603 1.3656 1.3721 1.3796 1.3921 1.3980 1.4092
1.1409 1.1419 1.1426 1.1424 1.1429 1.1425 1.1422 1.1407 1.1426 1.1427 1.1431
211.37 203.19 194.29 185.25 177.42 168.20 158.12 147.59 133.91 127.94 117.52
594.89 578.24 556.42 534.31 515.11 491.94 465.74 437.32 397.81 378.20 343.93
1.3276 1.3309 1.3350 1.3394 1.3436 1.3490 1.3556 1.3630 1.3753 1.3813 1.3944
1.0443 1.0448 1.0444 1.0439 1.0440 1.0443 1.0447 1.0442 1.0461 1.0451 1.0475
223.87 215.34 205.38 195.54 187.02 177.08 166.21 155.15 140.37 133.51 121.61
601.80 585.60 564.54 541.23 520.84 497.51 470.76 440.60 397.64
1.3120 1.3150 1.3195 1.3239 1.3282 1.3332 1.3396 1.3470 1.3589
0.9575 0.9580 0.9596 0.9593 0.9597 0.9596 0.9603 0.9597 0.9594
238.10 229.11 218.67 207.87 198.49 187.86 176.15 163.96 147.39
T
37.86 39.28 41.04 43.10 45.02 47.61 50.88 55.12 61.74 65.24 72.26
IP
1615.00 1592.00 1565.00 1535.00 1509.00 1476.00 1438.00 1393.00 1334.00 1306.00 1256.00
US
0.0000 0.0870 0.1803 0.2735 0.3573 0.4556 0.5638 0.6708 0.8169 0.8812 1.0000
CR
Oxolane+aniline At T=303.15 K
43
ACCEPTED MANUSCRIPT 0.8812 1.0000
1237.00 1171.00
73.84 85.13
0.8850 0.8566
1.178 1.224
100.86 117.55
377.39 336.44
1.3658 1.3807
0.9608 0.9625
139.98 125.76
42.66 44.01 45.89 47.73 49.78 51.98 54.99 59.07 62.34 66.95 72.26
0.9782 0.9731 0.9660 0.9591 0.9515 0.9435 0.9332 0.9194 0.9082 0.8934 0.8773
1.026 1.034 1.046 1.057 1.069 1.081 1.097 1.119 1.135 1.157 1.181
57.98 59.92 62.62 65.29 68.28 71.49 75.91 81.95 86.85 93.78 101.83
536.27 523.17 506.15 490.54 474.36 458.28 438.13 413.69 396.07 373.89 351.51
1.1545 1.1525 1.1504 1.1486 1.1471 1.1458 1.1439 1.1425 1.1425 1.1426 1.1431
228.16 218.42 206.36 195.54 184.69 174.37 162.68 149.24 139.90 128.70 117.52
45.10 46.49 48.55 50.55 52.83 55.30 58.56 63.11 66.81 72.03 78.50
0.9698 0.9649 0.9583 0.9514 0.9440 0.9360 0.9260 0.9122 0.9008 0.8857 0.8672
47.70 49.11 51.27 53.54 56.03 58.82
0.9610 0.9566 0.9499 0.9434 0.9358 0.9274
1.037 1.046 1.058 1.069 1.082 1.095 1.111 1.134 1.151 1.175 1.203
60.59 62.57 65.49 68.34 71.62 75.17 79.89 86.53 91.99 99.74 109.46
535.92 523.20 505.59 489.67 472.78 455.92 435.56 410.26 391.83 368.80 343.93
1.3434 1.3457 1.3488 1.3520 1.3555 1.3594 1.3643 1.3711 1.3769 1.3847 1.3944
1.0573 1.0558 1.0531 1.0517 1.0498 1.0484 1.0466 1.0452 1.0453 1.0455 1.0475
240.31 230.11 217.16 205.63 193.95 182.83 170.42 155.99 145.93 133.91 121.61
1.049 1.057 1.069 1.081 1.094 1.109
63.38 65.36 68.39 71.59 75.12 79.09
534.67 522.53 505.06 488.01 470.73 452.89
1.3288 1.3308 1.3340 1.3370 1.3406 1.3447
0.9700 0.9686 0.9667 0.9644 0.9631 0.9621
252.78 242.16 228.51 215.97 203.50 191.48
ED
PT
CE
1512.00 1493.00 1466.00 1442.00 1416.00 1390.00 1358.00 1318.00 1289.00 1252.00 1212.00
AC
0.0000 0.0831 0.1864 0.2813 0.3782 0.4714 0.5746 0.6956 0.7823 0.8882 1.0000
M
At T=313.15 K
IP
T
1.3590 1.3614 1.3647 1.3680 1.3716 1.3755 1.3805 1.3874 1.3931 1.4007 1.4092
CR
1548.00 1528.00 1502.00 1478.00 1453.00 1428.00 1396.00 1357.00 1329.00 1293.00 1256.00
AN
0.0000 0.0831 0.1864 0.2813 0.3782 0.4714 0.5746 0.6956 0.7823 0.8882 1.0000
US
Oxolane + N-methyl aniline At T=303.15 K
At T=323.15 K 0.0000 0.0831 0.1864 0.2813 0.3782 0.4714
