Thermophysical properties of glycine and glycylglycine in aqueous tartaric acid at different temperatures: Volumetric, acoustic and viscometric studies

Thermophysical properties of glycine and glycylglycine in aqueous tartaric acid at different temperatures: Volumetric, acoustic and viscometric studies

Journal Pre-proof Thermophysical properties of glycine and glycylglycine in aqueous tartaric acid at different temperatures: Volumetric, acoustic and ...

809KB Sizes 2 Downloads 44 Views

Journal Pre-proof Thermophysical properties of glycine and glycylglycine in aqueous tartaric acid at different temperatures: Volumetric, acoustic and viscometric studies Shashi Kant Sharma, Abhishek Thakur, Dinesh Kumar, Vikas Nathan PII:

S0167-7322(19)33218-0

DOI:

https://doi.org/10.1016/j.molliq.2019.111941

Reference:

MOLLIQ 111941

To appear in:

Journal of Molecular Liquids

Received Date: 7 June 2019 Revised Date:

18 September 2019

Accepted Date: 14 October 2019

Please cite this article as: S.K. Sharma, A. Thakur, D. Kumar, V. Nathan, Thermophysical properties of glycine and glycylglycine in aqueous tartaric acid at different temperatures: Volumetric, acoustic and viscometric studies, Journal of Molecular Liquids (2019), doi: https://doi.org/10.1016/ j.molliq.2019.111941. This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2019 Published by Elsevier B.V.

1

Thermophysical properties of glycine and glycylglycine in aqueous tartaric acid at

2

different temperatures: volumetric, acoustic and viscometric studies

3

Shashi Kant Sharma*, Abhishek Thakur, Dinesh Kumar, Vikas Nathan

4

Department of Chemistry, Himachal Pradesh University, Shimla 171005, India

5

Email id: [email protected]

6

Abstract

7

Thermophysical properties like density, ultrasonic velocity and viscosity of glycine,

8

glycylglycine in water and in (0.1942, 0.3773, 0.5504 and 0.7142) mol kg-1 aqueous tartaric

9

acid solutions as a function of concentration at different temperatures ranging between

10

(298.15 and 318.15) K have been determined. These data have been utilized to calculate

11

apparent molar volume ( ), apparent molar isentropic compressibility ( ), and viscosity

12

B-coefficient values of the studied solutions. The partial molar volumes ( 0), partial molar

13

isentropic compressibility ( 0) and experimental slopes (Sv* and Sk*) derived from the

14

Mason equations have been interpreted in terms of solute-solute and solute -solvent

15

interactions. The viscosity coefficients A and B have been determined from the Jones-Dole

16

equation. From the volumetric and viscometric data, hydration number (nH) has been

17

calculated and further, the structural effects of glycine, glycylglycine in tartaric acid solution

18

has been discussed. The results were explained in terms of structure making and structure

19

breaking properties.

20

Keywords: apparent molar volume; apparent molar isentropic compressibility; partial molar

21

volumes; partial molar isentropic compressibility; structural effects.

22

1. Introduction

23

Life began with advanced and continuous series of chemically synthesized reactions

24

which raised the organization of inanimate matter to successively higher levels. Atoms

25

first accumulated to simple compounds, then these metamorphosed into more complex

26

ones and finally, the most complex of them ultimately became organized as living cells.

27

Water is present in these living cells, and is responsible in maintaining electrolytic

28

balance of the body and further small portions in between living cells are also deposited

29

in conjunction with protein and carbohydrate. So, protein having large molecular size

30

plays an important role in the exchange of fluids between the circulating blood and the 1

31

interstitial fluid [1]. So, having knowledge, how these proteins interact with water and

32

their properties vary with temperature and different composition of solvent and solute;

33

became a topic of interest for many researchers. Because of the complex nature of

34

protein, it becomes tedious and quite challenging to get viable information for proteins

35

with water and to study their thermophysical properties [2] so, it’s been worth to use

36

amino acids and peptides, as these are model compounds for understanding the solvation

37

of proteins and by this, we can easily render our discussion on proteins by studying

38

aqueous amino acid/peptide system. In fact, extensive work have been done related to

39

volumetric, acoustic behaviour of aminoacids/peptides in aqueous solutions and in

40

different solvents [3-7], but their study in organic acids are scant. Amino acids, the

41

biologically important compounds is of immense importance as their behaviour in

42

aqueous and mixed aqueous solutions in different temperature range determines how the

43

proteins tends to behave in living cells and this leads to open field of curious research [8-

44

11]. The solution structure of amino acids/peptides is because of the intermolecular

45

interactions and the understanding of these intermolecular interactions have a decisive

46

role for determining the outcome in biological systems and even these are in close contact

47

with the thermodynamic properties of liquids, solids and gases. A change in temperature

48

or concentration significantly affects the charge distribution in molecules, which also

49

influence the different types of molecular interactions (H-bonding, ion-dipole, dipole-

50

dipole etc.) [12].

51

The amino acid used is glycine, a natural osmolyte that can act as osmoprotectants

52

and are of immensely important in the renal medulla. Glycine is used for treating

53

schizophrenia, strokes and other uses in cancer therapy, memory enhancement. Studies

54

shows that glycine may help people with type 2 diabetes by controlling their blood sugar,

55

and got the ability to protect the liver and kidney from damage caused by chemicals such

56

as alcohols. Research are going on the subject that glycine acts in a way to promote the

57

healing of overworked or damaged muscles, soothe an upset stomach, stress reliever,

58

boost the immune system and increase human growth hormone. Glycylglycine, is

59

dipeptide of glycine and because of its low toxicity, act as a buffer for biological systems

60

at different pH [13]. The solvent chosen was tartaric acid, a white crystalline dicarboxylic

61

organic acid found in plants, particularly in tamarinds and grapes. Tartaric acid is used to

62

generate carbon dioxide through interaction with sodium bicarbonate following oral

63

administration. Carbon dioxide, thus produced extends the stomach and provides a 2

64

negative medium during double contrast radiography.

It is also used for protein

65

precipitation and curiously hardly ever studied and a better knowledge of its interactions

66

with different amino acid/peptide is certainly an interesting point for further studies on

67

protein purification and precipitation. [14]. In present study, we will report the densities

68

(ρ), speeds of sound (u) and viscosities (η) of glycine and its peptide (glycylglycine)

69

(0.05 to 0.40) mol kg-1 in pure water to (0.1942, 0.3773, 0.5504 and 0.7142) mol kg-1 of

70

tartaric acid at (298.15 and 318.15) K. These data have been utilized to calculate apparent

71

molar volume ( ), apparent molar isentropic compression ( ), limiting apparent molar

72

volumes ( 0), limiting apparent molar isentropic compression ( 0) and experimental

73

slopes (Sv* and Sk*) derived from the Mason equations, A and Jone-Dole coefficient B,

74

hydration number (nH). All these parameters give a deep insight into the solute-solvent

75

interactions and structure making/breaking behaviour of glycine and glycylglycine in

76

aqueous solutions of tartaric acid at temperatures (298.15 and 318.15) K.

77

Experimental

78

2.1 Materials

79

The amino acids (glycine and glycylglycine) and solvent (tartaric acid) were used after

80

drying over anhydrous calcium chloride for more than 24 hours and then, weighed using

81

electronic balance SHIMADZU A X 200 (model no D432613208, Japan) a digital balance

82

having a precision of ±0.1 mg. Triply distilled and deionised water with specific conductance

83

< 10-6 ohm-1  cm-1 was used.

84

Table 1 Specification of chemical samples. Chemical name

Molar mass

Provenance

(g mol-1)

Initial Mass fraction

Purification

Final

purity

method

fraction purity

Tartaric Acid

150.087

Merck Specialities Pvt. Ltd. India

>0.99

None

>0.99

Glycine

75.07

Merck Specialities Pvt. Ltd., India

>0.99

None

>0.99

Glycylglycine

132.12

Merck Specialities Pvt. Ltd., India

>0.99

None

>0.99

Mass

85 86

2.2 Density measurements

87

The density (ρ) and speeds of sound (u) were measured with the help of apparatus

88

DSA (i.e. Density and Sound Analyzer) 5000 supplied by Anton Paar GmbH, Garz, Austria. 3

89

DSA 5000 is the first oscillating U-tube density and velocity of sound meter, which measures

90

to the highest accuracy in wide viscosity and temperature ranges. The studies were carried

91

out at atmospheric pressure P = 0.1 MPa at five different temperatures T = (298.15, 303.15,

92

308.15, 313.15 and 318.15) K with an accuracy of ± 0.01 K. The calibration of DSA (i.e.

93

Density and Sound Analyzer) 5000 was internal realized before in hand, by measuring the

94

density and speed of sound through dried air and triple distilled and deionized water. For

95

water, the measured values of density and speeds of sound are given in table 2 along with

96

corresponding literature values. The average reproducibility in density and speed of sound

97

data from experimental data was ± 0.01 kg m-3and ± 0.1 m s-1 respectively.

98 99

2.3 Viscosity measurements

100

The viscosity measurements were carried out with a modified capillary type

101

viscometer, which is thoroughly cleaned with chromic acid and the subsequently wash

102

with water and acetone followed with drying by vacuum pump. While performing the

103

measurements, the solution in the viscometer is allowed to attain the temperature of the

104

water thermostat for about 20-25 minutes. Stop watch was used for noting the time of

105

flow. The viscosity measurements at different temperatures was determined by using the

106

following equation [15]

107

ƞ⁄ƞ = ⁄

108

where ƞ, , and ƞ , , are the viscosity, density and time of flow of the solutions and

109

water respectively. The viscometer is calibrated with triply distilled and deionized water, the

110

values of relative viscosity (ƞ⁄ƞ ) so obtained is compared with literature values as shown in

111

table 2.

112 113

(1)

3. Results and discussion 3.1 Partial Molar Volumes & Partial Molar Compressibility’s

114

Values of the experimental density (ρ), viscosity (ƞ) and speed of sound (u) of

115

glycine, glycylglycine in water and in (0.1942, 0.3773, 0.5504 and 0.7142) mol kg-1 aqueous

116

solutions of tartaric acid at T = (298.15, 303.15, 308.15, 313.15 and 318.15) K are reported in

117

table 2.The apparent molar volume ( ), apparent molar isentropic compression ( ) were

4

118

calculated from the experimental densities, and speeds of sound by the following standard

119

equations [16, 17]:

120

 = ⁄ − 1000( −  )⁄ 

(2)

121

 = ( ⁄ ) − (1000( −   )⁄  )

(3)

122

With the assumption that the absorption of the acoustic wave is negligible, the

123

isentropic compressibility, () can be calculated using the Newton-Laplace’s equation [18]

124

 = 1⁄(u2 )

(4)

125

where m is the molality (mol kg-1) of amino acid/peptide in water and in different

126

molal concentration of aqueous tartaric acid solution, M is the molar mass of the solute

127

(kg mol-1) and  , ,  , and  are the densities (kg m-3) and isentropic compressibility’s

128

(Pa-1) of solvent and solution, respectively. The resulting values of  ,  and the different

129

molal concentrations (m) of amino acids in water and in different concentrations of tartaric

130

acid at various temperatures are given in table 2.

5

Table 2 Values of density ( ), speed of sound (u), apparent molar volume ( ), apparent molar isentropic compression ( ), relative viscosity (η/η0) at different molal concentration (m) of glycine, glycylglycine in aqueous solutions of tartaric acid at different temperatures (T = 298.15-318.15) K and at pressure fP = 0.1 MPa with corresponding literature values. ma /

b * 10-3 / kg٠m-3

uc

 d * 106 / -1

/ m٠s

m

3

-1

 mol

 e * 10 3

6

m  mol-1

mol٠kg1

ma

Relative /

Viscosity

/

η/η0

mol٠kg-

b * 10-3 / kg٠m-3

uc

 d * 106 / -1

/ m٠s

m

3

-1

 mol

Relative

m3  mol-1

Viscosity

* 10

6

 GPa-1

1

-

 e

η/η0

 GPa 1

g

Glycine + water 1497.5 (1497.6)[33] (1495.85)[17] (1496.98)[50]

T = 298.15 K Glycylglycine + water

0.0000

0.99708 (0.99702)[33] (0.997047)[17] (0.997045)[71] (0.997080)[50]

0.0496

0.99871 (0.99832)[33] (0.99874)[17] (0.998625)[46]

1500.0 (1500.28)[33] (1500.06)[17] (1500.32)[46]

42.41 (42.65)[17] (43.09)[46]

-26.44

1.0054 (1.0055)[33]

0.0493

0.99987 (0.99926)[33] (0.99982)[37] (0.99984)[6] (0.999656)[29]

1501.5 (1499.28)[33] (1500.53)[29]

76.09 (76.11)[33] (76.37)[37] (76.41)[6] (76.56)[29]

-38.92 (40.02)[29]

1.0114 (1.0065)[33] (1.017)[37]

0.0985

1.00031 (1.00025)[33] (1.000392)[17] (1.000403)[71] (1.000206)[46]

1502.6 (1503.01)[33] (1502.3)[17] (1502.73)[46]

42.59 42.75[33] (42.71)[17] (43.83)[71] (43.15)[46]

-26.25

1.0096 (1.0139)[33]

