Tissue-specific mRNA Expression Profiles of Human ATP-binding Cassette and Solute Carrier Transporter Superfamilies

Tissue-specific mRNA Expression Profiles of Human ATP-binding Cassette and Solute Carrier Transporter Superfamilies

Drug Metab. Pharmacokinet. 20 (6): 452–477 (2005). Regular Article Tissue-speciˆc mRNA Expression Proˆles of Human ATP-binding Cassette and Solute Ca...

261KB Sizes 5 Downloads 52 Views

Drug Metab. Pharmacokinet. 20 (6): 452–477 (2005).

Regular Article Tissue-speciˆc mRNA Expression Proˆles of Human ATP-binding Cassette and Solute Carrier Transporter Superfamilies Masuhiro NISHIMURA* and Shinsaku NAITO Division of Pharmacology, Drug Safety and Metabolism, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, Japan Full text of this paper is available at http://www.jstage.jst.go.jp/browse/dmpk

Summary: Pairs of forward and reverse primers and TaqMan probes speciˆc to each of 46 human ATPbinding cassette (ABC) transporters and 108 human solute carrier (SLC) transporters were prepared. The mRNA expression level of each target transporter was analyzed in total RNA from single and pooled specimens of various human tissues (adrenal gland, bone marrow, brain, colon, heart, kidney, liver, lung, pancreas, peripheral leukocytes, placenta, prostate, salivary gland, skeletal muscle, small intestine, spinal cord, spleen, stomach, testis, thymus, thyroid gland, trachea, and uterus) by real-time reverse transcription PCR using an ABI PRISM 7700 sequence detector system. In contrast to previous methods for analyzing the mRNA expression of single ABC and SLC genes such as Northern blotting, our method allowed us to perform sensitive, semiautomatic, rapid, and complete analysis of ABC and SLC transporters in total RNA samples. Our newly determined expression proˆles were then used to study the gene expression in 23 diŠerent human tissues, and tissues with high transcriptional activity for human ABC and SLC transporters were identiˆed. These results are expected to be valuable for establishing drug transport-mediated screening systems for new chemical entities in new drug development and for research concerning the clinical diagnosis of disease.

Key words: ABC transporter; SLC transporter; mRNA expression; tissue distribution; quantiˆcation Table 1. It has now become clear that some transporters are responsible for drug transport in various tissues, and they may be key determinants of the pharmacokinetic characteristics of drugs in terms of intestinal absorption, tissue distribution, and elimination.12–14) These transporters may therefore be promising candidates for drug delivery. The assessment of the protein levels and W or transport capacity of each ABC and SLC transporter is important in selecting transporters that may be involved in absorption, distribution, and elimination. However, such assessment of these ABC and SLC transporters in the same sample is di‹cult because a large amount of sample is required for measurement. Thus, we considered that rapid estimation should be possible by the detailed evaluation of the mRNA expression levels of each transporter in target tissues based on the ˆndings of previous studies, followed by the evaluation of protein levels and transport capacity levels. Therefore, the study of the tissue-speciˆc mRNA expression proˆles of drug transporters could provide important

Introduction Transporters play a vital role in the absorption, distribution, and excretion processes that largely determine the pharmacodynamics and pharmacokinetics of drugs. For any drug to have an eŠect, it must reach the target organ at su‹cient concentrations. Drug transporters such as ATP-binding cassette (ABC) transporters and solute carrier (SLC) transporters are selectively expressed in many tissues such as the brain, intestine, kidney, liver, placenta, and testis.1–5) These transporters transport a variety of substrates, including amino acids, lipids, inorganic ions, peptides, saccharides, metals, drugs, toxic xenobiotics, chemical compounds, and proteins.6–10) For example, it is known that SLC2As and SLC5As are transporters for saccharides,9) SLC1As, SLC6As, SLC7As, SLC36As and SLC38As are for amino acids,10) SLC15As are for peptides,7,9) and SLC28As and SLC29As are for nucleosides.11) The nomenclature of these transporters is summarized in

Received; July 29, 2005, Accepted; September 17, 2005 *To whom correspondence should be addressed : Masuhiro NISHIMURA, Ph.D., Division of Pharmacology, Drug Safety and Metabolism, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima 772-8601, Japan. Tel. +81-88-685-1151 ext. 624, Fax. +81-88-686-8176, E-mail: nisimums@ otsukakj.co.jp

