Accepted Manuscript Title: Timing, mantle source and origin of mafic dykes within the gravity anomaly belt of the Taihang-Da Hinggan gravity lineament, central North China Craton Authors: Shen Liu, Caixia Feng, Guangying Feng, Mengjing Xu, Ian M. Coulson, Xiaolei Guo, Zhuang Guo, Hao Peng, Qiang Feng PII: DOI: Reference:
S0264-3707(16)30242-3 http://dx.doi.org/doi:10.1016/j.jog.2017.05.006 GEOD 1491
To appear in:
Journal of Geodynamics
Received date: Revised date: Accepted date:
7-12-2016 24-5-2017 25-5-2017
Please cite this article as: Liu, Shen, Feng, Caixia, Feng, Guangying, Xu, Mengjing, Coulson, Ian M., Guo, Xiaolei, Guo, Zhuang, Peng, Hao, Feng, Qiang, Timing, mantle source and origin of mafic dykes within the gravity anomaly belt of the TaihangDa Hinggan gravity lineament, central North China Craton.Journal of Geodynamics http://dx.doi.org/10.1016/j.jog.2017.05.006 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Timing, mantle source and origin of mafic dykes within the gravity anomaly belt of the Taihang-Da Hinggan gravity lineament, central North China Craton
Shen Liu1, Caixia Feng1, Guangying Feng2, Mengjing Xu1, Ian M. Coulson3 Xiaolei Guo1,Zhuang Guo1, Hao Peng1, Qiang Feng1
1. State Key Laboratory of Continental Dynamics and Department of Geology, Northwest University, 229 Taibai Road, Xi'an 710069, China 2. Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Street, Beijing 100037, China 3. Solid Earth Studies Laboratory, Department of Geology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
Highlights
Late Mesozoic mafic dykes in the Taihang-Da Hinggan Mountains, central North China Craton were dated at 122-132 Mas. > The dykes were derived from enriched lithospheric mantle source. > The origin of the dykes is related to the foundered lower crust, and the dykes were derived from partial melting of hybrid mantle source.
1
Abstract Six mafic dyke swarms crop out in Hebei Province within the Taihang-Da Hinggan gravity lineament magmatic belt, China, and were sampled. Here, we present new zircon laser ablation-inductively coupled plasma-mass spectrometry U-Pb age, whole rock geochemical, and Sr-Nd-Pb-Hf isotopic data for the six areas where these mafic dykes occur. The mafic (dolerite) dykes formed between 131.6 ± 1.6 and 121.6 ± 1.1 Ma, and are enriched in the light rare earth elements (LREE), some of the large ion lithophile elements (LILE; e.g., Rb, Ba, and Sr) and Pb, and are depleted in Th, U, Nb and Ta; some samples are also depleted in Eu. The dykes have high initial 87Sr/86Sr ratios (0.7055-0.7057), negative Nd (t) values (-12.5 to -11.9), relatively constant Pb isotopic ratios ((206Pb/204Pb)i = 16.45-16.51, (207Pb/204Pb)i = 15.44-15.51, (208Pb/204Pb)i = 36.49-36.53), negative Hf (t) values (-18.2 to -15.1), and old Nd (TNdDM2; 2.17-2.47 Ga) and Hf (THfDM2; 2.28-2.33 Ga) model ages. These geochronological, geochemical, and isotopic data indicate that the dykes were derived from magmas generated by low to moderate degree partial melting (1.0 %-10 %) of an EM1-like garnet lherzolite mantle source; these magmas fractionated olivine, clinopyroxene, and hornblende prior to emplacement, and assimilated minimal amounts of crustal material. Several possible models have previously been proposed to explain the origin of Mesozoic magmatism in this region. However, here we propose a foundering model for these studied mafic dykes, involving the foundering of eclogite from
2
thickened lower crust due to the collision between the Siberian Craton and the North China Craon.
Key words: Dolerite, Cretaceous, Taihang-Da Hinggan gravity lineament, Origin, Foundering
1. Introduction The tectonic-magmatic Taihang-Da Hinggan gravity lineament forms the central zone of Mesozoic magmatic activity in eastern China and is defined by a NNE-SSW trending zone of variations in crustal thickness and high gravity gradients (Cai et al., 2004). The compositionally variable and voluminous Mesozoic intrusive rocks in this region (35 °N to 50 °N and 113°E to 125 °E) generally crop out in the southern and northern Taihang areas, and the central to southern Da Hinggan regions (Cai et al., 2004). This magmatism records the geological and dynamic evolution of this area (Niu et al., 1994; Deng, 1996, 2000; Liu and Shi, 1998; Xu et al., 1999; Cai et al., 2003, 2004, 2006; Chen and Zhai, 2003; Chen et al., 2003, 2005, 2006, 2007; Qin, 2005; Shen et al., 2015). However, mafic-ultramafic rocks have only rarely been reported from this region. The mantle source and origin of Mesozoic igneous rocks thus remain debated (Li and Yu, 1993; Yu, 1995; Shao et al., 1999a; Qian et al., 2002; Cai et al., 2003, 2004; Zhang et al., 2004). The magmatic Taihang-Da Hinggan gravity lineament contains voluminous
3
mafic dykes, monzonites, A-type granites, high-K I-type volcanic rocks, bimodal volcanic rocks, and alkaline igneous rocks, as well as extensional basins (Sun et al., 1997), and detachment fault zones (Zhang et al., 2002), all of which suggest that this area underwent significant extension during the Mesozoic. However, the exact timing of this extension, the dynamic processes that caused this stretching event, and the source and origin of the contemporaneous magmatism have not yet been identified. Mafic dykes can form as a result of extension of the continental lithosphere (Hall, 1982; Zhao and McCulloch, 1993), meaning that these units may provide valuable information on the evolution of the lithosphere, including extensional tectonics, mantle composition(s), and the temporal and spatial evolution of that part of the Earth’s lithosphere. In addition, investigating these dykes can provide insights into the origin of other magmatic units within the Taihang-Da Hinggan gravity lineament. Furthermore, Mesozoic mafic dykes are widespread throughout the gravity lineament, and more than 200 mafic rock units (e.g., Laiyuan, Luxian, Quyang, Lingshou, Qixian, Weichang, Fengning, Chicheng, Huailai, and Yixian) have been identified. These units are dominantly dolerite and lamprophyre in composition, although a minor proportion of porphyritic dolerite dykes are also present, and the vast majority of these rocks are present as NW-SE, NE-SW, and E-W trending dyke swarms. Here, we report new representative zircon U-Pb ages, and geochemical and Sr-Nd-Pb-Hf isotopic data for Mesozoic mafic dykes studied from the Weichang, Fengning,
4
and Chicheng, Huailai, and Yixian areas of Hebei Province, which falls within the magmatic Taihang-Da Hinggan gravity lineament. These data provide insights into the timing, mantle source, and the origin of the investigated dykes, enable an assessment of the geodynamic processes that caused this magmatism, and provide evidence of the tectonic setting of the magmatism within the magmatic Taihang-Da Hinggan gravity lineament.
2. Geological and tectonic setting The North China Craton (NCC) is one of the oldest continental nuclei worldwide (Jahn et al., 1987; Liu et al., 1992) and is divided into the Eastern, Western, and Central Blocks (Zhao et al., 2001). At present, one of the striking features of the NCC is the gravity anomalies within the NNE-trending Taihang-Da Hinggan gravity lineament of the Central Block. These anomalies are located between the NCC and the Erdos Plateau (Zhang et al., 2002), span both the NCC and the Xingmeng Orogenic belt, are connected to the Yinshan-Yanshanian Belt to the north, and are linked with the Qinling-Dabie Orogenic Belt to the south (Fig. 1). The gravity anomalies within the Taihang-Da Hinggan gravity lineament are also proximal to the Pacific tectonic belt. This means that the study area provides key information on the tectonic evolution of this complex region. The Taihang-Da Hinggan gravity lineament is located in an ancient band of weak rock beneath the NCC, as well the forward position of the subducted paleo-Pacific Plate. In addition, the Taihang-Da
5
Hinggan gravity lineament intrudes Paleoproterozoic cryptic basement, during orogenesis, and is surrounded by a significant volume of exposed basement in the central Blocks (Fig. 1). The Mesozoic intrusions within the south Taihang region are generally located in the Hanxing area of Hebei Province, the Ping shun area of Shanxi Province, and the Anyang-Linxian area of Henan province. This magmatism produced a number of major plutons, including the Fusan, Guzhen, Kuangshan, Hongshan, Xi’anli, Dongye, and Huanglongnao-Tashan intrusions that were generally emplaced into Mid Ordovician units and dominantly have gabbro-diorite, diorite-monzonite, and syenite compositions (Cai et al., 2004). In contrast, Mesozoic intrusions in the north Taihang region are generally located in the Fuping-Laiyuan and southeastern Yanshan areas, and the majority are of bimodal series. These plutonic rocks include the Mapping, Chiwawu, Laiyuan, Fangshan, Badaling, Dahaituo, and Wulingshan intrusions, which are dominated by hornblende bearing gabbrodiorite, granodiorite monzonitic granite, and quartz-monzonite - quartz-orthoclase granite - alkaline granite phases (Cai et al., 2004). Other Mesozoic intrusions in this area crop out in the Huanggang, Chaoyanggou, Baiyinruo, Haobugao, Haisuba, Wulanba, Baize, and Nianzishan areas and are dominated by diorite granodiorite, monzonitic granite, quartz monzonite, quartz-orthoclase granite, and alkaline granite compositions (Cai et al., 2004). Three phases of magmatic activity have been recognized in this area (Hebei Bureau of Geology and
6
Mineral Resources, 1989; Inner Mongolia Autonomous Region, 1991; Beijing Bureau of Geology and Mineral Resources, 1991; Xu et al., 1996, 1999; Cai et al., 2003). The early magmatic activity occurred between the Early and Mid Jurassic, forming mafic and intermediate rocks. The middle period of magmatic activity occurred during the Late Jurassic, represents the main phase of magma activity within the tectonic-magmatic Taihang-Da Hinggan gravity lineament, and formed intermediate-felsic units (e.g., diorite, monzonite, granite, and syenite units). The third period of magmatism occurred during the Early Cretaceous and generated felsic and alkaline rocks (Cai et al., 2003; Chen and Zhai, 2003; Chen et al., 2003, 2005, 2006, 2007; Peng et al., 2004). The mafic dykes studied here generally have dolerite and lamprophyre compositions, primarily as the study areas did not contain any porphyritic dolerites.
3. Petrography and sampling Mafic dykes are widespread in the five representative areas (i.e., the Weichang, Fengning, Chicheng, Huailai, and Yixian regions) that form the focus of this study, within Hebei Province, northern Taihang gravity lineament (Fig. 2). The study areas contain granite, monzonite, gabbro, and gneissic country rocks, all of which are intruded by mafic dykes, although the majority of the dykes are hosted by granite and Archean-Proterozoic (Qianxi, Fuping, Jixian and Changcheng groups) units (Fig. 2). Individual mafic dykes studied
7
are vertical, strike NE-SW, NW-SW, and E-W (Fig. 2), are between 20 m and 60 m wide, have lengths of 8.0-50 km (Fig. 2), and have typical dolerite textures. The mafic dykes studied within the Weichang area were emplaced into monzonites and granites, are vertical, strike between E-W and NW-SE, and have widths of 20-50 m and lengths of 6.0-50 km (Fig. 2). They contain 30 %-35 % of combined clinopyroxene, plagioclase, and minor biotite microphenocrysts (0.5-1.3 mm), within a groundmass (~60 %-70 %) of pyroxene, plagioclase, magnetite, and chlorite. The mafic dykes studied within the Fengning and Chicheng areas were generally emplaced into granitic units, are vertical, strike E-W, NE-SW, and NW-SE, and are 10-60 m wide and 5.0-50 km long (Fig. 2). They contain 30 %-36 % of combined clinopyroxene, alkali feldspar, plagioclase, and minor biotite microphenocrysts (0.5-1.2 mm), within a groundmass (~65 %-70 %) of pyroxene, alkali feldspar, plagioclase, and magnetite. Mafic dykes studied from the Huailai area were emplaced into granitic country rocks, are vertical, strike E-W, NE-SW, and NW-SE, and have widths of 8.0-50 m and lengths of 5.0-40 km (Fig. 2). They contain 30 %-35 % of combined clinopyroxene, alkali feldspar, plagioclase, and minor biotite microphenocrysts (0.5-1.3 mm) in a groundmass (~60 %-65 %) of pyroxene, alkali feldspar, plagioclase, and magnetite. Mafic dykes studied within the Yixian were emplaced into monzonite and
8
granite units, are vertical, strike E-W and NW-SE, and are 10-60 m wide and 5.0-40 km long (Fig. 2). They contain 30 %-37 % microphenocrysts (0.5-1.2 mm) of clinopyroxene, plagioclase, and minor biotite within a groundmass (~65 %-75 %) of pyroxene, plagioclase, magnetite, and chlorite.
4. Analytical methods Zircon grains from six of the investigated dyke samples from the northern Taihang gravity lineament of Hebei Province were separated using conventional heavy liquid and magnetic techniques. Representative zircons were then handpicked under a binocular microscope before being mounted in an epoxy resin disc, polished, and coated with gold prior to analysis. These zircon grains were imaged using transmitted and reflected light microscopy, and cathodoluminescence (CL) methods to identify external and internal structures. The CL imaging and U-Pb geochronology analyses were undertaken at the State Key Laboratory of Continental Dynamics, Northwest University. The analytical procedures used are described in detail in Harris et al. (2004) and Campbell et al. (2006), and we used a spot diameter of 29 m. U-Th-Pb ratios and absolute abundances were determined by reference to multiple measurements of a standard TEMORA zircon and a NIST 610 glass standard. In situ, zircon Hf isotopic analyses were undertaken using a multi-collector-inductively coupled plasma-mass spectrometer equipped with a
9
Geolas-193 laser at the Key Laboratory of Continental Dynamics, Northwest University. These analyses used a laser repetition rate of 10 Hz at 100 mJ and a beam diameter of either 32 or 63 m. The isobaric interference of 176Lu on 176Hf
was corrected by measuring the intensity of the interference-free 175Lu
isotope and using a recommended 176Lu/175Lu ratio of 0.02655 (Machado and Simonetti, 2001). A 176Yb/172Yb value of 0.5887 (Chu et al., 2002) and mean Yb values obtained during Hf analysis were used to correct for the interference of 176Yb on 176Hf (Iizuka and Hirata, 2005). Details of the analytical and data correction procedures are given in Wu et al. (2006). Our analyses included measurements of standard 91500 and FM0411 zircons, yielding mean 176Hf/177Hf ratios of 0.282313 ± 36 (2 standard deviations (SD), n = 35) and 0.282996 ± 31 (2 SD, n = 9), respectively, which agree with the reported 176Hf/177Hf
composition of the 91500 zircon (0.282306 ± 8, 2 SD, n = 30) by
solution analysis (Wood head et al., 2004) and 0.282983 ± 17 (2 SD, n = 9) for the FM0411 zircon by in situ analysis methods (Wu et al., 2006). The whole-rock and Sr-Nd-Pb isotopic geochemistry of 26 samples studied was determined during this investigation. Prior to analysis, these samples were trimmed to remove altered surfaces before cleaning with deionized water, crushing, and powdering in an agate mill. Major element compositions were determined using an analytical Axioms-advance X-ray fluorescence spectrometer at the State Key Laboratory of Ore Deposit Geochemistry (SKLODG), Institute of Geochemistry, Chinese
10
Academy of Sciences, Guiyang, China, using fused lithium tetra borate glass pellets. This analysis has an analytical precision better than 5 %. Trace element compositions were determined by ICP-MS and a Perkin-Elmer ELAN DRC-e instrument at the SKLODG. Prior to analysis, powdered samples (50 mg) were dissolved in high-pressure Teflon bombs using a HF + HNO3 attack for 48 h at ~190 °C (Qi et al., 2000). Signal drift during analysis was monitored using Rh as an internal standard, and GBPG-1, OU-6, GSR-1, and GSR-3 standards were used for analytical quality control, indicating an analytical precision that is generally better than 5 % for trace elements. The Rb-Sr and Sm-Nd isotopic analyses began with the spiking of sample powders with mixed isotope tracers, before dissolution in Teflon capsules using a HF + HNO3 acid attack and separation by conventional cation exchange techniques. Isotopic measurements were undertaken using thermal ionization mass spectrometry at the Isotopic Geochemistry Laboratory of the Yichang Institute of Geology and Minerals Resources, Yichang, China. This analysis yielded procedural blanks of < 200 pg for Sm and Nd, and < 500 pg for Rb and Sr. Mass fractionation corrections for Sr and Nd isotopic ratios were based on 86Sr/88Sr = 0.1194 and 146Nd/144Nd = 0.7219, respectively. Analysis of the NBS987 standard yielded a mean 87Sr/86Sr value of 0.710246 ± 16 (2), and analysis the La Jolla standard yielded a mean 143Nd/144Nd value of 0.511863 ± 8 (2). Prior to Pb isotopic analysis, Pb was separated and purified by conventional cation-exchange techniques (AG1 × 8, 200-400 resin) using
11
diluted HBr as an eluent. Analysis of the NBS981 standard yielded a mean 204Pb/206Pb
value of 0.0896 ± 15, a mean 207Pb/206Pb value of 0.9145 ± 8, and
a mean 208Pb/206Pb value of 2.162 ± 2.