0.0974

1.00262 (1.00256)[33] (1.002044)[50] (1.002592)[37] (1.002740)[29]

1505.4 (1503.98)[33] (1504.20)[50] (1505.15)[29]

76.29 (76.43)[33] (76.40)[50] (76.48)[37] (76.68)[29]

-38.06 (38.86)[50] (39.3)[29]

1.0188 (1.0162)33] (1.031)[37]

0.1467

1.00189 (1.001899)[71] (1.001777)[46]

1505.2 (1505.14)[46]

42.81 (43.59)[71]

-26.04

1.0136

0.1443

1.00533 (1.00520)[6] (1.005168)[29]

1509.3 (1508.78)[29]

76.50 (76.55)[6] (76.78)[29]

-37.51 (38.6)[29]

1.0254

0.1942

1.00345 (1.003567)[17] (1.003401)[71] (1.003341)[46]

1507.8 (1507.23)[17] (1507.55)[46]

42.97 (42.82)[17] (43.65)[71] (43.28)[46]

-25.89

1.0174

0.1900

1.00497 1510.4 43.18 -25.66 1.00647 1513.0 43.37 -25.49 1.00795 1515.6 43.56 -25.24 1.00941 1518.3 43.73 -25.05 Glycine + 0.1942 mol٠kg-1 aqueous tartaric acid 1.01020 1503.8 1.01177 1506.5 43.42 -25.22 1.01334 1509.2 43.47 -24.99 1.01488 1512.0 43.52 -24.84 1.01642 1514.7 43.57 -24.57 1.01795 1517.5 43.61 -24.32 1.01947 1520.3 43.65 -24.12 1.02097 1523.1 43.70 -23.94 1.02246 1526.0 43.76 -23.82 Glycine + 0.3773 mol٠kg-1 aqueous tartaric acid 1.02266 1511.6 1.02417 1514.4 44.48 -24.61 1.02567 1517.3 44.53 -24.28 1.02716 1520.1 44.57 -23.96 1.02863 1523.0 44.61 -23.62 1.03010 1525.8 44.65 -23.35 1.03155 1528.7 44.69 -23.02 1.03299 1531.6 44.73 -22.80

1.0211 1.0248 1.0286 1.0323

0.2345 0.2780 0.3204 0.3618

0.9322 1.0064 1.0119 1.0172 1.0223 1.0276 1.0327 1.0379 1.0428

0.0000 0.0493 0.0974 0.1443 0.1900 0.2345 0.2780 0.3204 0.3618

0.9765 1.0073 1.0137 1.0197 1.0256 1.0316 1.0374 1.0428

0.0000 0.0493 0.0974 0.1443 0.1900 0.2345 0.2780 0.3204

1.00801 1513.3 76.65 -37.22 (1.007894)[37] (1513.58)[50] (76.80)[37] ((1.00838)[50] (1512.95)[29] (76.67)[50] 37.93)[50] (1.00784)[6] (76.65)[6] ((1.007933)[29] (76.96)[29] 37.8)[29] 1.01065 1517.2 76.84 -36.86 1.01325 1521.1 77.03 -36.42 1.01581 1525.1 77.21 -36.08 1.01833 1529.0 77.40 -35.72 Glycylglycine + 0.1942 mol٠kg-1 aqueous tartaric acid 1.01020 1503.8 1.01295 1507.8 76.80 -35.69 1.01564 1511.7 77.07 -34.81 1.01829 1515.6 77.32 -34.11 1.02089 1519.4 77.59 -33.47 1.02345 1523.2 77.85 -32.92 1.02595 1527.0 78.14 -32.41 1.02842 1530.8 78.36 -31.91 1.03083 1534.5 78.65 -31.37 Glycylglycine + 0.3773 mol٠kg-1 aqueous tartaric acid 1.02266 1511.6 1.02536 1515.6 77.37 -33.15 1.02799 1519.6 77.84 -32.22 1.03056 1523.5 78.27 -31.35 1.03305 1527.4 78.71 -30.67 1.03551 1531.4 79.08 -30.01 1.03787 1535.3 79.54 -29.33 1.04018 1539.2 79.95 -28.67

0.2410 0.2871 0.3325 0.3773 0.0000 0.0496 0.0985 0.1467 0.1942 0.2410 0.2871 0.3325 0.3773 0.0000 0.0496 0.0985 0.1467 0.1942 0.2410 0.2871 0.3325

0.8903 (0.8926)[33]

6

1.0317 (1.061)[37]

1.0377 1.0437 1.0494 1.0551 0.9322 1.0120 1.0230 1.0341 1.0449 1.0556 1.0659 1.0765 1.0865 0.9765 1.0133 1.0257 1.0378 1.0500 1.0614 1.0732 1.0849

0.3773 0.0000 0.0496 0.0985 0.1467 0.1942 0.2410 0.2871 0.3325 0.3773 0.0000 0.0496 0.0985 0.1467 0.1942 0.2410 0.2871 0.3325 0.3773

1.03443 1534.4 44.77 -22.43 Glycine + 0.5504 mol٠kg-1 aqueous tartaric acid 1.03526 1518.9 1.03668 1521.9 45.99 -23.84 1.03809 1524.9 46.03 -23.53 1.03949 1527.9 46.06 -23.22 1.04087 1530.9 46.10 -22.74 1.04225 1533.9 46.13 -22.34 1.04361 1536.8 46.17 -21.97 1.04497 1539.8 46.20 -21.60 1.04631 1542.7 46.24 -21.29 Glycine + 0.7142 mol٠kg-1 aqueous tartaric acid 1.04606 1526.2 1.04746 1529.3 46.15 -22.87 1.04885 1532.3 46.18 -22.32 1.05022 1535.3 46.23 -21.80 1.05158 1538.2 46.27 -21.20 1.05294 1541.0 46.32 -20.61 1.05428 1543.8 46.35 -20.09 1.05561 1546.6 46.40 -19.51 1.05693 1549.3 46.44 -19.06

1.0485

0.3618

1.0379 1.0082 1.0154 1.0224 1.0295 1.0364 1.0430 1.0499 1.0566

0.0000 0.0493 0.0974 0.1443 0.1900 0.2345 0.2780 0.3204 0.3618

1.0878 0.0000 1.0095 0.0493 1.0180 0.0974 1.0265 0.1443 1.0344 0.1900 1.0424 0.2345 1.0506 0.2780 1.0586 0.3204 1.0663 0.3618 T = 303.15 K

1.04244 1543.2 80.36 -28.12 Glycylglycine + 0.5504 mol٠kg-1 aqueous tartaric acid 1.03526 1518.9 1.03791 1522.8 78.08 -30.07 1.04048 1526.7 78.57 -29.21 1.04297 1530.5 79.08 -28.29 1.04539 1534.3 79.61 -27.42 1.04776 1538.2 80.03 -26.87 1.05004 1541.9 80.51 -26.20 1.05225 1545.7 81.00 -25.59 1.05441 1549.3 81.47 -24.86 Glycylglycine + 0.7142 mol٠kg-1 aqueous tartaric acid 1.04606 1526.2 1.04863 1530.1 79.12 -27.17 1.05113 1534.0 79.62 -26.22 1.05354 1537.8 80.15 -25.30 1.05589 1541.5 80.64 -24.48 1.05816 1545.3 81.12 -23.96 1.06037 1549.0 81.58 -23.27 1.06250 1552.7 82.09 -22.66 1.06457 1556.4 82.54 -22.11

1.0966 1.0379 1.0140 1.0271 1.0408 1.0542 1.0672 1.0808 1.0940 1.1064 1.0878 1.0150 1.0293 1.0439 1.0583 1.0730 1.0872 1.1013 1.1154

0.0000

0.99568 (0.99566)[33]

Glycine + water 1509.4 (1509.87)[33]

0.0496

0.99730 (0.99696)[33] (0.997207)[46]

1512.0 (1515.36)[33] (1512.56)[46]

42.68 (42.68)[33] (43.41)[46]

-25.20

1.0057 (1.0060)[33]

0.0493

0.99846 (0.99789)[33] (0.998240)[29]

1513.3 (1512.6)[33] (1512.80)[29]

76.46 (76.26)[33] (76.98)[29]

-36.41 (37.1)[29]

1.0120 (1.0069)[33]

0.0985

0.99889 (0.99888)[33] (0.998773)[46]

1514.5 (1515.3)[33] (1514.92)[46]

42.87 (42.78)[33] (43.47)[46]

-24.90

1.0103 (1.0149)[33]

0.0974

1.00119 (1.00118)[33] (1.001301)[29]

1517.1 (1517.69)[33] (1517.23)[29]

76.64 (76.58)[33] (77.11)[29]

-35.71 (36.3)[29]

1.0201 (1.0172)[33]

0.1467

1.00045 (1.000329)[46]

1517.0 (1517.26)[46]

43.08 (43.54)[46]

-24.58

1.0147

0.1443

1.00388 (1.003709)[29]

1521.0 (1520.73)[29]

76.88 (77.23)[29]

1.0274

0.1942

1.00199 (1.001878)[46]

1519.5 (1519.61)[46]

43.27 (43.60)[46]

-24.31

1.0188

0.1900

1.00655 (1.006453)[29]

1524.8 (1524.82)[29]

77.04 (77.41)[29]

-35.19 (35.6)[29] -34.76 (-35)[29]

1.00351 1522.0 43.45 -24.10 1.00499 1524.6 43.66 -23.86 1.00646 1527.1 43.84 -23.62 1.00791 1529.6 44.02 -23.42 Glycine + 0.1942 mol٠kg-1 aqueous tartaric acid 1.00866 1515.4 1.01023 1518.0 43.63 -23.98 1.01178 1520.6 43.68 -23.75 1.01331 1523.2 43.74 -23.51 1.01484 1525.7 43.80 -23.22 1.01635 1528.2 43.85 -22.91 1.01786 1530.7 43.88 -22.64 1.01935 1533.2 43.93 -22.43 1.02084 1535.6 43.98 -22.14 Glycine + 0.3773 mol٠kg-1 aqueous tartaric acid 1.02100 1522.3 1.02250 1525.1 44.64 -23.28 1.02400 1527.8 44.67 -22.91 1.02548 1530.4 44.72 -22.46 1.02694 1533.1 44.76 -22.14 1.02840 1535.6 44.79 -21.65 1.02985 1538.0 44.84 -21.25 1.03129 1540.4 44.87 -20.77 1.03272 1542.9 44.91 -20.52 Glycine + 0.5504 mol٠kg-1 aqueous tartaric acid 1.03358 1529.1 1.03499 1532.0 46.11 -22.71

1.0231 1.0271 1.0311 1.0353

0.2345 0.2780 0.3204 0.3618

1.0416 1.0483 1.0549 1.0614

0.8367 1.0070 1.0131 1.0188 1.0244 1.0303 1.0357 1.0413 1.0465

0.0000 0.0493 0.0974 0.1443 0.1900 0.2345 0.2780 0.3204 0.3618

0.8735 1.0078 1.0146 1.0209 1.0273 1.0339 1.0400 1.0464 1.0524

0.0000 0.0493 0.0974 0.1443 0.1900 0.2345 0.2780 0.3204 0.3618

0.9206 1.0089

0.0000 0.0493

1.00916 1528.6 77.26 -34.35 1.01174 1532.3 77.43 -33.92 1.01429 1536.2 77.61 -33.65 1.01680 1539.9 77.77 -33.23 Glycylglycine + 0.1942 mol٠kg-1 aqueous tartaric acid 1.00866 1515.4 1.01139 1519.3 77.13 -33.72 1.01407 1523.1 77.44 -32.66 1.01670 1526.8 77.70 -31.97 1.01929 1530.5 77.95 -31.33 1.02182 1534.2 78.24 -30.66 1.02431 1537.8 78.51 -30.01 1.02675 1541.4 78.78 -29.50 1.02916 1545.0 79.01 -28.93 Glycylglycine + 0.3773 mol٠kg-1 aqueous tartaric acid 1.02100 1522.3 1.02369 1526.2 77.70 -31.23 1.02630 1530.1 78.17 -30.22 1.02884 1533.9 78.64 -29.33 1.03133 1537.7 79.08 -28.54 1.03374 1541.5 79.52 -27.80 1.03610 1545.3 79.94 -27.14 1.03840 1549.1 80.35 -26.48 1.04063 1552.8 80.79 -25.80 Glycylglycine + 0.5504 mol٠kg-1 aqueous tartaric acid 1.03358 1529.1 1.03621 1532.9 78.41 -28.08

0.2410 0.2871 0.3325 0.3773 0.0000 0.0496 0.0985 0.1467 0.1942 0.2410 0.2871 0.3325 0.3773 0.0000 0.0496 0.0985 0.1467 0.1942 0.2410 0.2871 0.3325 0.3773 0.0000 0.0496

Glycylglycine + water 0.7975 (0.8007)[33]

7

1.0346

0.8367 1.0126 1.0248 1.0370 1.0484 1.0606 1.0722 1.0835 1.0947 0.8735 1.0143 1.0277 1.0407 1.0537 1.0666 1.0795 1.0923 1.1049 0.9206 1.0147

