Thermodynamic properties of methyl-substituted indans

Thermodynamic properties of methyl-substituted indans

A-177 J Chem. Thermodynamics 1981, 13, 213-228 Thermodynamic methyl-substituted properties indans of a, b S. H. LEE-BECHTOLD, H. L. FINKE, J. F. M...

814KB Sizes 3 Downloads 40 Views

A-177 J Chem. Thermodynamics 1981, 13, 213-228

Thermodynamic methyl-substituted

properties indans

of a, b

S. H. LEE-BECHTOLD, H. L. FINKE, J. F. MESSERLY, and D. W. SCOTT Bartlesville Energy Technology Center, Department Bartlesville. Oklahoma 74003, U.S.A.

qf Energy,

(Received 6 August 1979; in revised form 21 April 1980) The low-temperature thermal properties of three dimethylindans (1,l; 4,6; and 4,7) and two tetramethylindans (1,1,4,6 and 1,1,4,7) were measured by adiabatic calorimetry from 10 to about 4COK. Properties measured included the heat capacity of the condensed phases at saturation pressure, enthalpy of fusion, triple-point temperature, and purity of sample. The 1,1,4,6-tetramethylindan exhibited a lambda transition with a peak at 191 K. The 1,1,4,7 sample formed a glass when cooled rapidly from the liquid. The glass was studied from LO K to the transition temperature (about 16OK). The results were used to calculate thermodynamic functions at selected temperature for the condensed phases -(Gs(r)-H"(0)}/T, {H,(T)-H"(O)}/T, {H,(T)-H~(O)J,S,.C,, and the thermodynamic functions for the ideal gas.

1. Introduction This laboratory, in cooperation with the American Petroleum Institute Research Project 62, studied the thermodynamic properties of selected hydrocarbons. Among these were five methyl-substituted indans : l,l-Dimethylindan:

4,GDimethylindan:

4,7-Dimethylindan :

CH, 1,1,4,7-Tetramethylindan : W

CH, CH,

Cfi, 1,1,4,6-Tetramethylindan :

CH,

CH, C%

a The work upon which this research was based was jointly sponsored by the American Petroleum Institute and the Bureau of Mines, U.S. Department of Interior, and was conducted at the Bartlesville Energy Technology Center, now part of the Department of Energy. b Contribution No. 238 from the thermodynamics research laboratory of the Bartlesville Energy Technology Center.

214

S. H. LEE-BECHTOLD

ETAL.

This report presents the results of studies of their low-temperature calorimetric properties which will contribute to a better understanding of the influence of structural and steric factors on thermodynamic properties of condensed-ring aromatic compounds and their alkyl substituents.

2. Experimental MATERIALS The five methyl-substituted indans were obtained from the American Petroleum Institute Research Project 58 at the Carnegie-Mellon University, A. .I. Streiff, Director. The samples were received in break-off-tip ampoules and transferred directly to the calorimetric vessel by vacuum distillation. At no time in handling of the material or in the experiments were the samples in contact with any gas other than dry helium. The purities of the samples as determined from melting-temperature studies are given in table 1. APPARATUS

AND METHOD

The measurements were performed in an aneroid adiabatic calorimetric system similar in principle to that previously described.‘1*2’ The sample (about 0.27 to 0.35 mol) was contained in a sealed copper vessel equipped with horizontal perforated heat-distributing disks of copper. A measured quantity of electrical energy was supplied to the calorimeter, and at all times the temperatures of the three sections of the adiabatic sheld and of the tempering ring of wires were controlled within 1 mK of the temperature of the sample container. This was accomplished with separate electronic controls, which operated automatically, with proportional, rate, and reset action. A small pressure of helium (about 6.7 kPa) was left in the calorimeter to promote thermal equilibration at low temperatures. The 1975 International Atomic Weightsc3’ and the 1963 values of the fundamental constants’4’ were used. The measurements required for the determination of the resistance of the thermometer and for the electrical energy were made with a White double potentiometer in two different modes. In mode 1 the unbalance of the potentiometer was amplified with a Beckman Model 14 stabilized-gain amplifier and read on a digital millivoltmeter, and in mode 2 the unbalance was read with a semi-automatic data-logging system incorporating a Beckman Dextir Data System and a Control Data G-15 computer. The measurements of electrical potential and resistance were in terms of standards that had been compared to standard resistors and standard cells calibrated at the National Bureau of Standards. Time measurements were with a quartz crystal oscillator-counter whose frequency was checked against Radio Station WWV, NBS, Boulder, Colorado. Temperatures were measured with a platinum resistance thermometer calibrated from 90 to 400 K in terms of the IPTS-48, text revision of 1960,(5i and from 11 to 90 K in terms of the provisional scale of the National Bureau of StandardsJ6’ and later converted to the IPTS-68.“’ Celsius temperatures were converted to thermodynamic temperatures by adding 273.15 K.‘8’

PROPERTIES

OF METHYL-SUBSTITUTED

INDANS

215

TABLE 1. Melting-temperaturesummaries: T(F)is theequilibrium temperatureobservedwhen thefractionF of the sample was liquid ; values of Tcalc are from a straight line drawn through a plot of T(F) against l/F: .4 = AH,$R7;& B = (l/T,, - AC,,/ZAH,,), and x9 = FA{ Tr, - T(F)}, where T,, is the melting temperature, .~H,,istheenthalpyoffusion,ACf,,isthedifferencebetweenheatcapacitiesofthesolidandtheIiquidat ?&and Kp the triple-point temperature obtained by extrapolating the plot of T(F) against l/F F

l/F

A = 0.02791

1 ,l-Dimethylindan K ml ; B = 0.002344

0.09912 0.25034 0.50152 0.70101 0.89995 l.OOOOO Pure

10.0890 3.9946 1.9939 1.4265 1.1122 1.0000 0

0.12136 0.25974 0.49003 0.68594 0.88119 l.OOOOO Pure

A = O.O2356K-‘; 8.2399 3.8500 2.0407 1.4579 1.1348 1.0000 0

0.10910 0.24855 0.50891 0.69527 0.87289 l.OOOOO Pure

0.12137 0.25653 0.50707 0.69742 0.88152 I .ooooO Pure

227.0309 227.2312 227.2887 227.3069 221.3228

4,6-Dimethylindan B = 0002329K-‘;