5. Results 5.1. Zircon U-Pb ages Zircon is relatively abundant in the dolerite samples, and the majority of zircon grains show oscillatory or planar zoning in CL images, indicating a magmatic origin. None of the studied zircons contain inherited cores and they all have relatively high Th/U ratios (0.37-1.65), again indicating a magmatic origin. Two mafic dykes (WC1 and WC8) from the Weichang area have similar weighted mean 206Pb/238U zircon ages of 131.5 1.2 (n = 11) and 131.6 1.6 Ma (n = 12; Table 1; Fig. 3a, b). One sample (FL2) from a mafic dyke in the Fengning area yielded an age of 127.8 1.0 Ma (n = 10; Table 1; Fig. 3c). Zircon from mafic sample CC1 from the Chicheng area yielded an age of 128.1 1.2 Ma (n = 11; Table 1; Fig. 3d), and zircon from mafic sample HL1 within the Huailai area yielded an age of 121.9 1.4 Ma (n = 11; Table 1; Fig. 3e). Meanwhile, zircon from mafic sample YX3 from the Yixian area yielded an age of 121.6 1.1 Ma (n = 12; Table 1; Fig. 3f).
12
5.2. Whole-rock geochemistry The whole-rock compositions of the studied dolerites are given in Table 2-1 and 2-2. These mafic dykes are characterized by slight variations in SiO2 (50.12-51.88 wt. %), Na2O (2.84-3.46 wt. %), Al2O3 (15.48-16.52 wt. %), TiO2 (0.95-1.32 wt. %), and MnO (0.12-0.18 wt. %), but have more variable concentrations of K2O (2.63-3.66 wt. %), Fe2O3 (7.02-9.65 wt. %), MgO (5.08-6.64 wt. %), CaO (6.86-7.92 wt. %), and Mg# values (55-62). Moreover, all of these mafic dyke are alkaline and fall within the shoshonitic series (Fig. 4). The studied dolerites have distinct but near-identical chondrite- and primitive-mantle- normalized compositions (Fig. 5) that are enriched in LREEs, some of the LILEs (e.g., Rb, Ba, and Sr), and Pb. In addition, they also have negative Th, U, Nb and Ta anomalies, and some samples have negative Eu anomalies (Eu/Eu* = 0.51-0.96). By contrast, all samples studied, however, have sub-chondritic Nb/Ta ratios (12.5-18.0, where the chondritic ratio is 19.9 0.6; Munker et al., 2003) and record Zr/Hf fractionation with super-chondritic Zr/Hf ratios (44.8-97.2, where the chondritic ratio is 34.3
0.3; Munker et al.,
2003).
5.3. Sr-Nd-Pb-Hf isotopes The Sr, Nd, and Pb isotopic compositions of representative dolerites were determined (Tables 3). These dykes have relatively constant initial 87Sr/86Sr
13
ratios (0.7055-0.7057), and negative Nd (t) values (-12.5 to -11.9) that are indicative of a common source region. In addition, these mafic dykes yielded Nd model ages of 2.15-2.26 Ga (Table 3). This suggests that these samples have EM1-like Sr-Nd isotopic ratios (Hart, 1984; Zindler and Hart, 1986; Cai et al., 2004) that are also similar to Mesozoic mafic dykes from the NCC (Liu, 2004; Liu et al., 2008a, b, 2009a). This similarity is also demonstrated by the fact that all samples studied plot within the mantle array and shoshonitic field of an Nd (t) vs. (87Sr/86Sr) i diagram (Fig. 6). The dolerites have relatively constant Pb isotopic ratios (EM1-like) ((206Pb/204Pb) i = 16.45-16.51, (207Pb/204Pb) i = 15.44-15.51, and (208Pb/204Pb) i=
36.49-36.53) (Table3; Fig. 8b), similar to those of mafic dykes from the NCC
(Zhang et al., 2004; Xie et al., 2006; Liu et al., 2008a, b, 2009a), however, these differ from the composition of mafic dykes from the Yangtze Craton (Yan et al., 2003). The results of zircon Hf isotope analyses are shown in Table 4. A total of 17 spot analyses were undertaken on sample WC1, yielding uniform Hf (t) values of between -18.2 and -16.5 that correspond to TDM2 model ages of 2333-2226 Ma. A further 18 spot analyses on sample WC8 yield another narrow range of Hf (t) values, between -18.0 and -15.2 and TDM2 model ages of 2323-2142 Ma. A total of 16 spot analyses on sample FL2 yielded a relatively wide range of Hf (t) values (between -17.7 and -15.1) that correspond to TDM2 model ages of 2300-2136 Ma. Sixteen spot analyses on sample CC1 yielded a relatively wide
14
range of Hf (t) values (-17.8 to -15.3) and TDM2 model ages of 2305-2149 Ma. The 16 spot analyses undertaken on sample HL1 yielded a narrow range of Hf (t) values between -17.7 and -15.2, and TDM2 model ages of 2300-2143 Ma. Finally, 16 spot analyses on sample FL2 yielded a narrow range of Hf (t) values between -17.8 and -15.1, and TDM2 model ages of 2300-2128 Ma. All of these Hf isotopic compositions are again consistent with an EM1-like signature (Yang et al., 2006).
6. Discussion Mesozoic intrusions are widespread in the Taihang gravity lineament, including gabbros in the Donggang, Fusan, Pingshan, Laiyuan, Badaling, and south Taihang areas (Cai et al., 2004; Zhang et al., 2004); 140-125 Ma diorite-monzonite complexes (Chen et al., 2004) of the Fusan area; Late Mesozoic gabbros and intermediate-felsic rocks of the tectonic-magmatic Taihang-Da Hinggan gravity lineament (Cai et al., 2003, 2004; Yang et al., 2004; Qin, 2005; Shen et al., 2015); magmatism in the Taihang mountains (Luo et al., 1997; Peng et al., 2004; Chen et al., 2005, 2006, 2007; Ying et al., 2010; Shen et al., 2015); alkaline rocks within the Taihang-Da Hinggan gravity lineament (Li and Yu, 1993; Cai et al., 2006); the Badaling area (Wang and Zhang, 2001); 125-127 Ma monzonites and diorites in the Dongye and Wu'an areas (Peng et al., 2004; Wang et al., 2006); the 115-135 Ma Pingshui diorites (Zhang et al., 2013); the 134-149 Ma volcanic rocks of the southern Da
15
Hinggan gravity lineament, 135-145 Ma complexes in the Wanganzhen and the southern Dahe areas (Cai et al., 2003; Chen et al., 2003; Chen and Zhai, 2003); and the ~120 Ma calc-alkaline lamprophyres that lie above some intrusions in these areas (Chen et al., 2003). Previous investigation suggests that these Mesozoic intrusions formed from differing sources and have distinct origins (see the references in the introduction). Here, we use detailed geochronological and geochemical constraints to discuss the sourcing and origin of mafic dykes within the magmatic Taihang-Da Hinggan gravity lineament.
6.1. Timing of the mafic dykes Little previous research has been undertaken on mafic rocks within the tectonic-magmatic Taihang-Da Hinggan gravity lineament, although some studies have examined 164-120 Ma gabbros within the Donggang, Fusan and Ping shun, Laiyuan, Badaling, and south Taihang areas (Chen et al., 2003; Cai et al., 2004; Zhang et al., 2004; Tang et al., 2006; Ying et al., 2010). To date, no research has been undertaken on the Mesozoic mafic dykes in this area. The geochronological data (zircon U-Pb ages) summarized in Fig. 4 indicate that the mafic dykes were emplaced between 131.6 1.6 and 121.6 1.1 Ma, consistent with intrusion during the main stage of Early Cretaceous (164-120 Ma) magmatism within the tectonic-magmatic Taihang-Da Hinggan gravity lineament, as described above.
16
6.2. Mantle source and crustal assimilation Mafic dykes studied contain lower SiO2 concentrations (50.12 -51.85 wt. %) than liquids produced from partial melting of any crustal rocks (i.e., granitic liquids; Rapp et al., 2003), suggesting that the dykes formed from mantlerather than crustal-derived magmas. This inference is also supported by the fact that these dykes have higher MgO concentrations (5.08-6.64 wt. %) and elevated Mg# values (55-62), although they contain fairly low concentrations of Cr (9.54-476 ppm) and Ni (6.63-165 ppm; Table 2). The high initial 87Sr/86Sr, negative εNd (t) (-12.5 to -11.9), and negative zircon εHf (t) (-18.2 to -15.1) values of the studied mafic dykes (Table 3,4; Fig. 7) are consistent with derivation from an enriched lithospheric mantle source, a hypothesis that is further supported by their EM1-like Pb isotopic compositions ((206Pb/204Pb) i = 16.45-16.51, (207Pb/204Pb) i = 15.44-15.51, and (208Pb/204Pb) i = 36.49-36.53; Table3; Fig.7b). Co-magmatic mafic and felsic rocks are often explained by assimilation and fractional crystallization (e.g., DePaolo, 1981; Devey and Cox, 1987; Marsh, 1989; Mingram et al., 2000), and the fact that the mafic dykes studied have positive Pb and negative Ti anomalies in primitive-mantle-normalized multi-element variation diagrams (Fig. 4b) suggests that some continental material was involved in the origin of the magmas that formed these units. This view is further supported by the fact that these dykes have much lower Ta/La ratios (0.01-0.02) than primitive mantle (e.g., Ta/La = 0.06: Wood et al., 1979). In addition, crustal contamination is
17
likely to generate basaltic rocks with depleted Nb-Ta values and highly enriched Sr-Nd isotopic compositions (Guo et al., 2004). Crustal contamination is initially supported by the fact that the studied mafic dykes are characterized by negative Nb-Ta anomalies (Fig. 5b) and have high and constant initial 87Sr/86Sr
ratios and negative Nd (t) values (Table 3; Fig. 6). This suggests that
crustal contamination was possible in the formation of magmas that generated these dykes.
6.3. Partial melting and fractional crystallization The investigated dolerite dykes have La/Sm and Sm/Yb ratios (Table 2; Fig. 8a, b) that are consistent with magmas generated by relatively low to moderate partial melting (1.0 %-10 %) of a garnet lherzolite source. This is further supported by the high Ti/Y ratios of these dykes (238-474; Johnson, 1998). The low Cr, Ni and Co concentrations also support magma generation by the above-mentioned partial melting (Table 2). The positive correlations between MgO and Fe2O3, CaO, CaO/Al2O3, and Ni, and the negative correlations between MgO and SiO2, Al2O3, and Sr (not presented) are indicative of olivine, clinopyroxene, and hornblende fractionation, but also suggest that the magmas that formed these mafic dykes did not fractionate plagioclase, as also evidenced by the absence of significant negative Sr and Eu anomalies (Fig. 5a, b). The separation of Ti-bearing phases (e.g., rutile, ilmenite, and titanite) could also account for the negative Nb and Ta anomalies present within the
18
primitive-mantle-normalized multi-element variation patterns of these dykes studied (Fig. 5b).