0.0985 0.1467 0.1942 0.2410 0.2871 0.3325 0.3773 0.0000 0.0496 0.0985 0.1467 0.1942 0.2410 0.2871 0.3325 0.3773

1.03639 1534.9 46.15 -22.10 1.03779 1537.7 46.18 -21.62 1.03917 1540.4 46.21 -21.14 1.04054 1543.0 46.24 -20.54 1.04190 1545.5 46.28 -20.12 1.04325 1548.0 46.31 -19.60 1.04460 1550.4 46.35 -19.18 Glycine + 0.7142 mol٠kg-1 aqueous tartaric acid 1.04416 1535.7 1.04555 1538.7 46.30 -21.61 1.04694 1541.5 46.34 -20.76 1.04831 1544.2 46.38 -19.91 1.04967 1546.8 46.41 -19.18 1.05101 1549.2 46.47 -18.37 1.05234 1551.4 46.52 -17.62 1.05367 1553.7 46.56 -17.04 1.05499 1555.7 46.59 -16.28 Glycine + water 1520.1 (1520.6)[33] (1519.14)[17]

1.0168 1.0245 1.0318 1.0398 1.0469 1.0544 1.0619

0.0974 0.1443 0.1900 0.2345 0.2780 0.3204 0.3618

0.9696 0.0000 1.0099 0.0493 1.0197 0.0974 1.0289 0.1443 1.0381 0.1900 1.0475 0.2345 1.0564 0.2780 1.0654 0.3204 1.0743 0.3618 T = 308.15 K

1.03875 1536.7 78.97 -26.91 1.04123 1540.4 79.50 -26.06 1.04363 1544.0 80.02 -25.27 1.04596 1547.7 80.50 -24.57 1.04822 1551.2 81.00 -23.85 1.05041 1554.8 81.49 -23.15 1.05255 1558.4 81.92 -22.63 Glycylglycine + 0.7142 mol٠kg-1 aqueous tartaric acid 1.04416 1535.7 1.04672 1539.5 79.43 -25.14 1.04919 1543.2 80.01 -24.00 1.05159 1546.9 80.54 -23.22 1.05391 1550.4 81.05 -22.36 1.05617 1554.0 81.55 -21.64 1.05835 1557.5 82.04 -20.91 1.06046 1561.0 82.55 -20.25 1.06252 1564.4 82.98 -19.62

1.0297 1.0444 1.0590 1.0735 1.0877 1.1020 1.1167 0.9696 1.0161 1.0323 1.0483 1.0643 1.0797 1.0957 1.1110 1.1264

Glycylglycine + water

0.0000

0.99407 (0.99405)[33] (0.994031)[17] (0.994030)[71]

0.0496

0.99567 (0.995676)[17] (0.99534)[33] (0.995577)[46]

1522.6 (1522.89)[17] (1523.32)[33] (1523.08)[46]

43.03 (43.61)[17] (42.65)[33] (43.65)[41]

-23.57

1.0061 (1.0065)[33]

0.0493

0.99683 (0.99627)[33] (0.996748)[37]

1523.9 (1523.51)[33]

76.83 (76.42)[33] (77.30)[37]

-33.99

1.0125 (1.0075)[33] (1.016)[37]

0.0985

0.99725 (0.99727)[33] (0.997281)[17] (0.997108)[71] (0.997132)[46]

1525.0 (1525.9)[33] (1524.73)[17] (1525.37)[46]

43.20 (42.79)[33] (43.67)[17] (44.31)[71] (43.72)[46]

-23.23

1.0110 (1.0164)[33]

0.0974

0.99954 (0.99955)[33] (0.999518)[37] (0.998949)[50]

1527.6 (1528.14)[33] (1526.64)[50]

77.09 (76.76)[33] (77.48)[37] (77.21)[50]

-33.20

1.0214 (1.0187)[33] (1.030)[37]

0.1467

0.99880 (0.998680)[71] (0.998677)[46]

1527.4 (1527.65)[46]

43.39 (44.17)[71] (43.78)[46]

-22.95

1.0156

0.1443

1.00222

1531.2

77.28

-32.69

1.0296

0.1942

1.00032 (1.000371)[17] (1.000296)[71] (1.000216)[46]

1529.9 (1529.67)[17] (1529.95)[46]

43.59 (43.74)[17] (44.20)[71] (43.84)[46]

-22.66

1.0202

0.1900

1.00485 (1.004768)[37] (1.005201)[50]

1534.9 (1535.58)[50]

77.49 (77.80)[37] (77.49)[50]

-32.17

1.0375 (1.057)[37]

1.00183 1532.3 43.76 -22.40 1.00331 1534.7 43.93 -22.15 1.00476 1537.1 44.12 -21.90 1.00619 1539.6 44.29 -21.75 Glycine + 0.1942 mol٠kg-1 aqueous tartaric acid 1.00691 1525.6 1.00847 1528.1 43.83 -22.45 1.01001 1530.6 43.89 -22.11 1.01154 1533.0 43.94 -21.85 1.01306 1535.5 44.00 -21.50 1.01456 1537.8 44.04 -21.16 1.01605 1540.2 44.10 -20.88 1.01754 1542.5 44.14 -20.63 1.01901 1544.8 44.19 -20.31 Glycine + 0.3773 mol٠kg-1 aqueous tartaric acid 1.01914 1531.7 1.02063 1534.4 44.81 -21.77 1.02212 1537.0 44.84 -21.30 1.02359 1539.5 44.88 -20.83 1.02506 1541.9 44.92 -20.34 1.02651 1544.3 44.95 -19.87 1.02795 1546.6 44.99 -19.38 1.02939 1548.9 45.02 -19.02 1.03081 1551.1 45.06 -18.65

1.0247 1.0292 1.0336 1.0381

0.2345 0.2780 0.3204 0.3618

0.7533 1.0074 1.0139 1.0200 1.0263 1.0323 1.0383 1.0445 1.0502

0.0000 0.0493 0.0974 0.1443 0.1900 0.2345 0.2780 0.3204 0.3618

0.7864 1.0083 1.0154 1.0225 1.0294 1.0361 1.0429 1.0495 1.0561

0.0000 0.0493 0.0974 0.1443 0.1900 0.2345 0.2780 0.3204 0.3618

0.2410 0.2871 0.3325 0.3773 0.0000 0.0496 0.0985 0.1467 0.1942 0.2410 0.2871 0.3325 0.3773 0.0000 0.0496 0.0985 0.1467 0.1942 0.2410 0.2871 0.3325 0.3773

0.7195 (0.7234)[28]

8

1.00745 1538.5 77.68 -31.73 1.01000 1542.1 77.90 -31.21 1.01253 1545.7 78.08 -30.88 1.01500 1549.4 78.29 -30.57 Glycylglycine + 0.1942 mol٠kg-1 aqueous tartaric acid 1.00691 1525.6 1.00963 1529.3 77.43 -31.42 1.01230 1532.9 77.71 -30.41 1.01491 1536.5 78.04 -29.52 1.01748 1540.1 78.30 -29.02 1.02000 1543.6 78.56 -28.31 1.02247 1547.1 78.86 -27.73 1.02490 1550.5 79.12 -27.17 1.02730 1554.0 79.35 -26.74 Glycylglycine + 0.3773 mol٠kg-1 aqueous tartaric acid 1.01914 1531.7 1.02181 1535.5 78.10 -29.11 1.02440 1539.2 78.57 -28.12 1.02693 1542.9 79.03 -27.23 1.02939 1546.6 79.47 -26.41 1.03178 1550.2 79.95 -25.61 1.03412 1553.8 80.39 -24.92 1.03641 1557.4 80.77 -24.27 1.03862 1561.1 81.19 -23.69

1.0452 1.0525 1.0600 1.0672 0.7533 1.0133 1.0267 1.0400 1.0533 1.0664 1.0792 1.0920 1.1047 0.7864 1.0153 1.0295 1.0437 1.0580 1.0721 1.0858 1.0993 1.1135

0.0000 0.0496 0.0985 0.1467 0.1942 0.2410 0.2871 0.3325 0.3773 0.0000 0.0496 0.0985 0.1467 0.1942 0.2410 0.2871 0.3325 0.3773

Glycine + 0.5504 mol٠kg-1 aqueous tartaric acid 1.03091 1537.8 1.03232 1540.6 46.24 -21.06 1.03372 1543.3 46.27 -20.40 1.03511 1545.9 46.30 -19.89 1.03648 1548.5 46.33 -19.39 1.03785 1551.0 46.37 -18.91 1.03921 1553.3 46.41 -18.32 1.04056 1555.6 46.44 -17.78 1.04190 1557.7 46.47 -17.13 Glycine + 0.7142 mol٠kg-1 aqueous tartaric acid 1.04209 1543.8 1.04348 1546.6 46.45 -20.07 1.04485 1549.3 46.49 -18.98 1.04622 1551.8 46.53 -18.07 1.04757 1554.1 46.57 -17.21 1.04891 1556.3 46.62 -16.36 1.05024 1558.4 46.66 -15.60 1.05156 1560.4 46.70 -14.84 1.05287 1562.2 46.74 -14.15

0.8235 1.0093 1.0183 1.0262 1.0345 1.0427 1.0510 1.0588 1.0668

0.0000 0.0493 0.0974 0.1443 0.1900 0.2345 0.2780 0.3204 0.3618

0.8645 0.0000 1.0104 0.0493 1.0208 0.0974 1.0319 0.1443 1.0422 0.1900 1.0529 0.2345 1.0632 0.2780 1.0738 0.3204 1.0842 0.3618 T = 313.15 K

Glycylglycine + 0.5504 mol٠kg-1 aqueous tartaric acid 1.03091 1537.8 1.03352 1541.5 78.77 -26.11 1.03606 1545.1 79.26 -25.03 1.03851 1548.6 79.86 -24.13 1.04089 1552.1 80.40 -23.14 1.04321 1555.5 80.89 -22.37 1.04545 1558.9 81.39 -21.63 1.04763 1562.3 81.86 -20.92 1.04975 1565.6 82.32 -20.26 Glycylglycine + 0.7142 mol٠kg-1 aqueous tartaric acid 1.04209 1543.8 1.04463 1547.4 79.79 -23.22 1.04709 1551.0 80.36 -22.07 1.04947 1554.4 80.89 -21.15 1.05179 1557.9 81.39 -20.34 1.05402 1561.2 81.91 -19.57 1.05616 1564.5 82.48 -18.69 1.05827 1567.7 82.93 -17.89 1.06030 1571.1 83.41 -17.42

0.8235 1.0154 1.0319 1.0476 1.0635 1.0795 1.0958 1.1118 1.1277 0.8645 1.0177 1.0354 1.0530 1.0700 1.0882 1.1054 1.1220 1.1392

0.0000

0.99225 (0.99223)[33]

Glycine + water 1529.2 (1529.86)[33]

0.0496

0.99384 (0.99353)[33] (0.993753)[46]

1531.5 (1532.15)[33] (1532.06)[46]

43.31 (42.72)[33] (43.90)[46]

-21.91

1.0064 (1.0070)[33]

0.0493

0.99499 (0.99445)[33]

1532.8 (1532.56)[33]

77.30 (76.53)[33]

-31.15

1.0133 (1.0070)[33]

0.0985

0.99540 (0.99545)[33] (0.995297)[46]

1533.9 (1535.17)[33] (1534.30)[46]

43.49 (42.82)[33] (43.96)[46]

-21.62

1.0117 (1.0174)[33]

0.0974

0.99769 (0.99773)[33]

1536.2 (1537.08)[33]

77.50 (76.86)[33]

-30.37

1.0227 (1.0197)[33]

0.1467

0.99695 (0.996832)[46]

1536.2 (1536.51)[46]

43.67 (44.02)[46]

-21.32

1.0167

0.1443

1.00035

1539.7

77.70

-29.78

1.0316

0.1942

0.99846 (0.998361)[46]

1538.5 (1538.73)[46]

43.87 (44.08)[46]

-20.98

1.0217

0.1900

1.00296

1543.2

77.94

-29.30

1.0401

0.99995 1540.8 44.04 -20.77 1.00142 1543.1 44.21 -20.53 1.00287 1545.5 44.36 -20.37 1.00429 1547.8 44.54 -20.18 Glycine + 0.1942 mol٠kg-1 aqueous tartaric acid 1.00498 1534.2 1.00653 1536.6 44.06 -20.92 1.00806 1539.0 44.12 -20.58 1.00958 1541.4 44.16 -20.23 1.01109 1543.6 44.22 -19.86 1.01258 1545.9 44.28 -19.57 1.01406 1548.1 44.34 -19.16 1.01553 1550.4 44.39 -18.98 1.01699 1552.5 44.44 -18.61 Glycine + 0.3773 mol٠kg-1 aqueous tartaric acid 1.01708 1539.6 1.01857 1542.1 44.94 -20.19 1.02005 1544.6 44.97 -19.58 1.02151 1546.9 45.02 -19.02 1.02297 1549.3 45.06 -18.60 1.02442 1551.4 45.09 -17.97 1.02585 1553.6 45.14 -17.57 1.02728 1555.7 45.17 -17.16 1.02870 1557.7 45.20 -16.70 Glycine + 0.5504 mol٠kg-1 aqueous tartaric acid 1.02947 1545.0 1.03087 1547.7 46.36 -19.51 1.03227 1550.3 46.39 -18.72