13.2153 4.6764 2.1631 1.4993 1.1474 1.0000 0

A = 0.02531

K -’ ; .x; = 0.00086

X: = 0.00008 256.4194 256.4319 256.4418 256.4438 256.4448

227.0515 227.2312 227.2887 227.3069 227.3162 227.3195 227.3490

256.4194 256.4351 256.4416 256.4436 256.4448 256.4453 256.4489

4,7-Dimethylindan B=O.O02359K-‘;.~;=0.00016

A=O.O2188K-‘; 0.07567 0.21384 0.46231 0.66699 0.87156 1.Of0OO Pure

TL= l/K

1 .1,4,6Tetramethylindan K-l; B = 0.002516K~‘;

9.1659 4.0233 1.9650 1.4383 1.1456 l.WOO 0 1 ,1,4,7-Tetramethylindan A=O.O2250K-‘;B=O.O01744K~‘; 8.2393 3.8982 1.9721 1.4339 1.1344 l.OOW 0

272.5524 272.5992 272.6182 272.6227 272.6261

s; = 0.00063 273.3660 273.4420 273.4788 273.4901 273.4922

u;=O.O033 244.5763 245.0364 245.2657 245.3403 245.3877

272.5524 272.5992 272.6182 272.6227 272.6261 272.6272 272.6348

273.3523 273.4420 273.4779 273.4871 273.4922 273.4948 273.5122

244.3533 244.9853 245.2657 245.3442 245.3877 245.4073 245.5529

216

S. H. LEE-BECHTOLD

ETAL.

3. Results HEAT

CAPACITY

The observed heat capacities C,, at saturation pressure, for the samples studied are given in table 2. The temperature increments used in the experiments were small enough so that correction for non-linear variation of C, with T was unnecessary. The increments employed were approximately 10 per cent of the thermodynamic temperature below 50 K, 5 to 8 K from 50 to 150 K, and 8 to 10 K above 150 K, except in the phase-change regions where smaller temperature increments may be used. Precision uncertainty of the heat-capacity measurements was better than 0.1 per TABLE

2. Molar

heat capacities

of the condensed

phases

c, IK-’ l,l-Dimethylindan. 11.58 12.28 12.58 13.55 13.83 14.84 15.05 16.23 16.26 17.93 18.04 20.06 20.16

5.02 5.74 6.06 7.26 7.60 8.90 9.12 10.75 10.79 12.95 13.14 15.81 15.93

22.40 22.51 24.78 24.92 27.08 30.28 34.23 38.33 42.53 47.01 51.27 51.89 60.44

236.02 238.80 243.33 247.52 257.54

220.92 22 1.98 223.79 225.56 230.04

266.01 267.69 276.03 286.86 298.44

11.94 12.77 12.92 14.08 14.16 15.60 15.62 17.27 17.36 19.18 19.37 21.05 21.29 22.76

6.82 8.06 8.28 9.87 9.99 11.92 11.99 14.41 14.50 17.36 17.52 19.96 20.28 22.47

23.70 26.71 30.06 33.45 37.13 41.36 46.21 51.51 53.94 58.64 64.46 70.69 71.33 83.97

18.83 18.96 21.86 21.98 24.56 28.06 32.06 35.90 39.49 43.12 46.45 47.01 53.45 1 ,l-Dimethylindan, 233.94 234.72 238.54 243.88 249.65 4,6-Dimethylindan, 23.80 27.98 32.40 36.67 40.78 45.03 49.91 54.84 57.02 60.97 65.70 70.46 75.28 19.73

molmi

C, 1H14, (crystals) 66.68 73.69 80.89 87.91 94.32 95.46 101.30 105.75 107.69 113.34 121.39 129.46 137.15 C, ,H,,, 303.87 306.59 317.34 328.26 339.03 C, 1H,4, 90.26 91.94 98.27 105.05 108.85 115.21 122.38 129.94 137.66 145.55 154.02 162.22 170.72 179.47

57.91 62.78 67.80 72.44 16.66 71.29 81.25 84.08 85.40 89.30 94.12 99.29 104.26

138.24 151.37 163.74 175.44 178.76 187.41 196.22 205.25 205.70 214.38 215.28 222.10

104.89 113.30 121.14’ 128.75’ 130.98’ 136.85‘ 143.19’ 149.54’ 150.96’ 159.27’ 159.98’ 179.26’

252.22 253.73 259.33 264.91 270.74

349.58 359.02 369.22 379.22 388.81

216.23 281.46 287.11 292.58 297.97

(crystals) 84.09 85.09 89.02 93.26 95.48 99.05 103.12 107.40 111.69 115.89 120.60 125.17 129.84 134.86

187.98 196.29 205.24 209.40 213.99 216.03 219.28 222.91 227.34 235.98 241.24 244.47

139.62 144.43 149.86” 151.74d 155.18“ 156.35d 158.46’ 160.56“ 163.09’ 170.15d 172.89’ 175.06*

(liquid)

h

PROPERTIES

OF METHYL-SUBSTITUTED TABLE

T” K

C, J K-’

mol-’

b

T’

C,

K

J K-r

mot-’

4,6Dimethylindan, 261.96 268.40 276.10

225.36 227.70 230.91

283.35 292.09 304.52

234.15 238.14 243.94

12.89 13.03 14.28 14.51 15.62 16.18 17.19 18.03 19.00 19.99 21.17 22.14 23.86 26.60

5.38 5.52 7.00 7.28 8.62 9.28 10.64 11.83 13.06 14.46 16.04 17.51 19.90 23.76

29.49 33.07 37.11 41.29 46.09 51.07 51.56 56.39 61.52 66.90 72.51 78.32 83.10 88.82

285.80 292.23 300.61

235.51 238.50 242.58

308.86 327.36 336.72

12.47 13.06 13.82 14.56 15.34 16.25 17.17 18.07 19.47 20.05 22.02 22.36 24.97 27.75 30.65

7.38 8.36 9.37 10.47 11.67 12.97 14.37 15.76 17.90 18.81 21.84 22.29 26.09 30.01 33.83

33.58 37.13 41.41 46.35 51.99 55.15 60.62 66.29 72.40 78.62 84.88 90.01 95.65 101.78 107.96

