Three level implicit tension spline scheme for solution of Convection-Reaction-Diffusion equation

Three level implicit tension spline scheme for solution of Convection-Reaction-Diffusion equation

Ain Shams Engineering Journal xxx (2016) xxx–xxx Contents lists available at ScienceDirect Ain Shams Engineering Journal journal homepage: www.scien...

448KB Sizes 0 Downloads 15 Views

Ain Shams Engineering Journal xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Ain Shams Engineering Journal journal homepage: www.sciencedirect.com

Three level implicit tension spline scheme for solution of Convection-Reaction-Diffusion equation H.S. Shekarabi, J. Rashidinia ⇑ Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran

a r t i c l e

i n f o

a b s t r a c t

Article history: Received 4 June 2016 Revised 22 September 2016 Accepted 30 October 2016 Available online xxxx

In this work, the numerical approximation of Convection-Reaction-Diffusion equation is investigated using the method based on tension spline function and finite difference approximation. For nonlinear term, nonstandard finite difference method by nonlocal approximation is utilized. We describe the mathematical formulation procedure in detail and also analyze the stability and convergence of the method. Numerical results are provided to justify the good performance of the proposed scheme. Ó 2016 Ain Shams University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

MSC: 65M06 12 99 Keywords: Convection-Reaction-Diffusion equation Tension spline Nonstandard finite difference Implicit scheme Convergence analysis

1. Introduction We consider the Convection-Reaction-Diffusion equation:

ut þ aðx; tÞux ¼ bðx; tÞuxx þ gðuÞ;

ðx; tÞ 2 ½d; e  ½t 0 ; T;

ð1Þ

with initial conditions

uðx; t 0 Þ ¼ /ðxÞ;

d 6 x 6 e;

ð2Þ

and Dirichlet boundary conditions

uðd; tÞ ¼ p0 ðtÞ;

uðe; tÞ ¼ p1 ðtÞ;

t0 6 t 6 T

ð3Þ

where /ðxÞ, p0 ðtÞ and p1 ðtÞ are known functions while the function uðx; tÞ is unknown. bðx; tÞ and aðx; tÞ are sufficiently smooth and positive functions. The Convection-Reaction-Diffusion equation implies three processes: Peer review under responsibility of Ain Shams University. ⇑ Corresponding author. E-mail addresses: [email protected] (H.S. Shekarabi), [email protected]. ir (J. Rashidinia).

Convection, Diffusion and Reaction. The term Convection is because of movement of molecules from a region (fluid) to another, while the term Diffusion means the spread of particles through random motion from a region with high concentration to a low concentration region. Finally, Reaction is due to decay, adsorption and chemical reactions of substance with another components, or accounting for biodegradation of the contaminants. aðx; tÞ denotes the velocity of the medium in the x direction and bðx; tÞ is the Diffusion coefficient [3]. Convection-Reaction-Diffusion equation (CRD) reveals itself in the mathematical modeling of many important fields of applied science such as physics, mechanics, biology, and hydrology [4]. For example Eq. (1) has been used to describe the following: transport phenomena in porous media [6], theory of combustion and detonation [7], population dynamics and mathematical biology [8,10,11,13], chemical reaction-diffusion [14,15], heat transfer in a draining film [16], finance [17], fluid flow [18,19] as well as transport chemistry in the atmosphere [20]. In hydrology, this type of equation models the transport of adsorbing contaminants and microbe-nutrient systems in groundwater [21]. The solutions of nonlinear Convection-Reaction-Diffusion equation are important in many applications aforesaid. The difficulties

http://dx.doi.org/10.1016/j.asej.2016.10.005 2090-4479/Ó 2016 Ain Shams University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article in press as: Shekarabi HS, Rashidinia J. Three level implicit tension spline scheme for solution of Convection-Reaction-Diffusion equation. Ain Shams Eng J (2016), http://dx.doi.org/10.1016/j.asej.2016.10.005

2

H.S. Shekarabi, J. Rashidinia / Ain Shams Engineering Journal xxx (2016) xxx–xxx

in obtaining analytical solutions made many researchers to use numerical methods in order to approximate the solution of these types of equations. There are a lot of studies on the numerical solutions of nonlinear (CRD) equations. Finite difference method, is one of the simplest and the oldest ones to deal with (CRD) equation. In [22,23] essentially non-oscillatory (ENO) and weighted ENO (WENO) schemes have been developed for solutions of partial differential equations. Application and comparison of the above mentioned schemes have been used for solution of ConvectionDiffusion in [24]. Standard finite difference in some problems produces numerical instabilities, like oscillations and numerical dispersion that appear in the solution approximation [3]. Nonstandard finite difference method for overcoming numerical instabilities is used in [25]. Meanwhile, new Eulerian-Lagrangian numerical method that combined the idea of the exact timestepping scheme with the finite difference method has been proposed in [26]. Recently in [27], a new finite difference method based on a special grid has been provided, the approach contains discretization in time, by using Crank-Nicolson and BackwardEuler finite difference schemes, while for the spatial discretization we used the method in [28]. The streamline-upwind PetrovGalerkin (SUPG) method is proposed in [29]. In new research, it is shown that SUPG-SC (streamline-upwind Petrov-Galerkin and shock capturing) technique is capable of reducing the unphysical oscillation in cross-wind direction [30–32,48]. Furthermore, several finite element methods have been developed for solving (CRD) equation [45–47]. In [33] some non-linear Convection dominated problems are solved with Discontinuous Galerkin method with the shock-capturing technique. Adaptive Discontinuous Galerkin method has been extended in [34]. Residual-free bubble method (RFB) which is based on enriching the finite elements space, is described in [35,36]. In [37,38] researchers developed the schemes that preserve some properties of exact solution like positivity. Another approach is the method of upper and a lower solution coupled with its associated monotone iterative techniques [39]. Compact exponential finite difference scheme for solving the time fractional (CRD) equation with variable coefficients is considered in [49]. In [12] a new monotone iterative technique known as modified accelerated monotone iterative method based on improving the rate of convergence, has been suggested. In [40,41] nonpolynomial cubic tension spline scheme has been used for solution of partial differential equation. In this paper we will focus on developing a new method using tension spline function and nonstandard finite difference scheme. We will demonstrate how to construct an implicit scheme for a (CRD) equation. This scheme is unconditionally stable. The arising system is tri-diagonal. Motivation behind the proposed scheme is to present a solution which can be obtained efficiently by the well-known algorithms. The rest of the paper is organized as follows: In Section 2, we describe the formulation of the method and achieve the system of equations. Section 3, is devoted to dealing with stability and convergence of the method. For this purpose, we use energy method. In Section 4, the method has been tested for some problems to demonstrate the effectiveness and accuracy of the proposed scheme. The paper ends with some conclusions in Section 5.

0 such that h ¼ ed , and tj ¼ t 0 þ jk, j ¼ 0; 1; . . . ; m such that j ¼ Tt , in m n which m and n are integers. For each segment ½xl ; xlþ1 , ðl ¼ 0; 1; . . . ; n  1Þ, and point t j , ðj ¼ 0; . . . ; mÞ we define the non-polynomial spline in tension as

j

j

sðx; tj Þ  s j ðxÞ ¼ f l þ bl ðx  xl Þ þ clj sinh xðx  xl Þ þ j

j dl

ð4Þ

cosh xðx  xl Þ;

j

j

where the f l , bl , clj , dl are unknown coefficients and x > 0 is a free parameter. The derivatives of non-polynomial tension spline function s j ðxÞ are given by 00

j

j

sj ðxÞ ¼ bl þ xclj cosh xðx  xl Þ þ xdl sinh xðx  xl Þ; l ¼ 1; 2; . . . ; n ð5Þ 00

j

sj ðxÞ ¼ x2 ðclj sinh xðx  xl Þ þ dl cosh xðx  xl ÞÞ; l ¼ 1; 2; . . . ; n ð6Þ Adapting the following notation:

s j ðxl Þ ¼ ulj ;

j s j ðxlþ1 Þ ¼ ulþ1 ;