6.4. Genetic model The tectonic-magmatic Taihang-Da Hinggan gravity lineament lies between the NCC and the Erdos Plateau (Zhang et al., 2002), and is close to the Pacific tectonic belt. This belt contains numerous Mesozoic intrusions (Fig. 2; Cai et al., 2004) that have been studied previously (Zhang and Sun, 1988; Zhang, 1993; Niu et al., 1994; Deng, 1996, 2000; Xu et al., 1996; Wang and Zhao, 1997; Liu and Shi, 1998; Luo et al., 1999; Shao et al., 1999a, b, 2001, 2010; Wu and Sun, 1999; Hong et al., 2000; Wang and Zhang, 2001; Yan et al., 2000, 2001; Qian et al., 2002; Cai et al., 2003, 2004; Chen and Zhai, 2003; Chen et al., 2003, 2005, 2006, 2007; Peng et al., 2004; Zhang et al., 2004; Qin, 2005;
Yang et al., 2014; Shen et al., 2015), revealing that the rocks formed at
different stages of this magmatic event have differing characteristics. The intermediate to mafic rocks in the southern Taihang area were derived from partial melting of an enriched mantle reservoir, as were the early stage intermediate-mafic rocks in the northern Taihang area. In contrast, the intermediate-felsic rocks that formed during the middle stage of magmatism were sourced from the lower crust, and the alkaline intermediate-felsic rocks in this region were most likely sourced from the lower and middle crust. Nevertheless, the source and origin of these Mesozoic intrusions remains
19
debated. At present, at least four competing mechanisms can be envisaged to decipher the origin of the Mesozoic magmatism in the NCC: the subduction of the Yangtze Crust, the Siberian Craton and the ancient Pacific Plate beneath the NCC (Ge, 1999; Zhang et al., 2004, 2005; Chen et al., 2004); and the successive hybridism of foundered lower crust (Liu et al., 2008a, b). It is generally accepted that the Mesozoic magma activity within the NCC is related to the magma mixing between mantle- and ancient lower crust-derived magmas (Chen et al., 2002, 2003, 2004, 2005, 2006; Qian et al, 2002; Yang et al., 2004), however, further investigation is still needed. The mafic dykes studied herein are characterized by Pb isotopic characteristics (Table 3) that are similar to those of the Mesozoic mafic rocks within the NCC, but differ from those of the mafic rocks from the Yangtze Craton (Fig. 4, 5a), ruling out the involvement of Yangtze Craton lithospheric material. In addition, the subduction of the paleo-Pacific or Izanaqi Plate most likely released fluids and/or melts that metasomatized and modified the lithospheric mantle beneath the NCC (Chen et al., 2004). However, the Izanaqi Plate primarily moved towards the N or N-NE during the Cretaceous (Kimura et al., 1990), and there was no westward subduction of the paleo-Pacific Plate below the NCC prior to the Early Cretaceous. In addition, there is currently no evidence that the paleo-Pacific Plate contributed to the Mesozoic magma activity within the eastern NCC (Zhang et al., 2005). Moreover, investigations on Early Cretaceous mantle-derived rocks within the western NCC suggests that the
20
Late Mesozoic rocks in this region were derived from magmas sourced from enriched mantle sources unrelated to the subduction of the paleo-Pacific Plate (Wang et al., 2006; Ying et al., 2007; Liu et al., 2008a, b, 2009). Based on the above evidence, the origin of the studied dolerite dykes should relate to the NCC, and from the above discussion, the mafic dykes were derived from partial melting of an enriched mantle source; however, it is unclear how the enriched lithosphere source was formed beneath the NCC. It has been shown, that the enrichment time of the lithosphere beneath the study area (2.47-2.17 Ga) is similar to that of the NCC (2.54-1.49 Ga) (Cai et al., 2004). Here, we present a genetic model for the studied dolerite dykes involving foundering of the lower continental crust. Eclogite can be recycled into the mantle (Arndt and Goldstein, 1989; Kay and Kay, 1991; Jull and Kelemen, 2001; Gao et al., 2004), primarily as it has a higher density (by 0.2-0.4 gcm-3) than lithospheric mantle peridotite (Rudnick and Fountain, 1995; Jull and Kelemen, 2001; Anderson, 2006; Levander et al., 2006). Furthermore, eclogite also has lower melting temperatures than mantle peridotites (Yaxley, 2000; Kogiso et al., 2003; Sobolev et al., 2005); implying foundered silica-saturated eclogites can melt to produce silicic tonalite to trondhjemite melts that may variably hybridize with overlying mantle peridotite material. These reactions can produce an olivine-free pyroxenite that, if subsequently melted, will generate basaltic melts (Kogiso et al., 2003; Sobolev et al., 2005; Gao et al., 2008). The foundering model is supported by the voluminous coeval (238-102
21
Ma) magmatism (e.g., Taihang-Da Hinggan mountains, Yanshan area, Taihang-Yan mountains, Badaling, the NCC) (see the reference in introduction), as well as the large-scale mineralization in this region (Wang and Zhao, 1997; Dong, 2013), along with the occurrence of adakites in the northern Taihang mountains and the NCC (e.g., in the Dahenan, Laiyuan, Shouwangfei, Yumengshan, and Badaling areas; Xiong et al., 2011; Feng, 2012). Based on the above discussion, we thus propose the following model in which lower crustal delaminating coincided with mafic magmatism. At present, it is generally accepted that the collision between the Yangtze Craton and the NCC occurred during the Triassic (240-185 Ma), which resulted in a thickened crust and caused eclogitization of its lower parts (Zhang et al., 2002). This collision mechanism thus was used to explain the genetic model of some mafic dykes in Shandong province, China (Liu et al., 2008a, b, 2009). However, the samples studied were collected from the northern margin of the NCC, several hundred kilometers away from the Qinling-Dabie-Sulu Orogeny, which resulted from Triassic collision between the Yangtze Craton and the NCC. Even if lower crust foundering did take place at the northern margin of the NCC, combined with the above discussion, it is improper to link it with the collision between the Yangtze Craton and the NCC. By contrast, the collision between the Siberian Craton and the NCC (180-135 Ma; Ge, 1999) should be taken into account. Owing to the collision between the Siberian Craon and the NCC, a thickened and eclogitizatic lower crust formed beneath the study area, subsequently, this
22
eclogite was recycled into the mantle due to its higher density than lithosphere mantle peridotite. The silicic melts generated by the melting of these foundered eclogites reacted extensively with the overlying mantle peridotite, with the later (132-121 Ma) decompression melting of this hybridized lithosphere mantle, producing primary basaltic melts in an extensional setting, imparted in the subduction of the paleo-Pacific Plate (135-132 Ma; Fig.9b; Chen et al., 2005). Ultimately, the mafic dyke swarms were emplaced after fractional crystallization during ascent of the primary basaltic melts (Fig. 9c). 7. Mesozoic delamination timing and range in the NCC form East to West Special attention has been paid to delamination (Wu et al., 2003, 2005, 2006; Gao et al., 1992, 1998a, b, c, 2002, 2003, 2004, 2008; Liu et al., 2005; Xu et al., 2004, 2006; Lin and Wang, 2006; Yang et al., 2007; Deng et al., 2007; Wang et al., 2007; Yang and Li, 2008; Liu et al., 2006, 2008a, b, 2009a, b, c, 2010, 2012, 2013a, b, c) since it was proposed (Bird, 1978, 1979). Owing to the instability of gravity, delamination leads to sink of the lithospheric mantle and lower continental crust into the asthenosphere and concomitant upwelling of the asthenosphere onto the crust-mantle boundary (Gao and Jin, 2007; Gao et al., 2009). Normally, this process results in exchange between the lower rust, the lithospheric mantle and the asthenosphere and cause magmatism and uplift, extension and collapse of mountains, thinning of lithosphere as well as formation of sag basin (Gao and Jin, 2007). As this model can explain many geological phenomena in the NCC (e.g., the widespread high Mg adakite; the
23
eclogite of lower crust existing in Mesozoic basalt, peridotite and pyroxene; the episodic magmatism; the relatively low seismic wave velocity and Poisson's ratio; absence of Archean mantle remains) very well. Currently, which has been considered as the main model for the Mesozoic destruction (peak period is 125 Ma; Zhu et al., 2011) of the NCC (Deng et al., 1994, 1996; Wu et al., 2008; Gao et al., 2009), accordingly, delamination is common in the NCC, although there are still some phenomena that cannot be explained (Menzies et al., 2007; Wu et al., 2008). Nevertheless, Mesozoic delamination timing and range in the NCC from east to west still unclear. Based on the existing studies, the above issues will be discussed as follows. At present, except some studies focused on Mesozoic igneous rocks (e.g., Sulu Orogenic Belt 119-120 Ma, Jiaobei 122-127 Ma, Tancheng-Lujiang Fault 124.9-129.6 Ma, Jiaodong 122-123 Ma, Dalian 210 Ma, Songliao Basin 262 Ma, and Luxi 143-144 Ma mafic dykes; Jiaobei 123.6 Ma, and Wulatezhongqi in Inner Mongolia 291 Ma adakites; Jiaodong 114-122 Ma, Sulu Orogenic Belt 120-127 Ma alkaline rocks; Sulu Orogenic Belt 127 Ma intrusive complexes; Luo et al., 2007; Liu et al., 2008a, b, 2009a, b, c, 2010, 2012, 2013a, b, c) in the NCC, suggesting that the foundering in the NCC from east to west mainly occurred between late Jurassic and Cretaceous, and the time frame is concentrated between 144 Ma and 120 Ma. Further study and discussion on this field thus is needed.
24
8.
Conclusions New geochronological, geochemical, and Sr-Nd-Pb-Hf isotopic data for
mafic dykes of northern Taihang gravity lineament allow us to reach the following conclusions. (1) The mafic dykes were intruded during the Cretaceous as evidenced by six new zircon U-Pb ages, of between 131 ± 1.6 and 121.6 ± 1.1 Ma. (2) All of the dykes are alkaline and shoshonitic, being enriched in the LREE, some of the LILE (e.g., Rb, Ba, and Sr), Pb, Th and U, and depleted in Nb, Ta, and sometimes Eu. They have high initial
87Sr/86Sr
ratios
(0.7055-0.7057), negative εNd (t) values (-12.5 to -11.9), relatively constant Pb isotopic ratios ((206Pb/204Pb) i = 16.45-16.51, (207Pb/204Pb) i = 15.44-15.51, (208Pb/204Pb) i = 36.49-36.53), negative εHf (t) values of between -18.2 and -15.1, and old Nd and Hf model ages (2.47-2.13Ga). These data suggest the magmas that formed these dykes were generated by low to moderate degree partial melting (1.0 %-10 %) of an EM1-like garnet Iherzolite mantle source material. Meanwhile, fractionation of olivine, clinopyroxene, and hornblende and
low to moderate degree crustal contamination occurred during magma
ascent. (3) The 132-121 Ma mafic dyke swarms of the northern Taihang gravity lineament formed as a result of asthenospheric upwelling associated with foundering of eclogite from lower thickened crust in a tectonic setting influenced by the continual collision between the Siberian Craton and the
25
NCC. (4) Mesozoic the foundering in the NCC from east to west mainly occurred between late Jurassic and Cretaceous, and the time frame is concentrated between 144 Ma and 120 Ma.
Acknowledgments The authors thank Dr. Shuqin Yang for assistance during XRF analyses, Prof. Liang Qi and Ms. Jing Hu for assistance during ICP-MS analyses, the analyst for assistance during TIMS Sr-Nd-Pb isotopic analyses, and Profs Xiaoming Li and Honglin Yuan for assistance during LA-ICP-MS U-Pb dating and Hf isotopic analyses. This study was supported by the National Natural Science Foundation of China (grants 41373028 and 41573022).
26
References Anderson, D. A., 2006. Speculations on the nature and cause of mantle heterogeneity. Tectonophysics 146, 7-22. Arndt, N. T. and Goldstein, S. L., 1989. An open boundary between lower continental crust and mantle: Its role in crust formation and crustal recycling. Tectonophysics 161, 201-212. Barry, T. L. and Kent R. W., 1998. Cenozoic magmatism in Mongolia and the origin of central and east Asian basalts. In: Flower, M. F. J., Chung S. L., Lo C. H. and Lee T. Y. (Eds.). Mantle Dynamics and plate interactions in east Asia. American Geophysical Union-Geodynamics series 27, 347-364. Bird, P., 1978. Initiation of intracontinental subduction in the Himalaya. J. Geophys. Res. 83, 4975-4987. Bird, P., 1979. Continental delamination and the Colorado plateau. J. Geophys. Res. 84, 7561-7571. Blichert-Toft, J., Chauvel, C., Albarede, F., 1997. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP–MS. Contrib. Miner. Petrol. 127, 248-260. Cai, J. H., Yan, G. H., Chang, Z. S., Wang, X. F. and Chu, Z. Y., 2003. petrologic and geochemical characteristics of the Wanganzhen complex and discussion on its genesis. Acta Petrol. Sin. 19, 81-92 (in Chinese with English abstract). Cai, J. H., Yan, G. H., Xiao, C. D., Wang, G. Y., Mu, B. L. and Zhang, R. H., 27
2004. Nd, Sr, Pb isotopic characteristics of the Mesozoic intrusive rocks in the Taihang-Da Hinggan Mountains Tectonic magmatic Belt and their source region. Acta Petrol. Sin. 20, 1225-1242 (in Chinese with English abstract). Cai, J. H., Yan, G. H., Xu, B. L., Wang, G. Y., Mu, B. L. and Zhao, Y. C., 2006. The late Mesozoic alkaline intrusive rocks at the east foot of the Taihang-Da Hinggan Mountains: Lithogeochemical characteristics and their implications. Acta Geol. Sin. 27, 447-459 (in Chinese with English abstract). Campbell, I. H., Ballard, J. R., Palin, J. M., Allen, C. M. and Faunes, A., 2006. U-Pb zircon geochronology of granitic rocks from the Chuquicamata-E1 Abram porphyry copper belt of northern Chile: Excimer laser ablation ICP-MS analysis. Econ. Geol. 101, 1327-1344. Chen, B., Liu, C. Q. and Tian, W., 2006. Magma-mixing between mantle- and crust-derived melts in the process of Mesozoic magmatism, Taihang Mountain: constraints from petrology and Geochemistry. Earth Sci. Front. 13, 140-147 (in Chinese with English abstract). Chen, B., Jahn, B. M. and Wei, C. J., 2002. Petrogenesis of Mesozoic granitoids in the Dabie UHP complex, central China: trace element and Nd-Sr isotope evidence. Lithos 60, 67-88. Chen, B.L., Jahn, B. M. and Zhai, M. G., 2004. Petrogenesis of the Mesozoic intrusive complexes from the southern Taihang Orogen. North China
28
Craton: element and Sr-Nd-Pb isotopic constraints. Contrib. Mineral. Petrol. 148-501. Chen, B., Tian, W., Zhai, M. G. and Arakawa, Y., 2005. Zircon U-Pb geochronology and geochemistry of the Mesozoic magmatism in the Taihang Mountains and other places of the North China Craton, with implications for petrogenesis and geodynamic setting. Acta Petrol. Sin. 21, 13-24 (in Chinese with English abstract). Chen, B. and Zhai, M. G., 2003. Geochemistry of late Mesozoic lamprophyre dykes from the Taihang mountains, north China, and implications for the sub-continental lithospheric mantle. Geol. Mag. 140, 87-93. Chen, B., Zhai, M. G. and Shao, J. A., 2003. Petrogenesis and significance of the Mesozoic North Taihang complex: major and trace element evidence. Sci. Chin. 46, 48-60. Chen, J. F., Yan, J., Xie, Z., Xu, X. and Xing, F. M., 2001. Nd and Sr isotopic composition of igneous rocks from the lower Yangtze region in eastern China: Constraints on sources. Phys. Chem. Earth (A) 26, 719-731. Chen, Z. C., Chen, B. and Tian, W., 2007. Zircon U-Pb ages, Hf isotopic compositions and geological significance: a case study of Mesozoic batholiths and mafic enclaves in north Taihang Mountain. Acta Petrol. Sin. 23, 295-306 (in Chinese with English abstract). Chu, N. C., Taylor, R. N., Chavagnac, V., Nesbitt, R. W., Boella, R. M., Milton, J. A., Germain, C. R., Bayon, G. and Burton, K., 2002. Hf isotope ratio
29
analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections. J. Anal. At. Spectrum. 17, 1567-1574. Deng, J.F., Mo, X.X., Zhao, H.L., Luo, Z.H., Du, Y.S., 1994. Lithosphere root/de-rooting and activation of the east China continent. Geosci. 8, 349-356 (in Chinese with English abstract). Deng, J.F., Su, S.G., Niu, Y.L., Zhao, G.C., Zhao, X.G., Zhou, S., Wu, Z.X., 2007. A possible model for the lithospheric thinning of North China Craton: evidence from the Yanshanian (Jura-Cretaceous) magmatism and tectonic. Lithos 96, 22-35. Deng, J. F., Zhao, H. L., Mo, X. X., Wu, Z.X., Luo, Z.H., 1996. Continental root-plume tectonics of China: Key to the continental dynamics. Beijing: Geol. Pub. Hou. (in Chinese). Deng, J. F., Zhao, H. L. and Mo, X. X., 2000. Yanshanian igneous petrotctonic assemblage and orogenic-deep procession east China. Geol. Rev. 46, 41-48 (in Chinese with English abstract). Depaolo, D. J., 1981. Trace element and isotopic effects of combined wall rock assimilation and fractionation crystallization. Earth Planet. Sci. Lett. 53, 189-202. Devey, C. W. and Cox, K. G., 1987. Relationships between crustal contamination and crystallization in continental flood basalt magmas with special reference to the Deccan Traps of the western chats, India. Earth
30
Planet. Sci. Lett. 84, 59-68. Dong, M. M., 2013. Mesozoic magmatism and mineralization in northern Taihang Mountains. Geol. Rev. 59, 255-256 (in Chinese with English abstract). Duan, Q. L., Tan, M. Y., Yang, C. C., Zhang, Y. L. and Yan, Z., 2007. A review on the late Mesozoic extensional tectonics on the eastern north China. 22, 403-410 (in Chinese with English abstract). Feng, J. Y., 2012. The origin of Mesozoic adakite-like volcanic rocks from the northern Taihang Mountains, North China Craton. The Master thesis of Shijiazhuang University of Economics, 1-52. Gao, S., Ducea, M.N., Jin, Z.M., Saleeby, J.B., 1998c. Lower crustal delamination and evolution of continental crust. Geol. J. China Univer. 4, 241-249 (in Chinese with English abstract). Gao, S., Jin, Z.M., 2007. Delamination and its geodynamical significance for the crust-mantle evolution. Geol. Sci. Tech. Inform. 16, 1-9 (in Chinese with English abstract). Gao, S., Rudnick, R.L., Carlson, R.W., McDonough, W.F., Liu, Y.S., 2002. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth Plant. Sci. Lett. 198, 307-322. Gao, S., Rudnick, R.L., Xu, W.L., Yuan, H.L., Liu, Y.S., Walker, R.J., Puchtel, I.S., Liu, X.M., Huang, H., Wang, X.R., Yang, J., 2008. Recycling deep cratonic lithosphere and generation of interpolate magmatism in the North
31
China Craton. Earth Planet. Sci. Lett. 270, 41-53. Gao, S., Rudnick, R.L., Yuan, H.L., Liu, X.M., Liu, Y.S., Xu, W.L., Lin, W.L., Ayers, J., Wang, X.C., Wang, Q.H., 2004. Recycling lower continental crust in the North China Craton. Nature 432, 892-897. Gao, S., Luo, T.C., Zhang, B.R., Zhang, H.F., Han, Y.W., Zhao, Z.D, Hu, Y.K., 1998a. Chemical composition of the continental crust as revealed by studies in East China. Geochim. et Cosmochim. Acta 62, 1959-1975. Gao, S., Rudnick, R.L., Carlson, R.W., McDonough, W.F., 2003. Removal of lithospheric mintle in the North China Craon: Re-Os isotopic evidence for coupled crust-mantle growth. Earth Sci. Front. 10, 61-67 (in Chinese with English abstract). Gao, S., Rudnick, R.L., Yuan, H.L., Liu, X.M., Liu, Y.S., Xu, W.L., Ling, W.L., Ayers, J., Wang, X.C., Wang, Q.H., 2004. Recycling lower continental crust in the North China Craton. Nature 432, 892-897. Gao, S., Zhang, B.R., Jin, Z.M., Kern, H., Luo, T.C., Zhao, Z.D., 1998b. How mafic is the lower continental crust? Earth Planet. Sci. Lett. 106, 101-117. Gao, S., Zhang, B.R., Luo, T.C., Li, Z.J., Xie, Q.L., Gu, X.M., Zhang, H.F., Ouyang, J.P., Wang, D.P., Gao, C.L., 1992. Chemical composition of the continental crust in the Qinling Orogenic Belt and its adjacent North China and Yangtze Cratons. Geochim. Cosmochim. Acta 6, 3 933-3 950. Gao, S., Zhang, J.F., Xu, W.L., Liu, Y.S., 2009. Delamination and destruction of the North China Craton. Chinese Sci. Bull. 54, 395-4003.