452

mRNA Expression Proˆles of Human Drug Transporters Table 1. Abbreviation

453

Nomenclature of Target Genes Trivial Name(s)

ATP-binding cassette (ABC) transporters ABCA1 TGD, ABC1, CERP, ABC-1, HDLDT1 ABCA2 ABC2 ABCA3 ABC3, ABC-C, LBM180, MGC72201, EST111653 ABCA4 FFM, RMP, ABCR, RP19, STGD, ABC10, STGD1, DKFZp781N1972 ABCA5 ABC13, EST90625 ABCA6 EST155051 ABCA7 ABCX, ABCA-SSN ABCA8 KIAA0822 ABCA9 EST640918 ABCA10 EST698739 ABCA12 LI2, ICR2B, DKFZp434G232 ABCB1 CLCS, MDR1, P-gp, PGY1, ABC20, CD243, GP170, Pgp1 ABCB2 TAP1, APT1, PSF1, ABC17, RING4, TAP1N, D6S114E ABCB3 TAP2, APT2, PSF2, ABC18, RING11, D6S217E 3, PFIC-3, Pgp3 ABCB4 MDR3, PGY3, ABC21, MDR2 W ABCB5 ABCB5beta, EST422562 ABCB6 PRP, umat, ABC14, MTABC3, EST45597 ABCB7 ABC7, ASAT, Atm1p, EST140535 ABCB8 MABC1, M-ABC1, EST328128 ABCB9 TAPL, KIAA1520, EST122234 ABCB10 M-ABC2, MTABC2, EST20237 ABCB11 BSEP, PGY4, SPGP, ABC16, PFIC2 ABCC1 MRP, ABCC, GS-X, MRP1, ABC29, DKFZp781G125 ABCC2 DJS, MRP2, cMRP, ABC30, CMOAT, KIAA1010 ABCC3 MLP2, MRP3, ABC31, MOAT-D, cMOAT2, EST90757 ABCC4 MRP4, MOATB, MOAT-B, EST170205 ABCC5 MRP5, SMRP, ABC33, MOATC, MOAT-C, pABC11, EST277145 ABCC6 ARA, PXE, MLP1, MRP6, ABC34, MOATE, EST349056 ABCC7 CFTR, CF, ABC35, TNR-CFTR, dJ760C5.1 ABCC8 HI, SUR, PHHI, SUR1, ABC36, HRINS ABCC9 SUR2, ABC37, FLJ36852 ABCC10 MRP7, SIMRP7, EST182763 ABCC11 MRP8 ABCC12 MRP9 ABCD1 ALD, AMN, ALDP, ABC42 ABCD2 ALDR, ABC39, ALDL1, ALDRP, hALDR ABCD3 ABC43, PMP70, PXMP1 ABCD4 P70R, P79R, ABC41, PMP69, PXMP1L, EST352188 ABCE1 RLI, OABP, ABC38, RNS41, RNASEL1, RNASELI, RNASELIOABP ABCF1 ABC27, ABC50, EST123147 ABCF2 ABC28, M-ABC1, HUSSY-18, EST133090, DKFZp586K1823 ABCG1 WHITE1, ABC8, MGC34313 ABCG2 MRX, MXR, ABCP, BCRP, BMDP, MXR1, ABC15, BCRP1, EST157481, MGC102821 ABCG4 WHITE2 ABCG5 ABCG8 Solute carrier (SLC) transporters SLC1A1 SLC1A2 SLC1A3 SLC1A4 SLC1A5 SLC2A1 SLC2A2 SLC2A3 SLC2A4 SLC2A5 SLC2A7

EAAC1, EAAT3 EAAT2, GLT-1 EAAT1, GLAST, GLAST1 SATT, ASCT1 R16, ATB9, M7V1, RDRC, ASCT2, M7VS1 GLUT, GLUT1 GLUT2 GLUT3 GLUT4 GLUT5 GLUT7 continued