0

0

sj ðxl Þ ¼ mlj ;

j sj ðxlþ1 Þ ¼ mlþ1 ;

00

00

sj ðxl Þ ¼ Mlj ;

j sj ðxlþ1 Þ ¼ Mlþ1 :

ð7Þ

The notation ulj be a grid function which is used in the discrete approximation value of uðlh; jkÞ, l ¼ 0; 1; . . . ; n and j ¼ 0; 1; . . . ; m. Now using (7) and after some algebraic manipulation, we can determine the unknown coefficients in (4) as M

j

j

f l ¼ ulj  x2l ; M lj ; 2x2

j

dl ¼

j

bl ¼

u j u j lþ1

h

l

þ

M j M j l

lþ1

xh:

;

clj ¼

2M j ðeh þeh ÞM j lþ1

2x2 ðeh eh Þ

l

;

h ¼ xh:

Noticing the continuity of the first derivative at ðxl ; ul Þ, that is 0

0

jþ j sj ðxj l Þ ¼ s ðxl Þ, we obtain the following equations for l ¼ 1; . . . ; n

j j ulþ1  2ulj þ ul1

h

aþb h

j j ¼ aM lþ1 þ 2bM lj þ aMl1 ;

j j j ðulþ1  ul1 Þ ¼ amlj þ 2bmlj þ aml1 ;

where



2

1

 1

h2

 2h ; eh  eh



ð8Þ

ð9Þ

 h  hðe þ eh Þ  1 : eh  eh h2 1

  When x ! 0, that h ! 0, then ða; bÞ ¼ 16 ; 13 , and the relations defined by (8) reduced to ordinary cubic spline. In the other words, 0

mlj ¼ sj ðxl Þ ¼ uxjl ¼

j j ulþ1  ul1 ah j j ½Mlþ1  M l1   2 2h

0

j ¼ sj ðxlþ1 Þ ¼ uxjlþ1 ¼ mlþ1

0

j ¼ sj ðxl1 Þ ¼ uxjl1 ¼ ml1

ð10Þ

j ulþ1  ulj j þ aMlj  þ h½bM lþ1 h

ð11Þ

j ulj  ul1 j þ aMlj   h½bM l1 h

ð12Þ

2. Description of the method

Considering finite difference approximation

2.1. Non-polynomial tension spline

 xj ¼ u lþ1

In order to develop the numerical method for approximation solution of (1)–(3), the domain of equation,½d; e  ½t 0 ; T is divided into an n  m mesh. Using the grid points xl ¼ d þ lh, l ¼ 0; 1; . . . ; n

 xj ¼ u l

j j 3ulþ1  4ulj þ ul1 2 ¼ uxjlþ1 þ Oðh Þ 2h

j j ulþ1  ul1 2 ¼ uxjl þ Oðh Þ 2h

ð13Þ

ð14Þ

Please cite this article in press as: Shekarabi HS, Rashidinia J. Three level implicit tension spline scheme for solution of Convection-Reaction-Diffusion equation. Ain Shams Eng J (2016), http://dx.doi.org/10.1016/j.asej.2016.10.005

3

H.S. Shekarabi, J. Rashidinia / Ain Shams Engineering Journal xxx (2016) xxx–xxx j 3ulþ1 þ 4ulj  ulþ1 2 ¼ uxjl1 þ Oðh Þ 2h

 xj ¼ u l1

ujþ1 l

 tj ¼ u l

 2k

uj1 l

ð15Þ

2

¼ utjl þ Oðk Þ

ð16Þ

the spatial derivatives by non-polynomial tension spline would be 2 j  xx ¼ s00 ðxl ; t j Þ ¼ M lj þ Oðh Þ u l

ð17Þ

We obtain ðj  1Þth and ðj þ 1Þth time level similar to (8) as follows: j1 uj1 þ uj1 lþ1  2ul l1

h ujþ1 lþ1



2

j1 ¼ aM j1 þ aMj1 lþ1 þ 2bM l l1

ð18Þ

þ

ujþ1 l1

jþ1 ¼ aM jþ1 þ aMjþ1 lþ1 þ 2bM l l1

ð19Þ

By using the relations of (10), (16) and(17), we can obtain a new approximation for the solutions of Eqs. (1)–(3) as follows:



jþ1

ul

j1

ul



2k

l



þ alj mlj  g lj

¼

ð20Þ

gMj1 þ ð1  2gÞMlj þ gMjþ1 l l ; j

where 0 6 g 6 1 and bl ¼ bðlh; jkÞ, alj ¼ aðlh; jkÞ and g lj ¼ gðulj Þ. We multiply equations (18) and (19) by g and equation (8) by ð1  2gÞ and add together. We have

1h 2

h

1 h

2

½gd2x ujþ1 þ ð1  2gÞd2x ulj þ gd2x uj1 l l 

!  !  jþ1  jþ1 ulþ1  uj1 ul  uj1 2b lþ1 l ¼ þ ðA  CÞ þ ðB  FÞ þ j j 2k 2k bl blþ1 ! !  j   jþ1  j j ulþ1  ul1 ul1  uj1 2al b a l1 þ þ þ ðD  EÞ þ ðB  FÞ j j 2k 2h bl bl1 ! ! j j a j a ulþ1  ulj a j a ulj  ul1 þ lþ1 þ l1 j j h h b b 

a

lþ1

2ujþ1 l 2 h

1 j b

To simplify Eq. (23), we use (13)–(16); therefore, we achieve

gd2x ujþ1 þ ð1  2gÞd2x ulj þ gd2x uj1 l l

j þ ðA  CÞalþ1

2h   j j j 3u a j j l1 þ 4ul  ulþ1 þ ðD  EÞal1 þ ðA  CÞ g lþ1  j 2h blþ1     2b a j j  þ ðB  FÞ g  þ ðD  EÞ g l1 ; l j j bl bl1





j j þ að1  2gÞM lþ1 þ 2ð1  2gÞbMlj þ að1  2gÞMl1 j1 þ agM j1 þ agMj1 lþ1 þ 2gbM l l1 ;

ð21Þ

We know that

j alþ1 abh j

ðblþ1 Þ

2

alj abh j j bl1 bl

;

;



j alþ1 a2 h

E¼

j

j

j al1 abh j

ðblþ1 Þ

 j j j þ alþ1 mlþ1  g lþ1  jþ1 j1   u u l l þ alj mlj  g lj þ 2bj 2k b l  jþ1 j1   ul1 ul1 j j j þ a m  g þ aj l1 l1 l1 ; 2k



jþ1

j1

ulþ1 ulþ1 2k



X¼h

Z¼h

2

h

Þd2x ulj

½g ¼

a

ð

j

blþ1 þ

þ ð1  2g



ujþ1 lþ1

j alþ1 hb j

 2k

uj1 lþ1

þ

j Þ þ alþ1

 h

ulj



d1 ¼ 

j  g lþ1

j j ðutjlþ1 þ alþ1 uxjlþ1  g lþ1 Þþ

j alþ1 ha j

ðutjl þ alj uxjl  g lj Þ

j

:

Y ¼h

2

ð25Þ

2b j

bl

! þ ðB  FÞ ;

! þ ðD  EÞ :

a

a

h

j j al1 uxjl1  g l1 Þ

j al1 ha j

bl

d4 ¼ 

! j h 2al b þ ðB  FÞ ; 2 bj l j al1 ha

d2 ¼ 

j alþ1 ha j

blþ1

;

;

j

bl1

j alþ1 h ðA  CÞ; 2

d5 ¼ 

j al1 h ðD  EÞ; 2

and 2

a jh j j ðutjlþ1 þ alþ1 uxjlþ1  g lþ1 Þ þ l j ðutjl1 2bl1  jþ1 j j ul1  uj1 u  u j j l1 l1 ð Þ þ al1 l  g l1

j 2k bl1 j al1 hb j ðutl1 þ j bl1

j

bl1

d3 ¼ 

alj h j 2blþ1

a

a

2

þg

j ulþ1

þ ðA  CÞ ;

j

blþ1

d2x uj1 l 

bl blþ1  jþ1 j j j1 u  u 2b ul  ul l1 þ j ð Þ þ alj lþ1  g lj 2k 2h bl



j

bl1 bl

If we suppose

where l ¼ 1ð1Þn  1. Now we replace (10)–(12) in (22), and get

d2x ujþ1 l

;

j al1 a2 h

F¼

!