32
Ge, X. H., 1999. The important interpolate convergence events of central Asian mainland. Earth Sci. Fron., 6, 330 (in Chinese). Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., O'Reilly, S.Y., Shee, S.R., 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. et Cosm. Acta 64, 133-147. Guo, F., Fan, W.M., Wang, Y.J., Zhang, M., 2004. Origin of early Cretaceous calc-alkaline lamprophyres from the Sulu orogen in eastern China: implications for enrichment processes beneath continental collision belt. Lithos 78, 291-305. Hall, H. C., 1982. The importance and potential of mafic dyke swarms in studies of geodynamic process. Geo. Can. 9, 145-154. Harris, A. C., Allen, C. M., Bryan, S. E., Compbell, I. H., Holcombe, R. J. and Palin, J. M., 2004. ELA-ICP-MS U-Pb zircon geochronology of regional volcanism hosting the Baja de la Alumbrera CU-Au deposits: implications for porphyry-related mineralization. Mineral. Dep. 39, 46-67. Hart, S. R., 1984. A large-scale isotope anomaly in the southern Hemisphere mantle. Nature 309, 753-757. Hong, D. W., Wang, S. G. and Xie, X. L., 2000. Genesis of positive Nd (t) granitoids in the Da Hinggan Mountains-Mongolia orogenic belt and growth of continental crust. Earth Sci. Front. 7, 441-456 (in Chinese with English abstract). 33
Iizuka, T. and Hirata, T., 2005. Improvements of precision and accuracy in in-situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique. Chem. Geol. 220, 121-137. Jahn, B. M., Auvray, B., Cornichet, J. Bai Y. L., Shenk, Q. H. and Liu, D. Y., 1987. 3.5 Ga old amphibolites from eastern Hebei province China: Field occurrence, petrography, Sm-Nd isochronal age, and REE geochemistry. Precamb. Res. 34, 311-346. Johnson, K. T. M., 1998. Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressure. Contrib. Mineral. Petrol. 133, 60-68. Jull, M. and Kelemen, P. B., 2001. On the conditions for lower crust convective instability. J. Geophy. Res. 106, 6423-6446. Kay, R.W. and Kay, S. M., 1991. Creation and destruction of lower continental crust. Geol. Run. 80, 259-278. Kimura, G., Takahashi, M. and Kono, M., 1990. Mesozoic collision extrusion tectonic in eastern Asia. Tectonophysics 181, 15-23. Kogiso, T., Hirschmann, M. M. and Frost, D. J., 2003. High-pressure partial melting of garnet pyroxenes: possible mafic litholoies in the source of ocean island basalts. Earth Planet. Sci. Lett. 216, 603-617. Le Maitre, R. W., 2002. Igneous rocks: A classification and glossary of Terms, 2nd. Cambridge University. Pre. Cambridge 236. Levander, A., Niu, F., Lee, C. T. A. and Cheng, X., 2006. Imaging the
34
continental lithosphere. Tectonophysics 41, 167-185. Li, P. Z and Yu, J. S., 1993. Nianzishan miarolitic alkaline granite stock, Heilongjiang-its ages and geological implications. Geochimica. 4, 389-398 (in Chinese with English abstract). Li, S.G., Huang, F., Li, H., 2002. Post-collision delamination of the lithosphere beneath Dabie-Sulu orogenic belt. Chinese Sci. Bull. 46, 1487-1490. Lin, W., Wang, Q.C., 2006. Late Mesozoic extensional tectonics in the North China block:a crustal response to subcontinental mantle removal? Bull. Soc. Geol. France 177, 287-297. Liu, D. Y., Nutman, A. P., Compston, W., Wu, J. S. and Shen, Q. H., 1992. Remnants of 3800 Ma crust in the Chinese part of the Sino-Korean craton. Geol. 20, 339-342. Liu, F. S. and Shi, Z. L., 1998. Dynamic mechanism about generation of Mesozoic granites in Taihang-Yan Mountains and intra-continental orogeny. Acta Geol. Sin. 19, 12-18 (in Chinese with English abstract). Liu, J.L., Davis, G.A., Lin, Z.Y., Wu, F.Y., 2005. The Liaonan metamorphic core complex, southeastern Liaoning province, North China: a likely contributor to Cretaceous rotation of eastern Liaoning, Korea and contiguous areas. Tectonophy. 407, 65-80. Liu, S., Feng, C.X., Hu, R.Z., Gao, S., Wang, T., 2013b. Zircon U-Pb age, geochemical, and Sr-Nd-Pb isotopic constraints on the origin of alkaline intrusions in eastern Shandong province, China. Mineral. Petrol. 107,
35
591-608. Liu, S., Feng, C.X., Hu, R.Z., Zhai, M.G., Gao, S., Lai, S.C., Yan, J., Ian, M. Coulson, Zou, H.B., 2015. Zircon U-Pb geochronological, geochemical, and Sr-Nd isotope data for early Cretaceous mafic dykes in the Tancheng-Lujiang Fault area of the Shandong province, China: constraints on the timing of magmatism and magma genesis. J. Asian Earth Sci. 98, 247-260. Liu, S., Feng, C.X., Jahn, B.M., Hu, R.Z., Gao, S., Ian, M. Coulson, Feng, G.Y., Lai, S.C., Yang, C.G., Yang, Y.H., 2013c. Zircon U-Pb age, geochemcial, and Sr-Nd-Hf isotopic constraints on the origin of mafic dykes in the Shaaxi province, North China Craton. Lithos 175-176, 244-254. Liu, S., Hu, R.Z., Gao, S., Feng, C.X., Feng, G.Y., 2012. Geochemical and isotopic constraints on the age and origin of mafic dikes from eastern Shandong province, eastern North China Craton. Inter. Geol. Rev. 54, 1389-1400. Liu, S., Hu, R. Z., Gao, S., Feng, C. X., Feng, G.Y., Ian, M. Coulson, Li, C., Wang, T., Qi, Y.Q., 2010. Zircon U-Pb age and Sr-Nd-Hf isotope geocehmistry of permian granodiorite and associated gabbro in the Songliao Block, NE China and implications for growth of juvenile crust. Lithos 114, 423-436. Liu, S., Hu, R.Z., Gao, S., Feng, C.X., Ian, M. Coulson, 2013a. Zircon U-Pb ae and Sr-Nd-Hf isotopic constraints on teh age and origin of Triassic mafic
36
dikes, Dalian area, northeast China. Inter. Geol. Rev. 55, 249-262. Liu, S., Hu, R. Z., Gao, S., Feng, C. X., Qi, L., Zhong, H., Xiao, T. F., Qi, Y. Q., Wang, T. and Ian M. Coulson, 2008a. Zircon U-Pb geochronology and major, trace elemental and Sr-Nd-Pb isotopic geochemistry of mafic dykes in western Shandong province, east China: Constraints on their petrogenesis and geodynamic significance. Chem. Geol. 255, 329-345. Liu, S., Hu, R. Z., Gao, S., Feng, C. X., Qi, Y. Q., Wang, T., Feng, G. Y. and Ian M. Coulson, 2008b. U-Pb zircon age, geochemical and Sr-Nd-Pb-Hf isotopic constraints on age and origin of alkaline intrusions and associated mafic dykes from Sulu orogenic belt, eastern China. Lithos 106, 365-379. Liu, S., Hu, R. Z., Gao, S., Feng, C. X., Yu, B. B., Feng, G. Y., Qi, Y. Q., Wang, T. and Ian M. Coulson, 2009a. Petrogenesis of late Mesozoic mafic dykes in the Jiaodong peninsula, eastern North China Craton and implications for the foundering of lower crust. Lithos 113, 621-639. Liu, S., Hu, R. Z., Gao, S., Feng, C. X., Yu, B. B., Qi, Y.Q., Wang, T., Feng, G.Y., Ian, M. Coulson, 2009b. Zircon U-Pb age, geochemistry and Sr-Nd-Pb isotopic compositions of adakitic volcanic rocks from Jiaodong, Shandong province, eastern China: constraints on petrogenesis and implications. J. Asian Earth Sci. 35, 445-458. Liu, S., Hu, R.Z., Gao, S., Feng, C.X., Zhong, H., 2009c. U-Pb zircon ages, geochemical and Sr-Nd-Pb isotopic constraints on the dating and origin of intrusive complexes in the Sulu orogen, eastern China. Inter. Geol. Rev.
37
53, 61-83. Liu, S., Hu, R.Z., Feng, C.X., Gao, S., Feng, G.Y., Lai, S.C., Qi, Y.Q., Ian, M. Coulson, Yang, Y.H., Yang, C.G., Tang, L., 2006. U-Pb zircon age, geochemical, and Sr-Nd-Pb isotopic constraints on the age and origin of mafic dykes from eastern Shandong province, eastern China. Acta Geol. Sin. 87, 1045-1057. Luo, H.L., Wu, T.R., Li, Y., 2007. Geochemistry and SHRIMP dating of the Kebu massif from Wulatezhongqi, Inner Mongollia: evidence for the early Permian underplating beneath the Nroth China Craton. Acta Petrol. Sin. 23, 755-766 (in Chinese with English abstract). Luo, Z. H., Deng, J. F. and Zhao, G.C., 1997. Characteristics of magmatic activities and orogenic process of Taihang Mountains intra-plate orogen. Earth Sci. 22, 279-283 (in Chinese with English abstract). Machado, N. and Simonetti, A., 2001. U-Pb dating and Hf isotopic composition of zircon by laser-ablation MC-ICP-MS. In: Sylvester P (ed.). Laser Ablation-ICPMS in the Earth Science: principles and Applications: St. John's, Newfoundland, Mineralogical Association of Canada 121-146. Marsh, J. S., 1989. Geochemical constraints on coupled assimilation and crystallization involving upper crustal compositions and continental tholeiitic magma. Earth Planet. Sci. Lett. 92, 78-80. McKenzie, D. and O'Nions, R. K., 1991. Partial melt distributions from inversion of rare earth element concentrations. J. Petrol. 32, 1021-1091.
38
McKenzie, D. and O'Nions, R. K., 1995. The source regions of ocean island basalts. J. Petrol. 36, 133-159. Menzies, M.A., Xu, Y.G., Zhang, H.F., Fan, W.M., 2007. Integration of geology, geophysics and geochemistry: A key to understanding the North China Craton. Lithos 96, 1-21. Middlemost, E. A. K., 1994. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 74, 193-227. Mingram, B., Trumbull, R. B., Littman, S. and Grettenberger, H., 2000. A petrogenetic study of androgenic felsic magmatism in the Cretaceous paresis ring complex, Namibia: evidence for mixing of crust and mantle-derived components. Lithos 54, 1-22. Munker, C., Pfander, J. A., Weyer, S., Kleine, T. M. and Mezger, K., 2003. Evolution of planetary cores and the Earth-Moon system from Nb/Ta systematics. Sci. 301, 83-87. Niu, S. Y., Chen, L. and Xu, C. S., 1994. The crustal evolution and metallogenic regularity of the Taihang Mountain. Beijing: Sci. Pub. Hou. (in Chinese with English abstract). Peng, T. P., Wang, Y. J., Fan, W. M. and Peng, B. X., 2004. SHRIMP zircon U-Pb geochronology of the diorites from southern Taihang Mountains in the north China interior and its petrogenesis. Acta Petrol. Sin. 20, 1253-1262 (in Chinese with English abstract). Qi, L., Hu, J. and Gregoire, D. C., 2000. Determination of trace elements in
39
granites by inductively coupled plasma mass spectrometry. Talanta 51, 507-513. Qian, Q., Chung, S. L., Lee, T. Y., 2002. Geochemical characteristics and petrogenesis of the Badaling high Ba-Sr granitoids: a comparison of igneous rocks from north China and the Dabie-Sulu Orogen. Acta Petrol. Sin. 18, 275-292 (in Chinese with English abstract). Qin, X. F., 2005. The feature and origin of the granite in northern Taihang Mountain. Master's thesis of Lanzhou University. Rapp, R. P., Shimizu, N. and Norman, M. S., 2003. Growth of early continental crust by partial melting of eclogite. Nature 425, 605-609. Rudnick, R. L. and Fountain, D. M., 1995. Nature and composition of the continental crust: a lower crustal perspective. Rev. Geoph. 33, 267-309. Shao, J. A., Han, Q. J. and Zhang, L. Q., 1999a. Cumulate complex xenoliths in the early Mesozoic in eastern Inner Mongolia. Chin. Sci. Bull. 44, 1272-1279 (in Chinese with English abstract). Shao, J. A., Mu, B. L., Zhu, H. Z. and Zhang, L. Q., 2010. Material source and tectonic settings of the Mesozoic mineralization of the Da Hinggan Mountains. Acta Petrol. Sin. 26, 649-656 (in Chinese with English abstract). Shao, J. A., Zhang, L. Q. and Mu, B. L., 1999b. Magmatism in the Mesozoic extending orogenic process of Da Hinggan Mountains. Earth Sci. Front. 6, 339-345 (in Chinese with English abstract).