286.15 294.15 302.02

291.80 297.28 301.86

303.75 310.81 313.57

4,7-Dimethylmdan, 27.76 32.64 37.99 43.35 49.17 54.98 55.47 60.56 65.68 70.71 75.64 80.38 84.06 88.29

4,7-Dimethylindan, 246.62 255.82 260.37

1,1,4,6-Tetramethylindan, 37.67 42.05 47.28 53.02 59.42 62.72 68.63 74.59 80.80 87.17 93.34 98.15 103.22 108.79 114.10

1,1,4,6-Tetramethylindan. 303.22 307.36 309.34

217

INDANS

2-conntinued b

T”

C,

K

J K-r

C,, H,,.

mol-’

T” K

J K

c, h r mol I’

(liquid)

318.27 329.04 337.78

250.78 256.15 260.60

C, r H r4. (crystals) 94.76 92.27 98.23 94.51 100.67 96.08 104.58 98.67 111.03 102.44 117.56 106.17 124.20 109.86 130.61 113.36 136.70 116.54 143.34 120.04 150.38 123.60 156.09 126.57 163.30 130.21 171.10 134.32

C,,H,,, 348.21 360.88 373.91

C,3H,0, 114.23 120.55 126.94 133.30 139.82 146.42 153.09 155.33 159.56 162.90 163.11 170.33 171.38 177.85 180.08

C,3H,s, 320.49 323.94 344.64



347.87 359.25 370.46

265.87 271.71 271.70

179.42 188.25 198.20 205.20 212.70 221.21 229.65 238.24 246.61 255.17 262.34 267.33

138.66 143.27 148.56 152.33 156.51 161.44 166.14’ 171.42’ 176.73’ 182.33’ 187.60’ 192.33’

(liquid) 266.17 272.49 278.85

384.88 393.87

283.82 288.40

185.35 188.11 190.66 194.46 196.43 198.36 202.22 205.23 213.88 222.30 230.48 238.90 248.17 257.13 265.46

183.37 191.66 202.57 186.96 192.66 187.88 190.50 192.91 199.56 206.27 212.59 219.14’ 227.24/ 235.33’ 244.24’

355.82 366.82 377.61

335.90 342.67 349.05

(crystals) 119.49 124.76 129.99 135.16 140.27 145.34 150.52 152.21 155.41 158.31 158.27 164.20 164.77 170.06 171.74

(liquid) 313.50 315.85 328.81

218

S. H. LEE-BECHTOLD TABLE

T" K

C, JK-‘molJi

'

T" K

C, JK-rmolt’

1 ,1,4,7-Tetramethylindan. 11.67 12.08 13.16 13.32 14.70 14.85 16.41 16.55 18.34 18.43 20.53 20.58 22.79 22.87 25.32

6.11 6.65 8.34 8.61 10.82 10.94 13.39 13.59 16.54 16.65 20.23 20.33 23.80 24.03 27.96

28.38 32.02 36.16 40.49 45.51 51.25 52.57 58.34 64.97 72.23 79.42 86.10 89.59 91.75 97.51

170.14 178.48 182.24 231.81 236.67

240.24 242.79 244.63 265.97 268.17

243.04 248.22 252.92 260.99 270.59

11.72 12.96 14.43 16.18 18.16 20.25 22.54 24.95 27.72

8.63 10.44 12.59 15.10 18.02 21.13 24.28 27.61 31.28

34.07 38.03 42.22 46.56 51.01 55.49 60.55 66.30 72.36

32.54 37.58 42.97 48.09 53.72 59.76 60.84 66.58 72.91 79.89 86.69 93.48 96.81 98.78 104.61

1,1,4,7-Tetramethylindan. 271.56 274.33 276.65 281.04 286.45

1,1,4,7-Tetramethylindan, 38.82 43.88 48.73 53.36 58.68 63.42 68.99 74.97 81.57

E7AL.

2m -r~wuinuet/ ’

T” K

J Km’

c-3 mol-’

h

‘I- “ K

c, JK-‘mol

h ’

C, ,H, s, (crystals) 103.58 104.86 109.15 115.10 121.36 126.67 127.94 133.88 134.84 141.46 148.36 155.78 162.95 169.91 174.52 C,,H,,, 280.02 288.96 298.81 309.20 319.39 C,,H,s, 78.80 83.17 87.94 93.46 99.21 104.90 105.06 112.13 119.51

110.80 112.03 116.66 122.32 128.57 133.77 134.47 139.75 140.81 146.42 151.83 157.67 162.75 167.72 170.64

177.38 182.08 185.07 192.82 195.71 200.90 202.01 208.49 215.10 221.24 227.83 234.41

172.69 175.66 177.47 y 182.77 p 184.84” 187.45” 189.564 194.29” 200.15g 200.3’4 212.11 4 224.24’

323.93 336.07 349.17 363.46 376.44

318.24 325.65 333.49 342.20 349.76

126.85 134.14 141.75 148.97 155.89 162.89

134.46 141.02 148.06 155.44 165.77 232.85

(liquid) 291.83 296.92 302.82 309.25 315.19 (glass) 88.25 92.66 97.51 103.01 108.28 114.05 114.15 120.85 127.70

’ T is the mean temperature of each heat-capacity determination. b C, is the heat capacity of each compound under its own vapor pressure, uncorrected for premelting. c.d.r.f.g The temperature increments are inorder of increasing T/K: ’ 12.008, 11.384,8.820, 8.487,9.155. 9.367, 9.823, 8.929, 9.368, 6.553; “8.886, 6.747, 8.666, 6.572, 8.223, 9.235, 7.941, 9.409, 9.887, 7.649; ‘8.728, 8.524, 8.306, 8.911. 5.540, 5.417;‘9.458, 9.169. 8.888, 8.639; ‘7.916. 7.668, 6.384, 8.652, 6.267. 6.742, 6.558, 6.419, 6.836, 6.517.

cent, except in the phase-change region. Above 30 K the accuracy in C, was better than 0.2 per cent. The values of heat capacity determined in the phase-change region were of lower precision because of the slow equilibration and uncertainties caused by impurities. The results reported in table 2 are not corrected for any effects of premelting caused by impurities, but to permit the calculation, pertinent AT values are included as a footnote. The heat-capacity curves of the five samples studied in the liquid state are of

PROPERTIES

OF METHYL-SUBSTITUTED

219

INDANS

normal shape and may be represented by empirical equations in the thermodynamic temperature. The constants for the equations with their standard deviations, the temperature ranges TI to T, of applicability, and the deviations of C, are given in table 3. TABLE 3. Equations for the molar heat capacities of the liquids: C,/J K-t mol-’ = A(K/T)*+B+C(T/K)+D(T;K)’ C,/J K-’ molF’ = A(K/T)‘+B+C(T/K), or C,/J Km’ mol-’ = B+C(T,‘K) Compound

_.