a

ð22Þ

bl1

1

j

j  Zg l1 ;

2

j b lþ1

j

bl blþ1

jþ1 j j j j1 k1 ujþ1 þ k3 ujþ1 lþ1 þ k2 ul l1 ¼ k4 ulþ1 þ k5 ul þ k6 ul1 þ k7 ulþ1

where

gd2x ujþ1 þ ð1  2gÞd2x ulj þ gd2x uj1 l l a

;

alj abh

The simplest form of Eq. (24) is

i

¼

2

C¼

j j þ k8 uj1 þ k9 uj1 l l1  Xg lþ1  Yg l

Using Eq. (20), and then eliminating M’s in above equations, lead us to

h

;

bl blþ1

j j d2x ulj ¼ ul1  2ulj þ ulþ1

1 h2

ð24Þ

where

i

jþ1 ¼ agMjþ1 þ agMjþ1 lþ1 þ 2gbM l l1

l1

j j 3ulþ1  4ulj þ ul1

j þ al1 uxjl1

j  g l1 Þ

k1 ¼ g  h2k ð

a

bj

þ ðA  CÞÞ;

lþ1 2

k2 ¼ 2g  h2k ð2bj þ ðB  FÞÞ; bl

! 2 h a þ ðD  EÞ ; k3 ¼ g  2k b j l1

ðutjl þ alj uxjl  g lj Þ

then

ð23Þ

k4 ¼ ð1  2gÞ  d1  d2  3d4 þ d5 ;

Please cite this article in press as: Shekarabi HS, Rashidinia J. Three level implicit tension spline scheme for solution of Convection-Reaction-Diffusion equation. Ain Shams Eng J (2016), http://dx.doi.org/10.1016/j.asej.2016.10.005

4

H.S. Shekarabi, J. Rashidinia / Ain Shams Engineering Journal xxx (2016) xxx–xxx

k5 ¼ 2ð1  2gÞ þ d2  d3 þ 4d4  4d5 ;

j j u j  ulj  2ulj þ ul1 ujþ1  ulj ju l þ gðulj Þ þ alj lþ1 ¼ bl lþ1 2 k h h

k6 ¼ ð1  2gÞ þ d1 þ d3  d4  3d5 ;

Non-standard finite difference scheme was defined as follows by using two of Mickens rules:

and

k7 ¼ g 

 2  h a þ ðA  CÞ ; 2k blþ1

k8 ¼ 2g 

 2  h 2b þ ðB  FÞ ; 2k bl

k9 ¼ g 

Definition 1. A finite difference scheme (27) is called nonstandard if at least one of the following conditions is met: (a) The classical denominator k or h of the discrete derivatives ðut Þlj or ðux Þlj or ðuxx Þlj is replaced by a non-negative function mðkÞ or mðhÞ where

 2  h a þ ðD  EÞ ; 2k bl1

2

s¼

h ; 2bk

mðzÞ ¼ z þ oðz2 Þ as 0 < z ! 0 mðzÞ is an increasing function of z:

k k¼ : h

mðzÞ may depend on the parameter appearing in the

It is obvious that, if aðx; tÞ and bðx; tÞ are constant functions, we have

A ¼ C;

B ¼ F;

d2 ¼ d3 ;

differential equation:

D ¼ E;

For example the denominator of simple equation ut ¼ ax ah 1

given by Mickens rules is mðkÞ ¼ e

d4 ¼ d5 ¼ 0; k1 ¼ k3 ;

X ¼ Z;

k7 ¼ k9 ;

jþ1 j j j j1 T lj ¼ k1 U jþ1 þ k3 U jþ1 lþ1 þ k2 U l l1  k4 U lþ1  k5 U l  k6 U l1  k7 U lþ1

(b) In the expression nonlinear terms that appear in gðuÞ are approximated in a non-local way, by a suitable function of several points of the mesh. The nonlocal terms in the right-hand side of gðuÞ in (1) can be approximated non- locally in many different ways. For example

j j j  k8 U j1  k9 U j1 l l1 þ Xg lþ1 þ Yg l þ Zg l1 ;

j

j j ðu2 Þl ’ ul1 ulþ1 ;

By using Taylor series expansion at the grid point ðxl ; tj Þ and

¼

such

aðxlj Þ

j Þ ¼ aðxlj Þ  h aðxl1

approximation

þ OðhÞ 

aðxlj Þ

j bðxl1 Þ

and

¼

bðxlj Þ



j

@bðx Þ h @xl

j @aðx Þ l

@x

j ulj ulþ1 ;

þ 

(

¼

2

h

ð2a þ 2bÞ (

þ

2

h

1 j bl

alj

alj

bl

bl

þ j

j

j

ð2a þ 2bÞ þ

1 j bl

j

ul1 ulþ1 j u l

j

2

;

j j ul1 ulj ulþ1 ;

2

;

ð28Þ

j 1 ðulþ1 2

j þ ul1 Þðulj Þ

ð29Þ

2

This paper focuses on the use of nonlocal approximation strategy (second item in Definition 1) for the construction of nonstandard finite difference. Therefore we choose mðkÞ ¼ k and mðhÞ ¼ h.

@ulj @t

   2 j @ ul d2 d3 2 þ h g þ ð1  2gÞ þ  þ d4  d5 þ g  1 2 2 @x2 ( !) 3 @ 3 ulj k 2a 2b 2 þ j þ h j 3 @t 3 2bl k 2bl k   4 h 1 1 þ g þ ð1  2gÞ þ d2  d3 þ 2d4  2d5 þ g  12a 2 2 12 @ 4 ulj þ ; @x4

ð26Þ

Consistency condition dictates that 2a þ 2b ¼ 1 (where 2a þ 2b ¼ 1, the error tends to zero as h, k tend to zero simultane2

2

j

ul1 þulþ1

j þ ulj þ ul1 Þulj

2

j

!)

@ulj @x !)

j 1 ðulþ1 3

ulj

j ðu3 Þl ’ ðulj Þ ulþ1 ;

þ    ¼ bðxlj Þþ

OðhÞ  bðxlj Þ and substituting coefficient defined above, after simplification, we obtain

T lj

.

a

gðulj Þ,

In order to determine the local truncation error in (25), we suppose the solution of the Eqs. (1)–(3) defined by U then, we have

using

ð27Þ

2 2

4

ously). We can obtain the scheme of Oðk þ k h þ h Þ by Simplification of the above equation due to the consistency condition and 1 5 choosing a ¼ 12 and b ¼ 12 correspondingly. 2.2. Nonstandard finite difference Nonstandard finite difference schemes were introduced by Mickens in [42] as powerful numerical methods that preserve significant properties of exact solution of the involved differential equation. It is known that the finite difference scheme for Eq. (1) can be defined as

3. Stability of the method In this section, by following [40], we will investigate the stability and convergence of scheme (25) for numerical solutions of the Convection-Reaction-Diffusion equation using the initial and boundary conditions (2) and (3). For this purpose, we suppose that: first,aðx; tÞ ¼ a and bðx; tÞ ¼ b are constants and second: we introduce the difference operators and some lemmas.

dþt ulj ¼ ujþ1  ulj ; l

d2t ulj ¼ ujþ1  uj1 l l ; dt ulj ¼ ulj  uj1 l ;

d2t ulj ¼ ujþ1  2ulj þ uj1 l l ;

d2t ulj ¼ ðdþt þ dt Þulj ; j  ulj ; dþx ulj ¼ ulþ1

utjl ¼

1 þ j d u; k t l

d2t ulj ¼ ðdþt  dt Þulj ;

j dx ulj ¼ ulj  ul1 ;

uxjl ¼

1 þ j d u h x l

If fv i j0 6 i 6 ng and fwi j0 6 i 6 ng are two grid functions on Xh , we can define the inner product as follows: n X hv ; wi ¼ h v i wi ; i¼0

kv k ¼ hv ; v i2 ¼ 1

h

n X

v 2i

!12 :

i¼0

Please cite this article in press as: Shekarabi HS, Rashidinia J. Three level implicit tension spline scheme for solution of Convection-Reaction-Diffusion equation. Ain Shams Eng J (2016), http://dx.doi.org/10.1016/j.asej.2016.10.005