40
Shaw, D. M., 1970. Trace element fractionation during anatomies. Geoch. et Cosmoch. Acta 34, 237-243. Shen, Z. C., Hou, Z. Q., Yu, F., Chen, Z. K., Li, Q. Y., Ma, G. X., Ge, F. and Wang, Z. M., 2015. SHRIMP zircon U-Pb ages and Hf isotopes of the intermediate-acidic rocks of Wananzhen complex in northern Taihang Mountains and their geological implications. Acta Petrol. Sin. 31, 1409-1420 (in Chinese with English abstract). Sobolev, A. V., Hofmann, A. W., Sobolev, S .V. and Nikogosian, I. K., 2005. An olivine-free mantle source of Hawaiian shield basalts. Nature 434, 590-597. Sӧderlund U, Patchett PJ, Vervoort JD and Isachsen CE. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 219, 311-324. Sun, J. P., Zhang, X. Z. and Yang, B. J., 1997. Origin and geodynamic of the Mesozoic and Cenozoic basin in eastern China. Gl. Geol. 16, 1-6. Sun, S. S. and McDonough, W. F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A. D. and Norry M. J. (Eds.). Magmatism in the Ocean basins. Geol. Society Spec. Pub. London 313-345. Tang, Y.J., Zhang, H.F., Ying, J.F., 2006. Asthenosphere-lithospheric mantle interaction in an extensional regime: implication from the geochemistry of Cenozoic basalts from Taihang Mountains, North China Craton. Chem. 41
Geol. 233, 309-327. The Beijing bureau of geology and mineral resources, 1991. Regional geology of Beijing. Geol. Pub. House. The Heibei bureau of geology and mineral resources, 1989. Regional geology of Hebei province, Beijing and Tianjin. Geol. Pub. House. The Inner Mongolia autonomous region, 1991. Regional geology of The Inner Mongolia autonomous region. Geol. Pub. House. Walter, M. J., 1998. Melting of garnet peridotite and the origin of komatite and depleted lithosphere. J. Petrol. 39, 29-60. Wang, T., Zheng, Y.D., Zhang, J.J., Wang, X.S., Zeng, L.S., Tong, Y., 2007. Some probems in the study of Mesozoic extensional structure in the North China Craton and its significance for the study of lithospheric thinning. Geol. Bull. China 26, 1154-1166. Wang, Y. and Zhang, Q., 2001. A granitoid complex from Badaling area, north China: composition, geochemical characteristics and its implications. Acta Petrol. Sin. 17, 533-540 (in Chinese with English abstract). Wang, Y. J., Fan, W. M., Zhang, H. F. and Peng, T. P., 2006. Early Cretaceous gabbroic rocks from the Taihang Mountains: implications for a paleo-subduction-related lithospheric mantle beneath the central North China Craton. Lithos 86, 281-302. Wang, Y. X. and Zhao, Z. H., 1997. Geochemistry and origin of the Baerzhe REE-Nb-Be-Zr super large deposit. Geoch. 26, 24-34 (in Chinese with
42
English abstract). Wood, D. A., Tarneu, J., Varet, J., Saunders, A. N., Bouhault, H., Joron, J. L., Treuil, M. and Cann, J. R., 1979. Geochemistry of basalts drills in the North Atlantic by IPODLeg 49: Implications for mantle heterogeneity. Earth Planet. Sci. Lett. 42, 77-97. Wood head, J., Hergt, J., Shelley, M., Eggins, S. and Kemp, R., 2004. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chem. Geol. 209, 121-135. Wu, F.Y., Ge, W.C., Sun, D.Y., Guo, C.L., 2003. Discussion on the lithospheric thinning in eastern China. Earth Sci. Front. 10, 51-60 (in Chinese with English abstract). Wu, F.Y., Lin, J.Q., Wilde, S.A., Zhang, X.O., Yang, J.H., 2005. Nature and significance of the early Cretaceous giant igneous event in eastern China. Earth Planet. Sci. Lett. 233, 103-119. Wu, F. Y. and Sun, D. Y., 1999. The Mesozoic magmatic and lithospheric thinning in eastern China. J. Sci. Tec. 29, 313-318 (in Chinese with English abstract). Wu, F.Y., Walker, R.J., Yang, Y.H., Yuan, H.L., Yang, J.H., 2006. The chemical-temporal evolution of lithospheric mantle underlying the North China Craton. Geochim. Cosmochim. Acta 70, 501-503. Wu, F.Y., Xu, Y.G., Gao, S., Zheng, J.P., 2008. Lithospheric thinning and
43
destruction of the North China Craton. Acta Petrol. Sin. 24 (1145-1174 (in Chinese with English abstract). Wu, F. Y. Yang, Y. H., Xie, L. W., Yang, J. H. and Xu, P., 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem. Geol. 234, 105-126. Xie, Z., Li, Q. Z. and Gao, T. S., 2006. Comment on “Petrogenesis of post-orogenic syenites in the Sulu orogenic belt, east China: Geochronological, Geochemical and Nd-Sr isotopic evidence” by Yang et al. Chem. Geol. 235, 191-194. Xiong, X. L., Liu, X. C., Zhu, Z. M., Li, Y., Xiao, W. S., Song, M. S., Zhang, S. and Wu, J. H., 2011. The relation between adakitic rocks and the destruction of the North China Craton: Constraints from the experimental petrology and geochemistry. Sci. Chin. 41, 654-667. Xu, B. L., Yan, G. H., Huang, F. S., 1996. Petrology, petrogenetic type and tectonic implication of Wulingshan alkaline granitic complex in northern Hebei Province, China. Acta Petrol. Sin. 12, 145-155 (in Chinese with English abstract). Xu, B. L., Yan, G.H., Xu, Z. B., 1999. Geochemistry and genetic implication of three series of Yanshanian granite in Northern Hebei Province. Acta Petrol. Sin. 15, 208-216 (in Chinese with English abstract). Xu, W.L., Wang, Q.H., Wang, D.Y., Pei, F.P., Gao, S., 2004. Processes and mechanism of Mesozoic lithospheric thinning in eastern North China
44
Craton:Evidence from Mesozoic igneous rocks and deep-seated xenoliths. Earth Sci. Front. 11, 309-317 (in Chinese with English abstract). Xu, W.L., Yang, C.H., Yang, D.B., Wang, Q.H., Ji, W.Q., 2006. Mesozoic high-Mg diorites in eastern North China Craon:constraints on the mechanism of lithospheric thinning. Earth Sci. Front. 13, 120-129 (in Chinese with English abstract). Yang, J.H., Wu, F.Y., Chung, S.L., Wilde, S.A., Davis, G.A., 2007. Rapid exhumation and cooling of the Liaoning metamorphic core complex: inferences from 40Ar/39Ar thermochronology and implications for late Mesozoic extension in the eastern North China Craton. Geol. Soc. Am. Bull. 119, 1405-1414. Yang, J. H., Wu, F. Y., Chung, S. L., Wilde, S. A. and Chu, M. F., 2006. A hybrid origin for the Qianshan A-type granite, Northeast China: Geochemical and Sr-Nd-Hf isotopic evidence. Lithos 89, 89-106. Yang, Q. D., Guo, L., Wang, T., Zeng, T., Zhang, L., Tong, Y., Shi, X. J. and Zhang, J. J., 2014. Geochronology, origin, sources and tectonic settings of late Mesozoic two-tag granites in the Ganzhuermiao region, central and southern Da Hinggan Range, NE China. Acta Petrol. Sin. 30, 1961-1981 (in Chinese with English abstract). Yang, W., Li, S.G., 2008. Geochronology and geochemistry of the Mesozoic volcanic rocks in western Liaoning: implications for lithospheric thinning of the North China Craton. Lithos 102, 88-117.
45
Yaxley, G. M., 2000. Experimental study of the phase and melting relations of homogeneous basalt plus peridotite mixtures and implications for the petrogenesis of flood basalts. Contrib. Mineral. Petrol. 139, 326-338. Ying, J. F., Zhang, H. F., Sun, M., Tang, Y.J., Zhou, X. H. and Liu, X.M., 2007. Petrology and geochemistry of Zijinshan alkaline intrusive complex in Shanxi province, western North China Craton: implications for magma mixing of different sources in an extensional regime. Lithos 98, 45-66. Ying, J. F., Zhang, H. F. and Tang, Y. J., 2010. Zoned olivine xenocrysts in a late Mesozoic gabbros from the southern Taihang Mountains: implications for old lithospheric mantle beneath the central North China Craton. Geol. Mag. 147, 161-170. Yu, J. H., Fu, H. Q and Zhang, F. L., 1995. The plutonium of Beijing area. Beijing: Geol. Pub. Hou. (in Chinese with English abstract). Zhang, H. D., Cao, H. L., Liu, J. C., Zhang, S.N., Peng, S. X., Wang, R. M., Wu, J. L. and Huang, S. W., 2013. SHRIMP U-Pb dating, geochemistry and tectonic implications of Pingshun diorites in Taihang Mountains. Geol. Sci. Tec. Inform. 32, 41-49. Zhang, H. F., Sun, M., Zhou, M. F., Zhou, X. H. and Zhai, M. G., 2004. Highly Heterogeneous late Mesozoic lithospheric mantle beneath the North China Craton: evidence from Sr-Nd-Pb isotopic systematics of mafic igneous rocks. Geol. Mag. 14, 55-62. Zhang, H.F., Sun, M., Zhou, X.H., Fan, W.M., Zhai, M.G., Yin, J.F., 2002.
46
Mesozoic lithosphere destruction beneath the North China Craton: evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib. Mineral. Petrol. 144, 241-253. Zhang, H. F., Sun, M., Zhou, X. H., Ying, J. F., 2005. Geochemical constraints on the origin of Mesozoic alkaline intrusive complexes from the North China Craton and tectonic implications. Lithos 81, 297-317. Zhao, G. C., Wilde, S. A., Cawood, P. A. and Sun, M., 2001. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precamb. Res. 107, 45-73. Zhao, J. X. and McCulloch, M. T., 1993. Melting of a subduction-modified continental lithospheric mantle: evidence from late Proterozoic mafic dyke swarms in central Australia. Geol. 21, 463-466. Zhu, R.X., Chen, L., Wu, F.Y., Liu, J.L., 2011. Timing, scale and mechanism of the destruction of the North China Craton. Chinese Sci. Bull. 54, 789-797. Zindler, A. and Hart, S., 1986. Chemical geodynamics. Ann. Rev. Earth Planet. Sci. 14, 493-571. Zou, H.B., Zindler, A., Xu, X. S. and Qi, Q., 2000. Major, trace element, and Nd, and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations and tectonic significance. Chem. Geol. 171, 33-47.
47
Figure captions Fig.1. The simplified geological setting of the Taihang-Da Hinggan gravity lineament. Fig. 2. Geological map of the study areas and the distribution of the mafic dykes across this region of China. Fig. 3. Zircon LA-ICP-MS U-Pb concordia diagrams for the studied mafic dykes within the area of the Taihang-Da Hinggan gravity lineament. Fig. 4. Total alkali vs. silica (TAS) plot for mafic dykes within the area of the Taihang-Da Hinggan gravity lineament. All major element data have been recalculated to 100 % on an anhydrous basis (after Middlemost, 1994; Le Maitre, 2002). Fig.5. Chondrite-normalized REE and primitive-mantle-normalized multi-element variation diagrams for the studied mafic dykes within the area of the Taihang-Da Hinggan gravity lineament; these values are normalized to the chondrite and primitive mantle compositions of Sun and McDonough (1989). Fig. 6. Diagram showing variations in initial 87Sr/86Sr vs. Nd (t) for the investigated mafic dykes within the area of the Taihang-Da Hinggan gravity lineament. Also shown are the compositions of Mesozoic mafic rocks from the North China Craton (Liu et al., 2008a, b, 2009a) and mafic rocks from the Yangtze Craton (Chen et al., 2001; Li et al., 2004). Fig. 7. Variations in 208Pb/204Pb and 207Pb/204Pb vs. 206Pb/204Pb within the mafic
48
dykes from the area of the Taihang-Da Hinggan gravity lineament. Also shown are I-MORB (Indian MORB) and P & N-MORB (Pacific and North Atlantic MORB), OIB, and NHRL fields, and a 4.55 Ga geochron after Barry and Kent (1998), Zou et al. (2000), and Hart (1984), respectively. The North China Craton data are from Zhang et al. (2004) and Xie et al. (2006), and data of mafic rocks of the Yangtze Craton are from Yan et al. (2003). Fig. 8. Variations in La/Sm vs. La and Sm/Yb vs. Sm compositions of the samples analyzed during this study, and melt curves and lines derived from the non-modal batch melting equations of Shaw (1970). Melt curves are shown for spinel lherzolite (with mode and melt mode compositions of ol0.600 + opx0.200 + cpx0.100 + gt0.100 and ol0.030 + opx0.160 + cpx0.880 + sp0.110, respectively; Walter, 1998). Mineral/matrix partition coefficients and the composition of the DMM are from McKenzie and O’Nions (1991, 1995). Primitive mantle, and N-MORB and E-MORB compositions are from Sun and McDonough (1989). Tick marks on each curve or line correspond to changing degrees of partial melting of a given mantle source. Fig. 9. Tectonic evolution of the study area of the Taihang-Da Hinggan gravity lineament (Liu et al., 2008a, b, 2009a). (a) 240-185 Ma: collision of the Yangtze Block and NCC resulted in thickening of the lithosphere (mantle and lower crust) and eclogitization of the lower thickened crust; (b) 185-165 Ma: delamination of the eclogitic lower crust occurred, followed by the generation of silicic melts via the melting of foundered eclogite, which reacted
49
extensively with overlying mantle peridotite; (c) 132-121 Ma: decompression melting of the hybridized lithospheric mantle produced the parent magmas to the mafic dykes.
50
51
52
53
54
55
56
57
58
Table captions Table 1.
Zircon LA-ICP-MS U-Pb isotopic data for samples from the dolerites in the area of the Taihang-Da Hinggan gravity lineament.