1,l,-Dimethylindan 4,6-Dimethylindan 4,7-Dimethylindan 1,I ,4.6-Tetramethylindan 1,1,4.7-Tetramethylindan

10-4A

1orc

B

131.66k2.1 381.17f49

1040

55.134kO.73 602.02+ 1.6 -82.188+30 1119.3 +130 95.028+0.41 491.16* 1.2 112.79kO.62 626.49k1.9 94.001*1.1 662.46k2.8

!i;.;;i,;.;

-‘6.0;92+;.6

,“,z,;

,“,GT

6”,:, __---

e,’

261.96 285.80 286.15 170.14

370.46 393.87 377.61 376.44

0.049 0.11 0.16 0.19

0.092 0.24 0.31 0.52

’ 7; and T2 are the lower and upper limits of the range of applicability. * (S) is the average deviation and a,,,,, is the maximum deviation of the experimental results from those calculated

ENTHALPY

OF FUSION,

TRIPLE

POINT,

AND

PURITY

The enthalpy of fusion AJY,,, for each of the samples studied was determined from the total enthalpy increment between an initial equilibrium temperature below the melting temperature and a final equilibrium temperature above. The isothermal increment was calculated by subtracting from the total enthalpy increment the sum of the enthatpies required to raise the temperature of the crystals from the initial temperature to the melting temperature and the liquid from the melting temperature to the final temperature. Appropriate corrections were applied for the effect of premelting caused by liquid-soluble solid-insoluble impurities”’ to each of the replicate measurements of the enthalpy of fusion. The averaged results are listed in table 4; the uncertainties are average deviations from the mean. Equilibrium melting temperatures T(F) as a function of the fraction F of the sample melted, are given in table 1. Based on the usual laws of ideal solutions,“” values were derived for the triple-point temperatures 7& and the mole fraction xz of solute. The TABLE 4. Enthalpies of fusion AH,,, Compound

Number of observations

AH,,, a J mol. I

3 3 4 2 2

11993+ 2 12881+10 13517+ 6 15742+22 11279*45

l,l-Dimethylindan, CII H,, 4,6-Dimethylindan, C, r H,, 4,7-Dimethylindan, C,,H,, 1,1,4,6-Tetramethyhndan, Cr,H,, 1.1,4,7-Tetramethyhndan, C13Hls a With average deviation from the mean 14

220

S. H. LEE-BECHTOLD

E’T‘AL.

cryoscopic constants, A = AH,,,/R’I;i and B = (l/7;, - AC,,/2AH,,,) were calculated from the observed values of 7;,,, AHr,,, and ACrus (heat capacity difference in liquid and solid states at 7;,). Linear extrapolation of the equilibrium temperatures T(F) to zero value of l/F defined the triple-point temperatures &. SOLID-STATE

PHASE TRANSFORMATIONS

Of the five samples studied, only 1,1,4,6-tetramethylindan exhibited polymorphism. This was a second-order or lambda-type transition with a peak at about 191 K. The transition was easily studied. The 1,1,4,7-tetramethylindan sample could be supercooled readily from the liquid state to the glassy state (transition occurring at 160 K). With subsequent warming of the supercooled liquid above the glass-to-liquid transition, crystallization would commence near 190 K. THERMODYNAMIC

PROPERTIES

IN THE SOLID AND LIQUID

STATES

The experimental heat capacities were smoothed by a least-squares sliding-spline fit for each phase, followed by appropriate numerical integration to give enthalpy and entropy increments. The values of the thermodynamic properties at 10 K were calculated from a Debye function, fitted to the experimental heat capacities between 12 and 20 K. The number of degrees of freedom and characteristic temperature 0 found for each compound studied are in table 5. The thermodynamic properties for the condensed phases (under the saturated vapor pressure), listed in table 6, were TABLE

Compound l,l-Dimethylindan 4,6-Dimethylindan 4,7-Dimethylindan 1 ,1,4,6-Tetramethylindan 1,1,4,7-Tetramethylindan 1,1,4,7-Tetramethylindan

(crystals) (glass)

5. Debye

parameters Degrees of freedom

Q/K

5.0 4.15 5.6 5.2 6.0 4.5

98.35 87.12 110.65 91.37 97.53 75.67

calculated from the properties at 10 K, the appropriate enthalpy and entropy increments, and the enthalpies and entropies of fusion. Corrections for the effects of premelting were applied in computing the smoothed values. THERMODYNAMIC

PROPERTIES

OF THE IDEAL-GAS STATE

Since both the enthalpy of combustion and of vaporization, and the vapor pressure had been determined for these compounds, (11,12) the ideal-gas-state thermodynamic

PROPERTIES TABI,E

6. Molar

T k

thermodynamic

- WTbWWIT J Km’

mol-’

OF

functions

METHYL-SUBSTITUTED

for condensed phases under premelting have been applied

(H,(T)-H~(o))/T J K-’

0.28 0.48 0.76 1.10 1.51 I .99 3.41 5.08 6.94 8.92 10.98 13.09 17.38 21.71 26.03 30.33 34.59 38.80 42.97 47.10 51.19 55.23 59.24 63.22 67.15 71.06 74.95 78.81 82.65 85.47

227.35 230 240 250 260 270 273.15 280 290 298.15 300 310 320 330 340 350 ,360 370 380 390 400

85.47 87.10 93.15 99.09 104.9 110.6 112.4 116.3 121.8 126.3 127.3 132.6 137.9 143.2 148.3 153.4 158.4 163.4 168.3 173.1 177.9

0.84 1.42 2.16 3.03 4.00 5.04 7.82 10.68 13.49 16.19 18.78 21.25 25.93 30.33 34.50 38.50 42.36 46.12 49.79 53.38 56.92 60.40 63.85 67.26 70.66 74.05 77.44 80.88 84.37 86.96 1 ,l-Dimethylindan, 139.7 140.6 143.9 147.2 150.3 153.4 154.3 156.4 159.4 161.8 162.3 165.3 168.2 171.0 173.9 176.8 179.6 182.5 185.3 188.1 191.0

saturated

vapor

H,(T)-H"(O)

mol-’

l,l-Dimethylindan, 10 12 14 16 18 20 25 30 35 40 45 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 227.35

221

INDANS

J K-r C,,H,,,

mol--’

pressure.

