Three-dimensional transport theory: An analytical solution of an internal beam searchlight problem-I

Three-dimensional transport theory: An analytical solution of an internal beam searchlight problem-I

Annals of Nuclear Energy 36 (2009) 767–783 Contents lists available at ScienceDirect Annals of Nuclear Energy journal homepage: www.elsevier.com/loc...

458KB Sizes 1 Downloads 116 Views

Annals of Nuclear Energy 36 (2009) 767–783

Contents lists available at ScienceDirect

Annals of Nuclear Energy journal homepage: www.elsevier.com/locate/anucene

Three-dimensional transport theory: An analytical solution of an internal beam searchlight problem-I M.M.R. Williams * Computational Physics and Geophysics, Department of Earth Science and Engineering, Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BP, UK

a r t i c l e

i n f o

Article history: Received 12 September 2008 Received in revised form 4 January 2009 Accepted 1 February 2009 Available online 3 March 2009

a b s t r a c t We describe a number of methods for obtaining analytical solutions and numerical results for threedimensional one-speed neutron transport problems in a half-space containing a variety of source shapes which emit neutrons mono-directionally. For example, we consider an off-centre point source, a ring source and a disk source, or any combination of these, and calculate the surface scalar flux as a function of the radial and angular co-ordinates. Fourier transforms in the transverse directions are used and a Laplace transform in the axial direction. This enables the Wiener–Hopf method to be employed, followed by an inverse Fourier–Hankel transform. Some additional transformations are introduced which enable the inverse Hankel transforms involving Bessel functions to be evaluated numerically more efficiently. A hybrid diffusion theory method is also described which is shown to be a useful guide to the general behaviour of the solutions of the transport equation. Ó 2009 Elsevier Ltd. All rights reserved.

1. Introduction One of the most challenging remaining problems in analytical solutions of the transport equation must be that concerning multi-dimensional geometry. When the transport equation involves more than one space variable there is an increase in complexity due to interaction of the effects caused by these additional variables. The earliest exact solution known to the author on threedimensional transport theory is due to Elliott (1952, 1955). This work describes the problem of a point source on the surface of a half-space; i.e. an early form of the so-called searchlight problem. Later work involved a variety of source configurations and even the quarter space problem, although admittedly this did not lead to a closed form solution (Lam and Leonard, 1971). Multidimensional solutions are notoriously difficult to obtain and the usual procedure is to take Fourier transforms in the two, infinite transverse directions, and a Laplace transform in the semi-infinite direction. This leads to a solution either by the Wiener–Hopf technique or as the solution of a singular integral equation using the FN, or other methods (Ganapol, 2008a,b; Naz and Loyalka, 2008). The main practical problem is the inversion of these transforms. Whilst the Wiener–Hopf method generally enables one of the inversions to be done analytically, the algebraic complexity of the Fourier transform usually prevents any neat inversion, except in one specific case (Williams, 1982). The quest for such solutions is well worth * Address: 2a Lytchgate Close, South Croydon, Surrey CR2 0DX, UK. Tel.: +44 208 680 4450. E-mail address: [email protected] 0306-4549/$ - see front matter Ó 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.anucene.2009.02.001

while however since they form the basis of essential benchmark problems for validating large transport theory computer codes. The techniques and philosophy of such techniques and associated numerical methods has been discussed by Ganapol (2008a). We should also mention that problems involving spherical and cylindrical bodies have been studied, details of which may be found in Cassell and Williams (2007a,b). In pursuit of the above goals, Ganapol and Kornreich (2008) have recently developed a technique based on the FN method for solving one-speed transport problems involving interior monodirectional beam sources. Such sources cover point, multi-ring and disk geometries with the particles directed towards the surface. The co-ordinate system used was cylindrical and so the problem is essentially a two-dimensional one. The radial co-ordinate is transformed out via a Hankel transform and the resulting pseudoone-dimensional equation in the axial direction is treated by the FN method. In the present work we wish to extend the scope of the Ganapol–Kornreich work to three-dimensional problems and also to introduce some useful ideas for reducing the numerical problems which arise due to the presence of Bessel functions in the inverse Hankel transform. Some numerical results are given but the emphasis is on technique. A useful hybrid-diffusion theory method is devised which enables the directional effects of the source to be included as a first collision source in the classic diffusion equation. We also note that Siewert and co-workers and Crosbie and co-workers have made significant contributions to the searchlight problem and refer the reader to Williams (2007a) for references.

768

M.M.R. Williams / Annals of Nuclear Energy 36 (2009) 767–783

In arriving at Eq. (8), we have noted that

2. General theory The transport equation to be studied may be written in the form Davison (1957)

 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi @Iðx; y; z; l; uÞ @ @ l þ 1  l2 cos u þ sin u Iðx; y; z; l; uÞ @z @x @y c I0 ðx; y; zÞ þ Sðx; y; zÞdðl  l0 Þdðu  u0 Þ ð1Þ þ Iðx; y; z; l; uÞ ¼ 4p where I(x, y, z, l, /) is the angular flux of particles (neutrons or photons), the scattering is isotropic and we have scaled distances in units of the mean free path. The scalar flux in the above equation is defined as

I0 ðx; y; zÞ ¼

Z 2p

du

Z

0

1

dlIðx; y; z; l; uÞ

1

The source term is an internal beam of spatial distribution S(x, y, z) emitting particles from each point in the source in the direction defined by the unit vector X0(l0, /0). We further note that

Sðx; y; zÞ ¼ Sðx; yÞdðz  z0 Þ

ð2Þ

This denotes a plane source at z = z0 with lateral distribution S(x, y). In addition the boundary condition of no incident particles can be written as I(x, y, 0, l, /) = 0 for l > 0 and /(0, 2p). We further define the Fourier transform

Z

Iðk; z; l; uÞ ¼

1

dx

Z

1

1

dye

ikx xiky y

Iðx; y; z; l; uÞ

ð3Þ

1

@Iðk; z; l; uÞ þ uðk; l; uÞIðk; z; l; uÞ @z c  I0 ðk; zÞ þ SðkÞdðz  z0 Þdðl  l0 Þdðu  u0 Þ ¼ 4p

¼

ð4Þ

Iðk; z; l; uÞ ¼

4pl

0

dz I0 ðk; z0 Þe

0 u0 ðzz0 Þ=l0

 dðu  u0 Þe

l

þ

ð5Þ

SðkÞ

l0

dðl  l0 Þ

Hðz  z0 ÞHðl0 Þ

ð6Þ

Iðk; z; l; uÞ ¼  c 4pl

1

0

0

dz I0 ðk; z0 Þeuðz zÞ=l 

z

l

0

dl

l

dueuz=l

Z qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ez=l J 0 ðkz 1  l2 =lÞ ¼

1

0

pffiffiffiffiffiffiffiffiffiffiffiffi  1þk2 w2 z=w dwe pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 w 1 þ k w2

Z

1

ð9Þ

dz0 epz0Iðk; z; l; ujz0 Þ

ð10Þ

0

where we have introduced z0 as a conditional variable in I. Thus Eq. (4) becomes

l

@~Iðk; z; l; ujpÞ þ uðk; l; uÞ~Iðk; z; l; ujpÞ @z c ~ ¼ I0 ðk; zjpÞ þ SðkÞepz dðl  l0 Þdðu  u0 Þ 4p

ð11Þ

Now introduce the Laplace transform

^~ Iðk; s; l; ujpÞ ¼

Z

1

dze

sz~ 

Iðk; z; l; ujpÞ

ð12Þ

0

and Eq. (11) becomes

^ l~Iðk; 0; l; ujpÞ þ ðsl þ uÞ~Iðk; s; l; ujpÞ SðkÞ c ~^ I0 ðsjpÞ þ ¼ dðl  l0 Þdðu  u0 Þ 4p pþs

Z

Z 2p

^ l~Iðk; 0; l; ujpÞ þ Vðs; kÞ~I0 ðk; sjpÞ sl þ u 0 1 Z 2p SðkÞ Z 0  Þdðu  u0 Þ dðl þ l dl du ¼ sl þ u p þ s 1 0 0

dl

ð13Þ

du

SðkÞ

l0

ð14Þ

c 4p

du

Z

1

0

1

ð15Þ

The term on the right hand side of Eq. (14) may now be simplified to

ð16Þ

Let us now define

dðl  l0 Þ

 dðu  u0 Þeu0 ðz0 zÞ=l0 Hðz0  zÞHðl0 Þ

Z 2p

dl sl þ uðk; l; uÞ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi# " 2 c 1 þ s2  k pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 1  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi log 2 2 2 s2  k 1  s2  k

Vðs; kÞ ¼ 1 

SðkÞ 1  p þ s u0  sl

where we have used the boundary condition noted above. For l < 0

Z

1

~Iðk; z; l; ujpÞ ¼

We may now integrate Eq. (4) with respect to z to get for

uðzz0 Þ=

Z 2p

We shall return to Eq. (8) later but for now, in order to solve Eq. (4), we use the Wiener–Hopf technique (Williams, 1971) and define the Laplace transform

l>0 z

dl

where

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi uðk; l; uÞ ¼ 1 þ i 1  l2 ðkx cos u þ ky sin uÞ

Z

Z

1

0

0



with

c

Z

1 2p

Dividing by (sl + u) and integrating over l(1, 1) and /(0, 2p), we then have

where k = (kx, ky). Applying this transform to Eq. (1) we find

l

Kðz; kÞ ¼

gðk; sjpÞ ¼

Z

0

1

ð7Þ

dl

Z 2p 0

du

l~Iðk; 0; l; ujpÞ sl þ u

ð17Þ

and write Eq. (14) as

In theqffiffiffiffiffiffiffiffiffiffiffiffiffiffi above,ffi H(x) is the Heaviside unit function and u0 ¼ 1 þ i 1  l20 ðkx cos u0 þ ky sin u0 Þ. We may integrate Eqs.

SðkÞ ^ ðp þ sÞ~I0 ðk; sjpÞVðs; kÞ ¼ ðp þ sÞgðk; sjpÞ þ  u0  sl

(6) and (7) over l and / to get the following integral equation for the scalar flux I0 ðk; zÞ,

Now using the Wiener–Hopf factorisation (Williams, 2007a) we may write

I0 ðk; zÞ ¼ c 2

Z 0

1

0

dz I0 ðk; z0 ÞKðjz  z0 j; kÞ þ

SðkÞ eu0 ðz0 zÞ=l Hðz0  zÞ l ð8Þ

In the above equation we have assumed that all particles from the source are travelling towards the surface, i.e. in the negative . l direction, and have accordingly set l0 ¼ l

sðs; kÞ ¼

s2  1  k

2 2

s2  m 2  k

Vðs; kÞ ¼

ð18Þ

sþ ðs; kÞ s ðs; kÞ

where s±(s; k) are defined in Williams (2007a) and m is the root of the equation



  c 1þm log 2m 1m

ð19Þ

769

M.M.R. Williams / Annals of Nuclear Energy 36 (2009) 767–783

Rearranging Eq. (18) we find

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 ^~ s þ m2 þ k 1 pffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðp þ sÞI0 ðk; sjpÞ 2 s þ 1 þ k s ðs; kÞ pffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2 SðkÞ  s 1þk 1 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ ðp þ sÞgðk; sjpÞ þ 2  u0  sl s  m2 þ k sþ ðs; kÞ

Thus we may write the Laplace inverse of Eq. (27) as

 SðkÞ  1 ðp þ sÞgðk; sjpÞ þ ¼ C0  sþ ðs; kÞ u0  sl

L

     epz0 1 SðkÞ u0 z0 =l H ;k  1 þ e  p u0 þ pl l

More concisely,

Z z0  SðkÞ 0 0  0 I0 ðk; 0jz0 Þ ¼ SðkÞ dz0 Gðkjz Þeðz0 z0 Þu0 =l þ ez0 u0 =l 0 l 0 l



1 2p

ð21Þ

2 Z

1

dkx

Z

1

1

dky eikx xþiky yI0 ðk; 0jz0 Þ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi SðkÞ p þ 1 þ k2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi s ðp; kÞ  p þ m2 þ k2 u0 þ pl

The second term in Eq. (32) is written

ð22Þ

Iu ðx; y; 0jz0 Þ  2 Z 1 Z 1 pffiffiffiffiffiffiffiffiffi 1 2 dkx dky SðkÞeikx xþiky yi 1l z0 ðkx cos u0 þky sin u0 Þ=l ¼ ez0 =l 2p 1 1 ð34Þ

ð23Þ

where we have used the relation s+(p; k) = 1/s(p; k). Inserting C0 into Eq. (22) we find

    SðkÞ ^~ 1 1 1 I0 ðk; sjpÞ ¼ H ;k H ;k  s p p þ s u0 þ pl

ð24Þ

ð25Þ

is a generalised Chandrasekhar H-function (Williams, 1982). We are interested in the value of the flux at the surface z = 0. This is readily obtained from Eqs. (12) and (24) by noting that

~I ðk; 0jpÞ ¼ lim s^~I ðk; sjpÞ ¼ 0 0 s!1

  SðkÞ 1 H ;k  p u0 þ pl

Iu ðx; y; 0jz0 Þ ¼ ez0 =l

1

 ; u0 Þ dy0 Sðx0 ; y0 ÞGu ðx  x0 ; y  y0 jz0 ; l

1

Physically, Eq. (35) denotes the un-collided flux and describes the fact that the particle travels in a straight line ffidefined by the pffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2 co-ordinates pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi on the surface viz: x  z0 1  l cos u0 =l and  . If S(x0, y0) = d(x0)d(y0), then these lines  2 sin u0 =l y  z0 1  l emanate from the point (0, 0, z0). 2.1. Radial source

ð27Þ

There p is ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi an alternative representation of Eq. (35) if 2 þ y2 Þ, i.e. depends on the radial co-ordinate Sðx; yÞ ¼ Sð x pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi q ¼ x2 þ y2 only. We may then write

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2 cos u0 =l   R cos r 1l qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2 sin u0 =l   R sin r ay ¼ y  z0 1  l kx ¼ k cos g;

ð28Þ

In fact this function, when divided by c, corresponds to Elliott’s point source problem (Elliott, 1952, 1955) and is the solution of the pseudo-problem, obtained by integration of Eqs. (6) and (7), viz:

ð29Þ

ky ¼ k sin g

1

ð30Þ

1

In fact, the solution of Eq. (29) obeys the reciprocity relation W0(k, z|z0) = W0(k, z0|z) .