454 Table 1.

Masuhiro NISHIMURA and Shinsaku NAITO (continued) Abbreviation SLC2A8 SLC2A9 SLC2A10 SLC2A11 SLC2A12 SLC2A13 SLC2A14 SLC3A1 SLC3A2 SLC4A1 SLC4A2 SLC4A3 SLC4A4 SLC4A7 SLC4A8 SLC4A9 SLC4A10 SLC4A11 SLC5A1 SLC5A2 SLC5A3 SLC5A4 SLC5A5 SLC5A6 SLC5A7 SLC5A8 SLC5A10 SLC5A11 SLC5A12 SLC6A2 SLC6A3 SLC6A4 SLC6A5 SLC6A6 SLC6A7 SLC6A9 SLC7A1 SLC7A2 SLC7A3 SLC7A4 SLC7A5 SLC7A6 SLC7A7 SLC7A8 SLC7A9 SLC7A10 SLC7A11 SLC7A13 SLC10A1 SLC10A2 SLC10A3 SLC10A4 SLC10A5 SLC15A1 SLC15A2 SLC15A3 SLC15A4 SLC21A3 SLC21A6 SLC21A9

Trivial Name(s) GLUT8, GLUTX1 GLUT9, GLUTX GLUT10 GLUT11 GLUT12 HMIT GULT14 D2H, ATR1, NBAT, RBAT, CSNU1 4F2, CD98, MDU1, 4F2HC, 4T2HC, NACAE DI, WD, AE1, WD1, BND3, EPB3, CD233, EMPB3, RTA1A AE2, HKB3, BND3L, NBND3, EPB3L1 AE3, SLC2C KNBC, NBC1, pNBC, HNBC1, hhNMC NBC2, NBC3, SBC2 NBC3 AE4 BTR1, dJ794I6.2 NAGT, SGLT1, D22S675 SGLT2 SMIT, SMIT2 SAAT1, SGLT3, DJ90G24.4 NIS SMVT CHT, CHT1, hCHT AIT SGLT5, FLJ25217 KST1, RKST1, SGLT6, SMIT2 MGC52019 NET, NAT1 DAT, DAT1 OCD1, SERT, 5-HTT NET1, GLYT2 TAUT PROT GLYT1 ERR, ATRC1, CAT-1, HCAT1, REC1L ATRC2, CAT-2, HCAT2 ATRC3, CAT-3, FLJ14541 CAT4, CAT-4, HCAT3 E16, CD98, LAT1, MPE16, D16S469E LAT3, LAT-2, y+LAT-2, KIAA0245 LPI, LAT3, Y+ LAT1, y+LAT-1 LAT2, LPI-PC1 CSNU3 asc-1, HASC-1, FLJ20839 xCT, CCBR1 AGT1, XAT2, AGT-1 NTCP, NTCP1 ASBT, ISBT, NTCP2 P3, DXS253E MGC29802 P5 PEPT1, HPECT1, HPEPT1 PEPT2 PHT2, PTR3, hPTR3 PHT1, PTR4 OATP, OATP-A, OATP1A2, SLCO1A2 LST-1, OATP2, OATP-C, OATP1B1 OATPB, OATP-B, OATP2B1, KIAA0880 continued

mRNA Expression Proˆles of Human Drug Transporters Table 1.

455

(continued) Abbreviation SLC21A11 SLC21A12 SLC21A14 SLC21A15 SLC22A1 SLC22A2 SLC22A3 SLC22A4 SLC22A5 SLC22A6 SLC22A7 SLC22A8 SLC22A9 SLC22A11 SLC22A12 SLC22A13 SLC22A14 SLC22A15 SLC22A16 SLC22A17 SLC22A18 SLC28A1 SLC28A2 SLC28A3 SLC29A1 SLC29A2 SLC29A3 SLC29A4 SLC36A1 SLC36A2 SLC36A3 SLC36A4 SLC38A1 SLC38A2 SLC38A3 SLC38A4 SLC38A5 SLC38A6

Trivial Name(s) OATP-D, OATP3A1, SLCO3A1 POAT, OATP1, OATP-E, OATP4A1, OATPRP1 OATP1, OATP-F, OATP1C1, SLCO1C1 OATP-J, OATP5A1, OATPRP4 OCT1, HOCT1 OCT2, MGC32628 EMT, EMTH, OCT3 OCTN1, MGC34546 CDSP, OCTN2, FLJ46769 OAT1, PAHT, HOAT1, ROAT1, MGC45260 NLT, OAT2, MGC24091, MGC45202 OAT3, MGC24086 OAT4, ust3, HOAT4, UST3H hOAT4, MGC34282 RST, OAT4L, URAT1 OCTL1, OCTL3, ORCTL3 OCTL2, OCTL4, ORCTL4 FLIPT1, PRO34686, DKFZp761G0313 CT2, OCT6, OKB1, FLIPT2, dJ261K5.1 BOCT, BOIT, hBOIT HET, ITM, BWR1A, IMPT1, TSSC5, ORCTL2, BWSCR1A, SLC22A1L, p45-BWR1A CNT1, HCNT1 CNT2, HCNT2, SPNT1, HsT17153 CNT3 ENT1 ENT2, DER12, HNP36 ENT3, FLJ11160 ENT4, PMAT, FLJ34923 PAT1, LYAAT1 PAT2, TRAMD1 PAT3, TRAMD2, tramdorin2 PAT4, FLJ38932 ATA1, NAT2, SAT1, SNAT1 ATA2, SAT2, SNAT2, PRO1068, KIAA1382 G17, SN1 ATA3, NAT3, PAAT, FLJ10191 SN2, JM24, pp7194 NAT-1