Corrections

(‘,

s, J K-’

mol-I

J K-.r

molJ’

(crystals)

0.008422 0.01705 0.0302 1 0.04845 0.07195 0.1007 0.1955 0.3205 0.4721 0.6477 0.8450 I.062 1.556 2.123 2.760 3.465 4.236 5.073 5.975 6.939 7.968 9.060 10.22 11.44 12.72 14.07 15.49 16.98 18.56 19.77 C, ,H ,4, (liquid) 31.76 32.34 34.55 36.79 39.08 41.41 42.16 43.80 46.22 48.24 48.70 51.23 53.81 56.44 59.13 61.87 64.66 67.51 70.41 73.37 76.39

1.13 1.90 2.92 4.13 5.51 7.02 11.22 15.76 20.43 25.12 29.76 34.34 43.31 52.04 60.53 68.83 76.95 84.92 92.77 100.5 108.1 115.6 123.1 130.5 137.8 145.1 152.4 159.7 167.0 172.4

3.30 5.40 7.82 10.44 13.06 15.72 2’.1’ - . 27.16 32.8 1 37.36 41.51 45.47 53.12 60.23 67.18 73.81 80.39 87.01 93.33 99.62 106.0 112.4 118.7 125.1 131.7 13x.4 145.8 153.5 161.7 167.8

225.2 227.7 237.1 246.2 255.2 264.0 266.8 272.7 281.2 288.1 289.6 297.9 306.1 314.2 322.2 330.2 338.0 345.8 353.6 361.3 368.9

217.5 218.5 222.4 226.7 231.1 235.7 237.2 240.5 245.4 249.4 250.4 255.5 260.6 265.9 271.2 276.6 282.U 287.5 293.0 298.6

304.2

fog

222

S. H. LEE-BECHTOLD TABLE

T E

-;G,(T)-H"(O);,'T J Km’

mol.

’ -

18 20 25 30 35

40 45 50

60 IO 80 90

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 256.45

0.38 0.66

1.01 1.46 1.97 2.56 4.28 6.21 8.46 10.79 13.21 15.68 20.73 25.82 30.87 35.88 40.82 45.68 50.46 55.15 59.77 64.3 1

68.77 73.16 17.50 81.76 85.98 90.14 94.25 98.32 102.3 106.3 108.9

298.15 300

310 320 330 340 350 360 370 380

C, ,H,,.

108.9

111.0 116.8 118.6 122.5 128.1 132.6 133.6 139.0 144.3 149.5 154.7 159.7

152.7 155.4 156.2 158.1 160.7 162.9 163.3 166.0 168.6

171.1 173.7 176.3 178.9 181.5 184.1

kJ mol.

0.02258 0.03930 0.06158 0.08960 0.1236 0.2339

0.3789 0.5563 0.7620 0.9930

1.249 1.828 2.488 3.244 4.029 4.899 5.831 6.821 7.867 8.969

10.12 11.34

12.60 13.93 15.31 16.74 18.24 19.80 21.42 23.10 24.85 26.01

C, ,H,,,

s, ’

J Km’

mol

1

J K

c, 1 mol

(crystals) 0.01136

3.85 4.98 6.18 9.36 12.63 15.90 19.05 22.07 24.97 30.46 35.55 40.30 44.77 48.99 53.01 56.84 60.51 64.06 67.50 70.85 74.14 71.31 80.56 83.71 86.85 89.98 93.11 96.24 99.40 101.4

151.7

164.7 169.7 174.6

H,(T)-H’(O)

1.13 1.88 2.81

4,6-Dimethylindan, 256.45 260 270 273.15 280 290

6~--cvntinueci

jH,(T)-H ..~-. (O);/T ___. J K-’ molt’ 4.6-Dimethylindan,

10 12 14 16

E7‘AL

1.52 2.54 3.82 5.30 6.95 8.74 13.63 18.90 24.36 29.84 35.28 40.66 51.20 61.37 71.18 80.65 89.81 98.69 107.3 115.7 123.8 131.8 139.6 147.3

154.9 162.3

4.37 6.92 9.76 12.54 15.49 18.44 25.63 32.32 38.46 43.70 48.71 53.55 62.10 69.95 77.08 83.88 90.13 96.14

101.8 107.4 112.9 118.4 123.9 129.4 135.1 140.8

210.3

146.6 152.6 158.7 165.0 171.7 178.5 182.9

260.6 263.6 272.2 274.8 280.6 288.8 295.4 296.9 304.9 312.8 320.7 328.4 336.1 343.7 351.2 358.7

223.2 224.5 228.4 229.7 232.6 237.1 240.9 241.8 246.6 251.6 256.6 261.8 267.0 272.2 271.5 282.8

169.7 177.0 184.2 191.4 198.6 205.7

(liquid) 38.90 39.69 41.96 42.68 44.26 46.61 48.56 49.00 51.44 53.94 56.48 59.07 61.71 64.41 67.16 69.96



PROPERTIES

OF METHYL-SUBSTITUTED TABLE

T ii

-{G(T)-H”(O))IT J K-l

mol-’

0.22 0.38 0.61 0.89 1.24 1.64 2.90 4.46 6.24 8.21 10.32 12.54 17.21 22.07 27.03 32.02 37.00 41.95 46.84 51.68 56.44 61.13 65.75 70.29 74.77 79.19 83.54 87.83 92.07 96.26 100.4 104.5 108.6 112.6 113.6

272.635 273.15 280 290 298.15 300 310 320 330 340 350 360 370 380 390 400

113.6 113.9 117.9 123.6 128.1 129.1 134.6 140.0 145.3 150.5 155.6 160.7 165.6 170.6 175.4 180.2

H,(T)-H”(O)

mol-’