ð37Þ ð38Þ ð39Þ

Hence

kx ax þ ky ay ¼ kR cosðg  rÞ 2

where R ¼

a2x

þ

a2y

2

and k ¼

ð40Þ 2 kx

þ

2 ky .

Moreover, if we set

x ¼ q cos #

ð41Þ

y ¼ q sin #

ð42Þ

it is readily seen that

 ; #  u0 Þ R2 ¼ R2 ðq; z0 ; l qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2 cosð#  u0 Þ=l  þ ð1  l  2 Þz20 =l 2 ¼ q2  2qz0 1  l

where W(k, 0, w|z0) = 0 for w > 0 and

dwWðk; 0; wjz0 Þ

Z

where

  1 ~ GðkjpÞ ¼ H ;k 1 p

Z

dx0

ð35Þ

ax ¼ x  z0

 Gðkjz 0 Þ ¼ W0 ðk; 0jz0 Þ ¼

1

1

As we will see, the second term above corresponds to the uncollided flux from the source. The ‘1’ in the first term ensures convergence as |p| ? 1. We shall also define a Green’s function as

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi @ Wðk; z; wjz0 Þ 2 2 w 1 þ k w2 þ ð1 þ k w2 ÞWðk; z; wjz0 Þ @z c ¼ ðW0 ðk; zjz0 Þ þ dðz  z0 ÞÞ 2

Z

ð26Þ

It is convenient to re-write Eq. (26) as

      ~I ðk; 0jpÞ ¼ SðkÞ H 1 ; k  1 þ SðkÞ 0   p u0 þ pl u0 þ pl

We may now use the convolution theorem for Fourier transforms and get

 ; u0 Þ Gu ðx; yjz0 ; l     qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  d y  z0 1  l  ð36Þ  2 cos u0 =l  2 sin u0 =l ¼ d x  z0 1  l

where

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi   2 1 sþ 1þk pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi s ðs; kÞ H ;k ¼ 2 s s þ m2 þ k

ð33Þ

1

To find C0 we set s = p in Eq. (21), leading to

C0 ¼

ð32Þ

In order to regain the dependence on x and y, we now invert the Fourier transform, viz:

I0 ðx; y; 0jz0 Þ ¼

and

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 ^~ C0 s þ 1 þ k pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi s ðs; kÞ I0 ðk; sjpÞ ¼ p þ s s þ m2 þ k2

dp

ð31Þ ð20Þ

Each side of Eq. (20) is analytic in an overlapping half-plane, which is a necessary condition for application of the Wiener–Hopf method (Noble, 1958). Now using Liouville’s theorem, we note that as |s| ? 1, each side of Eq. (20) tends to a constant C0. We have therefore

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 s 1þk pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 s  m2 þ k

Z

I0 ðk; 0jz0 Þ ¼ SðkÞ 1 2p i

ð43Þ

We then write Eq. (34) as

ez0 =l



1 2p

2 Z

1

1

dkx

Z

1 1

dky SðkÞeikR cosðgrÞ

ð44Þ

770

M.M.R. Williams / Annals of Nuclear Energy 36 (2009) 767–783

or more concisely

ez0 =l

1 2p

Z

1

0

(c) A Gaussian distribution

dkkJ0 ðkRÞSðkÞ

SðqÞ ¼

ð45Þ

and

 and the angular difwhich shows that the flux depends on q; z0 ; l ference #  u0. The Fourier–Hankel transform of S(q) is

SðkÞ ¼ 2p

Z

dqqJ 0 ðkqÞSðqÞ

ð46Þ

and we shall normalise the source such that

Sð0Þ ¼ 2p

Z

1

dqqSðqÞ ¼ 1

ð47Þ

0

If we have a point source such that

SðqÞ ¼

SðkÞ ¼ ek2 =4a2

1

0

dðqÞ 2pq

ð48Þ

then SðkÞ ¼ 1, i.e. a point source, emitting particles in the direction  ; u0 Þ, which leads to an un-collided flux of X0 ðl

 ; u0 Þ ¼ ez0 =l Gu ðqjz0 ; l

dðRÞ 2pR

ð49Þ

We may now use Eq. (45) to write the first term in Eq. (32) as

I0 ðq; #; 0jz0 Þ ¼

1 l

Z

z0

0

0

0

dz0 eðz0 z0 Þ=l

1 2p

Z

1 0

0   SðkÞGðkjz dkkJ0 ðkRÞ 0Þ

a2 a2 q2 e p ð56Þ

We note that should S(x, y) = S(q, #), then the above theory must be modified. An example of this would be a disk source with a segment cut out, or a ‘broken’ ring. It should be re-emphasised that the particles from these source shapes are emitted in the direction  ; u0 Þ. If we had an off-centre point source then S(q, #) = X0 ðl  ; u0 Þ is much d(q  q0)d(#  #0) and the intensity I0 ðq; #jq0 ; #0 ; z0 ; l more complicated; its derivation is given in Appendix. However,  ¼ 1, the flux assumes the same form as that for the simple case of l qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi in Eq. (51) but with q replaced by

q2 þ q20  2qq0 cosð#  #0 Þ;

this is obvious from geometric considerations. The other limiting  ¼ 0. Both cases are given in Appendix case of interest is when l A and we shall examine the behaviour of these functions below. Finally, we observe that the flux arising from an array of point sources around a circle of radius q0 can be obtained by summing the solutions for each desired value of #0. Similarly, one can calculate the flux due to point sources at different radii, q0, for a given #0, or indeed a combination of both. It is also possible to consider sources at several values of z0 and sum the results.

ð50Þ z00 .

where R is given by Eq. (43) with z0 ! z0  It is convenient to set u0 = 0, as only the difference between this and the surface angular co-ordinate is of significance, except if there is a varying emission distribution in the azimuthal direction; a situation that will be discussed below. In the special case of a beam normal to the surface and along the  ¼ 1, we have z-axis, in which l

I0 ðq; 0jz0 Þ ¼

Z

z0

0

0

0

dz0 eðz0 z0 Þ

1 2p

Z 0

1

0  dkkJ0 ðkqÞGðkjz 0Þ

ð51Þ

which is independent of # as expected. The corresponding uncollided flux at the surface is

Gu ðqjz0 Þ ¼ ez0

dðqÞ 2pq

ð52Þ

It should be noted that this is a line source of variable strength depending on the distance of the source from the surface. We shall see below that this line source leads to a singularity of the form O(1/q) as q ? 0 in the collided flux. Details of this calculation may be found in Appendix C. The spatial form of the source is of some interest and Ganapol and Kornreich (2008) have considered a disk source, a set of concentric annular rings and a Gaussian distribution. These may be written mathematically as (a) N-ring sources distances qi from the axis, i.e.

SðqÞ ¼

N X i¼1

ai

dðq  qi Þ 2p q

N X

ai J 0 ðkqi Þ

 ; u0 Þ ¼ ez0 =l Gu ðqjz0 ; l

dðR  q0 Þ 2pq0

ð57Þ

For the disk source of Eq. (55), we must evaluate

 ; u0 Þ ¼ ez0 =l Gu ðqjz0 ; l

1 pa

Z

1

0

dkJ 1 ðkaÞJ 0 ðkRÞ

ð58Þ

This is a standard integral and leads to

 ; u0 Þ ¼ ez0 =l Gu ðqjz0 ; l ¼ 0;

1

pa2

R
;

ð59Þ

R>a

Finally, the Gaussian source leads to

 ; u0 Þ ¼ Gu ðqjz0 ; l

a2 z0 =l a2 R2 e e p

ð60Þ

where in each case R is given by Eq. (43). 2.3. Radial source emission One situation of particular interest is if the source emits parti ¼ 0. To deal cles in the radial direction only, i.e. the case where l with this, we change variables in Eq. (50) such that  , whence w ¼ ðz0  z00 Þ=l

ð54Þ

i¼1

I0 ðq; #; 0jz0 Þ ¼

1 2p

Z

 z0 =l

dwe 0

w

Z

1

 ^ SðkÞGðkjz dkkJ 0 ðkRÞ 0  lwÞ

0

ð61Þ

ai being specified weight functions. (b) Uniform disk of radius q0 and strength 1=pq20

SðkÞ ¼ 2 J ðkq Þ 0 kq0 1

In Eq. (45), we have obtained an explicit expression for the flux of particles that have undergone no collisions. It is of some interest to obtain the associated analytical expressions for this flux corresponding to the point, ring and disk sources described above. In Eq. (49) we have the point source case and it is clear that for a ring source for which SðkÞ is given by Eq. (54), we have

ð53Þ

for which

SðkÞ ¼

2.2. The un-collided flux distribution

where

ð55Þ

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ^ 2 ¼ q2  2qw 1  l  2 cosð#  u0 Þ þ ð1  l  2 Þw2 R

ð62Þ

771

M.M.R. Williams / Annals of Nuclear Energy 36 (2009) 767–783

and we have suppressed the dependence on /0 in Eq. (61). For l ¼ 1, we recover Eq. (51) and in the limit l ¼ 0, Eq. (62) becomes

1 I0 ðq; #; 0jz0 Þ ¼ 2p

Z

1

dwe

w

Z

0

1

 ~ SðkÞGðkjz dkkJ 0 ðkRÞ 0Þ

ð63Þ

0

with

~ 2 ¼ q2  2qw cosð#  u Þ þ w2 R 0

ð64Þ

It is tempting to try to perform the integral

Z

1

dwe

w

~ J 0 ðkRðwÞÞ

0

in Eq. (63) but in practice this does not help. Interestingly, one could also simulate a broken ring by defining the radial emission source Q(/0) as

1 ; 0 < u0 < 2p  w 2p ¼ 0; 2p  w < u0 < 2p

Qðu0 Þ ¼

ð65Þ

where w is the angular range of the cut segment. Thus we would have to calculate

Z 2p 0

du0 Q ðu0 ÞI0 ðq; #; 0ju0 ; z0 Þ

ð66Þ

where I0 is given by Eq. (61) and we have explicitly shown the ~ from Eq. (64). dependence on /0 via R 3. The Green’s function As seen above, the crucial quantity required to determine the surface flux is the Green’s function Gðkjz0 Þ as defined by Eq. (28). Thus we require

1  Gðkjz 0Þ ¼ 2p i

Z

pz0

dpe

L

    1 H ;k  1 p

Z

1 2p

0

1

 0 ðkjz0 Þ dkkJ0 ðkqÞSðkÞG

Eq. (68) may also be used in Eq. (63) to obtain the radial emission solution. We shall discuss numerical values of I0(q, 0|z0) below, however it is important to note that, for q ? 0, the integrand of Eq. (70) for SðkÞ ¼ 1 leads to a singularity of the form 1/q. This feature is implicit in the work of Davison (1957) in his study of the infinite line source and re-appears in the present half-space problem. It is due to the effective line source resulting from the first collision particle flux along the z-axis as in Eq. (32). Mathematically, the singularity arises from the integral term in Eq. (71) so does not occur for diffusion theory. Full details are in Appendix C where it is also shown that the behaviour of the flux for large q is independent of the source shape S(q). 4. The non-absorbing case The non-absorbing case of c = 1, m = 0, has a number of interesting features. An important one is the fact that it leads to a useful analytic solution for large values of q. This type of solution was first pointed out by Elliott (1952, 1955). In order to arrive at the appropriate equation we must take the limit carefully as c ? 1 by using the approximation from Eq. (19), viz: m2  3(1  c). Then from (74) we find

1  0 ðkjz0 Þ ¼ 3 G ðekz0  ez0 Þ 2k Hð1=k; kÞð1  kÞ Z 1 1 dtgð1; tÞ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ 2 2 2 2 0 1 þ k t2 H t= 1 þ k t 2 ; k t  1 þ k t2  pffiffiffiffiffiffiffiffiffiffiffi  2 2  e 1þk t z0 =t  ez0 ð74Þ We now seek an expansion of this transform in powers of k. Using the properties of the H(1/k; k) function, we find that the first term on the right hand side of (74) becomes

 asy ðkjz0 Þ ¼ G

ð68Þ Z0 ¼ 1  a2 ¼ ð69Þ

The function H(1/p; k) is defined in the Appendix of Williams (2007a). We may now insert Eq. (68) into Eq. (51), to get

I0 ðq; 0jz0 Þ ¼

ð70Þ

where

pffiffiffi 3ðekðz0 þZ0 Þ   1 2 3 4  ez0 kZ0 Þ 1 þ k þ k þ ð7  6a2 Þk þ Oðk Þ 6

1

p

Z

1 2p

Z

 pffiffiffiffiffiffiffiffiffiffi   0 ðkjz0 Þ ¼ A0 e m2 þk2 z0  ez0 G þ

c 2

 pffiffiffiffiffiffiffiffiffiffiffi  1 2 2 dtAðtÞ e 1þk t z0 =t  ez0

ð75Þ

ð71Þ

0

m2 ð1  m2 Þ  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð72Þ A0 ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2 m2 þ k H 1= m2 þ k2 ; k ðc þ m2  1Þ 1  m2 þ k2

1

dw tan1 KðwÞ ¼ 0:71044609 . . .

ð76Þ

0 1

2

dww tan1 KðwÞ ¼ 0:0769847 . . .