LWM01 Spot Th U 1 457 451 2 4085 2698 3 547 565 4 124 49.5 5 276 147 6 170 156 7 69.3 55.2 8 163 148 9 200 179 10 133 127 11 303 85.5 12 61.3 63.1
Isotopic 207Pb/206Pb
ratios 1s ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### #####
Pb 408 187 14.9 16.5 29.4 26.6 29.9 24.1 28.6 22.1 63.3 8.63
Th/U 1.01 1.51 0.97 2.50 1.88 1.09 1.26 1.10 1.12 1.05 3.55 0.97
238U/232Th
0.46 1.51 0.63 2.5 1.88 1.09 0.46 0.47 0.53 0.37 3.55 0.84
0.0517 0.0517 0.0506 0.0519 0.0518 0.0516 0.0517 0.0518 0.0507 0.0515 0.0515 0.0508
207Pb/206Pb
ratios 1s
Isotopic
Age (Ma) 207Pb/235U
1s 0.0064 0.0067 0.0033 0.0064 0.0055 0.0060 0.0066 0.0063 0.0035 0.0064 0.0064 0.0033
206Pb/238U
207Pb/235U
0.2283 0.2278 0.2256 0.2264 0.2274 0.2281 0.2283 0.2272 0.2258 0.2288 0.2294 0.2236
0.0335 0.0335 0.0336 0.0331 0.0333 0.0334 0.0334 0.0333 0.0335 0.0336 0.0335 0.0336
1s ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### #####
207Pb/206Pb
1s
206Pb/238U
0.0044 0.0041 0.0052 0.0066 0.0046 0.0035 0.0036 0.0066 0.0042 0.0058 0.0058 0.0054 0.0057
0.0316 0.0315 0.0316 0.0315 0.0314 0.0313 0.0316 0.0312 0.0312 0.0314 0.0317 0.0315 0.0314
1s 0.0003
WJZ02 Spot
Th
U
Pb
Th/U
238U/232Th
1 2 3 4 5 6 7 8 9 10 11 12 13
457 68.5 198 375 429 3587 66.8 811 222 457 190.7 747 84.7
451 23.9 12.6 73.2 204 1399 23.4 640 120 451 11.8 403 30.3
396 14.2 19.3 62.7 55.1 210 13.6 245 15.3 396 18.4 53.3 17.0
1.01 2.87 15.65 5.13 2.11 2.56 2.86 1.27 1.86 1.01 16.10 1.85 2.79
1.38 5.13 1.98 2.29 2.18 2.66 1.36 1.01 1.33 1.85 2.36 2.03 1.28
0.0521 0.0501 0.0544 0.0505 0.0527 0.0506 0.0519 0.0499 0.0523 0.0519 0.0523 0.0506 0.0511
0.0018 0.0017 0.0019 0.0021 0.0018 0.0016 0.0016 0.0017 0.0017 0.0020 0.0020 0.0019 0.0019
0.2268 0.2174 0.2372 0.2194 0.2281 0.2182 0.2265 0.2149 0.2248 0.2244 0.2282 0.2200 0.2215
Isotopic
ratios 1s
207Pb/235U
1s
206Pb/238U
0.0016
0.1447
0.0024
0.0212
MJZ02 Spot
Th
U
Pb
Th/U
238U/232Th
207Pb/206Pb
1
8136
1701
217
4.78
5.72
0.0494
1s 42 41 15 38 39 39 39 38 16 38 38 16
207Pb/235U
206Pb/238U
209 208 207 207 208 209 209 208 207 209 210 205
1s 5 6 3 5 5 5 5 5 3 5 5 3
212 212 213 210 211 212 212 211 212 213 212 213
1s 2 3 2 3 2 2 3 3 3 3 3 2
1s
207Pb/206Pb
1s
207Pb/235U
1s
206Pb/238U
1s
0.0004 0.0004 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0005 0.0005 0.0005
288 201 388 219 315 220 281 191 297 281 297 223 244
22 21 25 42 23 17 16 80 21 34 32 31 33
208 200 216 201 209 200 207 198 206 206 209 202 203
4 3 4 5 4 3 3 6 4 5 5 4 5
200 200 201 200 199 199 201 198 198 199 201 200 199
3 3 3 3 3 3 3 3 3 3 3 3 3
207Pb/206Pb
1s
207Pb/235U
1s
206Pb/238U
1s
169
17
137
2
135
2
270 273 223 281 276 269 270 274 225 261 261 232
Age (Ma)
Age (Ma)
59
2 3 4 5 6 7 8 9 10 11 12
1980 93.7 3876 1471 3630 2893 1265 290 274 374 2510
681 73.5 678 668 742 2120 568 73.9 225 198 688
68.6 5.52 102 46.2 99.8 81.1 33.6 22.1 10.2 11.9 57.7
2.91 1.28 5.72 2.20 4.89 1.37 2.23 3.92 1.22 1.89 3.65
2.2 4.89 1.37 2.23 1.22 1.89 3.65 1.01 3.88 0.31 0.38
0.0499 0.0483 0.0525 0.0493 0.0493 0.0514 0.0487 0.0500 0.0491 0.0488 0.0518
0.0017 0.0013 0.0017 0.0022 0.0027 0.0028 0.0016 0.0018 0.0022 0.0018 0.0018
0.1473 0.1421 0.1586 0.1415 0.1458 0.1528 0.1427 0.1491 0.1446 0.1449 0.1520
0.0031 0.0034 0.0026 0.0058 0.0066 0.0079 0.0025 0.0037 0.0052 0.0034 0.0033
0.0214 0.0213 0.0219 0.0208 0.0215 0.0216 0.0212 0.0216 0.0213 0.0216 0.0213
Isotopic
ratios 1s
207Pb/235U
1s
206Pb/238U
1s
0.00544 0.005 0.00427 0.00303 0.00681 0.00234 0.00749 0.00441 0.00275 0.00357
0.00192 0.00187 0.00196 0.00191 0.00184 0.00198 0.00192 0.00186 0.00187 0.00186
MJZ03 Spot
Th
U
Pb
Th/U
238U/232Th
207Pb/206Pb
1 2 3 4 5 6 7 8 9 10
312 142 669 116 139 215 335 358 400 275
113 188 358 102 55.6 105 210 268 271 158
241 3.6 53.6 19.1 56.9 0.4 0.8 0.9 152 1.9
2.77 0.76 1.87 1.14 2.51 2.04 1.59 1.34 1.47 1.74
1.59 2.13 2.22 2.23 0.65 2.3 1.87 2.01 1.06 2.65
0.04724 0.05079 0.04697 0.04667 0.04804 0.0471 0.05161 0.05297 0.04702 0.04969
0.0208 0.0197 0.016 0.0117 0.0272 0.0088 0.0286 0.0175 0.0109 0.0141
0.01254 0.01307 0.01269 0.01231 0.01217 0.01285 0.01364 0.01358 0.01213 0.01277
JY01 Spot
Isotopic Th
U
Pb
Th/U
238U/232Th
207Pb/206Pb
ratios 1s
207Pb/235U
1s
206Pb/238U
1 2 3 4 5 6 7 8 9 10
806 2573 952 474 164 457 454 587 415 686
137 2090 27.7 36.5 58.0 451 86.7 38.7 293 248
292 302 422 240 9.8 396 224 217 179 199
5.88 1.23 34.36 12.99 2.82 1.01 5.23 15.15 1.42 2.77
2.76 2.75 2.77 2.77 2.77 2.76 2.77 2.77 2.75 2.76
0.0498 0.0482 0.0524 0.0494 0.0492 0.0515 0.0486 0.0502 0.0494 0.0486
0.0016 0.0014 0.0018 0.0021 0.0026 0.0027 0.0017 0.0018 0.0023 0.0017
0.1475 0.1423 0.1585 0.1416 0.1457 0.1527 0.1428 0.1492 0.1447 0.1448
0.0032 0.0035 0.0027 0.0057 0.0065 0.0079 0.0026 0.0038 0.0053 0.0035
0.0215 0.0214 0.0218 0.0207 0.0216 0.0217 0.0213 0.0217 0.0214 0.0215
Isotopic Th/U 238U/232Th 207Pb/206Pb 4.14 4.14 0.0524
HM03 Spot
Th
U
Pb
1
1459
352
52.9
ratios 1s 0.003
0.0003 0.0003 0.0003 0.0003 0.0004 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
192 113 306 160 162 257 135 195 155 136 275
24 66 17 101 75 126 19 31 55 29 25
140 135 150 134 138 144 135 141 137 137 144
3 3 2 5 6 7 2 3 5 3 3
136 136 140 133 137 138 135 138 136 137 136
2 2 2 2 2 2 2 2 2 2 2
207Pb/206Pb
1s
207Pb/235U
1s
206Pb/238U
1s
0.0001 0.0001 9E-05 8E-05 0.0002 5E-05 0.0001 0.0001 7E-05 8E-05
61 231 48 32 101 54 268 328 50 181
611 563 486 358 842 292 857 500 340 426
13 13 13 12 12 13 14 14 12 13
5 5 4 3 7 2 8 4 3 4
12.4 12.0 12.6 12.3 12.0 12.8 12.4 12.0 12.0 12.0
0.9 0.8 0.6 0.5 1 0.3 0.9 0.7 0.5 0.5
1s
207Pb/206Pb
1s
207Pb/235U
1s
206Pb/238U
1s
0.0003 0.0003 0.0004 0.0003 0.0004 0.0003 0.0003 0.0004 0.0003 0.0003
192 114 306 160 162 257 135 195 155 136
25 32 19 66 73 90 20 28 56 31
140 135 149 134 138 144 136 141 137 137
3 3 2 5 6 7 2 3 5 3
137 136 139 132 137 138 136 139 136 137
2 2 3 2 2 2 2 3 2 2
207Pb/206Pb
1s
207Pb/235U
1s
206Pb/238U
1s
303
78
117
5
124
2
Age (Ma)
Age (Ma)
Age (Ma) 207Pb/235U
0.1226
1s 0.0057
206Pb/238U
0.0194
60
1s 3E-04
2 3 4 5 6 7 8 9 10 11 12
628 865 569 714 99.3 449 2608 534 1543 1263 640
188 321 160 346 48.2 445 751 218 364 441 241
24.5 32.0 26.1 49.8 5.1 387 73.3 17.7 64.1 113 46.2
3.34 2.69 3.55 2.07 2.06 1.01 3.47 2.45 4.24 2.86 2.66
XHH01 Spot
Th
U
Pb
Th/U
1 2 3 4 5 6 7 8 9 10 11
457 208 71.3 358 413 583 178 263 522 171 236
450 106 61.2 227 351 403 107 53.4 132 140 123
398 90.6 12.6 26.6 20.9 54.0 10.8 18.8 157 8.87 16.9
1.01 1.96 1.16 1.58 1.18 1.45 1.67 4.93 3.95 1.22 1.92
3.34 2.12 2.12 2.12 2.12 2.12 2.13 2.12 2.13 2.12 2.12
0.0516 0.003 0.0519 0.003 0.0461 0.0027 0.0518 0.003 0.0525 0.003 0.0524 0.003 0.0526 0.003 0.0523 0.003 0.0522 0.002 0.0521 0.002 0.0523 0.003 Isotopic
0.1232 0.1253 0.1254 0.1236 0.1248 0.1235 0.1235 0.1229 0.1232 0.1226 0.1221
238U/232Th
207Pb/206Pb
ratios 1s
207Pb/235U
1.58 1.57 1.58 1.58 1.58 1.58 1.58 1.57 1.58 1.56 1.56
0.0554 0.0517 0.0518 0.0462 0.0519 0.0526 0.0525 0.0525 0.0524 0.0521 0.0522
0.0028 0.0027 0.0025 0.0027 0.0029 0.0028 0.0027 0.0028 0.0026 0.0024 0.0024
0.1225 0.1233 0.1254 0.1253 0.1235 0.1247 0.1236 0.1234 0.1289 0.1233 0.1225
0.0059 0.0058 0.0071 0.0056 0.0056 0.0055 0.0055 0.0062 0.0061 0.0061 0.0056
0.0187 4E-04 0.0196 3E-04 0.0193 0.0003 0.0196 0.0003 0.0189 3E-04 0.0191 3E-04 0.0198 3E-04 0.0192 3E-04 0.0191 3E-04 0.0196 3E-04 0.0195 3E-04
268 281 277 307 303 312 299 294 290 299
71 78 97 73 73 73 74 87 84 86 76
118 120 120 118 119 118 118 118 118 117 117
5 5 6 5 5 5 5 6 6 6 5
119 125 123 125 121 122 126 123 122 125 124
3 2 2 2 2 2 2 2 2 2 2
Age (Ma) 1s
206Pb/238U
1s
207Pb/206Pb
1s
207Pb/235U
1s
206Pb/238U
1s
0.0056 0.0058 0.0058 0.0072 0.0057 0.0055 0.0056 0.0054 0.0063 0.0062 0.0061
0.0195 0.0186 0.0195 0.0194 0.0195 0.0188 0.0192 0.0197 0.0193 0.0192 0.0195
0.0003 0.0004 0.0003 0.0003 0.0004 0.0003 0.0003 0.0003 0.0004 0.0003 0.0003
428 272 277 5 281 312 307 307 303 290 294
74 69 78 99 66 71 75 72 74 86 86
117 118 120 120 118 119 118 118 123 118 117
5 5 5 6 5 5 5 5 6 6 6
124 119 124 124 124 120 123 126 123 123 124
2 3 2 2 3 2 2 2 3 2 2
61
Table 2. Major (wt. %) and trace (ppm) element compositions of the dolerites within the area of the Taihang-Da Hinggan gravity lineament. Sample
SiO2
TiO2
Al2O3
Fe2O3
MnO
MgO
CaO
K2O
Na2O
P2O5
LOI
Total
Mg#
LWM01 LWM02 LWM03 LWM04 LWM05 LWM06 LWM07 WJZ01 WJZ02 WJZ06 MJZ03 MJZ04 MJZ05 MJZ11 MJZ18 MJZ25 MJZ27 MJZ28 MJZ31 MJZ32 MJZ35 MJZ36 MJZ42 MJZ44 MJZ46 JY03 JY07 JY12 JY13 JY14 JY15 HM01 HM03 XHH02 XHH03 XHH04 XHH05
49.47 49.29 49.36 48.68 50.90 49.46 50.63 50.55 47.65 48.54 49.43 48.97 49.22 47.55 49.59 49.89 50.13 50.18 50.45 49.98 50.16 50.20 49.97 50.43 51.57 49.16 48.58 49.41 49.68 49.34 49.15 47.70 46.98 48.87 48.48 49.34 49.53
0.95 0.97 0.93 1.15 0.91 0.89 1.04 0.68 0.54 0.63 0.89 0.87 0.85 0.98 1.33 1.30 1.28 1.31 1.29 1.29 1.32 1.29 1.24 1.11 1.09 1.17 1.17 1.19 1.15 1.16 0.67 2.87 2.71 1.31 1.22 1.24 1.29
14.91 14.79 14.75 14.68 14.56 14.46 13.62 14.63 14.06 16.38 13.96 13.89 13.89 14.27 13.14 13.22 13.18 13.17 12.85 13.13 13.01 13.06 13.20 13.40 13.22 14.31 14.25 14.32 13.90 14.41 14.93 18.26 17.29 12.92 14.47 12.83 12.95
12.93 13.06 13.22 13.07 12.51 13.13 13.01 10.38 10.87 10.50 13.92 13.79 13.69 14.03 14.96 15.02 15.18 15.25 15.24 14.89 15.39 15.31 14.88 14.50 14.16 14.87 14.61 14.67 14.55 14.61 12.59 12.11 11.95 15.40 14.74 13.89 15.16