1.0266 1.0314 1.0361 1.0409

0.2345 0.2780 0.3204 0.3618

0.6829 1.0083 1.0152 1.0219 1.0285 1.0352 1.0418 1.0481 1.0544

0.0000 0.0493 0.0974 0.1443 0.1900 0.2345 0.2780 0.3204 0.3618

0.7098 1.0087 1.0165 1.0239 1.0315 1.0387 1.0462 1.0530 1.0604

0.0000 0.0493 0.0974 0.1443 0.1900 0.2345 0.2780 0.3204 0.3618

0.7408 1.0100 1.0193

0.0000 0.0493 0.0974

1.00553 1546.6 78.16 -28.89 1.00806 1550.0 78.37 -28.42 1.01058 1553.5 78.52 -28.15 1.01303 1556.9 78.74 -27.77 Glycylglycine + 0.1942 mol٠kg-1 aqueous tartaric acid 1.00498 1534.2 1.00768 1537.8 77.79 -29.25 1.01033 1541.3 78.09 -28.36 1.01293 1544.8 78.40 -27.51 1.01548 1548.1 78.69 -26.75 1.01798 1551.5 78.96 -26.17 1.02044 1554.8 79.24 -25.55 1.02286 1558.2 79.49 -25.03 1.02524 1561.4 79.72 -24.50 Glycylglycine + 0.3773 mol٠kg-1 aqueous tartaric acid 1.01708 1539.6 1.01973 1543.2 78.44 -27.10 1.02230 1546.8 78.97 -25.82 1.02482 1550.3 79.42 -24.90 1.02726 1553.7 79.89 -23.96 1.02964 1557.1 80.34 -23.16 1.03197 1560.5 80.73 -22.46 1.03423 1563.9 81.17 -21.76 1.03642 1567.2 81.61 -21.00 Glycylglycine + 0.5504 mol٠kg-1 aqueous tartaric acid 1.02947 1545.0 1.03207 1548.6 79.15 -24.12 1.03458 1552.0 79.70 -23.00

0.2410 0.2871 0.3325 0.3773 0.0000 0.0496 0.0985 0.1467 0.1942 0.2410 0.2871 0.3325 0.3773 0.0000 0.0496 0.0985 0.1467 0.1942 0.2410 0.2871 0.3325 0.3773 0.0000 0.0496 0.0985

Glycylglycine + water 0.6535 (0.6579)[33]

9

1.0482 1.0565 1.0645 1.0720 0.6829 1.0139 1.0286 1.0432 1.0579 1.0721 1.0865 1.1008 1.1154 0.7098 1.0163 1.0322 1.0474 1.0631 1.0781 1.0930 1.1081 1.1227 0.7408 1.0162 1.0337

0.1467 0.1942 0.2410 0.2871 0.3325 0.3773 0.0000 0.0496 0.0985 0.1467 0.1942 0.2410 0.2871 0.3325 0.3773

1.03365 1552.8 46.42 -18.31 1.03503 1555.2 46.45 -17.55 1.03639 1557.4 46.49 -16.89 1.03774 1559.5 46.53 -16.20 1.03909 1561.6 46.56 -15.64 1.04042 1563.4 46.59 -14.95 Glycine + 0.7142 mol٠kg-1 aqueous tartaric acid 1.03986 1550.5 1.04124 1553.2 46.59 -18.25 1.04261 1555.7 46.63 -17.23 1.04397 1558.0 46.67 -16.25 1.04532 1560.1 46.70 -15.31 1.04665 1562.2 46.76 -14.46 1.04798 1564.0 46.80 -13.52 1.04930 1565.6 46.84 -12.65 1.05060 1567.2 46.87 -11.87

1.0284 1.0373 1.0462 1.0548 1.0640 1.0728

0.1443 0.1900 0.2345 0.2780 0.3204 0.3618

0.7756 0.0000 1.0111 0.0493 1.0228 0.0974 1.0338 0.1443 1.0451 0.1900 1.0569 0.2345 1.0679 0.2780 1.0796 0.3204 1.0909 0.3618 T = 318.15 K

1.03702 1555.4 80.28 -21.95 1.03938 1558.7 80.80 -20.99 1.04167 1561.9 81.33 -20.13 1.04390 1565.1 81.81 -19.40 1.04606 1568.3 82.29 -18.63 1.04815 1571.4 82.78 -17.94 Glycylglycine + 0.7142 mol٠kg-1 aqueous tartaric acid 1.03986 1550.5 1.04239 1554.0 80.16 -21.13 1.04483 1557.3 80.71 -19.96 1.04719 1560.6 81.28 -18.98 1.04949 1563.8 81.79 -18.08 1.05169 1567.0 82.38 -17.28 1.05384 1570.1 82.85 -16.57 1.05591 1573.2 83.36 -15.83 1.05792 1576.2 83.84 -15.17

1.0514 1.0683 1.0854 1.1029 1.1202 1.1372 0.7756 1.0189 1.0379 1.0576 1.0767 1.0955 1.1146 1.1333 1.1526

0.0000

0.99024 (0.990141)[17]

Glycine + water 1536.7 (1536.14)[17]

0.0496

0.99182 (0.991747)[17]

1539.0 (1538.94)[17]

43.64 (44.42)[17]

-20.21

1.0067

0.0493

0.99297

1540.1

77.71

-28.33

1.0138

0.0985

0.99337 (0.993309)[17]

1541.2 (1541.13)[17]

43.82 (44.52)[17]

-19.88

1.0122

0.0974

0.99564

1543.4

77.94

-27.54

1.0238

0.1467 0.1942

0.99490 0.99640 (0.996317)[17]

1543.4 1545.6 (1545.80)[17]

43.98 44.13 (44.62)[17]

-19.62 -19.45

1.0176 1.0228

0.1443 0.1900

0.99828 1.00087

1546.6 1549.9

78.14 78.38

-26.97 -26.51

1.0334 1.0425

0.2410 0.2871 0.3325 0.3773

0.99788 1547.8 44.31 -19.21 0.99934 1550.0 44.47 -18.99 1.00078 1552.2 44.64 -18.75 1.00221 1554.5 44.77 -18.61 Glycine + 0.1942 mol٠kg-1 aqueous tartaric acid

1.0280 1.0332 1.0383 1.0432

0.2345 0.2780 0.3204 0.3618

1.00344 1553.1 78.55 -25.98 1.00596 1556.3 78.75 -25.67 1.00843 1559.6 78.97 -25.30 1.01089 1562.9 79.15 -25.07 Glycylglycine + 0.1942 mol٠kg-1 aqueous tartaric acid

1.0513 1.0602 1.0690 1.0775

0.0000 0.0496 0.0985 0.1467 0.1942 0.2410 0.2871 0.3325 0.3773

1.00288 1541.3 1.00441 1543.6 44.26 -19.51 1.00593 1545.9 44.32 -19.08 1.00745 1548.1 44.37 -18.69 1.00894 1550.3 44.44 -18.38 1.01043 1552.4 44.48 -17.94 1.01190 1554.5 44.55 -17.64 1.01336 1556.6 44.60 -17.31 1.01481 1558.6 44.66 -16.98 Glycine + 0.3773 mol٠kg-1 aqueous tartaric acid 1.01453 1546.0 1.01602 1548.5 45.09 -18.61 1.01749 1550.7 45.13 -17.79 1.01895 1552.9 45.16 -17.16 1.02041 1555.0 45.19 -16.61 1.02185 1557.1 45.23 -16.15 1.02328 1559.0 45.26 -15.68 1.02471 1561.0 45.29 -15.31 1.02613 1562.8 45.32 -14.82 Glycine + 0.5504 mol٠kg-1 aqueous tartaric acid 1.02720 1551.0 1.02860 1553.5 46.48 -17.81 1.02999 1555.9 46.50 -16.89 1.03137 1558.2 46.53 -16.26 1.03274 1560.3 46.56 -15.34 1.03410 1562.3 46.60 -14.74 1.03545 1564.2 46.64 -14.00 1.03679 1566.0 46.67 -13.32 1.03812 1567.6 46.71 -12.66 Glycine + 0.7142 mol٠kg-1 aqueous tartaric acid 1.03826 1555.9

0.6209 1.0090 1.0166 1.0239 1.0312 1.0382 1.0452 1.0521 1.0589

0.0000 0.0493 0.0974 0.1443 0.1900 0.2345 0.2780 0.3204 0.3618

0.6209 1.0147 1.0307 1.0464 1.0624 1.0780 1.0932 1.1089 1.1238

0.6435 1.0090 1.0172 1.0253 1.0333 1.0412 1.0486 1.0563 1.0641

0.0000 0.0493 0.0974 0.1443 0.1900 0.2345 0.2780 0.3204 0.3618

0.6707 1.0106 1.0208 1.0308 1.0406 1.0504 1.0600 1.0692 1.0787

0.0000 0.0493 0.0974 0.1443 0.1900 0.2345 0.2780 0.3204 0.3618

0.6996

0.0000

1.00288 1541.3 1.00556 1544.8 78.18 -27.00 1.00819 1548.1 78.49 -25.96 1.01077 1551.4 78.80 -25.15 1.01330 1554.6 79.09 -24.41 1.01580 1557.8 79.34 -23.85 1.01824 1560.9 79.59 -23.28 1.02064 1564.0 79.86 -22.68 1.02300 1567.1 80.11 -22.13 Glycylglycine + 0.3773 mol٠kg-1 aqueous tartaric acid 1.01453 1546.0 1.01717 1549.5 78.86 -24.99 1.01973 1552.9 79.36 -23.66 1.02222 1556.2 79.82 -22.64 1.02465 1559.4 80.30 -21.73 1.02701 1562.7 80.74 -20.89 1.02931 1565.8 81.19 -20.08 1.03155 1569.1 81.62 -19.30 1.03374 1572.1 82.03 -18.67 Glycylglycine + 0.5504 mol٠kg-1 aqueous tartaric acid 1.027120 1551.0 1.02978 1554.4 79.52 -22.03 1.03228 1557.6 80.09 -20.81 1.03469 1560.8 80.70 -19.75 1.03704 1563.9 81.22 -18.90 1.03931 1567.0 81.75 -18.07 1.04151 1570.0 82.26 -17.15 1.04365 1572.9 82.76 -16.37 1.04573 1575.7 83.21 -15.51 Glycylglycine + 0.7142 mol٠kg-1 aqueous tartaric acid 1.03826 1555.9

0.0000 0.0496 0.0985 0.1467 0.1942 0.2410 0.2871 0.3325 0.3773 0.0000 0.0496 0.0985 0.1467 0.1942 0.2410 0.2871 0.3325 0.3773 0.0000

Glycylglycine + water 0.5963

10

0.6435 1.0172 1.0341 1.0511 1.0679 1.0846 1.1013 1.1178 1.1336 0.6707 1.0169 1.0359 1.0553 1.0742 1.0937 1.1129 1.1319 1.1504 0.6996

0.0496 0.0985 0.1467 0.1942 0.2410 0.2871 0.3325 0.3773

131 132 133 134 135 136 137 138 139 140 141

1.03964 1558.4 46.71 -16.57 1.0117 0.0493 1.04077 1559.2 80.58 -19.52 1.04101 1560.7 46.75 -15.32 1.0241 0.0974 1.04319 1562.5 81.17 -18.23 1.04236 1562.9 46.79 -14.40 1.0361 0.1443 1.04554 1565.6 81.71 -17.13 1.04370 1564.8 46.84 -13.37 1.0483 0.1900 1.04781 1568.6 82.24 -16.17 1.04503 1566.6 46.88 -12.40 1.0610 0.2345 1.05001 1571.6 82.74 -15.37 1.04635 1568.1 46.93 -11.36 1.0726 0.2780 1.05213 1574.5 83.26 -14.50 1.04766 1569.6 46.96 -10.50 1.0848 0.3204 1.05418 1577.4 83.78 -13.76 1.04896 1570.8 47.00 -9.59 1.0969 0.3618 1.05617 1580.1 84.27 -12.97 a Standard uncertainties in molality are with in u (m) = ± 2 * 10-3 / mol٠ kg-1 b Standard uncertainties in density are with in u ( ) = ± 1*10-2 / kg٠m-3 c Standard uncertainties in ultrasonic velocity are with in u (u) = ±0.1 m٠s-1 d Standard uncertainties in apparent molar volume are with in u ( ) = ± (0.1 and 0.02) * 10-5 / m3 ٠ mol-1 for low & high concentration of amino acids e Standard uncertainties in apparent molar isentropic compression are with in u ( ) = ± (0.3–0.04) * 10-6 / m3 ٠ mol-1 ٠ GPa-1 for low and high concentration of amino acids. f Standard uncertainties in pressure are with in u (P) = ± 0.01 MPa. g Standard uncertainties in temperature are with in u (T) = ± 0.01 K.

From table 2, it is observed that the values of  are positive which increase with

142

increase in temperature for all tartaric acid concentrations. The positive  values indicate the

143

presence of solute-solvent interactions, which increase with increase of peptide bond from

144

glycine to glycylglycine. This effect is because of dissociation of amino acids into amino

145

(NH3+) and carboxyl group (COO-) in solutions [19].