ð77Þ

0

with

KðwÞ ¼

pw=2

1  w2 log 1þw 1w

ð78Þ

In order to evaluate the quadratures in Eqs. (76) and (77) we find it useful to write

tan1 KðwÞ ¼

Z

ð73Þ

where

where

  2  2 1 ct 1þt c pt þ ¼ 1  log gðc; tÞ 2 1t 2

gðc; tÞ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi AðtÞ ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2 2 2 1 þ k t 2 H t= 1 þ k t 2 ; k t  1 þ k t2

ð67Þ

As noted above, the ‘1’ is required to ensure convergence of the integrand as |p| ? 1. It also confirms the result G ¼ 0 when c = 0. Following the methods discussed in Williams (1982, 2007a,b) we find

pffiffiffiffiffiffiffiffiffiffi 2 m2 ð1  m2 Þ 2  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  e m þk z0 Gðkjz 0 Þ ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2 2 2 2 2 m þ k H 1= m þ k ; k ðc þ m  1Þ Z pffiffiffiffiffiffiffiffiffiffiffi 2 2 c 1 dtgðc; tÞ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  e 1þk t z0 =t þ 2 0 t 1 þ k2 t 2 H t= 1 þ k2 t 2 ; k

and

p 2

 tan1



1 KðwÞ



Inserting the series (75) into Eq. (70) with SðkÞ ¼ 1, and using the standard relations for integrals over the Bessel function we find using the relation

Z 0

1

p

dkk J 0 ðkRÞekz ¼ p!

Pp ðcos #Þ Y pþ1

and tan # = R/z, Y2 = R2 + z2, the following expression.

772

M.M.R. Williams / Annals of Nuclear Energy 36 (2009) 767–783

Iasy ðq; 0jz0 Þ pffiffiffi   P2 ðsÞ P3 ðsÞ P4 ðsÞ 3 P1 ðsÞ ¼ þ 2 þ 6 þ 4ð7  6a Þ þ    2 2p X 2 X5 X3 X4 # pffiffiffi " P2 ðs0 Þ P 3 ðs0 Þ P4 ðs0 Þ 3 P1 ðs0 Þ  þ 2 þ 6 þ 4ð7  6a Þ þ    ez0 2 2p X 50 X 20 X 30 X 40

X 20 ¼ q2 þ Z 20

It remains to invert the Laplace transform, which is straightforward if tedious. Then the Hankel transform is needed. We shall not pursue this matter any further here but note it to illustrate that the emergent distribution is available.

ð80Þ

6. Diffusion theory

ð81Þ

It is always of value to examine the usefulness of diffusion theory in problems of the type discussed above because of its potential simplicity. Thus if we write the equation for a point source with cylindrical symmetry we have

and

z0 þ Z 0 s¼ ; X

Z0 s0 ¼ X0

For the second term involving the integral transient in (74) we find the expansion in powers of k to be

Z

1

dtgð1; tÞ z =t e 0  ez0 þ tðez0 =t  ez0 Þk HðtÞðt  1Þ 0 i  0 ez0 Þk2 þ ðB1 ez0 =t  B  1 ez0 Þk3 þ Oðk4 Þ þðB0 ez0 =t  B

 trans ðkjz0 Þ ¼ 1 G 2

ð82Þ Inserting this into Eq. (70), we note that only terms in even powers of k survive leading to

Itrans ðq; 0jz0 Þ ¼

Z

1

1

dttgð1; tÞ z0 =t 9  ez0 Þ þ ðe 4pq 0 HðtÞðt  1Þ 8pq5 Z 1 dtgð1; tÞ  1 ez0 Þ  ðB1 ez0 =t  B 0 HðtÞðt  1Þ 3

ð83Þ

where H(t) is the classic Chandrasekhar H-function and

t2 ð1  ðt  1Þðt  1 þ z0 þ Z 0 ÞÞ t1 2  1 ¼ t ð1  ðt  1Þðt  1 þ Z 0 ÞÞ B t1

  @ 2 Iðq; zÞ 1 @ @Iðq; zÞ 3dðqÞdðz  z0 Þ  m2 Iðq; zÞ þ þ ¼0 q @z2 @q 2pq q @q

ð89Þ

where in this case m2 = 3(1  c). This is subject to the boundary condition of zero return current, viz:

Iðq; 0Þ ¼

2 @Iðq; zÞ 3 @z z¼0

ð90Þ

There is, however, a defect in the physics of the source term in Eq. (89). It describes a source which emits particles isotropically whereas in the transport problem of interest the particles are emitted uni-directionally. To account for this feature and still use diffusion theory it is necessary to employ a hybrid form of diffusion theory in which the source term is replaced by the first collision term from the transport equation. To see how this is done we return to Eq. (1) and write the flux as

Iðx; y; z; l; uÞ ¼ Wðx; y; z; l; uÞ þ Aðx; y; zÞdðl  l0 Þdðu  u0 Þ ð91Þ

B1 ¼

ð84Þ

The total asymptotic flux is given by the sum of Eqs. (79) and (83) and is useful for large values of q. For absorbing materials the asymptotic behaviour is more difficult to obtain, however for 1  c small, we find

Iasy ðq; 0jz0 Þ  Iasy ðq; 0jz0 Þc¼1 ð1 þ mXÞe

ð88Þ

ð79Þ where

X 2 ¼ q2 þ ðz0 þ Z 0 Þ2 ;

Specifically,

Iðk; 0; l; ujl  ; u 0 ; z0 Þ l  1 Z c  Hð1=p; kÞepz0 ¼ dp SðkÞH ; k  Þðu þ plÞ 4p 2pi L u ðu0 þ pl

mX

Inserting this into Eq. (1) and collecting up the delta, and nondelta function terms, we find

l

 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi @ @ Wðx; y; z; l; uÞ 1  l2 cos u þ sin u @x @y c c þ Wðx; y; z; l; uÞ ¼ W0 ðx; y; zÞ þ Aðx; y; zÞ ð92Þ 4p 4p

@ Wðx; y; z; l; uÞ þ @z

with A(x, y, z) given by

l0

@Aðx; y; zÞ þ @z

 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi @Aðx; y; zÞ @Aðx; y; zÞ 1  l20 cos u0 þ sin u0 @x @y

¼ Sðx; y; zÞ

5. Emergent angular distribution

ð93Þ

Taking the Fourier transform in x and y leads to In addition to the surface flux, an important quantity as far as actual measurement is concerned is the emergent angular distribu ; u0 ; z0 Þ. From Eq. (7), we tion from the surface, i.e. Iðq; #; 0; l; ujl can write this as

Iðk; 0; l; ujl  ; u 0 ; z0 Þ ¼

Z

1 c 0 0 dz I0 ðk; z0 jz0 Þeuz =l 4pl 0 SðkÞ  Þdðu  u0 Þeu0 z=l þ dðl  l l

c ^ I0 ðk; u=ljz0 Þ

4pl

ð85Þ

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  zÞ ¼ Sðk; zÞ 1  l20 ðkx cos u0 þ ky sin u0 ÞAðk;

ð94Þ

 , the solution of this equation for Sðk; zÞ ¼ For l0 ¼ l SðkÞdðz  z0 Þ is

ð95Þ

We now return to Eq. (92) and reduce it to the equivalent diffusion approximation. This leads to

r2 W0 ðx; y; zÞ  m2 W0 ðx; y; zÞ þ 3cAðx; y; zÞ ¼ 0

ð96Þ

Taking Fourier transforms in the x and y directions, we find

ð86Þ

2

 0 ðk; zÞ d W dz

which from Eq. (24) is

l  1  c SðkÞ 1 Iðk; 0; l; ujl  ; u0 ; pÞ ¼ H ;k H ;k  4p u þ pl u0 þ pl p u

 zÞ @ Aðk; þ @z

  zÞ ¼ SðkÞ Hðz0  zÞeu0 ðz0 zÞ=l Aðk; l

The first term on the right hand side of Eq. (85) is related to the Laplace transform (12), viz:

Iðk; 0; l; ujl  ; u 0 ; z0 Þ ¼

l0

2

3c  2   ðm2 þ k ÞW SðkÞHðz0  zÞeu0 ðz0 zÞ=l ¼ 0 0 ðk; zÞ þ l ð97Þ

ð87Þ

 and /0 is where the implicit dependence of W0(k, z) on z0 ; l suppressed.

773

M.M.R. Williams / Annals of Nuclear Energy 36 (2009) 767–783

or

We may write the solution of Eq. (97) as

 0 ðk; zjz0 Þ W ¼

3c  SðkÞ l

Z

z0

 D ðk; zjzÞeðz0 zÞ=li dzG

 Gðkjz 0Þ ¼

pffiffiffiffiffiffiffiffiffi

0

where we have restored the dependence on z0. The Greens function GD satisfies the equation 2

dz

ð106Þ

 2 ðkx cos u0 þky sin u0 Þðz0 zÞ=l 1l

ð98Þ

2 d G zÞ D ðk; zj

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffi 2 2 2 2 k þ k21  k þ m21 e k þm1 z0

2   ðm2 þ k ÞG zÞ þ dðz  zÞ ¼ 0 D ðk; zj

where a possible choice is k21 ¼ 3 and that Eq. (50) or Eq. (102) become

m21 ¼ 3ð1  cÞ. It is then clear

 ; u 0 ; z0 Þ W0 ðq; #jl ¼

ð99Þ

Z 1 0 0  ; #  u0 Þ dz0 eðz0 z0 Þ=l dkkJ 0 ðkRðq; z0  z00 ; l  0 2pl 0 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffi 2 2 0 2 2 ð107Þ  SðkÞ k þ k21  k þ m21 e k þm1 z0 1

Z

z0

with the boundary condition or more conveniently

  D ðk; 0jzÞ ¼ 2 dGD ðk; zjzÞ G 3 dz z¼0

ð100Þ

 ; u 0 ; z0 Þ W0 ðq; #jl ¼

 0 ðk; 0jz0 Þ, we need As we are interested only in the surface flux W only calculate GD ðk; 0jz0 Þ. This is found by elementary means and leads to

pffiffiffiffiffiffiffiffiffiffi 2 2 2 e m þk z0  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi GD ðk; 0jz0 Þ ¼ 3 1 þ 2 m2 þ k2 3

ð101Þ

which is related to G in Eq. (28) by G ! 3cGD . For c near unity this is a reasonable approximation for many problems. Then after some manipulation following the techniques leading to Eq. (45), we find

 ; u0 ; z0 Þ ¼ W0 ðq; #jl

c pl

Z 0

z0

0

0

dz0 eðz0 z0 Þ=l

Z

1

Z

This result is similar in form to Eq. (102). There are some advantages in using this technique for the H-function as shown in Loyalka and Williams (in press). 7. Diffusion theory: non-absorbing case

ð102Þ

W0 ðqjz0 Þ ¼

 ¼ 1, Eq. (102) simplifies to For the special case of l

c

Z

p

 pffiffiffiffiffiffiffiffiffiffi  2 dkkSðkÞJ ðkqÞ 2  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi0 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi e m þk z0  ez0 2 2 1  m2 þ k 1 þ 23 m2 þ k

1

0

¼

W0 ðq; #ju0 ; z0 Þ Z

p 

1 w

0

e

Z

we pffiffiffiffiffiffiffiffiffiffi

0

1

 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi dkkJ 0 k q2  2qw cosð#  u0 Þ þ w2 SðkÞ

0

2 3

ð103bÞ

which does depend on #. It is worth noting at this stage that there is a useful approximation to the H-function appearing in Eq. (25). This is discussed fully in Williams (2007a) and the result is due to Rybicki (1971). Thus we may write

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2     Y n pþ k þ k2j 1 1 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi H ; k  Hn ;k ¼ 2 p p j¼1 p þ k þ m2j

ð104Þ

where kj and mj are constants defined in Williams (2007a,b). Thus a ~ first approximation to GðkjpÞ defined in Eq. (28) will be

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 2 k þ k21  k þ m21 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 p þ k þ m21

p X2 "

þ2

1 P1 ðs0 Þ

p

X 20

P2 ðsÞ X3

þ2

ð105Þ

þ 22

P2 ðs0 Þ X 30

ð109Þ

P3 ðsÞ X4

þ 22

þ

728 P4 ðsÞ þ  27 X 5

P3 ðs0 Þ X 40

þ



# 728 P4 ðs0 Þ þ    ez0 27 X 50 ð110Þ

where Pn(s) are the Legendre polynomials and

X 2 ¼ q2 þ ðz0 þ 2=3Þ2 ;

m2 þk2 z0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1þ m2 þ k2

~ GðkjpÞ ¼

1

dkkJ0 ðkqÞðekðz0 þ2=3Þ   11 2 91 3 4  ez0 2k=3 Þ 1 þ k þ k þ k þ Oðk Þ 9 81

p

 1 P1 ðsÞ



 ¼ 0, we find which as expected is independent of #. For the case of l

¼

Z

W0 ðq; 0jz0 Þ

ð103aÞ

c

1

Carrying out the integrals over k leads to

W0 ðqjz0 Þ ¼

z0

In the special case of c = 1 and m = 0, we may expand the integrand in Eq. (103a) in powers of k to get, for SðkÞ ¼ 1,

dkkJ0 ðkRðq; z0 0

pffiffiffiffiffiffiffiffiffiffi 2 0 2 e m þk z0 0   pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  z0 ; l; #  u0 ÞÞSðkÞ 2 1 þ 23 m2 þ k

Z 1 0 0  ; #  u0 Þ dz0 eðz0 z0 Þ=l dkkJ 0 ðkRðq; z0  z00 ; l 0 0 pffiffiffiffiffiffiffiffiffi ffi 2 2 0 e k þm1 z0  ð108Þ  SðkÞ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 2 k þ k21 þ k þ m21 3c  2pl

X 20

2

¼ q þ 4=9;

s ¼ ðz0 þ 2=3Þ=X

s0 ¼ ð2=3Þ=X 0

ð111Þ

These results are analogous to those in Eq. (79) and it is useful to note that for large pffiffiffi q and z0 >> 1, the ratio of surface fluxes ‘transport/diffusion’ is 3=2 ¼ 0:8660 . . .. We shall discuss this matter again in Section 10. 8. An alternative approach to the Hankel inversion I Evaluating the Hankel inversion integral as defined in Eqs. (70) and (103a) requires quadrature involving the Bessel function J0(x). This is oscillatory and while the quadrature can be carried out, it involves a slowly converging series which must be summed by using the Euler, Shanks or other methods (Davis and Rabinowitz, 1967; Ganapol, 2008a). There is, however, an alternative procedure which can sometimes have some benefits, especially when the source S(q) is no longer a point. We shall illustrate below the general procedure and then apply it to some of the problems discussed above.