4,7-Dimethylindan. 10 12 14 16 18 20 25 30 35 40 45 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 272.635

bcontinued

{f&(T)-H”(O)}IT J K-’

kJ mol-’ C, ,H,,,

0.66 1.14 1.76 2.52 3.40 4.37 7.09 10.08 13.18 16.35 19.51 22.65 28.72 34.46 39.86 44.93 49.68 54.15 58.36 62.36 66.17 69.81 73.32 76.72 80.04 83.27 86.45 89.59 92.69 95.77 98.84 101.9 105.0 108.1 108.9 4.7-Dimethylindan, 158.5 158.6 160.4 163.0 165.1 165.6 168.1 170.7 173.2 175.8 178.3 180.8 183.3 185.9 188.4 190.9

223

INDANS

mol-’

J K-’

mol-i

(crystals) 0.006665 0.01365 0.02466 0.04039 0.06130 0.08748 0.1772 0.3022 0.4615 0.6539 0.8781 1.132 1.723 2.412 3.189 4.044 4.968 5.956 7.004 8.107 9.263 10.47 11.73 13.04 14.41 15.82 17.29 18.81 20.39 22.03 23.72 ‘5.48 27.30 29.19 29.70

C1,H,,,

c,

S, J K-’

0.89 1.52 2.37 3.41 4.64 6.02 9.99 14.53 19.43 24.56 29.83 35.18 45.93 56.54 66.89 76.95 86.68 96.10 105.2 114.0 122.6 130.9 139.1 147.0 154.8 162.5 170.0 177.4 184.8 192.0 199.2 206.4 213.6 220.7 222.6

2.64 4.42 6.66 9.11 11.78 14.46 21.50 28.47 35.21 41.71 47.89 53.76 64.20 73.48 81.69 89.10 95.65 101.9 107.5 113.0 118.3 123.4 128.5 133.7 139.0 144.2 149.5 155.0 160.7 166.4 172.5 178.8 185.6 192.3 194.1

272.2 272.6 278.3 286.5 293.2 294.7 302.7 310.6 318.5 326.2 333.9 341.5 349.0 356.4 363.8 371.1

229.0 229.2 232.5 237.5 241.5 242.4 247.3 252.2 ‘57.1 262.0 267.0 271.9 276.8 281.7 286.6 291.5

(liquid) 43.22 43.34 44.92 47.27 49.22 49.67 52.12 54.61 57.16 59.76 62.40 65.10 67.84 70.63 73.47 76.36

224

S. H. LEE-BECHTOLD TABLE

T ic

-jG,(T)-HYo)}IT J K-l mo,-'

40 45

50 60 70

80 90 100 110 120 130 140 150 160 170 180 181 182 183 184 185 186 187 188 189 190 191

0.36 0.62 0.97 1.40 1.91 2.49 4.21 6.23 8.45 10.82 13.30 15.85 21.10 26.48 31.91 37.36 42.81 48.25 53.65 59.02 64.35 69.64 74.89 80.09 85.25 85.16 86.28 86.79 87.30 87.81 88.33 88.84 89.35 89.86 90.37 90.88

90.88 91.40 91.91 92.42 92.94 93.44 93.96 94.47 94.98 95.49 100.6 105.6 110.6 115.6 120.5

MU-~(O) ._.~ C,3H,s,

97.82 98.40 98.89 99.36 99.80 100.2 100.7 101.1 101.5 102.0 106.3 110.6 114.8 119.0 123.2

(crystals

J K--l

(crystals 18.68 18.89 19.09 19.27 19.46 19.65 19.83 20.02 20.21 20.40 22.32 24.33 26.41 28.57 30.81

molF*

J K

’ mol.’

II)

0.01084 0.02174 0.0381 0.06038 0.08861 0.1230 0.2354 0.3835 0.5648 0.7773 I.020 1.292 1.918 2.650 3.484 4.419 5.445 6.560 7.162 9.046 10.41 Il.85 13.37 14.97 16.65 16.82 16.99 17.16 17.34 17.52 17.70 17.89 18.08 18.27 18.46 18.68 C,,H,,,

(‘\

S,

~.

kJ mol-’

1.08 1.81 2.72 3.77 4.92 6.15 9.41 12.78 16.14 19.43 22.67 25.84 31.96 37.86 43.56 49.10 54.45 59.64 64.68 69.58 74.36 79.02 83.58 88.06 92.48 92.92 93.36 93.80 94.25 94.70 95.18 95.66 96.16 96.66 97.16 97.82 1 ,1,4,6-Tetramethylindan,

191 192 193 194 195 196 197 198 199 200 210 220 230 240 250

6---continuud

{H,(T)-HQ(o);~T ~______~~ J Km’ molV’ 1.1,4,6-Tetramethylindan,

10 12 14 16 18 20 25 30 35

ETAL.

1.45 2.44 3.69 5.18 6.83 8.64 13.63 19.01 24.58 30.25 35.96 41.69 53.07 64.33 75.46 86.45 97.26 107.9 118.3 128.6 138.7 148.7 158.5 168.2 177.1 178.7 179.6 180.6 181.6 182.5 183.5 184.5 185.5 186.5 187.5 188.7

4.21 6.76 9.63 12.61 15.66 18.73 ‘6.14 32.99 39.44 45.58 51.49 57.21 67.96 78.37 88.55 98.14 107.1 115.9 124.3 132.5 140.4 148.1 155.8 163.7 171.6 112.3 174.0 175.9 178.0 180.4 183.6 187.4 191.7 196.6 202.5 245.2

188.7 189.8 190.8 191.8 192.7 193.7 194.6 195.6 196.5 197.5 206.9 216.2 225.4 234.6 243.8

245.2 198.1 191.5 187.0 185.7 185.6 186.2 187.0 187.9 188.7 196.6 204.4 212.2 220.0 228.7

1)

PROPERTIES

OF METHYL-SUBSTITUTED TABLE

T

-{G,(T)-H"(O)}/T

E

J K-’

-

mol-’

260 270 273.15 273.51

125.4 130.3 131.9 132.0

273.5 1 280 290 298.15 300 310 320 330 340 350 360 370 380 390 400

132.0 136.5 143.4 148.9 150.1 156.7 163.2 169.6 175.9 182.1 188.3 194.3 200.3 206.2 212.1

{H,(T)-H"(O)}/T -J Km’ mol-’ 127.5 131.7 133.0 133.2 1.1,4,6-Tetramethylindan. 190.8 193.0 196.4 199.1 199.7 203.1 206.4 209.8 213.1 216.4 219.7 223.0 226.3 229.6 232.8 1,1.4,7-Tetramethylindan.