146

The values of  as obtained from equation (3) and reported in table 3 are negative.

147

The negative values of  decreases with increase in concentration and with temperature.

148

The negative  values shows that water molecules around solute are less compressible than

149

water molecules in the bulk because it is assumed that amino acid and ions are not pressure

150

dependent and electrostricted water molecules are already compressed to its maximum extent

151

by the charge on the ions and the amino acids. Therefore, the compressibility of a solution is

152

mainly due to the effect of pressure on the bulk water molecules [20]. Further, these

153

negative  values as mentioned above predicts that water molecules around solute are less

154

compressible than water molecules in the bulk which is attributed to strong solute-solvent

155

interactions between ions of amino acid/peptide and ions of tartaric acid.

156

The apparent molar volumes ( ) have been found to vary linearly with molal

157

concentration (m) for glycine and glycylglycine in (0.1942, 0.3773, 0.5504 and 0.7142)

158

mol kg-1 aqueous tartaric acid solutions in accordance with Masson’s equation [21-22] given

159

below:

160

 =  0 + Sv* m

161 162

(5)

Here,  0is the apparent molar volume at infinite dilution of the respective amino acid and ∗ is the experimental slope and m is the molal concentration of solution.

11

1.0202 1.0407 1.0621 1.0830 1.1030 1.1246 1.1450 1.1652

163

Further, the apparent molar isentropic compression (  ) for glycine and

164

glycylglycine in (0.1942, 0.3773, 0.5504 and 0.7142) mol kg-1 aqueous tartaric acid solutions

165

vary linearly with respective molal concentration according to following equation [23-25]:

166

 =  0 + Sk* m

(6)

Here,  0is the apparent molar volume at infinite dilution of the respective amino acid

167 168

and ∗ is the experimental slope and m is the molal concentration of solution.

169 170 171 172 173

Table 3 Limiting apparent molar volumes ( 0), limiting apparent molar isentropic compression ( 0) and experimental slopes (Sv*), (Sk*) for glycine and glycylglycine in water and in (0.1942, 0.3773, 0.5504 and 0.7142) mol٠kg-1 aqueous tartaric acid solutions with corresponding standard deviations at different temperatures (aT = 298.15–318.15) K and at pressure bP = 0.1 MPa along with standard deviation and corresponding literature values. Tempera t-ure T /K

Limiting Apparent Molar volume  0 6 3 * 10 / m ٠ mol-1

Limiting Experimenta Apparent l Slopes Molar Sv* 6 3 Isentropic * 10 / m ٠ L1/2٠ mol-3/2 compression  0 6 10 / m3 ٠ * -1 mol GPa-1 Glycine + Water

Experimenta l Slopes Sk* 6 3 * 10 / m ٠ L1/2٠ mol-3/2٠ GPa-1

Limiting Apparent Molar volume  0 6 3 * 10 / m ٠ mol-1

298.15

42.20 (±0.01) (42.58)[33] (42.68)[17] (43.5)[71] (42.81)[46] (42.14)[38] (43.24)[72] (43.19)[3] (42.54)[4] (43.14)[5] (43.19)[2] (43.01)[6] (42.9)[7]

-26.67 (±0.02) (-26.12)[38] (-26.33)[72] (-27.00)[5] (-25.97)[2] (-26.6)[7]

303.15

42.47 (±0.01) (42.61)[33] (44.2)[71] (43.14)[46]

308.15

4.07 (±0.04)

4.24 (±0.09)

75.88 (±0.01) (75.89)[33] (76.22)[72] (76.22)[50] (76.26)[37] (76.23)[3] (76.23)[5] (76.36)[6] (76.27)[52] (76.40)[29]

-39.11 (±0.13) (-39.64)[72] (-39.64)[50] (-40.20)[5] (-40.9)[29]

4.17 (±0.05)

9.61 (±0.55)

-25.42 (±0.03)

4.10 (±0.03)

5.41 (±0.14)

76.25 (±0.01) (76.04)[33] (76.84)[29]

-36.71 (±0.09) (-37.7)[29]

4.26 (±0.06)

9.83 (±0.38)

42.83 (±0.01) (42.62)[33] (43.56)[17] (43.38)[46] (42.21)[38]

-23.79 (±0.04) (-23.98)[38]

3.89 (±0.03)

5.62 (±0.16)

76.62 (±0.01) (76.18)[33] (77.04)[50] (77.19)[37] (77.32)[29]

-34.32 (±0.11) (-35.57)[50] (-35.4)[29]

4.57 (±0.05)

10.81 (±0.45)

313.15

43.13 (±0.01) (42.64)[33] (44.38)[17] (43.66)[46]

-22.11 (±0.05)

3.76 (±0.04)

5.33 (±0.22)

77.06 (±0.01) (76.30)[33]

-31.43 (±0.12)

4.63 (±0.06)

10.51 (±0.52)

318.15

43.47 (±0.01) (42.44)[38]

-20.39 (±0.03) (-21.19)[38]

3.48 (±0.03)

4.84 (±0.14)

77.49 (±0.01)

-28.58 (±0.14)

4.60 (±0.05)

10.29 (±0.59)

12

Limiting Experimenta Apparent l Slopes Molar Sv* 6 3 Isentropic * 10 / m ٠ L1/2٠ mol-3/2 compression  0 6 10 / m3 ٠ mol* 1 ٠ GPa-1 Glycylglycine + Water

Experimenta l Slopes Sk* 6 3 * 10 / m ٠ L1/2٠ mol-3/2٠ GPa-1

298.15 303.15 308.15 313.15 318.15

298.15 303.15 308.15 313.15 318.15

298.15 303.15 308.15 313.15 318.15

298.15 303.15 308.15 313.15 318.15

174 175 176 177

Standard

Glycine + 0.1942 mol٠kg-1 Aqueous Tartaric Acid

Glycylglycine + 0.1942 mol٠kg-1 Aqueous Tartaric Acid

43.37 -25.44 1.01 4.46 (±0.01) (±0.03) (±0.02) (±0.14) 43.58 -24.30 1.06 5.71 (±0.01) (±0.02) (±0.03) (±0.10) 43.78 -22.77 1.10 6.51 (±0.01) (±0.02) (±0.01) (±0.09) 43.99 -21.26 1.18 7.04 (±0.01) (±0.03) (±0.02) (±0.14) 44.20 -19.85 1.21 7.67 (±0.01) (±0.03) (±0.02) (±0.12) Glycine + 0.3773 mol٠kg-1 Aqueous Tartaric Acid

-36.16 13.49 76.49 5.89 (±0.10) (±0.41) (±0.02) (±0.07) -34.22 14.93 76.83 6.02 (±0.11) (±0.46) (±0.01) (±0.06) -31.87 14.71 77.13 6.19 (±0.14) (±0.60) (±0.01) (±0.06) -29.79 15.06 77.49 6.22 (±0.12) (±0.50) (±0.01) (±0.05) -27.48 15.15 77.90 6.14 (±0.13) (±0.56) (±0.01) (±0.06) Glycylglycine + 0.3773 mol٠kg-1 Aqueous Tartaric Acid

44.44 -24.92 0.87 6.54 (±0.01) (±0.02) (±0.01) (±0.10) 44.60 -23.75 0.83 8.69 (±0.01) (±0.04) (±0.02) (±0.18) 44.77 -22.23 0.77 9.68 (±0.01) (±0.04) (±0.01) (±0.15) 44.90 -20.63 0.82 10.55 (±0.01) (±0.06) (±0.02) (±0.24) 45.06 -18.93 0.70 11.17 (±0.01) (±0.12) (±0.01) (±0.48) Glycine + 0.5504 mol٠kg-1 Aqueous Tartaric Acid

-33.78 15.96 76.90 9.52 (±0.08) (±0.35) (±0.02) (±0.08) -31.90 17.10 77.22 9.82 (±0.09) (±0.38) (±0.01) (±0.03) -29.81 17.36 77.60 9.94 (±0.10) (±0.41) (±0.01) (±0.06) -27.75 19.02 77.97 10.02 (±0.14) (±0.59) (±0.02) (±0.07) -25.67 19.94 78.36 10.14 (±0.15) (±0.64) (±0.01) (±0.02) Glycylglycine + 0.5504 mol٠kg-1 Aqueous Tartaric Acid

45.95 -24.30 0.77 8.05 (±0.01) (±0.04) (±0.01) (±0.18) 46.07 -23.20 0.72 10.77 (±0.01) (±0.03) (±0.01) (±0.14) 46.20 -21.63 0.71 11.66 (±0.01) (±0.05) (±0.02) (±0.23) 46.32 -20.20 0.71 13.82 (±0.01) (±0.06) (±0.02) (±0.26) 46.44 -18.49 0.70 15.59 (±0.01) (±0.06) (±0.03) (±0.25) Glycine + 0.7142 mol٠kg-1 Aqueous Tartaric Acid

-30.75 16.40 77.53 10.82 (±0.10) (±0.42) (±0.02) (±0.09) -28.66 17.17 77.87 11.25 (±0.13) (±0.54) (±0.01) (±0.05) -26.86 18.65 78.19 11.48 (±0.10) (±0.45) (±0.02) (±0.09) -24.89 19.68 78.58 11.61 (±0.12) (±0.53) (±0.01) (±0.05) -22.85 20.41 78.96 11.85 (±0.08) (±0.39) (±0.02) (±0.08) Glycylglycine + 0.7142 mol٠kg-1 Aqueous Tartaric Acid

46.10 (±0.01) 46.25 (±0.01) 46.40 (±0.01) 46.54 (±0.01) 46.66 (±0.01)

-23.48 (±0.03) -22.34 (±0.06) -20.78 (±0.09) -19.15 (±0.04) -17.50 (±0.06)

0.90 (±0.02) 0.91 (±0.02) 0.89 (±0.02) 0.89 (±0.01) 0.90 (±0.01)

11.82 (±0.12) 16.18 (±0.23) 17.93 (±0.37) 19.48 (±0.17) 21.14 (±0.25)

-27.75 16.00 78.56 10.97 (±0.13) (±0.54) (±0.01) (±0.06) -25.78 17.38 78.89 11.35 (±0.10) (±0.44) (±0.01) (±0.05) -23.94 18.59 79.21 11.61 (±0.11) (±0.49) (±0.02) (±0.08) -21.81 18.81 79.57 11.83 (±0.13) (±0.54) (±0.01) (±0.06) -20.26 20.54 80.01 11.75 (±0.14) (±0.59) (±0.01) (±0.05) errors for Limiting apparent molar volumes ( 0), Limitng apparent molar isentropic compression ( 0) and experimental slopes

(Sv*), (Sk*) are given in parenthesis. a

Standard uncertainties in temperatures are u(T) = ± 0.01 K.

b

Standard uncertainties in pressures are u(P) = ± 0.01 MPa.

178

From table 3, it is observed that  0 values of glycine and glycylglycine in water and

179

in aqueous tartaric acid solutions are positive and increases with increase in concentration of

180

tartaric acid and temperature. The  0 values are indicative of solute-solvent interactions and

181

it is clear here that positive values of  0, suggesting strong solute-solvent interactions [26].

182

We have studied, when an overlap of co-spheres of two ionic species there is increase in

183

volume and if two hydrophobic-hydrophobic groups and ion-hydrophobic groups overlap,

13

184

there is decrease in volume [27,28]. And here, the observed positive values of  0 are

185

because of ion-hydrophilic interactions which dominate over hydrophobic-hydrophobic and

186

ion-hydrophobic interactions. We have also seen, in table 3 that mostly with the increase in

187

molar mass and hydrophobicity of alkyl side chain, i.e. from glycine to glycylglycine, the

188

 0 values increase [29]. And with the increase in concentration, the increases in  0 values

189

are because of increase in solvation of glycine and glycylglycine with ions of tartaric acid.

190

From table 3, the negative values of 

0

(loss of compressibility of medium) indicate

191

that the water molecules surrounding the amino acid/peptide would present greater resistance

192

to compression than water molecules present in bulk. With increase in temperature the 

193

values become less negative which means that electrostriction reduces and some water

194

molecules are released to bulk. The strong interactions due to hydration of ions produced

195

from the dissociation of tartaric acid induce the dehydration of amino acid/peptide and

196

increase the water molecule in the bulk. Because of formation of ion pairs between the

197

zwitter ions of amino acid/peptide and tartaric acid ions, the electrostriction interaction

198

between amino acid/peptide and water molecules are suppressed. In addition to this, the

199

attractive interaction between the ions of tartaric acid and water molecules induces the

200

dehydration of amino acid/peptide and therefore, at high tartaric acid concentrations, the

201

water molecules around the amino acid/peptide are more compressible than those at lower

202

tartaric acid concentrations [30]. The positive values of Sv* and Sk* respectively are indicative

203

of solute-solute interactions in the system and here, less but positive values of Sv* accounts

204

for weaker solute-solute interactions. Moreover, an irregular trend of Sv* and Sk* values

205

suggest that solute-solute interactions are influenced by number of effects [31].