774

M.M.R. Williams / Annals of Nuclear Energy 36 (2009) 767–783

Consider the Hankel inversion integral

GðqÞ ¼

Z

1 2p

1 0

 dkkJ0 ðkqÞSðkÞFðkÞ

ð112Þ

FðxÞ ¼

1 2p

1

FðxÞ ¼

ikx  dke FðkÞ

ð113Þ

1

Thus

ð126Þ

Z

b

ð127Þ

q

sjxj

dsgðsÞe

ð114Þ

Now if we invert (113) by writing

Z

dq0 q0 Sðq0 ÞGðqjq0 Þ

 Z q dssgðsÞ K 0 ðsqÞ dq0 q0 Sðq0 ÞI0 ðsq0 Þ 0 a  Z 1 þI0 ðsqÞ dq0 q0 Sðq0 ÞK 0 ðsq0 Þ

GðqÞ ¼ 2

b

a

 FðkÞ ¼

1

0

It is often possible by considering appropriate contours, to evaluate Eq. (113) in the form

Z

Z

GðqÞ ¼ 2p

Now define the Fourier integral

Z

The case of a uniform disk is also of interest. To obtain the appropriate form, we note from Eq. (125) that we may write G(q) for any arbitrary S(q) as

1

ikx

dxe

We must now evaluate

2pK 0 ðsqÞ

FðxÞ

Z

q

dq0 q0 Sðq0 ÞI0 ðsq0 Þ þ 2pI0 ðsqÞ

0

ð115Þ

Z

1

dq0 q0 Sðq0 ÞK 0 ðsq0 Þ

q

ð128Þ

1

For the case of a disk source of radius a such that

we find with (114),

 FðkÞ ¼2

Z

b

ds

a

sgðsÞ

ð116Þ

2

k þ s2

SðqÞ ¼

1

1

p

Z

b

dssgðsÞ

Z

a

1

dk 0

ð129Þ

q>a

¼ 0;

Inserting Eq. (116) into (112), leads to

GðqÞ ¼

q
;

pa2

where the source has been normalised to Eq. (47), we find

kSðkÞJ 0 ðkqÞ

ð117Þ

2

k þ s2

For the special case of a point source where

2 K 0 ðsqÞ a2

Z

a

dq0 q0 Iðsq0 Þ ¼

0

2 I1 ðasÞK 0 ðsqÞ; as

q>a

ð130Þ

and

dðqÞ SðqÞ ¼ 2pq

ð118Þ

we find SðkÞ ¼ 1 and hence using the relation

Z

1

dk

0

kJ 0 ðkqÞ 2

k þ s2

¼

¼ K 0 ðsqÞ

ð119Þ

G(q) becomes

GðqÞ ¼

1

p

Z

b

dssgðsÞK 0 ðsqÞ

ð120Þ

a

This integral is usually far more convenient numerically than that of Eq. (112) which contains the oscillating function J0(kq). This procedure was first used by Williams (1982) to solve a transport problem. In addition, suppose we have a ring source of the form

SðqÞ ¼

2 K 0 ðsqÞ a2

dðq  q0 Þ 2pq

ð121Þ

for which

0

dk

dq0 q0 I0 ðsq0 Þ þ

0

2 I0 ðsqÞ a2

1 ð1  saK 1 ðasÞI0 ðsqÞÞ; a2 s2

Z q

a

dq0 q0 K 0 ðsq0 Þ

q
ð131Þ

None of these functions involving In or Kn is oscillatory and the integrals over s in Eq. (127) may be carried out efficiently by standard methods. One other source of some interest is that of the Gaussian, viz:

SðqÞ ¼

a2 a2 q2 e p

ð132Þ

Eq. (128) then becomes

2a2 K 0 ðsqÞ

Z

q

0

dq0 q0 ea

2 q2

I0 ðsq0 Þ þ2a2 I0 ðsqÞ

Z

1

q

dq0 q0 ea

2 q2

K 0 ðsq0 Þ ð133Þ

but it is not possible to reduce this expression to anything simpler.

ð122Þ

We note in Eq. (102) that the essential factor is (with z00 ¼ w)

and we find the integral 1

q

8.1. Application to a diffusion theory problem

SðkÞ ¼ J ðkq Þ 0 0 Z

Z

kJ 0 ðkq0 ÞJ 0 ðkqÞ 2

k þ

ð123Þ

s2

But this integral is given by Gradshteyn and Ryzhik (1994) as

I0 ðsq0 ÞK 0 ðsqÞ; I0 ðsqÞK 0 ðsq0 Þ;

q > q0 q < q0

ð124Þ

Thus we may write

GðqÞ ¼ Gðqjq0 Þ ¼

1

p

Z a

b

I0 ðsq0 ÞK 0 ðsqÞ; dssgðsÞ I0 ðsqÞK 0 ðsq0 Þ;

q > q0 q < q0



ð125Þ

For a multi-ring source with different weights and radii, we simply add the appropriate solutions of (103a) with q0 = qi (i = 1, 2, . . . , N).

 FðkÞ ¼

e

pffiffiffiffiffiffiffiffiffiffi

m2 þk2 w

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 1 þ 23 m2 þ k

ð134Þ

If this can be put into a suitable form then the integrations over w and k follow easily. Thus consider

Z

1 FðxÞ ¼ 2p

1

ikx

dke 1

e

pffiffiffiffiffiffiffiffiffiffi

m2 þk2 w

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 1 þ 23 m2 þ k

ð135Þ

We note that the integrand has branch points at k = ±im. Thus deforming the contour along the real axis to the imaginary axis each side of the cut from im to i1, it is easily found that

FðxÞ ¼

1

p

Z 0

1



ffi sin uw þ 23 u cos uw pffiffiffiffiffiffiffiffiffi duu m2 þu2 jxj pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi e 1 þ 49 u2 m2 þ u2

ð136Þ

775

M.M.R. Williams / Annals of Nuclear Energy 36 (2009) 767–783

By inverting this transform as described in Section 8, we may write

pffiffiffiffiffiffiffiffiffiffi

2 Z 2 sin uw þ 23 u cos uw e m þk w 2 1 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ duu

2 2 p 0 1 þ 49 u2 ðk þ m2 þ u2 Þ 1 þ 23 m2 þ k

p

Z



1

duu

0

ð137Þ

Z 1 sin uw þ 23 u cos uw dkkSðkÞJ 0 ðkRÞ

4 2 2 1 þ 9u 0 ðk þ m2 þ u2 Þ

ð138Þ

We may now use any of the sources described above. For the simple case of a point source, for which SðkÞ ¼ 1, we find



 Z pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  sin uw þ 23 u cos uw 2 1

K0 duu u2 þ m2 R 4 2 p 0 1 þ 9u

ð139Þ

where in general

 ; #  u0 Þ R2 ¼ R2 ðq; z0 ; l qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2 cosð#  u0 Þ=l  þ ð1  l  2 Þw2 =l 2 ¼ q2  2qw 1  l

ð140Þ

The integral over w (z00 in Eq. (102)), can then be carried out by  ¼ 1, i.e. a source quadrature. However, in the special case of l pointing normally towards the surface, we can do this integral analytically to get

2c W0 ðqjz0 Þ ¼ 2 3p

Z

1

0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  duuK 0 u2 þ m2 q

fuez0 þ ð3 þ 2u2 Þ 1 þ 49 u2 ð1 þ u2 Þ

 sin uz0  u cos uz0 g

ð141Þ

This is to be compared with the original form of

W0 ðqjz0 Þ ¼

c

p

Z 0

1

 pffiffiffiffiffiffiffiffiffiffi  2 2 e k þm z0  ez0 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi dkkJ0 ðkqÞ  2 2 1 þ 23 k þ m2 1  k þ m2

Even in Eq. (141), it is still necessary to evaluate oscillatory functions (in this case over z0) but the standard library routines for such trigonometric integrals are well-developed (IMSL libraries) and because of the presence of the K0 function the integrand decays rapidly and only a few oscillations have any significant effect. For the case of the ring source at q = q0, Eq. (141) remains the same but with the replacement

9

= q > q0 > ; q < q0 > ð143Þ

Although the Gaussian source leads to a difficult expression, as we saw in Eq. (133), this is one case where the direct Hankel transform quadrature may be preferable, because in this case 2 SðkÞ ¼ expðk =4a2 Þ and the original equation becomes

Z

k2 =4a2

1

J 0 ðkqÞ  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi e 2 1 þ 23 k þ m2

dkke

0

pffiffiffiffiffiffiffiffiffiffi

k2 þm2 z0

ð147Þ

which will converge rapidly for small a. Finally we note the case of an annular ring with internal and external radii R0 and R1, respectively. In that case we have

2

SðkÞ ¼

kðR21  R20 Þ

½R1 J 1 ðkR1 Þ  R0 J 1 ðkR0 Þ

ð148Þ

which is related to the problem of the difference between two single disk problems. Also, as expected, as R1 ? R0, then SðkÞ ! J 0 ðkR0 Þ, which is the ring source as derived above in Eq. (122). Applications of this technique to the transport from of G, as defined by Eq. (68), presents some difficulties and we have yet to complete the task fully. However the appropriate form for the asymptotic term in Eq. (68) has been obtained. The method may also be applied with little difficulty in principle to the form of the H-function defined by Eq. (104) but at the expense of considerable algebra.

It is of interest to examine the form taken by the flux when the source leads to an angular variation of the flux at a given value of  ¼ 1 leads the radial co-ordinate q. For example, whilst the case l to a flux which depends on q only, the point, ring source and the  < 1, lead to fluxes which are functions of disk sources, for l (q, #). From Eqs. (139) and (140), we may write the associated flux on the surface using Eq. (102). This expression explicitly shows the dependence on the azimuthal angle /0. Normally, it is only necessary to consider the difference #  /0 and so setting /0 = 0 leads to no loss of generality. However, suppose the source emits particles non-uniformly in /0, e.g. with a distribution Q(/0). In that case the flux would take the form

Z 2p

 ; z0 Þ ¼ W0 ðq; #jl

0

 ; u0 ; z0 Þ du0 Q ðu0 ÞW0 ðq; #jl

ð149Þ

In the special case where particles are emitted radially and

l ¼ 0, we have

Similarly, Eq. (142) is the same but with

J 0 ðkqÞ ! J 0 ðkq0 ÞJ 0 ðkqÞ

ð146Þ

8.2. q  # Distributions for diffusion theory

ð142Þ

8 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  > < I0 u2 þ m2 q0 K 0 u2 þ m2 q ; pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  K0 u2 þ m2 q ! > : I0 u2 þ m2 q K 0 u2 þ m2 q0 ;

2 J ðkaÞJ 0 ðkqÞ ak 1

J 0 ðkqÞ !

Now consider the integral over k in Eq. (102) to get

2

and for Eq. (142),

ð144Þ

One sees immediately the advantage of the new approach because if Eq. (142) were to be evaluated numerically with (144), then the zeros of the integrand, which are needed for the series summation, are now no longer those of J0(x) = 0 but of the product J0(x)J0(ax) or, for the disk problem below, the roots of J0(x)J1(ax). This is a much more tedious affair. For the disk source, we have (141) with pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  K0 u2 þ m2 q 9 8 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2 > > ffi I1 u2 þ m2 a K 0 u2 þ m2 q ; q > a = < pffiffiffiffiffiffiffiffiffi a u2 þm2 !  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi > ; : 2 22 2 1  a u2 þ m2 I0 u2 þ m2 q K 1 u2 þ m2 a ; q < a > a ðu þm Þ

ð145Þ

W0 ðq; #jz0 Þ ¼

Z

c

p

1

w

dwe

0

 SðkÞ

e

Z

1

dkk

0 pffiffiffiffiffiffiffiffiffi ffi

Z 2p 0

^ q; #  u ; wÞÞ du0 Q ðu0 ÞJ 0 ðkRð 0

m2 þk2 z0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 1 þ 23 m2 þ k

ð150Þ

^ 2 ¼ q2  2qw cosð#  u Þ þ w2 . where R 0 In terms of the K0 representation,

W0 ðq; #jz0 Þ ¼

Z

c

p2 

Z 0

Z 2p sinðuwÞ þ 23 u cosðuwÞ

dwe duu du0 Q ðu0 Þ  1 þ 49 u2 0 0 ^ dkkSðkÞJ 0 ðkRÞ ð151Þ 2 2 k þ m þ u2

1

0 1

w

Z

1



776

M.M.R. Williams / Annals of Nuclear Energy 36 (2009) 767–783

We have discussed above the various forms taken by the integral over k for different source shapes, but for the point source, we have

Z 2p 0

du0 Q ðu0 ÞK 0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  ^ q; #  u ; wÞ m2 þ u2 Rð 0

ð152Þ

It is readily seen how one can introduce a source which emits in a given range of /0 only by suitable definition of Q. For the general case of a uni-directional source d(/  /0), this approach is also applicable to the transport equation for radial emission, Eq. (63), which we may re-write in the form