10 12 14 16 18 20 25 30 35 40 45 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 2 10 220 230 240 245.553

0.35 0.60 0.93 1.36 1.86 2.44 4.19 6.26 8.56 11.04 13.61 16.27 21.71 27.21 32.73 38.23 43.71 49.17 54.61 60.03 65.42 70.78 76.12 81.41 86.67 91.88 97.05 102.2 107.2 112.3 117.3 120.0

1.03 1.74 2.66 3.73 4.91 6.18 9.62 13.22 16.79 20.26 23.61 26.82 32.90 38.62 44.11 49.44 54.70 59.94 65.14 70.27 75.31 80.24 85.04 89.70 94.22 98.58 102.8 107.0 111.2 115.3 119.4 121.6

225

INDANS

C-continued H,(T)-H"(0) ___kJ mol-’

J K-’

33.14 35.56 36.34 36.43 C13HIR.

J Km’

C, molmi

252.9 262.1 264.9 265.3

‘37.5 246.2 249.0 249.3

322.8 329.5 339.7 348.0 349.8 359.8 369.6 379.4 389.0 398.5 408.0 417.3 426.6 435.8 444.9

284.1 288.2 294.5 299.6 300.7 307.0 313.3 319.6 325.8 332.1 338.4 344.7 350.9 357.1 363.4

1.38 2.34 3.58 5.08 6.77 8.63 13.81 19.48 25.36 31.30 37.22 43.10 54.60 65.83 76.84 87.67 98.42 109.1 119.8 130.3 140.7 151.0 161.2 171.1 180.9 190.5 199.9 209.2 218.4 227.6 236.6 241.6

4.06 6.62 9.68 12.77 15.97 19.33 27.41 34.83 41.50 47.54 53.15 58.31 68.18 77.74 87.26 97.04 107.1 117.5 127.2 136.4 145.2 153.2 160.7 178.X 174.7 180.4 187.4 194.6 202.2 209.3 216.4 220.2

(liquid)

52.17 54.03 56.94 59.36 59.92 62.96 66.06 69.22 72.45 75.74 79.09 82.51 85.98 89.52 93.13 CIjH18.

SS mol-i

(crystals)

0.01036 0.02094 0.03718 0.05968 0.08837 0.1237 0.2405 0.3966 0.5876 0.8105 1.062 1.341 1.974 2.703 3.528 4.450 5.470 6.593 7.816 9.134 10.54 12.04 13.60 15.25 16.96 18.73 20.57 22.4X 24.46 26.57 ‘8.65 29.86

-

226

S. H. LEE-BECHTOLD TABLE

T K

-iGs(T)-H"(Ofj/'T J K-’

mol-’

{H,(T)-H"(O)j/'T J K-’

mole’

1,1,4,7-Tetramethylindan, 160 170 180 190 200 210 220 230 240 245.553 250 260 270 273.15 280 290 298.15 300 310 320 330 340 350 360 370 380

58.09 65.68 73.22 80.67 88.03 95.29 102.4 109.5 116.4 120.0 123.2 130.0 136.6 138.7 143.1 149.6 154.8 155.9 162.2 168.4 174.5 180.6 186.5 192.4 198.3 204.1

10 12 14 16 18 20 25 30 35 40 45 50 60 70 80 90 100 110 120 130 140 150 159.960

- 552.86 -457.72 - 389.56 - 338.21 - 298.08 - 265.77 - 206.88 - 166.70 - 137.20 - 114.35 -95.94 - 80.63 - 56.25 - 37.20 -21.50 -8.05 3.82 14.5 24.3 33.5 42.0 50.2 57.9

121.8 128.7 135.0 140.8 146.2 151.3 156.1 160.7 165.2 167.6 169.5 173.6 177.7 179.0 181.7 185.6 188.7 189.4 193.2 196.9 200.6 204.2 207.9 211.4 215.0 218.6 1,1,4,7-Tetramethylindan, 570.18 476.39 409.83 360.28 322.06 291.78 238.27 203.71 179.90 162.81 150.16 140.60 127.65 119.94 115.49 113.16 112.29 112.4 113.4 114.8 116.8 119.1 121.6

ETAL.

bcontinued

H,(T)-H"(0) kJ mol-’ C,,H,*,

C%

SS J Km’

mol-’

J K-’

mol-’

(liquid)

19.48 21.88 24.29 26.75 29.24 31.76 34.34 36.96 39.64 41.15 42.36 45.14 47.98 48.88 50.87 53.82 56.26 56.82 59.89 63.02 66.20 69.45 72.76 76.12 79.56 83.05 C,,H,,,

179.9 194.4 208.2 221.4 234.2 246.5 258.5 270.2 281.6 287.6 292.7 303.6 314.3 317.6 324.8 335.2 343.5 345.4 355.4 365.3 375.1 384.8 394.4 403.9 413.3 422.6

238.2 240.4 243.4 246.9 250.9 255.3 259.9 264.8 270.0 272.9 275.2 280.7 286.3 288.0 292.0 297.7 302.5 303.6 309.5 315.5 321.6 327.7 333.8 340.0 346.2 352.5

17.32 18.67 20.28 22.06 23.98 26.01 31.39 37.01 42.71 48.46 54.22 59.96 71.41 82.74 93.98 105.1 116.1 127.0 137.7 148.3 158.8 169.2 179.5

5.94 8.98 11.97 14.85 17.79 20.75 27.68 34.04 40.04 46.21 51.70 57.46 68.37 79.00 89.47 99.60 109.4 118.4 128.2 137.3 146.4 155.7 165.0

(glass)

5.702 5.717 5.738 5.764 5.797 5.836 5.957 6.112 6.296 6.512 6.757 7.030 7.659 8.396 9.239 10.18 11.23 12.37 13.60 14.93 16.35 17.86 19.46

PROPERTIES

OF METHYL-SUBSTITUTED

227

INDANS

TABLE 7. Molar entropy of the vapor for the methyl-substituted indans

SJJ K-’ mall’ (AJ&/T)/J K ’ mol-’ R ln@/pO)/J K - ’ mol -’ b (S(ideal)-S(real)}/J K-’ mall’ S/J K-’ mol ’