0

206 207

3.2 Temperature effects

208

The temperature dependence of  0 can be expressed by the following relations [32,33]:

209

 0 = a + bT + cT2

(7)

210

Where T is the temperature expressed in Kelvin and a, b and c are constants. On

211

solving this equation for different values of  0 at different temperature, we get values of a,

212

b and c constants. The limiting apparent molar expansion i.e. ! 0 were obtained by

213

differentiating above equation with respect to temperature:

214

! 0 = (δ  0/δΤ)P = b + 2cT

14

(8)

215

And the double derivative of partial molar volumes is shown as

216

(δ2ϕv0/δΤ2)P = 2c

(9)

217

From table 5, (! 0) decreases with increase in temperature, which implies caging

218

effect is absent. The sign of (! 0) values is found to provide important information regarding

219

the size of solute and its hydrophobicity. Here, in present both systems, (! 0) values are

220

positive but having lower values, there by showing weak solute-solute interactions and also

221

indicate that the solute is hydrophilic.

222 223 224 225 226 227 228

The criteria proposed by Hepler (1969) [34], called hydrophobicity criteria, make use of the double derivative of partial molar volume with respect to temperature to explain the hydrophobicity of the solute. From table, in present both systems i.e. glycine and glycylglycine system, (δ2ϕv0/δΤ2)P< 0 as constant c is negative (table 4), indicating thereby the solute is hydrophilic. Qualitative information on hydration of solutes [35-38] could be obtained from the thermal expansion of aqueous solution by using the general thermodynamic expression:

229 230

(δCP0/δP)T = - T (δ2ϕv0/δΤ2)P

(10)

Here, in present studied system, we have

231

(δCP0/δP)T> 0 i.e. (δ2φvο/δΤ2)P< 0, for both glycine and glycylglycine systems which

232

indicates that glycine and glycylglycine behaves as structure-breaker in water as well as in

233

different compositions of tartaric acid at different temperatures.

234 235 236

Table 4 Values of constant c for glycine and glycylglycine in water and in aqueous tartaric acid solutions at different temperatures (aT = 298.15– 318.15) K and at pressure bP = 0.1 MPa. molality (tartaric acid) / mol٠kg-1

237 238 239 240 241

a

Value of c Glycine

Glycylglycine

0.0000

-0.000199

-0.000200

0.1942

-0.000067

-0.000133

0.3773

-0.000133

-0.000199

0.5504

-0.000200

-0.000200

0.7142

-0.000199

-0.000200

Standard uncertainties in temperatures are u(T) = ± 0.01 K.

b

Standard uncertainties in pressures are u(P) = ± 0.01 MPa.

Table 5 Values of limiting apparent molar expansiona(! 0),Falkenhagen’s Coefficient (A), Jones-Dole Coefficient (B) for glycine and glycylglycine in water and in (0.1942, 0.3773, 0.5504 and 0.7142) mol٠kg-1 aqueous tartaric acid solutions at different temperatures (bT = 298.15–318.15)

15

242

K and at pressure cP = 0.1 MPa along with standard deviation and corresponding literature values. Temperature T /K

Limiting apparent molar expansion, # 0∗ 106 / m3 ٠ mol-1٠ K-1

298.15

0.0650 (0.00790)[33]

303.15

0.0630 (0.00390)[33]

0.0074 (±0.0003)

0.0810 (±0.0006)

0.0910 (0.094)[29] (0.0289)[33]

0.0246 (±0.0010)

0.1274 (±0.0021)

308.15

0.0610 (-0.00002)[33]

0.0073 (±0.0006)

0.0883 (±0.0012)

0.0890 (0.079)[29] (0.0269)[33]

0.0233 (±0.0009)

0.1456 (±0.0019)

313.15

0.0590 (-0.0041)[33]

0.0071 (±0.0003)

0.0962 (±0.0008)

0.0870 (0.0249)[33]

0.0236 (±0.0011)

0.1586 (±0.0023)

318.15

0.0570

298.15 303.15 308.15 313.15 318.15

298.15 303.15 308.15 313.15 318.15

298.15 303.15 308.15 313.15 318.15

298.15 303.15 308.15 313.15

Falkenhagen’s Coefficient, A * 103/2 / m3/2 ٠ mol-1/2 Glycine + Water 0.0079 (±0.0003)

Jones-Dole Coefficient, B * 103 / m3 ٠ mol-1

0.0722 (±0.0006)

0.0065 0.1036 (±0.0003) (±0.0008) Glycine + 0.1942 mol٠kg-1 Aqueous Tartaric Acid 0.0423 0.0050 0.1046 (±0.0005) (±0.0011) 0.0417 0.0061 0.1131 (±0.0004) (±0.0009) 0.0410 0.0053 0.1239 (±0.0005) (±0.0012) 0.0403 0.0072 0.1318 (±0.0006) (±0.0013) 0.0397 0.0086 0.1416 (±0.0004) (±0.0009) Glycine + 0.3773 mol٠kg-1 Aqueous Tartaric Acid 0.0327 0.0066 0.1174 (±0.0002) (±0.0005) 0.0313 0.0061 0.1284 (±0.0006) (±0.0014) 0.0300 0.0059 0.1384 (±0.0004) (±0.0008) 0.0287 0.0049 0.1514 (±0.0004) (±0.0009) 0.0273 0.0038 0.1630 (±0.0003) (±0.0007) Glycine + 0.5504 mol٠kg-1 Aqueous Tartaric Acid 0.0290 0.0059 0.1345 (±0.0004) (±0.0009) 0.0270 0.0059 0.1480 (±0.0006) (±0.0012) 0.0250 0.0053 0.1620 (±0.0006) (±0.0013) 0.0230 0.0038 0.1793 (±0.0004) (±0.0010) 0.0210 0.0031 0.1971 (±0.0003) (±0.0007) Glycine + 0.7142 mol٠kg-1 Aqueous Tartaric Acid 0.0330 0.0049 0.1672 (±0.0006) (±0.0013) 0.0310 0.0013 0.1944 (±0.0004) (±0.0009) 0.0290 -0.0057 0.2315 (±0.0007) (±0.0015) 0.0270 -0.0065 0.2498 (±0.0012) (±0.0025)

16

Limiting Falkenhagen’s apparent molar Coefficient, expansion, A * 103/2 / m3/2 ٠ # 0∗ 106 / m3٠ mol-1/2 mol-1 ٠ K-1 Glycylglycine + Water 0.0930 0.0270 (0.099)[29] (±0.0008) (0.0309)[33]

0.0850

Jones-Dole Coefficient, B * 103 / m3 ٠ mol-1

0.1061 (±0.0018)

0.0217 0.1761 (±0.0013) (±0.0027) Glycylglycine + 0.1942 mol٠kg-1 Aqueous Tartaric Acid 0.0687 0.0001 0.2377 (±0.0011) (±0.0024) 0.0673 -0.0033 0.2657 (±0.0012) (±0.0025) 0.0660 -0.0081 0.3008 (±0.0012) (±0.0026) 0.0647 -0.0143 0.3394 (±0.0017) (±0.0037) 0.0633 -0.0165 0.3677 (±0.0012) (±0.0027) Glycylglycine + 0.3773 mol٠kg-1 Aqueous Tartaric Acid 0.0790 -0.0002 0.2648 (±0.0015) (±0.0032) 0.0770 -0.0019 0.2903 (±0.0018) (±0.0040) 0.0750 -0.0032 0.3156 (±0.0021) (±0.0045) 0.0730 -0.0045 0.3442 (±0.0016) (±0.0034) 0.0710 -0.0097 0.3830 (±0.0019) (±0.0042) Glycylglycine in 0.5504 mol٠kg-1 Aqueous Tartaric Acid 0.0830 -0.0068 0.3035 (±0.0021) (±0.0045) 0.0810 -0.0095 0.3349 (±0.0016) (±0.0036) 0.0790 -0.0160 0.3758 (±0.0025) (±0.0054) 0.0770 -0.0193 0.4078 (±0.0021) (±0.0046) 0.0750 -0.0279 0.4594 (±0.0020) (±0.0044) Glycylglycine + 0.7142 mol٠kg-1 Aqueous Tartaric Acid 0.0670 -0.0082 0.3297 (±0.0021) (±0.0046) 0.0650 -0.0097 0.3628 (±0.0016) (±0.0036) 0.0630 -0.0114 0.4006 (±0.0022) (±0.0048) 0.0610 -0.0163 0.4443 (±0.0024) (±0.0053)

318.15

0.0250

-0.0077 0.2681 0.0590 -0.0200 (±0.0008) (±0.0018) (±0.0029) Standard errors for Falkenhagen’s Coefficient (A), Jones-Dole Coefficient (B) are given in parenthesis. a Standard uncertainties in limiting apparent molar volumes expansion, u(! ) = ± (0.0001-0.0004) ∗ 106 / m3٠ mol-1٠ K-1. b Standard uncertainties in temperatures are u(T) = ± 0.01 K. c Standard uncertainties in pressures are u(P) = ± 0.01 MPa.

0.4861 (±0.0063)

243 Water

(a)

0.5504 Tartaric Acid 0.7142 Tartaric Acid

0.090

φE0 * 106/ m3. mol-1. K-1

φ E0 * 106/ m3. mol-1. K-1

0.07

0.06

0.05

0.04

0.03

Water 0.1942 Tartaric Acid 0.3773 Tartaric Acid

(b)

0.1942 Tartaric Acid 0.3773 Tartaric Acid 0.5504 Tartaric Acid 0.7142 Tartaric Acid

0.085

0.080

0.075

0.070

0.065

0.060 0.02 295

300

305

310

315

320

295

T/ K

300

305

310

315

320

T/ K

244 245

Figure 1 Plots of limiting apparent molar expansions, (! 0), versus temperature (T) for (a) glycine and (b) glycylglycine in water and in

246

0.1942, 0.3773, 0.5504 and 0.7142 mol kg-1 aqueous tartaric acid solutions

247 248

3.3 Viscosity studies

249

Here, we have analysed viscosity data in terms of semi empirical Jones-Dole equation [39]

250

ηrelative = η/η0 = 1+ A√m+Bm

251

ηr = 1+ A√m +Bm

252

ηspecific = (ηrel– 1) = A√m +Bm

253

(ηspecific/√m) = (ηr -1)/ √m = (η/η0 -1)/√m = A+B√m

(11)

(12)

254

Where η and η0 are the viscosities of solution and solvents, m is the molal

255

concentration, A and B are Falkenhagen [40,41] and Jones-Dole coefficients [42],

256

respectively. We know, coefficient A accounts for the solute-solute interaction and B is a

257

measure of structural modifications induced by the solute –solvent interactions [43]. The

258

values of A and B have been obtained as the intercept and slope from linear regression of [(ηr

259

-1)/√m] Vs √m curves.

17

Water Water

(a) 0.28

0.1942 Tartaric Acid 0.3773 Tartaric Acid

(b)

0.1942 Tartaric Acid

0.50

0.3773 Tartaric Acid

0.5504 Tartaric Acid 0.7142 Tartaric Acid

0.5504 Tartaric Acid

0.26

0.45

0.7142 Tartaric Acid

0.24

0.40

B * 103 / m3 mol-1

0.20

.

0.18

.

B * 103 / m3 mol-1

0.22

0.16 0.14 0.12 0.10

260 261 262

0.30 0.25 0.20 0.15

0.08 0.06 295

0.35

300

305

310

315

0.10 295

320

300

305

T/K

310

315

320

T/ K

Figure 2 Plots of Jones-Dole coefficient (B) versus temperature (T) for (a) glycine and (b) glycylglycine in water and in 0.1942, 0.3773, 0.5504 and 0.7142 mol kg-1 aqueous tartaric acid solutions

263

The values of A-coefficients are smaller in magnitude or even negative, showing weak

264

solute-solute interactions. Here, it has been noticed from table 5, that there is decrease in

265

values of A with temperature. The decrease of A with rising temperature is probably due to

266

the greater thermal agitation and reduction of attractive forces between the ions [44]. The B-

267

coefficient is a measure of order or disorder introduced by the ions into the solvent. It is

268

observed from table 5 that there are larger and positive values of B-coefficients in both

269

systems i.e. in glycine and glycylglycine systems as compared to A-coefficient support the

270

behaviour of $ 0 and Sv, respectively, both indicating stronger solute-solvent interaction as

271

compared to solute-solute interactions [12]. Also, in present studied systems, the positive B-

272

coefficient values systematically increases with increase in the hydrophobicity of the amino

273

acid side chain i.e. glycine to glycylglycine. Therefore, the hydrophobic side chain enhances

274

the solute-water interactions even though they affect the structure of solvent-water locally via

275

hydrophobic hydration [45]. The temperature derivatives of B-coefficient (dB/dT) have also

276

been calculated. The sign of dB/dT values provide important information regarding structure

277

making or structure breaking ability of the solute in solvent system [46,47]. In present systems

278

i.e. in glycine and glycylglycine systems, dB/dT is positive, which indicate solute is having

279

structure breaking ability in solvent system, thus supporting our earlier conclusion obtained

280

from Hepler’s constant.