1 2p

I0 ðq; #; 0ju0 ; z0 Þ ¼

Z

1

 dkkSðkÞGðkjz 0Þ

0

Z

Inserting this into Eq. (157) leads to

I0 ðq; 0jz0 Þ ffiffiffiffiffiffiffiffi2 Z p1 m 2c udu pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 2 p 0 ð1 þ 4u2 =9Þ 1  m2  u2   pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2 u2 þ m2 ; q  sinðuz0 Þ þ u cosðuz0 Þ F 3   Z 2c 1 udu 2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi cosðuz0 Þ  u sinðuz0 Þ þ 2 pffiffiffiffiffiffiffiffi 3 p 1m2 ð1 þ 4u2 =9Þ m2 þ u2  1 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2 2 F u þm ;q ð160Þ where

1

w

dwe 0

~ q; #; u ; wÞÞ J 0 ðkRð 0

Fðs; qÞ ¼

dk

kSðkÞJ 0 ðkqÞ

ð161Þ

2

s2 þ k

Then following the procedure described in Section 8.1, we can write F(s, q) in terms of the Bessel functions K0 and I0.

where

~ 2 ¼ q2  2qw cosð#  u Þ þ w2 R 0

ð154Þ

we shall see that the integration over w has some numerical advantages as it damps out the oscillations of the Bessel function. As a simple example of Eq. (149), let us assume that Q(/0) = 1/2p over the range /0(0, 2p), i.e. the emission is isotropic in the radial direction. In that case we must evaluate the term in Eq. (50) as

Z 2p

^ q; #  u ; wÞÞ du0 J 0 ðkRð 0 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2 ðz0  z00 Þ=l Þ ¼ J 0 ðkqÞJ 0 ðk 1  l 0

ð155Þ

9. An alternative approach to the Hankel inversion II The method described in the previous section is not convenient for dealing with transport problems except in very special cases (Williams, 1982, 2007a) as it is very difficult to obtain a numerically useful Fourier inversion of Eq. (68). We therefore describe another method for transforming the Hankel transform into a more convenient form for numerical evaluation by noting that the Bessel function can be written as (Gradshteyn and Ryzhik, 1994)

J n ðzÞ ¼

1 I0 ðq; 0jz0 Þ ¼ 2p

Z

 z 0 =l

w

Z

Z

0

1

kSðkÞ  dk pffiffiffiffiffiffiffiffiffiffiffiffiffiffi Gðkjz 0 ÞJ 0 ðkqÞ 2 1þk

ð156Þ

2nþ1

sin

ðtÞ

e2z cotðtÞ

J 0 ðzÞ ¼ gðzÞ sinðzÞ þ hðzÞ cosðzÞ

ð162Þ

ð163Þ

where

ð157Þ

ð158Þ

Although it is not difficult to evaluate the quadrature over J0 in Eq. (157), there are some advantages in using the Fourier transform technique described in Section 8. This may be done by noting that Eq. (157) has branch points at k = ±im, ±i, thus by deforming the contour onto the imaginary axis, we find

pffiffiffiffiffiffiffiffiffiffi 2 2 e k þm z0  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 2 1þk 1 þ 2 k þ m2 =3 Z 2 1 sds pffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ p m ð1 þ 4ðs2  m2 Þ=9Þ 1  s2  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  1 s2  m2 cos  sin s2  m 2 z0 þ s2  m2 z0 2 3 s2 þ k Z h pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2 1 sds pffiffiffiffiffiffiffiffiffiffiffiffiffi cos þ s2  m2 z0 p 1 ð1 þ 4ðs2  m2 Þ=9Þ s2  1 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  1 2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi s2  m2 sin s2  m 2 z0 ð159Þ  2 3 s2 þ k

2

Z p=2

cosðt=2Þ dt pffiffiffiffiffiffiffiffiffiffiffiffiffi e2z cotðtÞ cosðtÞ sinðtÞ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Z  ffi 2 1 e2t 1 pffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ dt qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi t2 þ z2 þ t 2 p 0 tðt 2 þ z2 Þ r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi Z  2 1 e2zt 1 pffiffiffiffiffiffiffiffiffiffiffiffiffi dt qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi t2 þ 1 þ t ¼ 2 p 0 tðt 2 þ 1Þ

gðzÞ ¼

We may illustrate this with diffusion theory, using

pffiffiffiffiffiffiffiffiffiffi  k2 þm2 z0 e  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Gðkjz 0 Þ ¼ 2c 2 1 þ 2 k þ m2 =3

dt

0

From which we may write

0

As expected, Eq. (156) is independent of # due to the radial sym ¼ 1, Eq. (156) reduces to Eq. (70). On the other hand metry. For l  ¼ 0 and we find for radial emission, l

1 2p

Z p=2

cosn1=2 ðtÞ sinðz  nt þ t=2Þ

1

 dkkSðkÞGðkjz 0 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  wÞJ 0 ðkqÞJ 0 ðk 1  l  2 wÞ l dwe

0

2nþ1 zn Cð1=2ÞCðn þ 1=2Þ 

whence, after a simple transformation

I0 ðq; 0jz0 Þ ¼

1 0

ð153Þ

1 2p

Z

p

and

ð164Þ

Z p=2

sinðt=2Þ dt pffiffiffiffiffiffiffiffiffiffiffiffiffi e2z cotðtÞ cosðtÞ sinðtÞ 0 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Z ffi 2 1 e2t 1 pffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ dt qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð t2 þ z2  tÞ 2 p 0 tðt 2 þ z2 Þ r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi Z 2 1 e2zt 1 pffiffiffiffiffiffiffiffiffiffiffiffiffi 2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi q dt ð t þ 1  tÞ ¼ p 0 tðt 2 þ 1Þ 2

hðzÞ ¼

2

0

p

ð165Þ

It is useful to note that

lim

z!1

pffiffiffiffiffiffi pzgðzÞ ¼ 1

and

lim

z!1

pffiffiffiffiffiffi pzhðzÞ ¼ 1

Also as z ? 0, h(0) = 1 and g(z) ? 2 log (z)/p. A further useful property is that the functions h(z) and g(z) are monotonically decreasing functions of z. Thus in Eq. (163) we have extracted

777

M.M.R. Williams / Annals of Nuclear Energy 36 (2009) 767–783

the oscillatory behaviour of the Bessel function and written it in terms of simple trigonometric functions. There is yet another representation of the Bessel function which arises from the relation

J 0 ðzÞ ¼

2

Z

p

1

1

The disk source defined by Eq. (55), requires the representation of J1(z) via the use of Eq. (162). We define

J 1 ðzÞ ¼ pðzÞ sin z  qðzÞ cosðzÞ where

sinðzuÞ du pffiffiffiffiffiffiffiffiffiffiffiffiffiffi u2  1

hðzÞ ¼

2

p

1

0

sinðztÞ dt pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi tðt þ 2Þ

gðzÞ ¼

2

p

Z

0

1

cosðztÞ dt pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi tðt þ 2Þ

Although these integrals have oscillatory integrands they are in a form that is particularly useful for expansion about z = 0 (Grosjean, 1965). These expansions are used in our numerical analysis discussed in Section 10.

I0 ðq; 0jz0 Þ ¼

Z

1 2p Z 

1

0 1

 0 ðkjz0 Þ þ dkk sinðkqÞgðkqÞSðkÞG

ð166Þ

This result has the very useful property that there exist a number of very efficient quadrature library routines for solving the Fourier integrals; more of which below. In the case of a point source, SðkÞ ¼ 1 and the integral is a straightforward sum of the two Fourier terms. In the case of a ring of radius q0, however, SðkÞ ¼ J 0 ðkqÞ and we must re-write the term J 0 ðkqÞSðkÞ ¼ J 0 ðkqÞJ 0 ðkq0 Þ as

J 0 ðkqÞJ 0 ðkq0 Þ ¼ ½gðkqÞ sinðkqÞ þ hðkqÞ cosðkqÞ½gðkq0 Þ sinðkq0 Þ ð167Þ

Multiplying this out and re-arranging the trigonometric functions we have

2J 0 ðkqÞJ 0 ðkq0 Þ ¼ ðgg 0 þ hh0 Þ cos kðq  q0 Þ þ ðgh0  hg 0 Þ

Z 1 1  0 ðkjz0 Þ dkkðgg 0 þ hh0 Þ cos kðq  q0 ÞG 4p 0 Z 1 1  0 ðkjz0 Þ þ dkkðgh0  hg 0 Þ sin kðq  q0 ÞG 4p 0 Z 1 1  0 ðkjz0 Þ þ dkkðhh0  gg 0 Þ cos kðq þ q0 ÞG 4p 0 Z 1 1  0 ðkjz0 Þ ð169aÞ þ dkkðgh0 þ hg 0 Þ sin kðq þ q0 ÞG 4p 0

This formulation is very useful because it avoids having to evaluate the highly oscillating and irregular integrand J0(kq)J0(kq0), and reduces the problem to evaluating trigonometric Fourier integrals which have a long numerical history. The case of q = 0 needs special attention and reduces to

1 I0 ð0; 0jz0 Þ ¼ 2p

Z 0

1

0

8

Z p=2

ð171Þ

pffiffiffiffiffiffiffiffiffiffiffiffiffi cosðtÞ sinðt=2Þ

e2z cotðtÞ 3 sin ðtÞ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ! u Z 1 ut 8 t 1=4 ¼ dtðz2 þ t 2 Þ t 1  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi e2t 2 pz 0 t 2 þ z2

qðzÞ ¼

p

dt

0

ð172Þ

We find that

lim zpðzÞ ¼

2

p

2

lim qðzÞ ¼

p

z!0

pffiffiffiffiffiffi pffiffiffiffiffiffi Also as z ? 1, we find pzpðzÞ ! 1 and pzqðzÞ ! 1. Further useful representations of p(z) and q(z) are

pðzÞ ¼

2

p

Z

1

dt

0

ðt þ 1Þ sinðztÞ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ; tðt þ 2Þ

qðzÞ ¼

2

p

Z

1

dt 0

ðt þ 1Þ cosðztÞ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi tðt þ 2Þ

from which we may obtain series solutions in powers of z. In order to use this form to represent the disk source, Eq. (55), we write

J 0 ðkqÞJ 1 ðkq0 Þ ¼ ½gðkqÞ sinðkqÞ þ hðkqÞ cosðkqÞ½pðkq0 Þ sinðkq0 Þ  qðkq0 Þ cosðkq0 Þ and after some algebra this leads to

 cos kðq þ q0 Þ þ ðhp0  gq0 Þ sin kðq þ q0 Þ

ð168Þ

where we have used an obvious notation. We see therefore that the quadrature for the flux is the sum of four Fourier integrals, which are each readily evaluated by the sub-routines mentioned above. Explicitly, the flux takes the form

I0 ðq; 0jz0 Þ ¼

pffiffiffiffiffiffiffiffiffiffiffiffiffi cosðtÞ cosðt=2Þ

2J 0 ðkqÞJ 1 ðkq0 Þ ¼ ðgp0  hq0 Þ cos kðq  q0 Þ  ðgp0 þ hq0 Þ

 sin kðq  q0 Þ þ ðhh0  gg 0 Þ cos kðq þ q0 Þ þ ðgh0 þ hg 0 Þ sin kðq þ q0 Þ

dt

and

0

þ hðkq0 Þ cosðkq0 Þ

p

z!0

1 2p

 0 ðkjz0 Þ dkk cosðkqÞhðkqÞSðkÞG

Z p=2

and

9.1. Application to transport and diffusion theory The Hankel transform of the surface flux is given by Eq. (70) with the appropriate form of SðkÞ and G0 ðkjz0 Þ. Thus we may use Eq. (163) and re-write Eq. (70) as

8

e2z cotðtÞ 3 sin ðtÞ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ! u Z 1 u 8 t 2 2 1=4 t t ¼ dtðz þ t Þ 1 þ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi e2t 2 pz 0 t 2 þ z2

pðzÞ ¼

Now setting u = t + 1, we find after expanding the sin function that

Z

ð170Þ

 0 ðkjz0 Þ dkkðh0 cosðkq0 Þ þ g 0 sinðkq0 ÞÞG ð169bÞ

 ðgq0 þ hp0 Þ sin kðq  q0 Þ

ð173Þ

again in an obvious notation. As for the ring source in Eq. (169a) the disk source is also the sum of four Fourier terms and again reduces the problem to a trigonometric one as shown below

I0 ðq; 0jz0 Þ ¼

Z

1

1

 0 ðkjz0 Þ dkðgp0  hq0 Þ cos kðq  q0 ÞG 2pq0 0 Z 1 1  0 ðkjz0 Þ dkðgp0 þ hq0 Þ cos kðq þ q0 ÞG  2pq0 0 Z 1 1  0 ðkjz0 Þ dkðhp0  gq0 Þ sin kðq þ q0 ÞG þ 2pq0 0 Z 1 1  0 ðkjz0 Þ ð174aÞ dkðgq0 þ hp0 Þ sin kðq  q0 ÞG  2pq0 0

Again, the case of q = 0 needs special attention and we find

I0 ð0; 0jz0 Þ ¼

1

pq0

Z

1 0

 0 ðkjz0 Þ dkðp0 sinðkq0 Þ  q0 cosðkq0 ÞÞG ð174bÞ

The efficiency of this technique may be greatly improved if accurate rational approximations for the universal functions, g(z), h(z), p(z) and q(z) can be obtained. In this respect, it is useful to

778

M.M.R. Williams / Annals of Nuclear Energy 36 (2009) 767–783

note the work of Grosjean (1965) which describes a method for developing the functions g(z), h(z), p(z) and q(z) in a series about z = 0 which converges well up to z = 1. We will use this series expansion for the numerical results below, but it should be stressed that it was necessary to use Mathematica to get the required accuracy in the coefficients.