SJJ K’ mol-’ (AH,/T)/J K-’ mol-’ R In@/p”)/J K-’ moI-lb ;S(ideal)- S(real)}/J K-’ So/J K-’

mall’

mall’

SJJ K-’ mol-’ (AH,/T)/J Km’ mol-’ R ln(p/p”)/J K - ’ mol - ’ b ; S(ideal) -S(real)}/J K-’ mall’ S”iJ

K-’

mall’

S$J K-’ mall’ (AHdT)/J K -’ mol-’ R ln(p/p”)/J K-’ mall’ b {S(ideal) -S(real)}/J K -’ mol- * S”iJ Km’ mall’

SJJ K-’ mol-’ (A&/T)/J K ‘- ’ mol - ’ R ln@/p”)/J K --’ mall’ b S(idea1) -S(real)}/J K-’ mol- ’ S/J K-’

mol-’

350

400

I,l-Dimethylindan, C’lH’4 288.1 kO.6 174.2 k 0.9 -57.950.0 0.0 + 0.0 -____ 404.4& 1.1

330.2kO.7 138.6kO.6 -32.9kO.O 0.1 +o.o

368.9kO.7 113.2kO.5 -16.0+0.0 0.2+0.0

436.0 k 0.9

466.3 + 0.9

4,bDimethylindan C”H’., 295.4kO.6 194.2& 1.2 -71.4+0.1 O.O&O.O 418.2+ 1.3

336.lkO.7 155.8kO.7 -43.4kO.O o.o+o.o 448.5+ 1.0

373.4+0.7” 128.7kO.5 -24.4kO.O 0.1 +o.o 477.8kO.9

4,7-Dimethylindan, C, ,H’4 293.2k0.6 333.9kO.7 157.0+0.7 195.5k1.2 -72.4kO.l -44.340.0 o.o*o.o o.o+o.o 416.32 1.4 446.6f 1.0

371.1+0.7 129.7kO.6 -25.1 kO.0 0.1 kO.0 475.8kO.9

298.15

7-K

1,1,4&Tetramethylindan, 348.0k0.7 205.8& 1.3 -76.6+0.1 o.o+o.o -____ 477.2k1.5

C’3H18

515.3* 1.1

444.9kO.9 134.5kO.6 - 27.2 + 0.0 0.1 +o.o 552.311.1

1,1,4,7-Tetramethylindan, 343.5 kO.7 205.8 + 1.6 -78.8kO.l o.o+o.o -____ 470.5 + 1.8

C, 3H’s 394.4 + 0.8 164.6kO.8 -49.2kO.O o.o+o.o

441.0+0.9a 135.6kO.6 -29.1k0.0 0.1 *o.o

398.5 50.8 163.9kO.8 - 47.1* 0.0 0.0 + 0.0

509.8+ 1.1

547.6kl.l

’ Extrapolated from calorimetric value at 380 K. * p@is 101.325 kPa.

properties could be calculated. The calculations of entropy are listed in table 7. Values obtained for the standard enthalpy and entropy, and for the standard enthalpy, entropy, and Gibbs energy of formation, and the negative logarithm of the equilibrium constant of formation, are given in table 8.

S. H. LEE-BECHTOLD

228

ETAL.

TABLE 8. Molar standard thermodynamic properties for the methyl-substituted indans in the vapor state T

H”(T)-H”(O)

K

Jmol-’

s”

__~.AH;

- J Km’ molf’

J mol-’

l.l-Dimethylindan, 298.15 350 400

298.15

100.2 110.4 121.7

404.4 436.0 466.3

AC;

J__mol ’

4,&Dimethylindan, 418.2 -5.81

350 400

298.15

107.5

4,7-Dimethylindan, 416.3 -7.40

350 400

117.3 128.2

446.6 475.8

298.15 350 400

120.7 133.1 146.9

477.2 515.3 552.3

298.15 350 400

117.6

470.5 509.8 547.6

- ~%c&

C,,H,,

-1.57 -7.23 -12.28

106.5 116.3 127.2”

448.5 477.8

-AS,

J K-’ mol-’

572.2 589.7 602.9

169.0 199.2 228.9

29.61 29.72 29.89

558.4 577.2 591.4

160.7 190.1 219.3

28.14 28.37 28.63

560.3 579.1 593.4

159.6 189.2 218.5

27.97 28.24 28.53

159.7 200.4 240.5

27.97 29.90 31.40

169.6 210.6 251.1

29.71 31.43 32.78

C,,H,,

-11.90 -17.27

C, ,H,,

-13.44 -18.89

1,1,4,6-Tetramethyhndan, -70.47 -77.93 -84.49

C,,Ht, 771.9 795.2 812.5

1,1,4.7-Tetramethyhndan, Cr,Ht, 130.4 144.6"

-62.52 -69.65 -75.82

778.6 800.8 817.2

’ Obtained by least-squares fit of third-order polynomials.

REFERENCES 1. Ruehrwein, R. A.; Hutfman, H. N. J. Am. Chem. Sot. 1943, 65, 1620. 2. HuBman, H. M. Chem. Rev. 1947,40, 1. 3. IUPAC, Pure Appl. Chem. 1976, 47, 75. 4. Rossini, F. D. Pure Appi. Chem. 1961, 9, 453. 5. Stimson, H. F. J. Res. Natl Bur. Stand. 1961, 65A, 139. 6. Hoge, H. J.; Brickwedde, F. G. .I. Res. Natl Bur. Stand. 1939, 22. 351. 7. Barber, C. R. Nature 1969, 222, 929. 8. Stimson, H. F. Am. J. Phys. 1955, 23, 614. 9. Westrum, E. F.; Furukawa, G. T.; McCullough, J. P. Experimental Thermodynamics McCullough, J. P.; Scott, D. W.: editor. Butterworths: London. 196% pp. 133-214. 10. Messerly, J. F.; Finke, H. L. J. Chem. Thermodynamics 1971, 3, 675. 11. Good, W. D. J. Chem. Thermodynamics 1971, 3. 711. 12. Osborn, A. G.; Scott, D. W. J. Chem. Thermodynamics 1978, 10, 619.

Vol.

1