5

H.S. Shekarabi, J. Rashidinia / Ain Shams Engineering Journal xxx (2016) xxx–xxx

and we have

hdþx

v

; dþx wi

¼h

where n1 X

dþx

v

2

þ i dx wi

k1 ¼

i¼0

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi kdþx v k ¼ hdþx v ; dþx v i ¼

h

n1 X

ðdþx v l Þ

2

!12

k2 ¼

2

To prove the stability and convergence of the method the following lemmas are required (see Cui[9] and Ben-Yu [5]). Lemma 3.1. For any two mesh function fv i j0 6 i 6 ng and fwi j0 6 i 6 ng, there holds

k01

¼

ah þ 2b þ 10h  20bg þ 2

k02

¼

2

2

8abh þ ð5h þ 8gbÞ ; 4ab qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ah þ 2b þ 10h  20bg 

2

2

2

2

2

2

16ab þ ðah þ 2b þ 10h  20bgÞ ; 4ab qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi 16ab þ ðah þ 2b þ 10h  20bgÞ : 4ab ð33Þ

W 4;þ1 denotes 4-periodic Sobolev spaces [44].

n1 n1 X X ðd2x v i Þwi ¼  ðdþx v i Þðdþx wi Þ  w1 dþx v 0 þ wn dx v n : i¼1

Proof. We rewrite (25) in the following form:

gd2x d2t u j þ ð1  2gÞd2x u j þ sd2t u j 2 þaksd2x u j þ hb ð1 þ ad2x Þg j ¼ 0

It is easy to see that if w0 ¼ wn ¼ 0, then n1 n1 X X ðd2x v i Þwi ¼  ðdþx v i Þðdþx wi Þ: i¼1

5h  8gb þ

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 2 8abh þ ð5h þ 8gbÞ ; 4ab qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

i¼0

i¼1

5h  8gb 

ð34Þ

Multiplying (34) by ðhd2t ulj Þ and summing up for l from 0 to n yields to

i¼1

this lemma is the discrete Green formula.

hgd2x d2t u j ; d2t u j i þ ð1  2gÞhd2x u j ; d2t u j i þ shd2t u j ; d2t u j i Lemma 3.2. For any mesh function fv i j0 6 i 6 ng and defined on the interval ½L0 ; L1  with v 0 ¼ v n ¼ 0, the inequality holds:

1 þ 2 1 2 kd v k 6 kv k2 6 2 ðb  aÞ kdþx v k2 : 4 x 8h

ð35Þ

2

þakshd2x u j ; d2t u j i þ hb hð1 þ ad2x Þg j ; d2t u j i ¼ 0

Using difference operators and Lemma 3.1, the first term of (35) becomes

hgd2x d2t u j ; d2t u j i ¼ ghdþx d2t u j ; dþx d2t u j i 6 gðkdþx d2t u j k2 Þ

ð36Þ

Similarly, for the second term of (35), we obtain Lemma 3.2 is analogous to Poincare inequality.

hd2x u j ; d2t u j i ¼ hdþx u j ; dþx ðujþ1  uj1 Þi

Lemma 3.3. Let xðsÞ and mðsÞ be nonnegative mesh functions. If C P 0 and mðsÞ is nondecreasing and

ð38Þ

Fourth term of (35), by the use of inequalities 2pq 6 p2 þ q2 becomes

i¼0

hd2x u j ; d2t u j i ¼ hdþx u j ; d2t u j i þ hdx u j ; d2t u j i

s

2

this lemma is the discrete Gronwall lemma. We verify the stability analysis of the scheme (25) by using the energy method described in the next theorem. Theorem 3.1. We assume that the exact solution of (1)–(3) satisfy U 2 W 4;þ1 ð0; þ1; L1 ðL0 ; L1 ÞÞ \ L1 ð0; þ1 : W 4;þ1 ðL0 ; L1 Þ. Let u be the solution of the difference scheme (25) and there exist constants ci > 0, i ¼ 1; 2 such that

jgðuÞj 6 c1 ð1 þ jujÞ @gðuÞ @u 6 c2

ð30Þ

Then for sufficiently small k there exits a constant C > 0 (independent of h and k) such that mþ1 kumþ1 k þ kum k6C t k þ kux

ð31Þ

provided that

k1 < k < k2

if g > 2bþah 4b

k01 < k < k02

if g < 2bþah 4b

2

2

2

12 ðkdþx u j k þ kd2t u j k þ kdx u j k þ kd2t u j k Þ

xðsÞ 6 mðsÞeCsk :

(

and for the third term of (35), we have

hd2t u j ; d2t u j i ¼ kd2t u j k2

j1 X xðsÞ 6 mðsÞ þ Ck xðiÞ;

then for all

ð37Þ

¼ ðhdþx u j ; dþx ujþ1 i  hdþx u j ; dþx uj1 iÞ

ð32Þ

ð39Þ

For fifth term of (35) the inequalities ðp þ q þ u þ v Þ2 6 4ðp2 þ q2 þ u2 þ v 2 Þ and 2pq 6 p2 þ q2 imply that

1 2 2 hð1 þ ad2x Þg j ; d2t u j i kgðu j Þk þ kd2t u j k2 þ a2 kdþx gðu j Þk 2 1 2 þ kdþx d2t u j k2 kc1 ð1þ j u j jÞk 2 1 þ kd2t u j k2 þ a2 kc2 j dþx u j j k2 2 1 1 þ kdþx d2t u j k2 kd2t u j k2 2 2 1 þ j 2 þ kdx d2t u k þ 4c21 ð1 þ ku j k2 Þ 2 þ 4a2 ðc22 kdþx u j k2

ð40Þ

Substituting (36)–(40) into (35), we get

gkdþx d2t u j k2 þ ð1  2gÞðhdþx u j ; dþx ujþ1 i  hdþx u j ; dþx uj1 iÞ þ skd2t u j k2 1 þ aksð ðkdþx u j k2 þ kdx u j k2 Þ þ kd2t u j k2 Þ 2 2 i h h1 1

kd2t u j k2 þ kdþx d2t u j k2 þ 4c21 ð1 þ ku j k2 Þ þ 4a2 ðc22 kdþx u j k2 Þ 2 b 2 ð41Þ

Please cite this article in press as: Shekarabi HS, Rashidinia J. Three level implicit tension spline scheme for solution of Convection-Reaction-Diffusion equation. Ain Shams Eng J (2016), http://dx.doi.org/10.1016/j.asej.2016.10.005

6

H.S. Shekarabi, J. Rashidinia / Ain Shams Engineering Journal xxx (2016) xxx–xxx

Applying the sum j from 1 to m, we can obtain

g

m X

h ðkdþx d2t u j k2 Þ 

m X

2

2b

j¼1

þ ðs þ aks 

It can be proved that 2

kdþx d2t u j k2 þ ð1  2

kdþx dþt um k ¼ hdþx ðumþ1  um Þ; dþx ðumþ1  um Þi

Þðhdþx um ; dþx umþ1 iÞ

g

2

2 m m m X h X aks X kd2t u j k2 þ kdþx u j k2 þ kdx u j k2 Þ Þ ð 2b j¼1 2 j¼1 j¼1

ð42Þ Note that

P

kþ1 k i ui1 ui

¼

P

k kþ1 i ui uiþ1 ,

therefore

m h X þ ðs þ aks  Þ kd2t u j k2 2b j¼1 2

þ

m m X aks X kdþx ujþ1 k2  kdþx uj1 k2 Þ ð1  2gÞhdþx u1 ; dþx u0 i ð 2 j¼1 j¼1

2 m m i X X h h 2 þ ku j k2 Þ þ 4a2 c22 kdþx u j k2 4c1 ðm þ b j¼1 j¼1

ð43Þ

by simplifying Eq. (43), then we have m h X ðkdþx d2t u j k2 Þ þ ð1  2gÞðhdþx um ; dþx umþ1 iÞ Þ 2b j¼1 2