In order to illustrate the above theory we have considered a few problems of general interest numerically and, where possible, have compared them with similar calculations by Ganapol (2008b). In all cases studied, we have found excellent agreement with the work of Ganapol and also with some independent results of Loyalka (2008). The only case in which deviations of one or two digits in the fourth significant figure arise are for Ganapol’s ring source near the singularity. This is a very difficult region to

treat numerically and the analytic solution derived in Appendix C is useful for checking such methods. However, we stress that in this work the emphasis is not on numerical results per se but rather on technique and method. Thus only a few illustrative numerical results are given. Comparisons with diffusion theory are also made where appropriate. In all cases we give the surface flux. To illustrate the point source problem defined by Eq. (70) with SðkÞ ¼ 1, we present Table 1a for the transport theory flux as a function of q in the range (0.1, 5) and z0 = 0.1, 1.0, 2.0, 4.0 with c = 0.99. These values will be useful for benchmarking problems and, subject to the comments made below, agree to the figures given with the results of Ganapol (2008b). In order to compare the results with diffusion theory, or to be precise modified diffusion theory according to Eq. (103a), we also present Table 1b. Finally, to compare transport and diffusion theory, Table 1c shows the ratio of transport to diffusion fluxes. These results deviate from unity the most near the source as expected. What is rather surprising,

Table 1a Point source c = 0.99, transport theory.

Table 1b Point source c = 0.99, diffusion theory.

10. Numerical results and discussion

q/z0

0.1

1

2

4

q/z0

0.1

1

2

4

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.90 5.00

6.1978E01 1.8717E01 8.7346E02 4.9919E02 3.2030E02 2.2138E02 1.6110E02 1.2175E02 9.4708E03 7.5365E03 6.1085E03 5.0268E03 4.1897E03 3.5301E03 3.0024E03 2.5746E03 2.2237E03 1.9330E03 1.6900E03 1.4851E03 1.3114E03 1.1629E03 1.0353E03 9.2498E04 8.2922E04 7.4569E04 6.7251E04 6.0816E04 5.5137E04 5.0107E04 4.5638E04 4.1656E04 3.8098E04 3.4910E04 3.2047E04 2.9469E04 2.7143E04 2.5040E04 2.3134E04 2.1404E04 1.9831E04 1.8397E04 1.7088E04 1.5892E04 1.4797E04 1.3793E04 1.2871E04 1.2023E04 1.1242E04 1.0522E04

5.8696E01 3.1852E01 2.1818E01 1.6309E01 1.2753E01 1.0254E01 8.4052E02 6.9898E02 5.8800E02 4.9941E02 4.2764E02 3.6882E02 3.2011E02 2.7941E02 2.4515E02 2.1609E02 1.9130E02 1.7001E02 1.5165E02 1.3572E02 1.2185E02 1.0971E02 9.9057E03 8.9665E03 8.1358E03 7.3989E03 6.7431E03 6.1580E03 5.6344E03 5.1647E03 4.7424E03 4.3619E03 4.0182E03 3.7072E03 3.4252E03 3.1690E03 2.9358E03 2.7233E03 2.5292E03 2.3518E03 2.1892E03 2.0401E03 1.9032E03 1.7773E03 1.6613E03 1.5543E03 1.4556E03 1.3644E03 1.2799E03 1.2017E03

2.5478E01 1.5545E01 1.1760E01 9.6096E02 8.1552E02 7.0728E02 6.2190E02 5.5196E02 4.9319E02 4.4292E02 3.9934E02 3.6123E02 3.2763E02 2.9786E02 2.7136E02 2.4768E02 2.2645E02 2.0738E02 1.9020E02 1.7469E02 1.6066E02 1.4795E02 1.3642E02 1.2594E02 1.1640E02 1.0771E02 9.9775E03 9.2523E03 8.5887E03 7.9807E03 7.4230E03 6.9109E03 6.4402E03 6.0069E03 5.6077E03 5.2395E03 4.8996E03 4.5855E03 4.2949E03 4.0259E03 3.7765E03 3.5453E03 3.3305E03 3.1310E03 2.9455E03 2.7728E03 2.6119E03 2.4620E03 2.3221E03 2.1915E03

4.8190E02 3.4691E02 2.9478E02 2.6443E02 2.4317E02 2.2665E02 2.1294E02 2.0107E02 1.9050E02 1.8088E02 1.7201E02 1.6374E02 1.5599E02 1.4867E02 1.4174E02 1.3516E02 1.2890E02 1.2293E02 1.1725E02 1.1182E02 1.0665E02 1.0171E02 9.6996E03 9.2497E03 8.8205E03 8.4110E03 8.0203E03 7.6479E03 7.2927E03 6.9542E03 6.6316E03 6.3242E03 6.0314E03 5.7525E03 5.4869E03 5.2341E03 4.9933E03 4.7641E03 4.5460E03 4.3383E03 4.1407E03 3.9526E03 3.7735E03 3.6031E03 3.4410E03 3.2866E03 3.1397E03 2.9998E03 2.8667E03 2.7400E03

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.90 5.00

2.7223E01 1.1954E01 6.7077E02 4.2653E02 2.9267E02 2.1144E02 1.5859E02 1.2240E02 9.6641E03 7.7725E03 6.3483E03 5.2532E03 4.3963E03 3.7154E03 3.1672E03 2.7206E03 2.3531E03 2.0479E03 1.7923E03 1.5766E03 1.3934E03 1.2368E03 1.1021E03 9.8577E04 8.8470E04 7.9652E04 7.1926E04 6.5131E04 5.9131E04 5.3816E04 4.9092E04 4.4881E04 4.1115E04 3.7739E04 3.4705E04 3.1970E04 2.9501E04 2.7265E04 2.5237E04 2.3394E04 2.1715E04 2.0184E04 1.8784E04 1.7503E04 1.6328E04 1.5249E04 1.4256E04 1.3342E04 1.2499E04 1.1720E04

3.8766E01 2.7359E01 2.0962E01 1.6650E01 1.3505E01 1.1113E01 9.2448E02 7.7605E02 6.5654E02 5.5931E02 4.7949E02 4.1345E02 3.5843E02 3.1229E02 2.7336E02 2.4033E02 2.1216E02 1.8802E02 1.6722E02 1.4924E02 1.3361E02 1.1999E02 1.0806E02 9.7581E03 8.8345E03 8.0178E03 7.2933E03 6.6488E03 6.0739E03 5.5597E03 5.0986E03 4.6842E03 4.3108E03 3.9737E03 3.6687E03 3.3922E03 3.1410E03 2.9124E03 2.7040E03 2.5137E03 2.3397E03 2.1802E03 2.0339E03 1.8994E03 1.7757E03 1.6617E03 1.5566E03 1.4594E03 1.3695E03 1.2863E03

1.9075E01 1.4805E01 1.2333E01 1.0590E01 9.2469E02 8.1592E02 7.2508E02 6.4768E02 5.8082E02 5.2248E02 4.7123E02 4.2596E02 3.8580E02 3.5007E02 3.1819E02 2.8968E02 2.6413E02 2.4119E02 2.2056E02 2.0198E02 1.8521E02 1.7007E02 1.5637E02 1.4396E02 1.3270E02 1.2247E02 1.1316E02 1.0469E02 9.6958E03 8.9900E03 8.3447E03 7.7539E03 7.2125E03 6.7156E03 6.2591E03 5.8393E03 5.4528E03 5.0964E03 4.7676E03 4.4639E03 4.1830E03 3.9230E03 3.6821E03 3.4586E03 3.2512E03 3.0585E03 2.8792E03 2.7124E03 2.5570E03 2.4120E03

4.2848E02 3.6996E02 3.3530E02 3.1006E02 2.8981E02 2.7261E02 2.5748E02 2.4385E02 2.3136E02 2.1977E02 2.0895E02 1.9877E02 1.8915E02 1.8004E02 1.7140E02 1.6318E02 1.5535E02 1.4790E02 1.4081E02 1.3405E02 1.2760E02 1.2147E02 1.1562E02 1.1005E02 1.0475E02 9.9709E03 9.4908E03 9.0340E03 8.5996E03 8.1865E03 7.7938E03 7.4205E03 7.0657E03 6.7286E03 6.4083E03 6.1041E03 5.8150E03 5.5405E03 5.2797E03 5.0320E03 4.7968E03 4.5733E03 4.3611E03 4.1594E03 3.9679E03 3.7859E03 3.6130E03 3.4487E03 3.2926E03 3.1442E03

779

M.M.R. Williams / Annals of Nuclear Energy 36 (2009) 767–783

however, is that for larger values of z0, diffusion theory tends to become less accurate overall. For example, at q = 2.5, the values of the ratio of transport/diffusion are equal to 0.9372. . ., 0.9209. . .,

Table 1c Point source c = 0.99, ratio of transport to diffusion theory fluxes.

q/z0

0.1

1

2

4

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.90 5.00

2.2767E+00 1.5658E+00 1.3022E+00 1.1703E+00 1.0944E+00 1.0470E+00 1.0158E+00 9.9469E01 9.8000E01 9.6963E01 9.6223E01 9.5689E01 9.5301E01 9.5014E01 9.4799E01 9.4634E01 9.4502E01 9.4391E01 9.4294E01 9.4194E01 9.4114E01 9.4025E01 9.3931E01 9.3833E01 9.3729E01 9.3618E01 9.3500E01 9.3375E01 9.3244E01 9.3107E01 9.2964E01 9.2815E01 9.2661E01 9.2503E01 9.2342E01 9.2177E01 9.2009E01 9.1839E01 9.1667E01 9.1494E01 9.1321E01 9.1146E01 9.0972E01 9.0798E01 9.0624E01 9.0452E01 9.0281E01 9.0111E01 8.9943E01 8.9776E01

1.5141E+00 1.1642E+00 1.0408E+00 9.7951E01 9.4435E01 9.2277E01 9.0918E01 9.0069E01 8.9561E01 8.9290E01 8.9188E01 8.9205E01 8.9309E01 8.9474E01 8.9681E01 8.9915E01 9.0166E01 9.0425E01 9.0686E01 9.0944E01 9.1196E01 9.1438E01 9.1669E01 9.1887E01 9.2091E01 9.2281E01 9.2449E01 9.2617E01 9.2764E01 9.2896E01 9.3014E01 9.3120E01 9.3212E01 9.3293E01 9.3362E01 9.3420E01 9.3468E01 9.3506E01 9.3535E01 9.3556E01 9.3569E01 9.3575E01 9.3574E01 9.3567E01 9.3555E01 9.3537E01 9.3515E01 9.3488E01 9.3458E01 9.3424E01

1.3357E+00 1.0500E+00 9.5354E01 9.0743E01 8.8194E01 8.6685E01 8.5769E01 8.5221E01 8.4914E01 8.4772E01 8.4746E01 8.4804E01 8.4922E01 8.5085E01 8.5281E01 8.5501E01 8.5736E01 8.5982E01 8.6234E01 8.6489E01 8.6744E01 8.6996E01 8.7244E01 8.7486E01 8.7722E01 8.7950E01 8.8169E01 8.8380E01 8.8581E01 8.8773E01 8.8956E01 8.9129E01 8.9292E01 8.9446E01 8.9591E01 8.9728E01 8.9855E01 8.9974E01 9.0085E01 9.0188E01 9.0283E01 9.0369E01 9.0453E01 9.0528E01 9.0597E01 9.0659E01 9.0716E01 9.0768E01 9.0815E01 9.0856E01

1.1247E+00 9.3770E01 8.7915E01 8.5283E01 8.3908E01 8.3139E01 8.2700E01 8.2458E01 8.2339E01 8.2302E01 8.2321E01 8.2379E01 8.2465E01 8.2573E01 8.2695E01 8.2828E01 8.2969E01 8.3117E01 8.3268E01 8.3422E01 8.3578E01 8.3735E01 8.3891E01 8.4047E01 8.4202E01 8.4355E01 8.4507E01 8.4656E01 8.4803E01 8.4947E01 8.5088E01 8.5227E01 8.5362E01 8.5494E01 8.5622E01 8.5747E01 8.5869E01 8.5987E01 8.6102E01 8.6214E01 8.6322E01 8.6426E01 8.6528E01 8.6626E01 8.6720E01 8.6811E01 8.6899E01 8.6984E01 8.7066E01 8.7145E01

Flux

transport diffusion

0.02

0.01

0.005

0

1

2

ρ

3

4

Fig. 1. Flux for a ring source: c = 0.99, q0 = 3.0, and z0 = 1.0.