0.17 0.17 0.18 0.19 0.17 0.17 0.17 0.16 0.15 0.14 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.19 0.20 0.19 0.19 0.20 0.19 0.20 0.19 0.25 0.03 0.03 0.19 0.20 0.19 0.20
6.09 6.32 6.47 6.53 6.63 6.86 6.16 8.07 11.11 7.78 7.04 7.08 7.15 8.19 6.13 6.17 6.06 6.13 6.02 5.97 6.12 6.11 6.37 6.10 5.88 6.25 6.26 6.09 6.58 6.18 7.43 6.58 8.09 6.67 6.15 5.68 6.05
9.53 9.04 9.83 9.08 9.19 10.40 10.29 10.59 9.81 10.35 11.20 11.13 11.11 8.91 10.59 10.48 10.50 10.46 9.53 10.25 9.83 9.69 10.56 10.41 9.91 8.54 9.67 9.55 9.34 9.24 9.01 2.45 2.49 9.46 9.71 10.67 10.16
1.83 1.87 1.84 1.84 1.85 1.76 1.85 1.82 1.85 1.84 1.94 1.98 1.96 2.08 1.93 1.95 1.93 1.94 1.96 1.94 1.93 1.95 1.92 1.93 1.92 1.96 1.97 1.96 1.95 1.93 1.97 2.46 2.53 1.98 1.96 1.94 1.96
3.34 3.38 2.78 3.41 2.86 2.79 2.28 1.94 1.77 2.14 1.56 1.67 1.64 1.87 1.85 1.73 1.62 1.46 1.52 1.81 1.71 1.83 1.52 1.56 1.42 1.85 1.78 1.69 1.58 1.46 1.88 3.45 3.39 2.46 2.54 2.46 2.35
0.26 0.26 0.26 0.27 0.25 0.22 0.14 0.15 0.12 0.14 0.08 0.08 0.08 0.09 0.12 0.11 0.12 0.12 0.13 0.12 0.13 0.12 0.11 0.12 0.14 0.19 0.19 0.19 0.18 0.19 0.15 1.05 1.17 0.13 0.19 0.12 0.12
0.44 0.37 0.32 0.97 0.39 0.25 0.67 0.87 1.35 1.21 0.23 0.32 0.31 0.92 0.31 0.19 0.15 0.16 0.33 0.36 0.14 0.18 0.19 0.15 0.14 0.32 0.45 0.35 0.36 0.82 1.25 2.33 2.28 0.26 0.21 0.82 0.15
99.92 99.52 99.94 99.87 100.22 100.39 99.86 99.84 99.28 99.65 100.45 99.98 100.10 99.09 100.15 100.26 100.35 100.38 99.52 99.94 99.94 99.94 100.15 99.91 99.64 98.81 99.13 99.61 99.47 99.53 99.28 99.29 98.91 99.65 99.87 99.18 99.92
62 60 62 60 62 64 64 69 67 68 64 64 64 58 61 61 60 60 58 60 58 60 61 63 65 59 62 62 61 61 64 54 60 60 62 66 62
62
Table 3. S-Nd-Pb isotopic compositions of representative dolerites within the area of the Taihang-Da Hinggan gravity lineament. Ga
Ba
16.5 15.4 16.9 15.7 16 15.6 17.4 13.9 13.5 15.6 16.8 16.2 17.4 20.4 19.4 20.1 19 19.7 19.7 20.9 18.7 19.3 18.9 20.1 18.8 21 21.4 19.8 19.4 19.5 15.2 36.1 36.8 18.8 21.1 17.1 17.4
304 456 254 200 389 105 236 69.5 281 42.8 67.4 48.1 71.3 146 37.1 33.8 45.5 53.5 70.3 77.5 61.7 69.8 33.4 42.6 42.7 91.7 37.9 54.7 58.6 108 93.3 718 743 349 69.9 96.8 69.6
Rb
Sr
Y
22.3 252 21.7 33.5 242 19.8 17.7 271 20.4 15.2 240 19.9 31.6 262 20.6 6.02 242 18.4 13.8 257 25.8 3.72 196 12.3 15.7 185 10.4 2.53 240 12.3 10.4 138 20.2 9.51 133 19.6 14.1 138 20.5 33.4 135 29.2 1.5 146 28.1 1.61 155 28.1 1.72 130 27 2.43 140 27.5 9.31 147 28.2 4.93 133 29.9 7.82 141 26.6 2.11 133 28.1 1.53 148 25.6 2.21 161 27.6 2.14 161 30.9 6.12 290 23.4 1.91 308 23.9 2.72 287 23.9 3.71 253 23.6 5.22 295 23.3 4.04 204 15.3 88.8 1857 93.5 93.5 1962 77.8 22.4 135 28.1 4.32 305 23.8 6.14 165 24.8 3.72 146 27.9
Zr
Hf
Nb
Ta
Th
U
Pb
La
Ce
Pr
Nd
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
74 71 74 71 76 60 108 45 37 46 59 58 59 69 91 92 90 86 94 98 88 91 83 89 103 86 88 88 86 85 34 520 524 87 91 81 90
1.93 1.81 1.83 1.94 1.82 1.52 2.83 1.22 1.06 1.22 1.73 1.71 1.72 1.92 2.53 2.51 2.54 2.45 2.43 2.62 2.54 2.53 2.21 2.33 3.04 2.51 2.44 2.61 2.42 2.43 1.07 13.5 13.3 2.52 2.34 2.41 2.52
3.83 3.62 3.61 3.53 3.61 3.63 4.35 2.52 2.05 2.43 2.81 2.72 2.83 3.25 4.24 4.42 4.03 4.12 4.33 4.32 4.15 4.13 3.91 3.92 4.73 4.42 4.31 4.24 4.06 4.32 1.63 20.4 19.5 4.14 4.31 4.06 3.71
0.23 0.24 0.22 0.21 0.22 0.23 0.32 0.23 0.14 0.13 0.24 0.22 0.23 0.23 0.32 0.31 0.31 0.33 0.32 0.32 0.31 0.33 0.24 0.33 0.31 0.32 0.33 0.32 0.31 0.32 0.13 1.71 1.82 0.32 0.33 0.32 0.31
0.52 0.52 0.56 0.53 0.53 0.47 1.72 0.41 0.36 0.43 0.68 0.72 0.69 0.79 1.17 1.21 1.21 1.21 1.23 1.32 1.19 1.19 1.06 1.14 1.49 1.03 1.04 0.97 0.97 1.05 0.29 17.9 18.3 1.21 1.04 1.11 1.29
0.2 0.16 0.11 0.11 0.1 0.09 0.35 0.06 0.04 0.05 0.19 0.22 0.2 0.26 0.27 0.28 0.28 0.26 0.32 0.33 0.28 0.27 0.27 0.26 0.34 0.22 0.16 0.25 0.23 0.29 0.05 5.61 4.76 0.25 0.35 0.21 0.27
5.15 3.21 3.18 4.22 4.24 4.17 4.15 1.21 2.13 1.75 2.28 2.16 3.24 3.28 2.33 3.09 15.3 1.82 1.64 1.73 1.42 4.11 13.3 2.19 6.08 4.22 2.31 1.64 1.52 2.18 2.25 3.23 4.14 2.15 3.06 4.12 3.14
17.3 15.3 15.1 14.2 14.5 11.6 14.3 7.81 10.5 9.16 8.71 8.53 8.62 13.1 11.2 11.6 10.4 10.8 12.1 11.3 11.4 11.4 10.4 10.9 12.3 14.1 13.7 14.2 13.1 16.8 8.62 104 88.6 9.14 9.39 8.15 8.93
35.3 32.3 32.2 30.5 30.6 24.6 30.2 16.9 14.4 17.1 14.9 14.4 15.3 22.4 21.2 22.5 20.6 21.3 23.5 23.3 22.2 21.6 20.6 22.1 25.2 29.9 30.3 31.7 29.4 34.8 16.5 226 201 19.7 22.3 18.4 20.2
4.42 4.18 4.19 4.15 4.11 3.42 3.88 2.28 1.89 2.19 2.21 2.17 2.22 2.76 2.83 3.15 3.04 3.13 3.23 3.19 3.06 3.03 2.93 3.12 3.25 4.13 3.82 3.96 3.83 4.4 2.24 27.4 24.3 2.63 3.03 2.51 2.81
19.1 17.5 17.9 17.1 17.8 14.6 16.6 10.5 8.04 9.91 10.3 10.2 9.85 14.2 14.3 13.4 14.2 13.7 14.6 14.6 14.2 14.4 13.3 13.8 16.1 18 17.6 18 17.7 19.2 9.33 117 107 11.7 14.2 11.4 12.4
3.66 3.79 3.72 3.91 3.72 3.23 3.98 2.42 1.95 2.22 2.55 2.69 2.54 3.62 3.8 3.73 3.98 3.69 3.89 3.78 3.8 3.67 3.59 3.57 4.25 4.49 4.52 4.54 4.46 4.53 2.38 27.3 23.6 3.51 3.86 3.33 3.71
1.16 1.11 1.12 1.09 1.17 1.04 1.06 0.78 0.63 0.66 0.86 0.88 0.88 1.33 1.21 1.24 1.24 1.19 1.31 1.26 1.26 1.22 1.17 1.16 1.51 1.46 1.36 1.46 1.35 1.58 0.84 7.09 6.25 1.07 1.42 1.15 1.32
3.68 3.82 3.75 3.74 3.67 3.29 3.52 2.51 2.03 2.3 3.41 3.51 3.34 5.12 4.62 4.52 4.77 4.32 4.94 4.87 4.62 4.55 4.15 4.44 5.41 4.84 4.52 5.01 4.69 4.84 2.87 24.9 20.9 4.56 4.65 4.08 4.57
0.51 0.56 0.57 0.55 0.54 0.49 0.52 0.35 0.27 0.32 0.56 0.57 0.55 0.77 0.76 0.75 0.77 0.72 0.78 0.81 0.71 0.75 0.69 0.73 0.89 0.7 0.68 0.75 0.67 0.72 0.43 3.37 2.78 0.73 0.69 0.68 0.76
3.51 3.49 3.56 3.51 3.42 3.12 3.41 2.21 1.81 2.16 3.43 3.76 3.64 4.82 5.1 5.05 4.89 4.77 4.83 4.99 4.82 4.84 4.36 4.71 5.61 4.31 4.32 4.54 4.16 4.39 2.78 19.6 15.6 4.63 4.21 4.33 4.86
0.78 0.77 0.77 0.76 0.74 0.67 0.72 0.49 0.4 0.47 0.77 0.84 0.79 1.06 1.12 1.11 1.08 1.06 1.12 1.14 1.06 1.11 0.98 1.05 1.32 0.94 0.94 1.01 0.95 0.97 0.59 3.79 3.15 1.06 0.95 0.98 1.11
2.21 2.14 2.24 2.18 2.22 1.99 2.21 1.45 1.17 1.29 2.23 2.39 2.21 3.05 3.1 3.13 3.16 3.09 3.21 3.22 3.13 3.16 2.82 2.94 3.71 2.68 2.63 2.8 2.63 2.65 1.75 9.47 7.89 3.02 2.56 2.99 3.17
0.33 0.33 0.33 0.34 0.32 0.31 0.31 0.22 0.17 0.2 0.34 0.36 0.33 0.43 0.46 0.46 0.47 0.44 0.47 0.49 0.47 0.46 0.42 0.43 0.53 0.40 0.39 0.43 0.34 0.34 0.26 1.28 1.09 0.45 0.39 0.43 0.48
2.08 2.09 2.17 2.15 2.09 1.91 2.04 1.48 1.43 1.35 2.18 2.38 2.15 2.77 3.01 2.96 3.06 2.89 2.98 3.04 2.84 2.93 2.71 2.73 3.45 2.52 2.48 2.72 2.38 2.26 1.74 7.48 6.78 2.91 2.37 2.69 3.02
0.32 0.31 0.33 0.33 0.31 0.32 0.32 0.23 0.18 0.21 0.35 0.36 0.33 0.43 0.46 0.47 0.46 0.44 0.48 0.46 0.46 0.47 0.43 0.43 0.54 0.36 0.39 0.39 0.34 0.31 0.26 1.14 1.04 0.45 0.37 0.42 0.45
63
(La/Yb)N EuN/Eu* 5.97 5.25 4.99 4.74 4.98 4.38 5.03 3.79 5.27 4.87 2.87 2.57 2.88 3.39 2.67 2.81 2.44 2.68 2.91 2.67 2.88 2.79 2.75 2.86 2.56 4.01 3.96 3.74 3.95 5.33 3.55 9.97 9.37 2.25 2.84 2.17 2.12
0.97 0.89 0.92 0.87 0.97 0.98 0.87 0.97 0.97 0.89 0.89 0.88 0.92 0.94 0.88 0.92 0.87 0.91 0.91 0.90 0.92 0.91 0.93 0.89 0.96 0.96 0.92 0.94 0.90 1.03 0.98 0.83 0.86 0.82 1.02 0.95 0.98
Table 4. Results of in-situ zircon Hf analyses of the dolerites within the area of the Taihang-Da Hinggan gravity lineament . Hf (t)=10000 {[(176Hf / 177Hf)S – (176Lu/177Hf) S × (et–1)]/ [(176Hf / 177Hf) CHUR,0 – (176Lu / 177Hf) CHUR × (et–1)]–1};TDM1=1/ × in {1+ (176Hf / 177Hf)S – (176Hf/177Hf) DM] / [(176Lu / 177Hf)S – (176Lu / 177Hf) DM]}; TDM2=1/ × in {1+ [(176Hf / 177Hf) S,t – (176Hf / 177Hf)DM, t]/[(176Lu / 177Hf)C – (176Lu / 177Hf)DM]} + t; ƒLu/Hf = (176Lu / 177Hf) S /(176Lu / 177Hf)CHUR-1. The 176Hf / 177Hf and 176Lu / 177Hf ratios of chondrite and depleted mantle at the present are 0.282772 and 0.0332, 0.28325 and 0.0384, respectively (Blichert-Toft and Albare`de 1997; Griffin et al. 2000). =1.867 × 10–11a–1 (Sӧderlund et al. 2004). (176Lu / 177Hf)C = 0.015, t=crystallization age of zircon. Sample LWM01 LWM02 LWM03 LWM06 WJZ01 WJZ03 MJZ03 MJZ04 MJZ05 MJZ11 MJZ18 MJZ25 MJZ28 MJZ36 JY03 JY07 JY14 JY15 HM01 HM03 XHH02 XHH03 XHH04 XHH05
Rb (ppm) 22.3 33.5 17.7 6.02 3.72 3.56 10.4 9.51 14.1 33.4 1.50 1.61 2.43 2.11 6.12 1.91 5.22 4.04 88.8 93.5 22.4 4.32 6.14 3.72
Sr (ppm) 252 242 271 242 196 183 138 133 138 135 146 155 140 133 290 308 295 204 72.8 72.9 135 305 165 146
87Rb/86Sr
0.2561 0.4006 0.1890 0.0720 0.0549 0.0563 0.2189 0.2069 0.2957 0.7160 0.0298 0.0302 0.0504 0.0459 0.0611 0.0179 0.0512 0.0573 3.5300 3.7118 0.4802 0.0410 0.1080 0.0740
87Sr/86Sr
±2s
0.707239 0.707402 0.707064 0.706440 0.706621 0.706621 0.707958 0.707861 0.707928 0.708671 0.707408 0.707623 0.707450 0.707429 0.706588 0.706364 0.706376 0.706407 0.711491 0.711870 0.706049 0.705432 0.705398 0.70527
0.000008 0.000014 0.000007 0.000009 0.000009 0.000009 0.000009 0.000008 0.000013 0.000007 0.000010 0.000008 0.000007 0.000007 0.000007 0.000008 0.000010 0.000006 0.000010 0.000013 0.000007 0.000009 0.000007 0.000006
Sm (ppm) 3.66 3.79 3.72 3.23 2.42 2.24 2.55 2.69 2.54 3.62 3.80 3.73 3.69 3.67 4.49 4.52 4.53 2.38 27.3 23.6 3.51 4.61 3.33 3.71
Nd (ppm) 19.1 17.5 17.9 14.6 10.5 8.48 8.04 8.21 8.52 12.2 12.6 11.7 11.9 12.4 18.0 17.6 19.2 9.33 116.5 107 11.7 17.9 11.4 12.4
147Sm/144Nd
143Nd/144Nd
0.1154 0.1304 0.1251 0.1332 0.1387 0.1590 0.1909 0.1972 0.1795 0.1786 0.1816 0.1919 0.1867 0.1782 0.1502 0.1546 0.1420 0.1536 0.1411 0.1328 0.1806 0.1550 0.1758 0.1801