ðg 

m h X aks kd2t u j k2 þ Þ ðkdþx umþ1 k2 þ kdþx um k2 Þ 2b j¼1 2 2

þ ðs þ aks 

aks ðkdþx u0 k2 þ kdþx u1 k2 Þ 2 2 m m i X X h h 2 þ ku j k2 Þ þ 4a2 c22 kdþx u j k2 4c1 ðm þ b j¼1 j¼1

ð1  2gÞhdþx u1 ; dþx u0 i þ

ð44Þ

ð45Þ

and similarly

2hdþx u1 ; dþx u0 i ¼ kdþx u1 k2 þ kdþx u0 k2  kdþx dþt u0 k2

ð46Þ

it follows that m h X ð1  2gÞ aks ðkdþx d2t u j k2 Þ þ ½ þ Þ ðkdþx umþ1 k2 þ kdþx um k2 Þ 2 2b j¼1 2 2

ðg 

m ð1  2gÞ þ þ m 2 h X kdx dt u k þ ðs þ aks  Þ kd2t u j k2 2 2b j¼1 2



ð1  2gÞ aks ð1  2gÞ þ þ 0 2 þ kdx dt u k ðkdþx u1 k2 þ kdþx u0 k2 Þ  2 2 2 2 m m X X þ 2 h þ ½4c21 ðm þ ku j k2 Þ þ 4a2 c22 kdx u j k  ð47Þ b j¼1 j¼1

½

Now, we use Lemma 3.2 m 2h h X ð4g  ðkd2t u j k2 Þ þ s þ aks  Þ b 2b j¼1 2

2

ð1  2gÞ aks ð1  2gÞ þ þ m 2 þ kdx dt u k ðkdþx umþ1 k2 þ kdþx um k2 Þ  2 2 2 ð1  2gÞ aks ð1  2gÞ þ þ 0 2 þ kdx dt u k

½ ðkdþx u1 k2 þ kdþx u0 k2 Þ  2 2 2 2h m m i X X þ 2 h þ ku j k2 Þ þ 4a2 c22 kdx u j k ð48Þ 4c21 ðm þ b j¼1 j¼1 þ½

ð1  2gÞ þ þ m 2 ð1  2gÞ aks kdx dt u k þ ½ þ ðkdþx umþ1 k2 þ kdþx um k2 Þ 2 2 2 ð1  2gÞ aks ½ð1  2gÞ  aks þ ð þ Þkdþt um k2 2 2 ð1  2gÞ aks þ þ ð ð50Þ Þðkdþx umþ1 k2 þ kdþx um k2 Þ 4 4

ð1  2gÞ aks þ f1 þ 2g þ aks  ð Þgkdþt um k2 2 2 2 m X 5h þ f4g  ðkd2t u j k2 þ s þ aksg 2b j¼1 ð1  2gÞ aks þ Þðkdþx umþ1 k2 þ kdþx um k2 Þ 4 4 ð1  2gÞ þ 2ðkdþx u1 k2 þ kdþx u0 k2 Þ

½ 2 aks 2 m m X X h ku j k2 Þ þ 4a2 c22 kdþx u j k2  þ 2ð1  2gÞkdþt u0 k2 þ ½4c21 ðm þ b j¼1 j¼1 þ ð

aks dþx u1 2 dþ u0 dþ u 0 2 1 ð1  2gÞ ¼k f 2ð þ Þðk k þ k x k2 Þ þ 2ð1  2gÞk t k2 2 2 h h k k m m X X 1 2 2 þ þ 2 ½4c21 ðm þ ku j k Þ þ 4a2 c22 kdx u j k g ð51Þ bk j¼1 j¼1 Regarding the arbitrary sufficiently small of , if 1 þ 2g þ aks > 0, i.e. g > 2bþah , it requires 4b 2

4g 

With the following identity

2hdþx umþ1 ; dþx um i ¼ kdþx umþ1 k2 þ kdþx um k2  kdþx dþt um k2



Where  is a sufficiently small coefficient, the equation may be rewritten as

m h X ðkdþx d2t u j k2 Þ þ ð1  2gÞðhdþx um ; dþx umþ1 iÞ Þ 2b j¼1 2

ðg 

ð49Þ

Noticing to (49) and Lemma 3.2, for the second and the third terms on the left-hand side of (48), we have

2 m m i X X h h 2 ku j k2 Þ þ 4a2 c22 kdþx u j k2 4c1 ðm þ b j¼1 j¼1

ð1  2gÞhdþx u1 ; dþx u0 i þ

2

2ðkdþx umþ1 k þ kdþx um k Þ

j¼1

2

5h h  þ ak > 0 2b 2bk

ð52Þ

On the other hand, we know that

kd2t u j k2 ¼ kdþt u j þ dt u j k2 6 2ðkdþt u j k2 þ kdt u j k2 Þ

ð53Þ

We need k to satisfy the following condition (for j ¼ m): 2

2

5h h 1 þ 2g þ aks þ 2 4g   þ ak 2b 2bk

!

>0

ð54Þ

Then by the use of Eqs. (52) and (54), we proved the stability condition (32). 0 1 þ 1 0 We need to show that 1h dþ and 1k dþ are all x u , h dx u t u bounded. It means that, all terms on the right-hand side of (51) have upper bound. 2 n1 2 n1 X X uðxlþ1 ; t 0 Þ  uðxl ; t0 Þ 2 u0  u0l 1 k dþx u0 k ¼ ð lþ1 ð Þ h Þ h h h h l¼0 l¼0 Z b 2 n1 Z xlþ1 1X @/ @/ dxÞ

j dx C ð j ¼ h l¼0 @x xl a @x

ð55Þ

Note that from (25), u1 satisfies 2

h 1 ah þ u þ ðd þ dt Þu0l þ s0l ; 2bk l 2b t s0l ¼ k7 ½/ððl þ 1ÞhÞkðb/xx ððl þ 1ÞhÞ  a/x ððl þ 1ÞhÞ þ gð/ðl þ 1ÞhÞÞ þ /ððl  1ÞhÞ  kðb/xx ððl  1ÞhÞ  a/x ððl  1ÞhÞ þ gð/ðl  1ÞhÞÞ þ k8 ð/ððlÞhÞ  kðb/xx ððlÞhÞ  a/x ððlÞhÞ þ gð/ðlÞhÞÞÞ

k1 d2x dþt u0l ¼ ð1 þ 2g  k1 Þd2x u0l þ

2

h ðaðgðu0lþ1 Þ þ gðu0l1 ÞÞ þ bgðu0l ÞÞ b l ¼ 1ð1Þn  1 

ð56Þ

Please cite this article in press as: Shekarabi HS, Rashidinia J. Three level implicit tension spline scheme for solution of Convection-Reaction-Diffusion equation. Ain Shams Eng J (2016), http://dx.doi.org/10.1016/j.asej.2016.10.005

7

H.S. Shekarabi, J. Rashidinia / Ain Shams Engineering Journal xxx (2016) xxx–xxx T

Simplifying Eq. (56), we have

ð

2bk1 2 þ 0 2b Þð1 þ 2g  k1 Þd2x u0l Þdx dt ul þ dþt u0l ¼ ð ah ah h  u1l  u0l þ u1 þ s0l l ak

Taking inner product with

0 dþ t u

j where T j ¼ ðT 1j ; T 2j ; . . . ; T n1 Þ is the local truncation error, and we know that

2

ð57Þ

on both sides of (57), we get

2bk1 2 þ 0 þ 0 2b Þð1 þ 2g  k1 Þhd2x u0 ; dþt u0 i kdþt u0 k2  ð Þhdx dt u ; dt u i ¼ ð ah ah h h  hdþt u0 ; dþt u0 i þ ð1  Þhu0 ; dþt u0 i þ hdþt u0 ; s0 i ð58Þ ak ak By the use of Lemma 3.1, we can show that