281

3.4 Transfer parameters

282

The transfer parameters, $ 0 and  0 for glycine and glycylglycine in water and in

283

aqueous solution of tartaric acid have been calculated (∆tr $ 0 and (∆tr  0) by following

284

relation [48]:

285

(∆tr % 0)= ∆tr % 0(solution) - % 0 (water) 18

(13)

286

The calculated results are given in table 6 and illustrated in figure 3 and 4. The values of

287

(∆tr $ 0) are by definition free from solute-solute interactions and therefore, provide

288

information regarding solute-solvent interactions. The sign of the (∆tr $ 0) is often

289

interpreted in terms of strength of the solute-co-solute interactions [49]. Here, we have

290

studied partial of volumes is having positive values i.e. (∆tr $ 0) > 0, which indicate ionic-

291

hydrophilic and hydrophilic-hydrophilic interactions are predominant i.e. strong solute-co-

292

solute interactions are present in both systems i.e. in glycine and glycylglycine systems. We

293

also studied that the type of interactions in the ternary systems depend both on the nature of

294

side chain as well as type of the additive [50,51]. As can be seen in Figure 3, the values of

295

(∆tr $ 0) for both glycine and glycylglycine increases gradually with the molality of tartaric

296

acid, showing that high ionic strength dehydrates amino acid/peptide, and almost decreases

297

with temperature. According to the co-sphere overlap model regarding the values of (∆tr $ 0),

298

there is negligible contribution from solute–solute interactions and hence, they provide

299

information regarding solute–solvent interactions [52-57]. The types of interaction that occur

300

between amino acids and tartaric acid molecules can be classified as:

301

(i)

and the zwitterionic centers of the amino acid/peptide.

302 303

(ii)

(iii)

308

Ion-hydrophobic group interactions between the -COOH group of the tartaric acid and the non-polar group of the amino acid/peptide.

306 307

Hydrophilic–hydrophilic group interactions between the -COOH group of the tartaric acid and the -NH2 group of the amino acid/peptide.

304 305

Ion-hydrophilic group interactions between the-COOH group of the tartaric acid

(iv)

Hydrophobic–hydrophobic group interactions between the non-polar group of the tartaric acid and the non-polar group of the amino acid/peptide.

309

Ion-hydrophobic interactions and hydrophobic–hydrophobic interactions contribute

310

negatively based on co-sphere overlap model [58,59] whereas ion-hydrophilic and

311

hydrophilic–hydrophilic interactions contribute positively to the (∆tr $ 0) values. Here, we

312

can easily conclude that ion-hydrophilic and hydrophilic–hydrophilic interactions are much

313

stronger than ion– hydrophobic and hydrophobic–hydrophobic interactions. So, in both

314

systems, there are strong interactions between the (NH3+, COO-) charged ends of amino

315

acid/peptide and ions of the co-solute (solvent), which leads to effective overlap of amino

316

acid/peptide and co-solute ions. The observed higher values of (∆tr $ 0) of glycine than

317

glycylglycine in different molal concentrations of aqueous tartaric acid are due to release of 19

318

more number of water molecules from glycine due to domination of ionic-hydrophilic and

319

hydrophilic-hydrophilic interactions. Further, the observed decrease in (∆tr $ 0) values for

320

glycine/glycylglycine in different molal concentrations of aqueous tartaric acid with an

321

increase in temperature may be attributed to the corresponding decrease in the number of

322

electrostricted water molecules [26].

323

Table 6 shows that (∆tr  0) values are positive and increases with increase in concentration

324

of tartaric acid in all the cases. The increasing (∆tr  0) values in both system i.e. glycine and

325

glycylglycine suggest that there is disruption of the hydration sphere of charged end centres,

326

which implies dominance of ion-hydrophilic interactions [60,61]. The decrease in (∆tr  0)

327

values for glycine/glycylglycine in different molal concentrations of tartaric acid with an

328

increase in temperature indicate that the release of water molecules from the secondary

329

solvation layer of glycine and glycylglycine zwitter ions into the bulk water at higher

330

temperature [26]. The variations of (∆tr $ 0) are consistent with variation in (∆tr  0). 0.1942 Tartaric Acid 0.3773 Tartaric Acid

(a)

0.5504 Tartaric Acid 0.7142 Tartaric Acid

4.0

0.1942 Tartaric Acid 0.3773 Tartaric Acid

(b)

3.5

0.5504 Tartaric Acid 0.7142 Tartaric Acid

3.0

2.4 2.2 1

2.5

. mol-

2.0 1.8

3

2.0

6

∆ trφ v * 10 / m

1.5

0

.

∆ trφ v0 * 106 / m3 mol-1

2.6

1.0

1.6 1.4 1.2 1.0 0.8 0.6

0.5 295

0.4

300

305

310

315

320

295

300

305

T/K

331

310

315

320

T/K 298.15K 303.15K 308.15K 313.15K 318.15K

(c) 4.0

298.15K 303.15K 308.15K 313.15K 318.15K

(d) 3.0

3.5

1

. mol∆ trφ v * 10 / m

0

1.0

0

1.5 1.0

0.2

333 334

1.5

6

2.0

0.5

332

2.0

3

2.5

6

∆ trφ v * 10 / m

3

. mol-

1

2.5

3.0

0.3

0.4

0.5

0.6

0.7

0.5

0.0

0.8

0.2

mTartaric Acid / mol kg-1

.

0.3

0.4

0.5

0.6

0.7

0.8

mTartaric Acid / mol kg-1

.

Figure 3 Partial volumes of transfer at different molality’s of aqueous tartaric acid solutions and temperatures in (a), (c) glycine and (b), (d) glycylglycine.

20

0.1942 Tartaric Acid 0.3773 Tartaric Acid 0.5504 Tartaric Acid

(a)

0.1942 Tartaric Acid 0.3773 Tartaric Acid

(b)

0.7142 Tartaric Acid

0.5504 Tartaric Acid

12

0.7142 Tartaric Acid

3.0

∆ trφ k0 * 106 / m3 mol-1

2.0

8

.

.

∆ trφ k0 * 106 / m3 mol-1

10

2.5

1.5

1.0

6

4

2

0.5 295

300

305

310

315

0 295

320

300

305

335 3.5

1

298.15K 303.15K 308.15K 313.15K 318.15K

10

8

.

. mol6

3

∆ trφ k * 10 / m

320

12

∆ trφ k0 * 106 / m3 mol-1

3.0

2.0

315

(d)

298.15K 303.15K 308.15K 313.15K 318.15K

(c)

2.5

310

T/K

T/K

0

1.5

1.0

6

4

2

0.5

0 0.2

0.3

0.5

0.6

0.7

0.2

0.8

0.3

0.4

0.5

0.6

0.7

0.8

mTartaric Acid / mol . kg-1

mTartaric Acid / mol . kg-1

336 337 338

0.4

Figure 4 Partial molar isentropic compressibility of transfer at different molality’s of aqueous tartaric acid solutions and temperatures in (a), (c) glycine and (b), (d) glycylglycine.

339 340 341 342

Table 6 Partial volumes of transfer (∆tr $ 0) and Partial molar isentropic compressibility of transfer (∆tr  0) for glycine and glycylglycine from water to different molality’s of tartaric acid solutions at different temperatures (T = 298.15–318.15) K and at pressure P = 0.1 MPa. From volume molality (tartaric acid)

0.1942

From compressibility 0.3773

0.5504

0.7142

0.1942

0.3773

0.5504

0.7142

/ mol٠kg-1 T (K)

Glycine

Glycine

298.15

1.17

2.24

3.75

3.90

1.23

1.75

2.37

3.19

303.15

1.11

2.13

3.60

3.78

1.12

1.67

2.22

3.08

308.15

0.95

1.94

3.37

3.57

1.02

1.56

2.16

3.01

313.15

0.86

1.77

3.19

3.41

0.85

1.48

1.91

2.96

318.15

0.73

1.59

2.97

3.19

0.54

1.46

1.90

2.89

T (K)

Glycylglycine

Glycylglycine

298.15

0.61

1.02

1.65

2.68

2.95

5.33

8.36

11.36

303.15

0.58

0.97

1.62

2.64

2.49

4.81

8.05

10.93

308.15

0.51

0.98

1.57

2.59

2.45

4.51

7.46

10.38

313.15

0.43

0.91

1.52

2.51

1.64

3.68

6.54

9.62

318.15

0.41

0.87

1.47

2.51

1.10

2.91

5.73

8.32

343 344 345 21

346

3.5 Hydration Number:

347

The hydration numbers, (nh) explicitly reveal the hydration degree of a solute in

348

water; which usually increases with the size of the amino acid/peptide in water, or solution.

349

The partial molar volume of amino acid can be investigated by a simple model using

350

following equation [62]:

351

 0 (amino acid/peptide) =  0 (int) +  0 (elect)

(14)

352

where  0 (elect) is the electrostriction partial molar volume due to the hydration of

353

the amino acid/peptide (glycine/glycylglycine) and can be calculated from experimentally

354

measured values of the  0 (amino acid/peptide) (glycine / glycylglycine) and  0 (int) is the

355

intrinsic partial molar volume of the amino acid/peptide (glycine / glycylglycine) and has

356

been estimated by the help of following equation [62]:

357

 0 (int) = (0.7/0.6)  0 (cryst.)

358

and

359

 0 (int) = (0.7/0.634)  0 (cryst.)

(15)

(16)

360

where  0 (cryst.) (= mol wt/dcryst) is the crystal molar volume, 0.7 is the packing

361

density for the molecules in organic crystals and 0.634 is the packing density for random

362

packing spheres. The values of  0 (int) for the glycine and glycylglycine have been

363

calculated from equations (15) and (16) using dcryst values for glycine and glycylglycine

364

(1.598 [63] and 1.534 g cm-3 [37]) taken from the references.

365

The

number

of

water

molecules

hydrated

to

the

amino

acid/peptide

366

(glycine/glycylglycine) due to electrostriction causes decrease in volume can be related to the

367

hydration number by following expression [64-66]

368

nH =  0 (elect) / (,& 0 - ,' 0)

369

where ,& 0 is the molar

(17) volume of electrostricted water and ,' 0 is the molar

370

volume of the bulk water. If one mol of water molecules moves from the bulk water to the

371

solvation sphere of the amino acid/peptide, the volume is decreased by (,& 0 - ,' 0). The

372

(,& 0 - ,' 0)values, ie. -3.3 * 10-6 m3  mol-1 at T = 298.15 K, and -4.0 * 10-6 m3 mol-1 at T =

373

308.15 K, have been taken from the literature [62,67,68]. The values of hydration number

374

calculated by using both the two methods from these equations (15) and (16) have been 22

375

shown in table 7. Hydration number (nH) of amino acid and its peptide i.e. glycine and

376

glycylglycine decreases with increasing tartaric acid concentrations are smaller than that of

377

water, indicating that ion-hydrophilic group interactions between the -COOH group of the

378

tartaric acid and the zwitterionic centers of the amino acid/peptide (glycine/glycylglycine)

379

becomes stronger which further weaken the electrostriction of the charged centres with water

380

molecules and strengthen the interactions between ions and the charged centers of the amino

381

acid/peptide (glycine/glycylglycine) [37,38]. The  0 values increases with increasing

382

temperature from (298.15 to 318.15) K as shown in table 3. An increase in temperature

383

reduces the electrostriction which leads to increase in values of  0. The reduction in the

384

electrostriction in present ternary system with increasing temperature is confirmed by the

385

decreased hydration number (nH) values with temperature.

386 387 388

Table 7 Hydration number, nH of glycine and glycylglycine in aqueous tartaric acid solutions for the different molal concentrations at T = (298.15 and 308.15) K. m (tartaric acid) / mol٠kg-1

nH From volume Using (Eq. (15))

Using (Eq. (16))

From compressibility Using (Eq. (20)) At 298.15 K

Using (Eq. (15))

Using (Eq. (16))

From compressibility Using (Eq. (20))

From volume

Glycine 0.0000

2.93

3.82

3.29

Glycylglycine 5.82

7.46

4.83

0.1942

2.58

3.47

3.14

5.64

7.27

4.46

0.3773

2.25

3.14

3.08

5.51

7.15

4.17

0.5504

1.79

2.68

3.00

5.32

6.96

3.80

0.7142

1.75

2.64

2.90

5.01

6.64

3.43

At 308.15 K Glycine 0.0000

2.74

3.63

2.94

Glycylglycine 5.60

7.23

4.24

0.1942

2.45

3.34

2.81

5.44

7.08

3.93

0.3773

2.15

3.04

2.74

5.30

6.93

3.68

0.5504

1.72

2.61

2.67

5.12

6.76

3.32

0.7142

1.66

2.55

2.57

4.81

6.45

2.96

389 390

In addition to this, the number of water molecules hydrated to amino acid/peptide

391

(glycine/glycylglycine) can be calculated by using following equation [62,69]

392

nH = - 

0

(elect) / ,' 0 Kb0

(18)

23

where, Kb0 is the isothermal compressibility of the bulk water. The estimated value of

393 394

,' 0 Kb0 is 8.1 * 10-5 m3  mol-1  GPa-1. The electrostriction partial molar compressibility 

395

(elect) can be calculated experimentally measured values of 

396



0

(elect) = 

0

(amino acid/peptide) - 

As the value of 

397

0

0

(int)

many organic solutes in water. So, we can assume 

399

the reduced form of equation (19) becomes

400



(elect) = 

0

(amino acid) from (19)

(int) is less than 5 * 10-6 m3  mol-1  GPa-1 for ionic crystals and

398

0

0

0

(amino acid/peptide)

0

(int) value to be zero [62]. Therefore,

(20)

401

The values of hydration number calculated by using these equations (20) have been

402

shown in table 7. The hydration number (nH) values decreases with increase in concentration

403

of tartaric acid and are smaller than that of water, this indicates the presence of strong ion-

404

hydrophilic interaction between –COOH group of tartaric acid and zwitter ions of amino

405

acid/peptide (glycine/glycylglycine) with increase in concentration of tartaric acid. With

406

increase in the concentration of tartaric acid , water molecules present in the solution are

407

replaced by tartaric acid molecules due to dehydration effect on glycine/glycylglycine

408

[50,70]. The hydration number (nH) values also decreases with increase in temperature of

409

solution, this results decrease in electrostriction with increase in temperature. These

410

variations are consistent with the variation in values of  0, as  0 values increases with

411

increasing temperature from (298.15 to 318.15) K as shown in table 3. An increase in

412

temperature reduces the electrostriction and hence increases  0. Further, the values of

413

hydration number (nH) shown in table 7, based on volumetric and compressibility models are

414

in good agreement.