0.512193 0.512204 0.512215 0.512201 0.512192 0.512182 0.511576 0.511585 0.511589 0.511636 0.511636 0.511623 0.511625 0.511626 0.511829 0.511797 0.511771 0.511816 0.511654 0.511649 0.511616 0.511625 0.511616 0.511653
64
±2s ####### ####### ####### ####### ####### ####### ####### ####### ####### ####### ####### ####### ####### ####### ####### ####### ####### ####### ####### ####### ####### ####### ####### #######
(87Sr/86Sr)i 0.706467 0.706194 0.706494 0.706223
0.706466 0.706461 0.707417 0.707459 0.707355 0.707283 0.707350 0.707564 0.707353 0.707340 0.706469 0.706329 0.706277 0.706296 0.705295 0.705355 0.705207 0.705360 0.705208 0.705140
(143Nd/144Nd)i 0.512033 0.512023 0.512041 0.512016 0.512011 0.512003
εNd (t) -6.5 -6.7 -6.3 -6.8 -7.2 -7.4
0.511458 0.511473 0.511464 0.511512 0.511521 0.511509 0.511508 0.511510
-19.6 -19.3 -19.5 -18.5 -18.4 -18.6 -18.6 -18.6
0.511829 0.511797 0.511771 0.511816 0.511550 0.511541 0.511546 0.511554 0.511544 0.511542
-15.7 -15.7 -16.0 -15.3 -18.1 -18.3 -18.2 -18.0 -18.3 -18.3
Table no 5 Sample
Age (Ma)
206Pb/204Pb
207Pb/204Pb
208Pb/204Pb
U (ppm)
Pb (ppm)
Th (ppm)
(206Pb/204Pb)i
(207Pb/204Pb)i
(208Pb/204Pb)i
LWM01 LWM02 LWM03 LWM06 WJZ01 WJZ03 MJZ03 MJZ04 MJZ05 MJZ11 MJZ18 MJZ25 MJZ28 MJZ36 JY03 JY07 JY14 JY15 HM01 HM03 XHH02 XHH03 XHH04 XHH05
212 212 212 212 199.6 199.6 136.4 136.4 136.4 136.4 136.4 136.4 136.4 136.4 136.4 136.4 136.4 136.4 123.5 123.5 123.3 123.3 123.3 123.3
16.812 16.805 16.861 16.793 16.785 16.794 16.804 16.812 16.883 16.789 16.791 16.791 16.768 16.836 16.766 16.793 16.812 16.865 17.063 17.041 17.048 17.063 17.067 17.061
15.463 15.462 15.458 15.448 15.441 15.443 15.439 15.438 15.443 15.439 15.437 15.439 15.437 15.442 15.436 15.439 15.438 15.443 15.534 15.531 15.534 15.535 15.538 15.536
37.034 37.031 37.033 37.001 37.002 37.004 37.203 37.202 37.194 37.086 37.082 37.061 37.015 37.037 37.014 37.058 37.055 37.159 37.056 37.184 36.993 37.077 37.064 37.086
1.56 1.52 1.54 1.18 1.23 1.24 1.11 1.23 1.95 2.12 2.24 2.16 1.48 1.62 1.43 2.28 2.52 2.31 0.92 0.75 1.21 3.45 3.38 3.66
46.3 21.4 20.8 37.3 36.1 33.2 18.5 18.4 16.2 43.6 45.4 44.3 45.5 18.7 43.6 44.3 37.6 21.8 15.6 19.2 26.2 57.8 55.4 64.6
8.21 4.62 4.58 4.12 4.04 3.92 11.7 11.5 9.75 15.4 15.5 13.2 8.31 4.53 8.14 12.7 10.6 11.5 5.43 13.1 4.78 23.3 20.5 27.2
16.744 16.661 16.711 16.729 16.720 16.723 16.726 16.725 16.726 16.726 16.727 16.728 16.726 16.723 16.723 16.726 16.725 16.727 16.993 16.995 16.994 16.993 16.995 16.994
15.460 15.455 15.450 15.445 15.438 15.439 15.435 15.434 15.435 15.436 15.434 15.436 15.435 15.437 15.434 15.436 15.434 15.436 15.531 15.529 15.531 15.532 15.535 15.533
36.917 36.888 36.887 36.928 36.932 36.931 36.934 36.936 36.937 36.936 36.937 36.934 36.937 36.934 36.935 36.936 36.935 36.934 36.921 36.920 36.923 36.921 36.921 36.923
65
Table 6 LWM01 Spot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 WJZ03 Spot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 MJZ02 Spot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 YJ01 Spot 1 2 3
176Yb/177Hf
0.027346 0.036873 0.048876 0.018427 0.054608 0.036305 0.036916 0.068892 0.023998 0.060865 0.017414 0.046212 0.044853 0.044956 0.017467 0.056231
176Yb/177Hf
0.056223 0.058063 0.042811 0.043577 0.055136 0.036298 0.044768 0.053141 0.054477 0.037234 0.047833 0.045224 0.027634 0.038287 0.040082 0.055065
176Lu/177Hf
0.000793 0.001103 0.001308 0.000554 0.001572 0.001061 0.001040 0.001927 0.000726 0.001697 0.000502 0.001307 0.001340 0.001319 0.000467 0.001475
176Lu/177Hf
0.001564 0.001597 0.001205 0.001298 0.001480 0.000977 0.001284 0.001498 0.001415 0.000992 0.001387 0.001317 0.000771 0.001160 0.001053 0.001477
176Hf/177Hf
0.282007 0.282001 0.282002 0.282008 0.282001 0.282001 0.282003 0.282004 0.282013 0.282013 0.282001 0.282002 0.282005 0.282002 0.282003 0.282002
176Hf/177Hf
0.282022 0.282033 0.282032 0.282022 0.282013 0.282029 0.282011 0.282026 0.282036 0.282039 0.282011 0.282028 0.282020 0.282039 0.282036 0.282035
176Yb/177Hf
176Lu/177Hf
176Hf/177Hf
0.072442 0.056303 0.051207 0.069735 0.023131 0.085032 0.086050 0.035603 0.054731 0.085644 0.034732 0.034649 0.034146 0.054736 0.024197 0.035610 0.034268
0.002053 0.001735 0.001744 0.002062 0.001082 0.002603 0.002622 0.001101 0.001659 0.003186 0.000897 0.001322 0.001076 0.001722 0.001091 0.001104 0.001106
0.282447 0.282441 0.282445 0.282443 0.282410 0.282446 0.282381 0.282437 0.282395 0.282440 0.282436 0.282446 0.282438 0.282396 0.282413 0.282435 0.282437
176Yb/177Hf
176Lu/177Hf
176Hf/177Hf
0.001808 0.001967 0.002210
0.000835 0.000827 0.000731
2s 0.000028 0.000035 0.000020 0.000063 0.000036 0.000026 0.000021 0.000040 0.000041 0.000033 0.000022 0.000029 0.000042 0.000028 0.000020 0.000025
εHf (t) -22.5 -22.8 -22.8 -22.5 -22.8 -22.8 -22.7 -22.8 -22.3 -22.4 -22.7 -22.8 -22.7 -22.8 -22.6 -22.8
TDM1 (Ma) 1744 1766 1775 1731 1788 1764 1761 1801 1732 1777 1738 1775 1772 1775 1734 1783
TDM2 (Ma) 2663 2678 2679 2659 2682 2677 2674 2679 2649 2656 2673 2678 2672 2679 2669 2680
fLu/Hf -0.98 -0.97 -0.96 -0.98 -0.95 -0.97 -0.97 -0.94 -0.98 -0.95 -0.98 -0.96 -0.96 -0.96 -0.99 -0.96
2s 0.000026 0.000028 0.000022 0.000040 0.000026 0.000036 0.000028 0.000034 0.000022 0.000022 0.000024 0.000029 0.000023 0.000024 0.000024 0.000026
εHf (t) -23.9 -23.5 -23.6 -23.9 -24.2 -23.7 -24.3 -23.8 -23.4 -23.3 -24.3 -23.7 -23.9 -23.3 -23.4 -23.5
TDM1 (Ma) 1758 1744 1728 1746 1766 1721 1761 1750 1732 1709 1766 1739 1724 1716 1716 1736
TDM2 (Ma) 2686 2661 2663 2685 2705 2668 2710 2678 2655 2647 2710 2673 2687 2647 2654 2657
fLu/Hf -0.95 -0.95 -0.96 -0.96 -0.96 -0.97 -0.96 -0.95 -0.96 -0.97 -0.96 -0.96 -0.98 -0.97 -0.97 -0.96
εHf (t) -8.7 -8.9 -8.7 -8.8 -9.8 -8.7 -11.0 -8.8 -10.3 -8.8 -8.8 -8.4 -8.7 -10.2 -9.5 -8.7 -8.6
TDM1 (Ma) 1172 1170 1165 1178 1193 1191 1287 1156 1233 1219 1151 1151 1154 1234 1190 1159 1157
TDM2 (Ma) 1738 1749 1740 1745 1812 1741 1885 1751 1846 1754 1749 1731 1746 1842 1801 1750 1746
fLu/Hf -0.94 -0.95 -0.95 -0.94 -0.97 -0.92 -0.92 -0.97 -0.95 -0.90 -0.97 -0.96 -0.97 -0.95 -0.97 -0.97 -0.97
εHf (t) -19.9 -20.2 -20.1
TDM1 (Ma) 1578 1590 1583
TDM2 (Ma) 2441 2461 2456
fLu/Hf -0.97 -0.98 -0.98
2s 0.000019 0.000020 0.000058 0.000019 0.000038 0.000028 0.000023 0.000049 0.000044 0.000061 0.000023 0.000023 0.000027 0.000026 0.000022 0.000051 0.000048
2s 0.000024 0.000019 0.000044
0.282128 0.282119 0.282121 66
4 5 6 7 8 9 10 11 12 13 14 15 16 HM03 Spot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 XHH01 Spot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.001890 0.001532 0.004109 0.003520 0.004399 0.004735 0.006154 0.003495 0.002997 0.006720 0.003042 0.005032 0.002082
176Yb/177Hf
0.024835 0.033430 0.042486 0.024181 0.018763 0.013162 0.009441 0.014967 0.028467 0.042885 0.051710 0.026722 0.028310 0.022850 0.033056 0.015541
176Yb/177Hf
0.076671 0.076673 0.056360 0.056345 0.088837 0.048712 0.048703 0.047506 0.130991 0.048118 0.048228 0.047550 0.051707 0.048218 0.047505 0.051696
0.000901 0.000679 0.000724 0.000557 0.000725 0.000648 0.000481 0.000717 0.000810 0.000494 0.000726 0.000731 0.000775
176Lu/177Hf
0.000763 0.001064 0.001254 0.000643 0.000579 0.000364 0.000230 0.000321 0.000834 0.001229 0.001434 0.000802 0.000782 0.000616 0.001046 0.000538
176Lu/177Hf
0.282123 0.282109 0.282143 0.282112 0.282136 0.282149 0.282140 0.282142 0.282130 0.282149 0.282138 0.282170 0.282139
176Hf/177Hf
0.282272 0.282262 0.282265 0.282304 0.282258 0.282304 0.282269 0.282242 0.282277 0.282319 0.282258 0.282256 0.282295 0.282306 0.282259 0.282301
176Hf/177Hf
0.002213 0.282418 0.002215 0.282417 0.001714 0.282453 0.001716 0.282456 0.002564 0.282379 0.001497 0.282345 0.001514 0.282348 0.001798 0.282443 0.003751 0.282409 0.001804 0.282441 0.001790 0.282437 0.001812 0.282429 0.001704 0.282439 0.001785 0.282434 0.001795 0.282445 0.001687 0.282436
67
0.000028 0.000022 0.000036 0.000022 0.000022 0.000030 0.000034 0.000037 0.000059 0.000037 0.000025 0.000032 0.000039
-20.0 -20.5 -19.3 -20.4 -19.6 -19.1 -19.4 -19.4 -19.8 -19.1 -19.5 -18.4 -19.5
1588 1598 1553 1589 1562 1542 1547 1554 1574 1536 1560 1516 1560
2452 2483 2407 2475 2422 2393 2412 2409 2436 2393 2419 2348 2416
-0.97 -0.98 -0.98 -0.98 -0.98 -0.98 -0.99 -0.98 -0.98 -0.99 -0.98 -0.98 -0.98
2s 0.000035 0.000045 0.000050 0.000027 0.000026 0.000020 0.000035 0.000022 0.000031 0.000025 0.000022 0.000050 0.000044 0.000029 0.000044 0.000030
εHf (t) -13.4 -13.8 -13.7 -12.3 -13.9 -12.2 -13.5 -14.4 -13.2 -11.8 -14.0 -14.0 -12.6 -12.2 -13.9 -12.4
TDM1 (Ma) 1376 1401 1403 1327 1389 1317 1361 1401 1371 1327 1420 1399 1345 1324 1404 1327
TDM2 (Ma) 2083 2108 2102 2011 2113 2008 2086 2146 2072 1983 2118 2118 2033 2007 2113 2016
fLu/Hf -0.98 -0.97 -0.96 -0.98 -0.98 -0.99 -0.99 -0.99 -0.97 -0.96 -0.96 -0.98 -0.98 -0.98 -0.97 -0.98
2s 0.000057 0.000061 0.000046 0.000032 0.000033 0.000020 0.000031 0.000031 0.000026 0.000023 0.000039 0.000028 0.000048 0.000024 0.000027 0.000034
εHf (t) -10.0 -10.0 -8.7 -8.6 -11.3 -12.4 -12.3 -8.9 -10.3 -9.0 -9.1 -9.3 -9.0 -9.1 -8.7 -9.0
TDM1 (Ma) 1219 1221 1152 1149 1288 1299 1295 1169 1286 1172 1177 1189 1172 1182 1166 1176
TDM2 (Ma) 1810 1813 1729 1723 1898 1967 1960 1749 1834 1752 1760 1777 1754 1765 1740 1759
fLu/Hf -0.93 -0.93 -0.95 -0.95 -0.92 -0.95 -0.95 -0.95 -0.89 -0.95 -0.95 -0.95 -0.95 -0.95 -0.95 -0.95