  2bk1 kdþt u0 k2 þ kdþx dþt u0 k 6 kCkdþt u0 k ah

ð60Þ

Therefore we have

kdþt u0 k þ 4

gd2x d2t E j þ ð1  2gÞd2x E j þ sd2t E j þ 2 2 aksd2x E j þ hb ð1 þ ad2x Þg j ¼ hb T j Multiplying (67) by ðhd2t E j Þ and taking the inner product, we get to

hgd2x d2t E j ; d2t E j i þ ð1  2gÞhd2x E j ; d2t E j i þ shd2t E j ; d2t E j i þ akshd2x E j ; d2t E j i þ

h hð1 þ ad2x Þ½gðU j Þ  gðu j Þ; b

2

h j T ; d2t E j i b

ð68Þ

We know the inequalities ðp þ q þ uÞ2 3ðp2 þ q2 þ u2 Þ and pq 6 p2 þ 41 q2 ð8 > 0Þ, by applying these inequalities, imply that

hgd2x d2t E j ; d2t E j i þ ð1  2gÞhd2x E j ; d2t E j i þ shd2t E j ; d2t E j i þ akshd2x E j ; d2t E j i

1 þ 0 1 þ þ 0 d u þ d d u 6C k t k x t Provided that

ð66Þ

Now we subtract (65) from (34), and let E ¼ U  u, then we have

d2t E j i ¼ h

g 1 Provided that 2bk > 0, we get k2 < 2b ah ak . Dividing the above inequality þ 0 by kdt u k, we obtain

2bk1 ah

4

2

ð59Þ

kdþt u0 k þ kdþx dþt u0 k 6 kC

2 2

jT j jl1 6 Cðk þ k h þ h Þ

ð61Þ

< 0, by the use of Lemma 3.2, we achieve

    bk1 4bk1 kdþt u0 k 6 kC 1 þ kdþt u0 k 6 kC ah ah

ð62Þ

2

1 1 þ 0 1 þ þ 0 know that 1h dþ x u ¼ h dx u þ h dt dx u . It can also be proved that

ð63Þ

Regarding Eq. (63), we proved that all terms on the right-hand side of (51) are bounded. Hence from Lemma 3.2 in both cases we obtain þ mþ1 m mþ1 that kdþ k 6 kC, i.e.,kum k 6 C, under the t k þ kkux t u k þ kkdx u P þ j mþ1 0 ¼u þ m gives condition (32). The relation u j¼1 dt u , kumþ1 k 6 ku0 k þ mkC. So, the proof is completed. h Convergence of the spline difference scheme (25) by using the energy method is the issue of the next theorem.

ðg þ 12Þðkdþx d2t E j k2 Þ þ ak2s ðkdþx E j k2 þ kdx E j k2 Þ

difference scheme (25) converges to U in the discrete L2 -norm and we have

ð72Þ

By the use of Theorem 3.1 and summing up for j from 1 to m and using Lemma 3.3, we obtain (64) and the proof is completed. h 4. Numerical experiment In this section we present the numerical result of the new method on several problems. We can obtain u1 by using Taylor l about u0l and using (1): series expansion of u1 l 2

u1 ¼ u0l  kðut Þ0l þ Oðk Þ l 2

¼ u0l  kfbl ðuxx Þ0l  a0l ðux Þ0l þ gðu0l Þg þ Oðk Þ u1 l By using initial values, we have

n o 0 u1 ¼ /ðlhÞ  k bl /xx ðlhÞ  a0l /x ðlhÞ þ gð/ðlhÞÞ l Example 1. We consider the following equation: [1]

mþ1 kðU  uÞmþ1 k þ kðU  uÞm k t k þ kðU  uÞx 2 2

ð70Þ

ð71Þ

þð1  2gÞðhdþx E j ; dþx Ejþ1 i  hdþx E j ; dþx Ej1 iÞ ! 2 1 h  kd2t u j k2 þ s þ aks þ  2 b 2 h b a 1 6  2 3 þ C 22 kE j k2 þ kT j k2 4 b 2 h

0

Theorem 3.2. Suppose that the solution of (1)–(3) is sufficiently regular and defined by U and the assumptions of Theorem 3.1 are also valid. For sufficiently small k, the approximation solution of the spline

2

ð69Þ

Similar to Theorem 3.1, we get the following inequalities

1 Therefore we must have 1 þ 4bk 0, take k, h sufficiently small proah

2  a h ah 0 vided g > 2bk  4b , and then we have 1k dþ 6 C hence t u 1 þ þ 0 d d u 6 4 1 dþ u0 6 C. k x t k t 1 þ þ 0 0 In all cases we obtain 1k dþ þ k dx dt u 6 C. t u 1 is bounded. We For the last step, we must prove that 1h dþ xu

1 þ 1 1 þ 0 d u 6 d u þ k 1 dþ dþ u0 6 C h x h x h t x

2

h h hð1 þ ad2x Þ½gðU j Þ  gðu j Þ; d2t E j i ¼ h T j ; d2t E j i b b * +  h2  h2 1  kd2t E j k2 þ kT j k2 T j ; d2t E j 6 b 4 b þ

ut þ aux ¼ buxx ;

4

Cðk þ k h þ h Þ

0 6 t 6 T;

06x61

with a ¼ 3:5, b ¼ 0:022 and the following initial condition: Proof. By substituting U by u in (34), we obtain

/ðxÞ ¼ expðcxÞ

gd2x d2t U j þ ð1  2gÞd2x U j

The exact solution of above equation is taken as 2

þ sd2t U j þ aksd2x U j þ

2

h h ð1 þ ad2x Þg j ¼ T j b b

ð65Þ

uðx; tÞ ¼ expðcx þ ntÞ where c ¼ 0:02854797991928 and n ¼ 0:0999.

Please cite this article in press as: Shekarabi HS, Rashidinia J. Three level implicit tension spline scheme for solution of Convection-Reaction-Diffusion equation. Ain Shams Eng J (2016), http://dx.doi.org/10.1016/j.asej.2016.10.005

8

H.S. Shekarabi, J. Rashidinia / Ain Shams Engineering Journal xxx (2016) xxx–xxx

Table 1 Maximum absolute error for Example 1. x

Ismail et al. [1]

0.10 0.50 0.90

t¼1

t¼2

t¼5

2.56(10) 8.93(10) 1.33(9)

2.38(10) 1.38(9) 2.83(9)

5.65(10) 1.91(9) 3.97(9)

Douglas method

0.10 0.50 0.90

t¼1

t¼2

t¼5

2.56(7) 8.37(7) 1.33(6)

2.37(7) 1.38(6) 2.82(6)

5.63(7) 1.90(6) 3.95(6)

Present method

0.10 0.50 0.90

t¼1

t¼2

t¼5

1.32898(11) 6.72048(11) 1.99724(9)

1.20256(11) 6.08158(11) 7.01701(11)

8.91154(12) 4.50668(11) 4.72124(10)

The boundary conditions can be obtained from the exact solution. We solve Example 1 with h ¼ 0:1 and k ¼ 0:001. The result are computed in different time levels. The maximum absolute errors in the solution are reported in Table 1. The computed results by our method are compared with[1]. The table shows our method is more accurate. Example 2. We consider the following equation:

ut þ aux ¼ buxx ;

t P 0;

06x61

Example 3. We consider the following model for the recolonization by oaks of Europe after the last glaciation; therefore, uðx; tÞ is the local density of oaks at time [38]

ut þ aux ¼ buxx þ ru;

t P 0;

0 6 x 6 10

If the population size at time 0 is M and is concentrated at the origin, the exact solution of this equation is

M ðx  atÞ2 uðx; tÞ ¼ pffiffiffiffiffiffiffiffi exp rt  4bt 2 pbt

!