415 416

3. Conclusion

417

In present work, the apparent molar volume ($ ), partial molar volume ($ 0), limiting

418

apparent molar expansibility (! 0), transfer volume (∆tr $ 0), Falkenhagen’s coefficient (A),

419

Jones-Dole coefficient (B) and apparent molar isentropic compressibility ( ), partial molar

420

isentropic compressibility (  0), transfer parameter (∆tr  0) have been studied for glycine

421

and glycylglycine in water and in aqueous tartaric acid between (298.15 and 318.15) K.

422

The ($ ), ($ 0) and (∆tr $ 0) have been obtained which are positive and increases with 24

423

increase in temperature as well as with increase in concentration of tartaric acid. This

424

indicates that there are solute-solvent interactions. It was obtained from Hepler’s criterion

425

and dB/dT values that glycine and glycylglycine act as structure breaker in water and in

426

aqueous tartaric acid solution at different temperatures. The negative values of ( ) and

427

( 0) support our volumetric data. The glycylglycine being dipeptide of glycine has higher

428

values of (! 0). The (! 0) gives information relating to the size of the solute and its

429

hydrophobicity and also tells that there is absence of caging in present system. With the help

430

of transfer parameters, it has been concluded that ion-hydrophilic and hydrophilic-

431

hydrophilic interactions are prominent between the ions of tartaric acid and the zwitterions of

432

glycine and glycylglycine respectively. The hydration number calculated from volumetric

433

and compressibility data shows the presence of interaction between the ions of tartaric acid

434

and glycine/glycylglycine.

435

Acknowledgements

436

The authors are grateful to Himachal Pradesh University, Shimla for providing lab

437

facilities and Abhishek Thakur is thankful to Ministry of Human Resource Development for

438

their support.

439 440 441 442

References [1] BIOCHEMISTRY, VOLUME 2, CHAPTER 6, water & mineral metabolism, S.K. DAS GUPTA NEW DELHI, (NOVEMBER 1977).

443

[2] A. Pal, S. Kumar, Journal of Molecular Liquids, 121, Issues 2–3 (15 September 2005) 148-155.

444

[3] A.K. Mishra, J.C. Ahluwalia, J. Phys. Chem., 88 (1984) 86-92.

445

[4] S. Li, W. Sang, R. Lin., J. Chem. Thermodynamics, 34 (2002) 1761-1768.

446

[5] P. Talele, N. Kishore, J. Chem. Thermodynamics, 70 (2014) 182-189.

447

[6] Q. Yuan, Z. Li, B. Wang, J. Chem. Thermodynamics 38 (2006) 20-33.

448

[7] O. Likhodi, T. V. Chailikian, J. Am. Chem. Soc., 121 (1999) 1156-1163.

449

[8] M.S. Santosh, D. Krishna Bhat, and A.S. Bhatt, J. Chem. Eng. Data 55 (2010) 4048-4053.

450

[9] A. Ali, A. Hyder, S. Sabir, D. Chand, A.K. Nain, J. Chem. Thermodynamics, 38 (2006) 136-

451

143.

452

[10] I. Gheorghe, C. Stoicescu, F. Sirbu, Journal of Molecular Liquids, 218 (2016) 515-524.

453

[11] F. Sirbu, I. Gheorghe, Journal of Molecular Liquids, 253 (2018) 149-159.

454

[12] O.P. Chimankar; R. Shriwas; V.A. Tabhane, Intermolecular Interaction Studies In Some Amino Acids

455 456

With Aqueous NaOH, J. Chem. Pharm. Res. 3, (2011) 587-596. [13] S. Kant, A. Kumar, S. Kumar, Journal of Molecular Liquids, 150 (2009) 39-42.

25

457

[14] Smith, Marshall E., Smith, Lynwood B, (June 1, 1949). "Piperazine dihydrochloride and glycylglycine

458

as non-toxic buffers in distilled water and sea water". The Biological Bulletin (Woods Hole,

459

MA: Marine

460

3185. JSTOR 1538357. PMID 18153110. (Retrieved August 9, 2010) 233–237.

Biological

Laboratory) 96 (3). doi:10.2307/1538357. ISSN 0006-

461

[15] D. Kumar, S.K. Lomesh, V. Nathan, Journal of Molecular Liquids, 247 (2017) 75-83.

462

[16] S.K. Sharma, V. Nathan, D. Kumar, K. Kishore, Journal of Molecular Liquids, 231 (2017) 647-654.

463

[17] H. Kumar, M. Singla, R. Jindal, J. Chem. Thermodynamics, 67 (2013) 170–180.

464

[18] B. Jacobson, Acta. Chem. Scand. Denmark, 6 (1952) 1485.

465

[19] H. Kumar, K. Kaur, J. Mol. Liq. 179 (2013) 67-71.

466

[20] H. Kumar, K. Kaur, J. Mol. Liq. 173 (2012) 130-136.

467

[21] D.O. Masson, Phil. Mag (7) 8 (1929) 218.

468

[22] O. Redlich and D.M. Meyer, Chem. Rev., 64 (1964) 221.

469

[23] B.B. Owen and S.R. Brinkley, Ann. N. Y. Acad, Sci., 51 (1949) 753.

470

[24] A.F. Scott, J. Phys. Chem., 35 (1931) 2313.

471

[25] W. Geffeken, Z. Physik, Chem., A155 (1931) 1.

472

[26] Riyazuddeen, Md. A. Usmani, Thermochimica Acta, 527 (2012) 112– 117.

473

[27] D. Kumar and S.K. Lomesh, Z. Phys. Chem., 232(3) (2018) 393-408.

474

[28] M.N. Roy, D. Ekka, I. Banik, A. Majumdar, Thermochimica Acta, 547 (2012) 89– 98.

475

[29] M. Sahin, E. Ayranci, J. Chem. Thermodynamics, 58 (2013) 70–82.

476

[30] S.K. Lomesh and D. Kumar, J. Indian Chem. Soc., 94 (2017) 397-408.

477

[31] H. Kumar, K. Kaur, S.P. Kaur, M. Singla, J. Chem. Thermodynamics, 59 (2013) 173–181.

478

[32] M. Singla, R. Jindal, H. Kumar, Thermochimica Acta, 591 (2014) 140–151.

479

[33] S.K. Lomesh, D. Kumar, Journal of Molecular Liquids, 241 (2017) 764-771.

480

[34] L.G. Hepler, Can. J. Chem., 47 (1969) 4613-4617.

481

[35] T.V. Chalikian, J. Phys. Chem. B, 105 (2001) 12566-12578.

482

[36] J. Urquidi, C.H. Cho, S. Singh, G.W. Robinson, J. Mol. Struct., 485-486 (1999) 363-371.

483

[37] B.S. Lark, P. Patyar, T.S. Banipal, J. Chem. Thermodynamics, 38 (2006) 1592–1605.

484

[38] H. Kumar, K. Kaur, J. Chem. Thermodynamics, 53 (2012) 86–92.

485

[39] G. Jones, M. Dole, J. Am. Chem. Soc. 51 (1929) 2950-2964.

486

[40] H. Falkenhagen, M. Dole, Z. Phys. 30 (1929) 611-616.

487

[41] H. Falkenhagen, E.L. Vernon, Z. Phys. 33 (1932) 140-145.

488

[42] D. Feakins, D.J. Freemantle, K.G. Lawrence, J. Chem. Soc. Faraday Trans., 70 (1974) 795-806.

489

[43] T.C. Bai, G.B. Yan, Carbohydr. Res., 338 (1999) 2921-2927.

490

[44] M.S. Santosh, D.K. Bhat, A.S. Bhatt, J. Chem. Thermodynamics, 42 (2010) 742–751.

491

[45] N.V. Sastry, P.H. Valand, P.M. Macwan, J. Chem. Thermodynamics, 49 (2012) 14–23.

492

[46] M.S. Hossain, T.K. Biswas, D.C. Kabiraz, Md. N. Islam, M.E. Huque, J. Chem. Thermodynamics, 71

493

(2014) 6–13.

494

[47] M. Kaminsky, Discuss Faraday Soc. 24 (1957) 171-179.

495

[48] S.K. Lomesh, V. Nathan, M. Bala, P. Thakur, Journal of Molecular Liquid, 284 (2019) 241-251.

496

[49] D. Kumar, S.K. Lomesh, V. Nathan, Journal of Molecular Liquids, 247 (2017) 75-83.

26

497

[50] A. Pal, N. Chauhan, Journal of Molecular Liquids, 149 (2009) 29–36.

498

[51] A.K. Nain, R. Pal, P. Droliya, J. Chem. Thermodynamics, 95 (2016) 77-98.

499

[52] T.S. Banipal and G. Singh, Journal of Solution Chemistry, 32, 11, (2003).

500

[53] S.S. Dhondge, R.L. Paliwal, N.S. Bhave, J. Chem. Thermodynamics, 59 (2013) 158–165.

501

[54] J. Krakowiak, J. Wawer, A. Panuszko, J. Chem. Thermodynamics, 60 (2013) 179–190.

502

[55] A. Chandra, V. Patidar, M. Singh, R.K. Kale, J. Chem. Thermodynamics, 65 (2013) 18–28.

503

[56] H. Kumar, M. Singla, R. Jindal, J. Chem. Thermodynamics, 67 (2013) 170–180.

504

[57] P.K. Banipal, V. Singh, N. Aggarwal, T. S. Banipal, Food Chemistry, 168, 142–150, (2015).

505

[58] G.M. Lin, P.F. Bian, R.S. Lin, J. Chem. Thermodyn., 38 (2006) 144–151.

506

[59] H.L. Friedman, C.V. Krishnan, in: F. Franks (Ed.), Water: A Comprehensive Treatise, vol. 3, Plenum

507

Press, New York, (Chapter 1), (1973).

508

[60] A. Ali, V. Bhushan, P. Bidhuri, Journal of Molecular Liquids, 177 (2013) 209–214.

509

[61] H. Kumar, K. Kaur, Thermochimica Acta, 551 (2013) 40– 45.

510

[62] F.J. Millero, A.L. Surdo, C. Shin, Journal of Physical Chemistry, 82 (1978) 784-792.

511

[63] E. Berlin, M.J. Pallansch, Journal of Physical Chemistry, 72 (1968) 1887-1889.

512

[64] J. Padova, Journal of Chemical Physics, 39 (1963) 1552-1557.

513

[65] J. Padova, Journal of Chemical Physics, 40 (1964) 691-694.

514

[66] H.S. Harned, B.B. Owen, The Physical Chemistry of Electrolytic Solutions, 3rd edn, ACS Monograph

515

Series, vol. 137, Reinhold, New York, 1958.

516

[67] G. Lin, R. Lin., L. Ma, Thermochim Acta, 430 (2005) 31-34.

517

[68] Z. Yan, J. Wang, W. Kong, J. Lu, Fluid Phase Equilibria, 215 (2004) 143-150.

518

[69] F.J. Millero, G.K. Ward, F.K. Lepple, E.V. Haff, Journal of Physical Chemistry, 78 (1974) 1636-1643.

519

[70] M. Kumar, N. Sawhney, A.K. Sharma, M. Sharma, Journal of Molecular Liquids, 243 (2017) 41-51.

520

[71] Z. yan, J. Wang, W. Liu, J. Lu, Thermochimica Acta, 334 (1999) 17-27.

521

[72] A. Pal, N. Chauhan, Journal of Molecular Liquids, 69 (2012) 163-172.

27

HIGHLIGHTS:

• • • •

Molecular interactions between glycine and glycylglycine in water and in aqueous tartaric acid solutons are studied. The Volumetric, Compressibility, Acoustic and Viscometric methods are used to interpret results. Solute-Solvent interactions predominate over solute-solute interactions glycine and glycylglycine behaves as a structure breaker in water and in aqueous tartaric acid solutions.

Conflict of Interest



The author is not having any conflict of interest with this publication

With regards,

Prof. Dr. Shashi Kant Sharma Department of Chemistry Himachal Pradesh University, Shimla, India-171005 Email: [email protected] Tel: +919418382396