5

Table 2 Ring source: c = 0.99, z0 = 1.0, and q0 = 3.0.

q

Transport

Diffusion

Trans./Diff

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 2.91 2.92 2.93 2.94 2.95 2.96 2.97 2.98 2.99 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.90 5.00

5.1647E03 5.1728E03 5.1973E03 5.2383E03 5.2964E03 5.3720E03 5.4661E03 5.5796E03 5.7139E03 5.8704E03 6.0509E03 6.2577E03 6.4934E03 6.7611E03 7.0643E03 7.4074E03 7.7955E03 8.2348E03 8.7326E03 9.2977E03 9.9407E03 1.0675E02 1.1516E02 1.2486E02 1.3611E02 1.4932E02 1.6508E02 1.8449E02 2.0996E02 2.4938E02 2.5504E02 2.6130E02 2.6830E02 2.7629E02 2.8562E02 2.9690E02 3.1128E02 3.3132E02 3.6520E02 infinity 3.6396E02 3.2907E02 3.0812E02 2.9289E02 2.8080E02 2.7070E02 2.6197E02 2.5426E02 2.4733E02 2.4101E02 1.9602E02 1.6633E02 1.4366E02 1.2537E02 1.1019E02 9.7401E03 8.6505E03 7.7152E03 6.9071E03 6.2052E03 5.5926E03 5.0555E03 4.5828E03 4.1651E03 3.7948E03 3.4653E03 3.1712E03 2.9081E03 2.6719E03

5.5597E03 5.5689E03 5.5966E03 5.6432E03 5.7092E03 5.7952E03 5.9022E03 6.0316E03 6.1847E03 6.3634E03 6.5698E03 6.8066E03 7.0767E03 7.3837E03 7.7316E03 8.1254E03 8.5705E03 9.0734E03 9.6415E03 1.0283E02 1.1009E02 1.1828E02 1.2754E02 1.3800E02 1.4979E02 1.6305E02 1.7794E02 1.9457E02 2.1307E02 2.3360E02 2.3577E02 2.3797E02 2.4019E02 2.4244E02 2.4471E02 2.4701E02 2.4934E02 2.5170E02 2.5409E02 2.5652E02 2.5322E02 2.4998E02 2.4679E02 2.4365E02 2.4056E02 2.3751E02 2.3450E02 2.3154E02 2.2862E02 2.2573E02 1.9890E02 1.7540E02 1.5485E02 1.3691E02 1.2128E02 1.0768E02 9.5839E03 8.5526E03 7.6532E03 6.8671E03 6.1786E03 5.5741E03 5.0419E03 4.5721E03 4.1561E03 3.7869E03 3.4582E03 3.1649E03 2.9023E03

9.2895E01 9.2888E01 9.2864E01 9.2825E01 9.2770E01 9.2698E01 9.2611E01 9.2507E01 9.2388E01 9.2253E01 9.2102E01 9.1937E01 9.1758E01 9.1568E01 9.1369E01 9.1164E01 9.0958E01 9.0758E01 9.0573E01 9.0414E01 9.0298E01 9.0248E01 9.0293E01 9.0479E01 9.0872E01 9.1577E01 9.2775E01 9.4820E01 9.8541E01 1.0676E+00 1.0817E+00 1.0980E+00 1.1170E+00 1.1396E+00 1.1672E+00 1.2020E+00 1.2484E+00 1.3163E+00 1.4373E+00 infinity 1.4373E+00 1.3164E+00 1.2485E+00 1.2021E+00 1.1673E+00 1.1397E+00 1.1171E+00 1.0981E+00 1.0818E+00 1.0677E+00 9.8553E01 9.4827E01 9.2776E01 9.1570E01 9.0857E01 9.0455E01 9.0261E01 9.0208E01 9.0252E01 9.0361E01 9.0515E01 9.0697E01 9.0894E01 9.1099E01 9.1305E01 9.1507E01 9.1702E01 9.1886E01 9.2060E01

780

M.M.R. Williams / Annals of Nuclear Energy 36 (2009) 767–783 Table 3 Disk source: c = 0.99, z0 = 1.0, and q0 = 2.0.

0.1 Flux

Diffusion transport

0.01

0.001 0

1

2

ρ

3

4

5

Fig. 2. Flux for a disk source: c = 0.99, z0 = 1.0, and q0 = 2.0.

0.8773. . . and 0.8420. . . for z0 equal to 0.1, 1.0, 2.0 and 4.0, respectively. However, for c = 1 and large q and z0, the ratio does pffiffiffi tend to the exact value deduced from Eqs. (79) and (110), viz: 3=2. The explanation for this anomalous effect must lie in the fact that there is a long range, ‘deep-penetration’ effect which diffusion theory is unable to describe well. This is not unexpected because we are not considering the conventional ‘deep-penetration’ problem at infinite depth. In this case, the flux is that at the surface of the half-space and, no matter how far away the source, this will always differ from diffusion theory. The hybrid diffusion Eq. (96) is a reasonable attempt at describing this situation but clearly it has limitations due, probably, to the highly directional nature of the source. The numerical results have been obtained by using the formalism of Eq. (166) and also by direct use of Eq. (70) using a Shanks summation method. The results from the two methods agree to the places given in Tables. In all cases the quadratures are carried out with the IMSL library routines which have been thoroughly validated. We consider now the case of a ring source of radius q0 in which all neutrons are moving towards the surface. This is described by setting SðkÞ ¼ J 0 ðkq0 Þ in Eq. (70). Fig. 1 shows the surface flux in the range q(0, 5) when the plane of the ring is at z0 = 1.0, q0 = 3.0 and c = 0.99. Both diffusion and transport theory results are shown using Eqs. (141), (169a) and (169b). The most noticeable effect is the increase in flux near the source. This is not unexpected because, as shown in Appendix C, the integral transient term in Eq. (70) leads to a singularity as q ? q0 of the form log (|q  q0|) whereas the diffusion theory case is finite. We also note that as q0 ? 0, the result tends to that of the point source and proves the existence of the singularity at q = 0 for that case. Table 2 shows the values of the flux for transport and diffusion theory and also the ratio of transport/diffusion. We have noted, although no results are given, that as for the point case larger values of z0 lead to less accurate values in diffusion theory. We also note that as the singularity is approached the numerical effort required for a given accuracy becomes much greater. The other case of some interest is the disk source, sometimes called a ’flashlight’ source. In Fig. 2 we show the surface flux for transport and diffusion theory for c = 0.99, z0 = 1.0 and q0 = 2.0. Eqs. (141), (145), (174a), and (174b) are used. There is no singularity at q = q0 for this case and diffusion theory appears to be reasonably accurate. Table 3 shows numerical results for transport and diffusion theory.

q

Transport

Diffusion

Trans/Diff

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.90 5.00

4.8490E02 4.8453E02 4.8341E02 4.8153E02 4.7888E02 4.7542E02 4.7111E02 4.6591E02 4.5975E02 4.5257E02 4.4427E02 4.3474E02 4.2385E02 4.1145E02 3.9734E02 3.8127E02 3.6292E02 3.4187E02 3.1743E02 2.8825E02 2.4818E02 2.0884E02 1.8130E02 1.5900E02 1.4037E02 1.2456E02 1.1101E02 9.9325E03 8.9178E03 8.0325E03 7.2566E03 6.5738E03 5.9707E03 5.4359E03 4.9603E03 4.5360E03 4.1563E03 3.8156E03 3.5092E03 3.2328E03 2.9831E03 2.7568E03 2.5515E03 2.3648E03 2.1947E03 2.0394E03 1.8974E03 1.7674E03 1.6482E03 1.5386E03 1.4379E03

4.9696E02 4.9654E02 4.9528E02 4.9317E02 4.9017E02 4.8626E02 4.8140E02 4.7553E02 4.6858E02 4.6047E02 4.5111E02 4.4039E02 4.2817E02 4.1430E02 3.9862E02 3.8094E02 3.6103E02 3.3868E02 3.1363E02 2.8561E02 2.5431E02 2.2360E02 1.9710E02 1.7420E02 1.5439E02 1.3723E02 1.2233E02 1.0937E02 9.8064E03 8.8178E03 7.9507E03 7.1880E03 6.5151E03 5.9196E03 5.3912E03 4.9209E03 4.5013E03 4.1257E03 3.7888E03 3.4859E03 3.2128E03 2.9661E03 2.7426E03 2.5399E03 2.3556E03 2.1878E03 2.0345E03 1.8945E03 1.7662E03 1.6486E03 1.5405E03

9.7573E01 9.7580E01 9.7603E01 9.7641E01 9.7696E01 9.7770E01 9.7862E01 9.7977E01 9.8116E01 9.8284E01 9.8483E01 9.8718E01 9.8993E01 9.9312E01 9.9678E01 1.0009E+00 1.0052E+00 1.0094E+00 1.0121E+00 1.0092E+00 9.7587E01 9.3399E01 9.1984E01 9.1274E01 9.0917E01 9.0769E01 9.0751E01 9.0817E01 9.0939E01 9.1094E01 9.1270E01 9.1456E01 9.1643E01 9.1829E01 9.2007E01 9.2177E01 9.2336E01 9.2483E01 9.2618E01 9.2740E01 9.2850E01 9.2947E01 9.3031E01 9.3105E01 9.3167E01 9.3218E01 9.3260E01 9.3292E01 9.3316E01 9.3331E01 9.3340E01

Acknowledgements The author wishes to thank Professors Barry Ganapol and Sudarshan Loyalka for many stimulating discussions about this work and other related matters. We also wish to note that this paper is part of a series of such publications on this topic and future contributions will be made by Barry Ganapol and Sudarshan Loyalka. Appendix A. Derivation of flux for off-centre point The Fourier transform of the collided flux for a general source may be written from Eq. (32) as

Z z0  0   0 ðz0 z00 Þu0 =l I0 ðk; 0jz0 Þ ¼ SðkÞ dz0 Gðkjz 0 Þe l 0

ðA1Þ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2 ðkx cos u0 þ ky sin u0 Þ. The Fourier transwhere u0 ¼ 1 þ i 1  l form of the source is given by

781

M.M.R. Williams / Annals of Nuclear Energy 36 (2009) 767–783

SðkÞ ¼ Sðkx ; ky Þ ¼

Z

1

dx

1

Z

1

dySðx; yÞeikx xiky y

ðA2Þ

1

In terms of the radial co-ordinates defined in Section 2.1, we have

Sðk; gÞ ¼

Z

1

dqq 0

Z 2p

d#Sðq; #Þeikq cosðg#Þ

ðA3Þ

0

Thus we may write the inverse of Eq. (A1) as

 ; u0 Þ I0 ðq; #jq0 ; #0 ; z0 ; l  2 Z z0 Z 1 Z 1 1 1 0 0 0  dz0 eðz0 z0 Þ=l  dkx dky Sðk; gÞGðkjz ¼ 0Þ l 2p 0 1 1 p ffiffiffiffiffiffiffiffi ffi p ffiffiffiffiffiffiffiffi ffi 0 0 2 2  eikx ðxðz0 z0 Þ 1l cos u0 =l Þþiky ðyðz0 z0 Þ 1l sin u0 =l Þ ðA4Þ Using the definitions in Section 2.1 this reduces to

 ; u0 Þ ¼ I0 ðq; #jq0 ; #0 ; z0 ; l



1

1

2 Z

l 2p 

Z 2p 0

z0

0

0

0

dz0 eðz0 z0 Þ=l

Z

1

dkk

0

0 ikR cosðgrÞ  dgSðk; gÞGðkjz 0 Þe

ðA5Þ

where R is defined by Eq. (43), viz:

qffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2 cosð#  u0 Þ=l  þ ð1  l  2 Þðz0  z00 Þ2 =l 2 R2 ¼ q2  2qðz0  z00 Þ 1  l Now for an off-centre point source at (q0, #0), we have from Eqs. (A3) and (A4),

 ; u0 Þ ¼ I0 ðq; #jq0 ; #0 ; z0 ; l

2 Z z0 Z 1 1 0 0 dz0 eðz0 z0 Þ=l dkk l 2p 0 0 Z 2p 0 ikðRcosð grÞq0 cosðg#0 ÞÞ   dgGðkjz 0 Þe 1

I0 ðq; #jq0 ; #0 ; z0 ; u0 Þ  qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Z 1 Z 1 1 w  dkkGðkjz Þ dwe J q2 þ q20  2qq0 cosð#0  rÞ ¼ 0 0 k 2p 0 0 ðA13Þ where

q cos #  w cos u0 cos r ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi q2  2wq cosð#  u0 Þ þ w2 q sin #  w sin u0 sin r ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 q  2wq cosð#  u0 Þ þ w2

ðA14Þ

Appendix B. An integral equation for the Green’s function It is useful to reduce the basic Green’s function defined by Eq. (28) to the solution of a singular integral equation which is suitable for treatment by the FN method. We do this by introducing the Laplace transform of the spatial flux and showing how it may be related to the emergent angular distribution. The details follow. The surface flux due to any source can be related to some integral over the function W0(k, 0|z0) where W(k, z, w|z0) obeys the equation (see Eq. (29) of the text)

wQ

@W c þ Q 2 W ¼ ðW0 þ dðz  z0 ÞÞ 2 @z

where Q ¼

ðB1Þ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 1 þ k w2 and



W0 ðk; zjz0 Þ ¼

Z

1

dwWðk; z; wjz0 Þ

ðB2Þ

1

and the boundary condition is

0

ðA6Þ But

R cosðg  rÞ  q0 cosðg  #0 Þ ¼ A cosðg  wÞ

ðA7Þ

Wðk; 0; wjz0 Þ ¼ 0;

where

A2 ¼ R2 þ q20  2Rq0 cosð#0  rÞ tan w ¼

ðA8Þ

R sin r  q0 sin #0 R cos r  q0 cos #0

ðB3Þ

Wðk; z; wjz0 Þ ¼

c 2wQ

Z

z

0

0

dz ðW0 ðk; z0 jz0 Þ þ dðz0  z0 ÞÞeQðzz Þ=w

ðB4Þ

0

and for w < 0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi q cos #  ðz0  z00 Þ 1  l 2 cos u0 =l cos r ¼ R

Wðk; z; wjz0 Þ ¼ 

Z

c 2wQ

1

0

0

dz ðW0 ðk; z0 jz0 Þ þ dðz0  z0 ÞÞeQðz zÞ=w

z

ðA9Þ

ðB5Þ Now for w < 0, we may set z = 0 in (B5) to get

and

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi q sin #  ðz0  z00 Þ 1  l 2 sin u0 =l sin r ¼ R

ðA10Þ

Wðk; 0; wjz0 Þ ¼

Thus Eq. (A6) becomes

 ; u0 Þ ¼ I0 ðq; #jq0 ; #0 ; z0 ; l

w>0

Let us cast Eq. (B1)) into a form suitable for the application of the FN method. By integration of (B1) we may write For w > 0

Z

c 2wQ

1

0

0

dz ðW0 ðk; z0 jz0 Þ þ dðz0  z0 ÞÞeQz =w

ðB6Þ

0

Let us now define the Laplace transform

Z

1

z0

0

0

 ðk; s; wjz0 Þ ¼ W

dz0 eðz0 z0 Þ=l

 0 2pl Z 1 0 0   dkkGðkjz 0 ÞJ 0 ðkAðz0 ÞÞ

Z

1

sz

dze

Wðk; z; wjz0 Þ

ðB7Þ

0

ðA11Þ

Applying this to Eq. (B1), we find

0

 ¼ 1, this reduces to For l I0 ðq; #jq0 ; #0 ; z0 Þ  qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Z z0 Z 1 1 0 0 0  dz0 eðz0 z0 Þ dkkGðkjz q2 þ q20  2qq0 cosð#  #0 Þ ¼ 0 ÞJ 0 k 2p 0 0