The boundary conditions can be obtained from the exact solution. In this example, we take a ¼ b ¼ 1, r ¼ 0:1 with h ¼ 0:1 and k ¼ 0:005. Computed solution for different time level has been compared with the exact solution and the absolute errors for t ¼ 1; 3; 5; 7; 9 and M ¼ 105 are reported in Table 3. We also computed solution for different M and the absolute errors for time t ¼ 2 with h ¼ 1 and k ¼ 0:01. These results are reported in Table 4. We observe that as we decrease the initial condition (M), the maximum absolute error tends to zero. Example 4. Consider the nonlinear Convection-Diffusion-Reaction equation [43]:

with the following initial condition:

ðx þ 0:5Þ2 /ðxÞ ¼ exp  0:00125

The boundary conditions can be obtained from the exact solution. For this example, we put a ¼ 1 and b ¼ 0:01. We take h ¼ 0:005 and k ¼ 0:001 and the maximum absolute error in the solution for t ¼ 0:6 and t ¼ 0:9 are computed. The results are reported in Table 2 and compared with [2]. In this problem, our numerical results are more accurate in comparison with the method in [2].

!

ut þ aux ¼ buxx þ cu2 ð1  uÞ;

t P 0;

06x61

and the exact solution is given by

The exact solution is

0:025 ðx þ 0:5  tÞ2 uðx; tÞ ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi exp  0:00125 þ 0:04t 0:000625 þ 0:02t

uðx; tÞ ¼ ð1 þ expðAðx  BtÞ þ CÞÞ1

!

where A ¼

qffiffiffiffi c

, B ¼ 2a þ

4b

pffiffiffiffiffiffi cb and C ¼ AðB  1Þ and the initial con-

dition /ðxÞ ¼ ð1 þ expðAx þ CÞÞ1 .

Table 2 Maximum absolute error for Example 2. x

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

LBT [2]

QBT [2]

Present method

t ¼ 0:6

t ¼ 0:9

t ¼ 0:6

t ¼ 0:9

t ¼ 0:6

t ¼ 0:9

3.1(3) 1.3(3) 8.1(4) 1.7(5) 9.2(5) – – – –

0 1.1(3) 6.8(4) 0.5(6) 6.6(5) – – – –

1.3(4) 6.2(4) 3.8(5) 3.5(4) 4.5(5) – – – –

3.2(4) 1.02(4) 1.2(5) 3.2(4) 2.2(5) – – – –

3.90549(6) 1.76112(5) 5.19360(5) 1.78248(5) 8.85773(5) 2.03339(5) 3.24045(5) 2.06487(5) 4.53367(6)

1.11127(5) 6.67626(5) 1.47407(5) 3.15751(4) 7.0042(6) 5.00361(7) 1.37155(8) 1.54961(10) 7.51235(13)

Table 3 Maximum absolute error for Example 3. x

t¼1

t¼3

t¼5

t¼7

t¼9

1 2 3 4 5 6 7 8 9

2.54383(6) 2.65653(6) 2.75816(6) 2.84930(6) 2.92874(6) 2.99538(6) 3.04828(6) 3.08690(6) 3.11415(6)

1.09811(6) 1.14358(6) 1.19711(6) 1.25080(6) 1.30442(6) 1.35750(6) 1.40931(6) 1.45093(6) 1.49247(6)

6.93872(7) 6.5356(7) 6.81864(7) 7.08063(7) 7.29557(7) 7.41553(7) 7.35247(7) 6.93160(7) 5.98364(7)

4.29387(7) 4.02496(7) 4.12376(7) 4.15886(7) 4.05557(7) 3.68950(7) 2.83034(7) 1.49359(7) 3.35850(7)

4.24303(7) 2.56864(7) 2.53775(7) 2.42229(7) 2.10149(7) 1.39552(7) 2.00475(8) 3.05948(7) 1.52747(6)

Please cite this article in press as: Shekarabi HS, Rashidinia J. Three level implicit tension spline scheme for solution of Convection-Reaction-Diffusion equation. Ain Shams Eng J (2016), http://dx.doi.org/10.1016/j.asej.2016.10.005

H.S. Shekarabi, J. Rashidinia / Ain Shams Engineering Journal xxx (2016) xxx–xxx Table 4 Maximum absolute error for Example 3. x

M ¼ 103

M ¼ 105

M ¼ 107

1 2 3 4 5 6 7 8 9

8.18795(4) 1.98019(3) 3.57075(3) 6.76625(3) 8.77917(4) 3.73394(3) 8.60632(4) 5.83540(4) 3.82148(4)

8.19047(6) 1.98074(5) 3.5717(5) 6.76608(5) 8.77694(6) 3.73414(5) 8.60557(6) 5.83505(6) 3.82128(6)

8.1905(8) 1.98075(7) 3.57118(7) 6.76608(7) 8.77692(8) 3.73414(7) 8.60556(8) 5.83504(8) 3.82128(8)

Table 5 Maximum absolute error for Example 4. x

c¼1 b ¼ 0:001

c ¼ 10 b ¼ 0:01

c ¼ 100

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

2.69954(8) 5.47176(9) 1.12576(9) 2.31615(10) 4.76527(11) 7.14614(12) 1.47025(12) 3.0249(13) 6.22346(14)

1.6958(8) 3.48895(9) 7.17818(10) 1.47684(10) 3.03847(11) 6.25136(12) 1.28617(12) 2.64531(13) 5.5412(14)

1.88386(10) 3.87587(11) 7.92424(12) 1.64063(12) 3.37543(13) 6.94464(14) 1.42879(14) 2.93948(15) 6.00635(16)

c¼1 a ¼ 100

c ¼ 100

c ¼ 1000

a¼5

a¼1

5.41124(8) 3.53667(7) 7.22626(7) 1.20347(6) 1.71858(6) 2.09293(6) 2.14112(6) 1.7592(6) 9.83998(7)

1.38435(3) 2.85513(4) 5.86763(5) 1.02727(5) 2.48386(6) 5.11032(7) 1.0514(7) 2.16311(8) 4.42828(9)

3.05902(7) 2.06115(9) 1.38879(11) 9.35762(14) 6.30512(16) 4.24835(18) 2.86252(20) 7.09547(23) 7.87728(25)

b ¼ 0:1

Table 6 Maximum absolute error for Example 4. x 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

The boundary conditions can be obtained from the exact solution. The nonlinear terms can be approximated non locally in many different ways. In this example, we consider an approximate of the j

j

2

j j j j form ðu2 Þl ¼ 13 ðulþ1 þ ulj þ ul1 Þulj and ðu3 Þl ¼ 12 ðul1 þ ulþ1 Þðulj Þ for nonlinear terms. In our numerical computation, in Table 5, we take a ¼ 10, h ¼ k ¼ 0:01. The results are computed for different c and b in time t ¼ 0:9. In Table 6, we take b ¼ 0:1, h ¼ k ¼ 0:01. The absolute errors for different c and a are reported in Table 6 in time t ¼ 0:9.