1477.00 1459.00 1433.00 1407.00 1381.00 1354.00
44
ACCEPTED MANUSCRIPT 0.5746 0.6956 0.7823 0.8882 1.0000
1322.00 1282.00 1252.00 1213.00 1171.00
62.40 67.41 71.59 77.60 85.13
0.9169 0.9026 0.8911 0.8758 0.8566
1.126 1.150 1.168 1.194 1.224
84.23 91.47 97.56 106.36 117.55
431.98 406.09 386.93 362.65 336.44
0.9611 0.9606 0.9606 0.9605 0.9625
178.22 162.84 152.03 139.04 125.76
46.88 48.04 49.10 50.49 52.11 53.82 56.38 59.21 63.05 67.35 72.26
0.9519 0.9478 0.9438 0.9395 0.9345 0.9293 0.9219 0.9131 0.9021 0.8908 0.8773
1.053 1.060 1.066 1.074 1.083 1.092 1.105 1.120 1.139 1.159 1.181
64.29 65.98 67.53 69.54 71.91 74.40 78.16 82.34 88.03 94.44 101.83
496.28 486.73 478.31 467.89 456.30 444.76 428.64 412.22 392.07 371.94 351.51
1.3714 1.3734 1.3753 1.3774 1.3799 1.3825 1.3861 1.3906 1.3962 1.4021 1.4092
1.1639 1.1625 1.1618 1.1597 1.1575 1.1555 1.1523 1.1505 1.1478 1.1445 1.1431
245.62 234.41 221.77 209.57 197.09 185.25 171.59 156.72 144.43 130.96 117.52
49.54 50.56 51.84 53.34 55.08 57.00 59.87 63.03 67.43 72.38 78.50
0.9443 0.9408 0.9367 0.9324 0.9276 0.9226 0.9152 0.9064 0.8954 0.8828 0.8672
1.064 1.070 1.077 1.085 1.094 1.104 1.119 1.134 1.155 1.177 1.203
67.15 68.61 70.46 72.60 75.10 77.86 81.99 86.61 93.02 100.33 109.46
496.16 488.25 478.60 467.96 456.23 444.07 427.16 409.97 388.58 367.15 343.93
1.3554 1.3571 1.3591 1.3611 1.3635 1.3660 1.3696 1.3740 1.3796 1.3862 1.3944
1.0664 1.0657 1.0645 1.0627 1.0606 1.0582 1.0551 1.0532 1.0500 1.0481 1.0475
258.48 247.18 233.42 220.47 207.26 194.58 179.95 164.07 150.79 136.33 121.61
52.18 53.17 54.60
0.9359 0.9328 0.9291
1.075 1.081 1.088
69.95 71.35 73.38
496.57 489.23 479.08
1.3406 1.3421 1.3439
0.9803 0.9797 0.9779
272.16 260.42 245.72
PT
CE
1462.00 1450.00 1435.00 1418.00 1399.00 1379.00 1351.00 1323.00 1287.00 1251.00 1212.00
AC
0.0000 0.0831 0.1864 0.2813 0.3782 0.4714 0.5746 0.6956 0.7823 0.8882 1.0000
ED
At T=313.15 K
IP
CR
US
AN
1497.00 1482.00 1469.00 1452.00 1433.00 1414.00 1387.00 1360.00 1326.00 1291.00 1256.00
M
0.0000 0.0831 0.1864 0.2813 0.3782 0.4714 0.5746 0.6956 0.7823 0.8882 1.0000
T
Oxolane+ N- ethyl aniline At T=303.15 K
1.3498 1.3569 1.3627 1.3706 1.3807
At T=323.15 K 0.0000 0.0831 0.1864
1431.00 1420.00 1404.00
45
ACCEPTED MANUSCRIPT 56.10 58.13 60.28 63.49 67.22 72.10 77.49 85.09
0.9252 0.9206 0.9157 0.9081 0.8995 0.8877 0.8742 0.8571
1.096 1.106 1.117 1.132 1.149 1.171 1.194 1.224
75.50 78.36 81.40 85.97 91.32 98.37 106.27 117.46
468.94 456.06 443.22 425.41 406.59 384.53 362.89 336.64
1.3457 1.3480 1.3504 1.3541 1.3584 1.3644 1.3714 1.3805
0.9763 0.9735 0.9710 0.9681 0.9651 0.9632 0.9629 0.9620
232.20 217.88 204.29 188.60 171.42 157.25 142.00 125.80
CE
PT
ED
M
AN
US
CR
IP
T
1388.00 1367.00 1346.00 1317.00 1286.00 1250.00 1215.00 1171.00
AC
0.2813 0.3782 0.4714 0.5746 0.6956 0.7823 0.8882 1.0000
46
ACCEPTED MANUSCRIPT Highlights
Seven binary solutions at different temperatures are studied. Flory’s Statistical Theory (FST) has been applied to the seven binary liquid mixtures. Empirical relations are used for comparison with FST in the aforesaid systems.
AC
CE
PT
ED
M
AN
US
CR
IP
T
Various important thermodynamic properties are also calculated.
47