 ðk; s; wjz0 Þ wQ Wðk; 0; wjz0 Þ þ Q ðsw þ Q ÞW c  sz0 Þ ¼ ðW 0 ðk; sjz0 Þ þ e 2

Dividing by Q(sw + Q) and integrating over w(1, 1), we find

ðA12Þ

which is similar to Eq. (51) with a modified argument of the Bessel function and could have been derived from geometrical consider ¼ 0, we can reduce Eq. (A11) to the convenient form, ations. For l

ðB8Þ



Z

0

w0 Wðk; 0; w0 jz0 Þ  þ W0 ðk; sjz0 Þ ðsw þ Q Þ 1  0 ðk; sjz0 Þ þ esz0 Þ ¼ cKðsÞðW 0

dw

ðB9Þ

782

M.M.R. Williams / Annals of Nuclear Energy 36 (2009) 767–783

where

Z

1 KðsÞ ¼ 2

1

1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi! 2 dw 1 1 þ s2  k pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi log 2 2 Q ðsw þ Q Þ 2 s2  k 1  s2  k

I0 ðq; 0jz0 Þ ¼



0

0

dw

1

w0 Wðk; 0; w0 jz0 Þ  0 ðk; sjz0 Þ þ esz0 ÞVðsÞ ¼ esz0 þ ðW ðsw0 þ Q 0 Þ

ðB11Þ

ðB12Þ

Now set s = Q/w in Eq. (B11) and

VðQ =wÞWðk; 0; wjz0 Þ ¼

c 2Q

Z

1

dw

0

0

0

0

w Wðk; 0; w jz0 Þ c Qz0 =w þ e 2wQ w0 Q  wQ 0 ðB13Þ

This is a singular integral equation for W(k, 0, w|z0) from which we may obtain the scalar surface flux from

W0 ðk; 0; jz0 Þ ¼

Z

 0 ðkjz0 Þ dkkJ0 ðkqÞJ 0 ðkq0 ÞG

dwWðk; 0; wjz0 Þ

ðB14Þ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 w 1þk n¼ Q

ðC1Þ

pffiffiffiffiffiffiffiffiffiffi  0 ðkjz0 Þ ¼ A0 ðe m2 þk2 z0  ez0 Þ G  pffiffiffiffiffiffiffiffiffiffiffi  Z 2 2 c 1 dtAðtÞ e 1þk t z0 =t  ez0 þ 2 0

ðC2Þ

m2 ð1  m2 Þ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi A0 ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 m2 þ k Hð1= m2 þ k2 ; kÞðc þ m2  1Þð1  m2 þ k2 Þ

ðC3Þ

gðc; tÞ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi AðtÞ ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 2 2 1 þ k t2 Hðt= 1 þ k t2 ; kÞðt  1 þ k t2 Þ

ðC4Þ

Now as q ? q0, the dominant term in Eq. (C2) is

c z0 e 2

Z

1

dtAðtÞ

ðC5Þ

0

Inserting (C5) in (C1) we get

I0sing ðq; 0jz0 Þ ¼ 

Eq. (B13) may be transformed into a more friendly form by introducing the new variable

c z0 e 4p

Z

1

0

dkkJ0 ðkqÞJ 0 ðkq0 Þ

gðc; tÞ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 2 2 2 1 þ k t Hðt= 1 þ k t2 ; kÞðt  1 þ k t2 Þ ðC6Þ

ðB15Þ

For large k, the H function becomes unity and Eq. (C6) can be rewritten

it then becomes

c 2

0

1

0

KðnÞUðnÞ þ

1

where

But from Eqs. (B6) and (B7)

c  Wðk; 0; wjz0 Þ ¼ ½W0 ðk; Q =wjz0 Þ þ eQz0 =w  2wQ

Z

ðB10Þ

If we set V(s) = 1  cK(s), then Eq. (B9) becomes

Z

1 2p

Z

1

dn0

0

gðn0 Þn0 Uðn0 Þ c ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffi ez0 2 n  n0 2n 1 þ k

pffiffiffiffiffiffiffiffi

1þk2 =n

ðB16Þ

where

I0sing ðq; 0jz0 Þ 

c z0 e 4p

Z

1

dtgðc; tÞ

Z

0

1

dkk 0

J 0 ðkqÞJ 0 ðkq0 Þ

ðC7Þ

2

1  t2 þ k t2

Now the integral over k can be carried out to give

UðnÞ ¼ g 2 ðnÞWðk; 0; ngðnÞjz0 Þ

ðB17Þ

1 gðnÞ ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 1 þ k ð1  n2 Þ

ðB18Þ

I0sing ðq; 0jz0 Þ ( pffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffi Z K 0 ðq 1  t 2 =tÞI0 ðq0 1  t2 =tÞ; c z0 1 dt  e gðc; tÞ p ffiffiffiffiffiffiffiffiffiffiffiffi ffi pffiffiffiffiffiffiffiffiffiffiffiffiffi 2 4p 0 t K 0 ðq0 1  t 2 =tÞI0 ðq 1  t2 =tÞ;

q > q0 q < q0 ðC8Þ

and

KðnÞ ¼ 1 

c 2

Z

1

dn0

1

!   gðn0 Þ Q n p ffiffiffiffiffiffiffiffiffiffiffiffiffi ffi ¼ V ¼ V 2 w n  n0 1þk

ðB19Þ

Eq. (B16) is amenable to the FN and other methods of solution (Ganapol, 2008a). Solutions of this type of equation have also been described by Williams (1968a,b) by analytic methods. Finally we note that Eqs. (B4) and (B5) may be combined to produce an integral equation for the scalar flux W0(k, z|z0) in the form

W0 ðk; zjz0 Þ ¼

c 2

Z

1

0.07

0.06

0

dz Kðjz  z0 j; kÞ½W0 ðk; z0 jz0 Þ þ dðz0  z0 Þ

Without singularity + limit term limit term transport without singularity

ðB20Þ

0

0.05

where

KðzÞ ¼

We note that this expression is asymmetric about q = q0 as expected. Eq. (C8) applies very near the singularity q = q0. Indeed, it is easy to show that when q is very close to q0

Z

1

pffiffiffiffiffiffiffiffiffiffiffiffi

dw pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi e 2 w 1 þ k w2

1þk2 w2 z=w

without singularity+limit term

ðB21Þ

0.04

Eq. (B20) is amenable to solution by the methods described by Naz and Loyalka (2008).

0.03

0

transport

limit term

Appendix C. An estimate of the flux in the neighbourhood of ring and point sources

0.02

C.1. Values of q leading to singularities

0.01 2.90

In Section 3 of the paper we have from Eq. (70) the ring source case, if we set SðkÞ ¼ J 0 ðkq0 Þ, then

without singularity

2.95

3.00

ρ

3.05

3.10

Fig. 3. Flux for a ring source in the neighbourhood of the singularirty: c = 0.99, q0 = 3.0, and z0 = 1.0.

783

M.M.R. Williams / Annals of Nuclear Energy 36 (2009) 767–783

c z0 1 e pffiffiffiffiffiffiffiffiffi E1 ðjq  q0 jÞ 4p 2 qq0   c z0 1 1 e log  4p 2q0 jq  q0 j

But in all cases, SðkÞ can be written as

I0sing 

SðkÞ ¼ 1 þ a1 k2 þ a2 k4 þ    ðC9Þ

It is useful to see how Eq. (C8) blends in with the complete solution (C2). What we have done is to remove the singular component from Eq. (C2) so that it reads

 pffiffiffiffiffiffiffiffiffiffi  Z 1 pffiffiffiffiffiffiffiffiffiffiffi 2 2  nonsing ðkjz0 Þ ¼ A0 e m2 þk2 z0  ez0 þ c dtAðtÞe 1þk t z0 =t G 2 0 ðC10Þ This is inserted into Eq. (C1) and solved numerically and, as expected, no problems are encountered at q = q0. Then we evaluate Eq. (C8) and add it to the surface flux arising from Eq. (C10). Fig. 3 shows the results over the range 2.90–3.10 with q0 = 3. The non-singular component is almost a constant background and the singular term of Eq. (C8) is an asymmetric spike. When added, they show how the true solution is approached. A special case of Eq. (C8) is that of the point source as discussed in Section 2 of the text where SðkÞ ¼ 1. This case may be obtained from Eq. (C8) if q0 = 0, when we find

I0sing ðq; 0jz0 Þ 

c z0 e 4p

Z

1 0

pffiffiffiffiffiffiffiffiffiffiffiffiffi dt gðc; tÞK ð q 1  t2 =tÞ 0 t2

ðC11Þ

Bearing in mind that the dominant part of the integrand of Eq. (C11) is when t ? 0, we may write

I0sing ðq; 0jz0 Þ 

c z0 e 4p

Z

1 0

dt c z0 K 0 ðq=tÞ ¼ e 4pq t2

Z

1

dsK 0 ðsÞ

q

ðC12Þ Hence when q ? 0, using

R1 0

dsK 0 ðsÞ ¼ p=2, we find

c 8

qI0sing ðq; 0jz0 Þ ¼ ez0 lim q!0

ðC13Þ

This result is consistent with the numerical results obtained from Section 9 and for c = 0.99 and z0 = 1.0, the limiting value is 0.045525.... It is curious that the ring singularity changes from a logarithmic one to an inverse power one as q0 ? 0, but this is born out by the numerical results as well as the analysis. C.2. Behaviour of the flux at large values of q from the source Consider the general expression for the flux for an arbitrary source as defined by Eq. (70) of the text, viz:

I0 ðq; 0jz0 Þ ¼

1 2p

Z

1

0

 0 ðkjz0 Þ dkkJ0 ðkqÞSðkÞG

ðC14Þ

Now set kq = w, whence

I0 ðq; 0jz0 Þ ¼

Z

1 2pq

2

0

1

 0 ðw=qjz0 Þ dwwJ0 ðwÞSðw=qÞG

ðC15Þ

ðC16Þ

So Eq. (C15) becomes

I0 ðq; 0jz0 Þ ¼

1 2pq

Z

2

0

1

  a1 w2 a2 w4  0 ðw=qjz0 Þ dwwJ0 ðwÞ 1 þ 2 þ 4 þ    G

q

q

ðC17Þ hence the leading term is independent of the source shape and so the asymptotic behaviour, as q ? 1, is also independent of source shape. As seen in Section 4 of the text, Eqs. (79) and (83), the case for c = 1 leads to an asymptotic behaviour of O(1/q3). References Cassell, J.S., Williams, M.M.R., 2007a. Radiation transport and internal reflection in a two region, turbid sphere. J. Quant. Spectrosc. Rad. Transfer 104, 400. Cassell, J.S., Williams, M.M.R., 2007b. An integral equation for radiative transport in an infinite cylinder with Fresnel reflection. J. Quant. Spectrosc. Rad. Transfer 105, 12. Davison, B., 1957. Neutron Transport Theory. Oxford University Press. Davis, P.J., Rabinowitz, P., 1967. Numerical Integration. Blaisdell Publishing Co., NY. Elliott, J.P., 1952. The transport theory of a point source of neutrons on the free surface of a half-space. Atomic Energy Research Establishment, Harwell Report AERE T/R 972 (United Kingdom, Ministry of Supply). Elliott, J.P., 1955. Milne’s problem with a point source. Proc. Roy. Soc. A228, 424– 433. Ganapol, B.D., Kornreich, D.E., 2008 (Interior beam searchlight semi-analytical benchmark). In: International Conference on the Physics of Reactors ‘‘Nuclear Power: a Sustainable Source”. Casino-Kursaal Conference Centre, Interlaken, Switzerland. Ganapol, B.D., 2008a (Analytical Benchmarks for Nuclear Engineering Applications: Case Studies in Neutron Transport Theory). OECD, NEA, Paris. Ganapol, B.D., 2008b. Private communication. Gradshteyn, I.S., Ryzhik, I.M., 1994. Table of Integrals Series and Products, fifth ed. Academic Press. Grosjean, C.C., 1965. On the series expansion of certain types of Fourier integrals in the neighbourhood of the origin. Bull. Soc. Math. Belg. XVII, 251. Lam, S.K., Leonard, A., 1971. Milne’s problem for two-dimensional transport in a quarter space. J. Quant. Spectrosc. Rad. Transfer 11, 893. Loyalka, S.K., 2008. Private communication. Loyalka, S.K., Williams, M.M.R., in press. Computation of some transport theory expressions for a line source in an infinite half-space. Ann. Nucl. Energy. Naz, S., Loyalka, S.K., 2008. One speed criticality problems for a bare slab and sphere: some benchmark results II. Ann. Nucl. Energy 35, 2426. Noble, B., 1958. Methods Based on the Wiener–Hopf Technique. Pergamon Press, Oxford. Rybicki, G., 1971. The searchlight problem with isotropic scattering. J. Quant. Spectrosc. Rad. Transfer 11, 827. Williams, M.M.R., 1968a. Diffusion length and criticality problems in two and three dimensional one-speed neutron transport theory. I. Rectangular coordinates. J. Math. Phys. 9, 1873. Williams, M.M.R., 1968b. Diffusion length and criticality problems in two and three dimensional, one-speed neutron transport theory. II. Circular cylindrical coordinates. J. Math. Phys. 9, 1885. Williams, M.M.R., 1971. Mathematical Methods in Particle Transport Theory. Butterworths, London. Williams, M.M.R., 1982. The three-dimensional transport equation with applications to energy deposition and reflection. J. Math. Phys. A: Math. Gen. 15, 965. Williams, M.M.R., 2007a. The transport and diffusion theory of a line source in an infinite half-space with internal reflection. Ann. Nucl. Energy 34, 910. Williams, M.M.R., 2007b. The searchlight problem in radiative transfer with internal reflection. J. Phys. A: Math. Theory 40, 6407.