5. Conclusion In this study a numerical scheme has been established to approximate solution of Convection-Reaction-Diffusion equation. This scheme is based on non-polynomial tension spline in x direction, finite difference in t direction and nonstandard finite difference in nonlinear terms. Theoretical formulation of the proposed method was explained in detail. The optimal values of spline parameters and truncation error have been determined. The stability and convergence analyses of the present numerical approach by energy method, have been described. The performance of the method for these problems was measured by calculating the abso-

9

lute errors for different time levels which are reported in tabular form. In our proposed method, we developed the unconditionally three level implicit scheme. Our proposed method yields the tridiagonal system, which can be solved by efficient algorithm. The accuracy and applicability of our method have been tested by four examples. The numerical result shows that our scheme performs more accurately than the previous one. References [1] Ismail HNA, Elbarbary EM, Salem GSE. Restrictive Taylor approximation for solving convection-diffusion equation. Appl Math Comput 2004;147:355–63. [2] Dhawan S, Kapoor S, Kumar S. Numerical method for advection diffusion equation using FEM and B-splines. J Comput Sci 2012;3:429–37. [3] Makungu M, Haario H, Mahera WC. A generalised 1-dimensional particle transport method for convection diffusion reaction. Afr Math Un 2012;23:21–39. [4] Morton KW. Numerical solution of convection-diffusion problems. London: Chapman and Hall; 1996. [5] Ben-Yu G, Pascual PJ, Rodriguez MJ, Vazquez L. Numerical solution of the sineGordon equation. Appl Math Comput 1986;18(1):1–14. [6] Richards LA. Capillarity conduction of liquid through porous medium. Physica 1931;1:318. [7] Zeldovich Ya. Theory of flame propagation. Nat Adv Comm Aeronaut Tech Memor 1951;1282:39. [8] Kolmogorov A, Petrovskii I, Piskunoff N. In: Pelce P, editor. Dynamics of Curved Fronts. Boston: Academic Press; 1988. p. 105–30. [9] Cui M. Fourth-order compact scheme for the one-dimensional sine-Gorden equation. Numer Meth Partl Diff Eq 2009;25:685–711. [10] Murray JD. Mathematical biology. Berlin: Springer; 1989. [11] Witelski TP. Segregation and mixing in degenerate diffusion in population dynamics. J Math Biol 1997;35:695–712. [12] Wang YM. A modified accelerated monotone iterative method for finite difference reaction-diffusion-convection equations. J Comput Appl Math 2011;235:3646–60. [13] Aronson DG, Weinberger HF. Nonlinear diffusion in population genetics, combustion, and nerve propagation. In: Partial differential equations and related topics. Lecture notes in mathematics, vol. 446. New York: Springer; 1975. p. 5–49. [14] Aris R. The mathematical theory of diffusion and reaction in permeable catalysts. Clarendon (London): Oxford University Press; 1975. [15] Hetrick DK. Dynamics of nuclear reactors. Chicago: University of Chicago; 1971. [16] Isenberg J, Gutfinger C. Heat transfer to a draining film. Int J Heat Transfer 1972;16:505–12. [17] Wilmott P, Dewynne J, Howison S. Option pricing, mathematical models and computation. Oxford: Oxford Financial Press; 1993. [18] Roache P. Computational fluid dynamics. Albuquerque (NM): Hermosa Press; 1972. [19] Cengel YA, Cimbala JM. Fluid mechanics: fundamental and application. McGraw-Hill Higher Education; 2006. [20] McRea GJ, Goodin WR, Seinfeld JH. Numerical solution of atmospheric diffusion for chemically reacting flows. J Comput Phys 1982;77:1–42. [21] Cunningham AB, Charaklis WG, Abedeen F, Crawford D. influence of biofilm accumulation on porous media hydrodynamics. Environ Sci Tech 1991;25:1305–10. [22] Harten A, Enquist B, Osher S, Chakravarthy S. Uniformly high order essentially non-oscillatory schemes III. J Comput Phys 1987;71:231–303. [23] Liu XD, Osher S, Chan T. Weighted essentially non-oscillatory schemes. J Comput Phys 1994;115:200–12. [24] John V, Novo J. On (essentially) non-oscillatory discretizations of evolutionary convection-diffusion equations. J Comput Phys 2012;231:1570–86. [25] Kailash PC. On the use of nonstandard finite difference methods. J Diff Eq Appl 2005;11:735–58. [26] Kojouharov HV, Chen BM. Nonstandard methods for the convective-dispersive transport equation with nonlinear reactions. John Wiley and Sons; 1999. p. 617–24. [27] Kaya A. Finite difference approximations of multidimensional unsteady convection-diffusion-reaction equations. J Comput Phys 2015;285:331–49. [28] Kaya A. A finite difference scheme for multidimensional convection-diffusionreaction equations. Comput Meth Appl Mech Eng 2014;278:347–60. [29] Brooks AN, Hughes TJR. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Meth Appl Mech Eng 1982;32:199–259. [30] Bause M. Stabilized finite element methods with shock-capturing for nonlinear convection-diffusion-reaction models. Int Numer Math Adv Appl 2009:125–34. [31] Bause M, Schwegler K. Analysis of stabilized higher-order finite element approximation of nonstationary and nonlinear convection-diffusion-reaction equations. Comput Meth Appl Mech Eng 2012;209-212:184–96. [32] Bause M, Schwegler K. Higher order finite element approximation of systems of convection diffusion reaction equations with small diffusion. J Comput Appl Math 2013;246:52–64.

Please cite this article in press as: Shekarabi HS, Rashidinia J. Three level implicit tension spline scheme for solution of Convection-Reaction-Diffusion equation. Ain Shams Eng J (2016), http://dx.doi.org/10.1016/j.asej.2016.10.005

10

H.S. Shekarabi, J. Rashidinia / Ain Shams Engineering Journal xxx (2016) xxx–xxx

[33] Yucel H, Stoll M, Benner P. Discontinuous Galerkin finite element methods with shock-capturing for nonlinear convection dominated models. Comp Chem Eng 2013;58:278–87. [34] Uzunca M, Karasozen B, Manguoglu M. Adaptive discontinuous Galerkin methods for non-linear diffusion-convection-reaction equations. Comp Chem Eng 2014;68:24–37. [35] Brezzi F, Hauke G, Marini LD, Sangalli G. Link-cutting bubbles for the stabilization of convection-diffusion-reaction problems. Math Models Meth Appl Sci 2003;13:445–61. [36] Sendur A, Neslitrk AI. Applications of the pseudo residual-free bubbles to the stabilization of convection-diffusion-reaction problems. Calcolo 2011;49:1–19. [37] Quang DA, Ehrhardt M. Adequate numerical solution of air pollution problems by positive difference schemes on unbounded domains. Math Comput Model 2006;44:834–56. [38] Chen-Charpentier BM, Kojouharov HV. An unconditionally positivity preserving scheme for advection-diffusion-reaction equations. Math Comp Model 2013;57:2177–85. [39] Pao CV. Monotone iterative methods for finite difference system of reaction diffusion equations. Numer Math 1985;46:571–86. [40] Rashidinia J, Mohammadi R. Tension spline approach for the numerical solution of nonlinear KleinGordon equation. Comp Phys Commun 2010;181:78–91. [41] Aghamohammadi M, Rashidinia J, Ezzati R. Tension spline method for solution of non-linear Fisher equation. Appl Math Comput 2014;249:399–407. [42] Mickens RE. Nonstandard finite difference model of differential equation. Singapore: World Scientific; 1994. [43] Hundsdorfer W. Numerical solution of advection-diffusion-reaction equations. Lecture notes. Thomas Stieltjes Institute; 2000. [44] Atkinson K, Han W. Theoretical numerical analysis: a functional analysis framework. Springer; 2005. [45] Theeraek P, Phongthanapanich S, Dechaumphai P. Solving convectiondiffusion-reaction equation by adaptive finite volume element method. Math Comp Simul 2011;82:220–33.

[46] Duan H, Hsieh P, Tan R, Yang S. Analysis of a new stabilized finite element method for the reaction-convection-diffusion equations with a large reaction coefficient. Comput Meth Appl Mech Eng 2012;247–248:15–36. [47] Hsieh P, Yang S. A new stabilized linear finite element method for solving reaction-convection-diffusion equations. Comput Meth Appl Mech Eng 2016;307:362–82. [48] Gierea S, Iliescub T, Johna V, Wellsb D. SUPG reduced order models for convection-dominated convection-diffusion-reaction equations. Comput Meth Appl Mech Eng 2015;289:454–74. [49] Cui M. Compact exponential scheme for the time fractional convectiondiffusion-reaction equation with variable coefficients. J Comput Phys 2015;280:143–63.

H.S. Shekarabi is Ph.D. student of College of Basic Science, Karaj Branch, Islamic Azad University.

Dr. J. Rashidinia: For photography and biography see Ain Shams Engineering Journal, Volume 6, Issue 1, March 2015, Pages 381–389.

Please cite this article in press as: Shekarabi HS, Rashidinia J. Three level implicit tension spline scheme for solution of Convection-Reaction-Diffusion equation. Ain Shams Eng J (2016), http://dx.doi.org/10.1016/j.asej.2016.10.005