information concerning the mechanisms of drug disposition. However, the tissue distribution of the mRNA expression of large numbers of human ABC and SLC transporters has not been evaluated under the same experimental conditions. The present study was therefore undertaken to investigate the mRNA expression levels of 46 human ABC transporters and 108 human SLC transporters using high-sensitivity real-time reverse transcription PCR (RT-PCR) in total RNA from single and pooled specimens of 23 adult human tissues. Materials and Methods Materials: Total RNA prepared from single and pooled specimens of adult human tissues (adrenal gland, bone marrow, brain, colon, heart, kidney, liver, lung, pancreas, peripheral leukocytes, placenta, prostate, salivary gland, skeletal muscle, small intestine,

spinal cord, spleen, stomach, testis, thymus, thyroid gland, trachea, and uterus) was purchased from CLONTECH Laboratories, Inc. (Hilden, Palo Alto, CA, USA). The total RNA source information for these human tissues is shown in Table 2. Yeast tRNA was purchased from Life Technologies, Inc. (Rockville, MD, USA), and the TaqMan One-Step RT-PCR Master mix reagents kit was purchased from Applied Biosystems (Foster City, CA, USA). All other chemicals used in this study were of reagent grade. Oligonucleotides: The pairs of primers and the TaqMan probes for b-actin and glyceraldehyde 3phosphate dehydrogenase (GAPDH) used for RT-PCR analysis employed sequences that have been reported previously.15) The pairs of primers and the TaqMan probes for b-2-microglobulin (B2M), b-glucuronidase (GUSB), hypoxanthine phosphoribosyltransferase 1 (HPRT1), peptidylprolyl isomerase A (PPIA), and

456

Masuhiro NISHIMURA and Shinsaku NAITO Table 2.

Total RNA Source Information for Various Tissues

Tissue

Pool size

Adrenal gland Bone marrow Brain Colon Heart Kidney Liver Lung Pancreas Peripheral leukocytes Placenta Prostate Salivary gland Skeletal muscle Small intestine Spinal cord Spleen Stomach Testis Thymus Thyroid gland Trachea Uterus

61 8 1 1 10 14 1 3 2 250 8 32 24 7 5 49 14 1 39 3 65 — 3

Age 15–61 18–56 43 35 21–51 18–59 51 15–40 50, 55 18–40 19–39 21–50 15–60 20–68 20–61 15–66 30–66 50 14–64 20–38 15–61 18–54 40–61

years years years years years years years years years years years years years years years years years years years years years years years

Sex

Race

female, male female, male male female female, male female, male male female, male male female, male female male female, male female, male female, male female, male female, male male male male female, male female, male female

Caucasian Caucasian Caucasian Caucasian Caucasian Caucasian Caucasian Caucasian Caucasian Caucasian Caucasian Caucasian Caucasian Caucasian Caucasian Caucasian Caucasian Caucasian Caucasian Caucasian Caucasian Caucasian Caucasian

—, no data available.

transferrin receptor (TFRC) used for RT-PCR analysis also employed sequences that have been reported previously.16) The pairs of primers and the TaqMan probes for ABCA1, ABCA2, ABCA4, ABCA8, ABCB1, ABCB2, ABCB3, ABCB4, ABCB6, ABCB7, ABCB8, ABCB11, ABCC1, ABCC2, ABCC3, ABCC5, ABCC6, ABCC9, ABCD1, ABCD3, ABCD4, ABCE1, ABCF1, ABCF2, ABCG1, ABCG2, SLC22A1, SLC22A3, and SLC22A5 used for RT-PCR analysis also employed sequences that have been reported previously.17) The pairs of primers and the TaqMan probes for the target mRNAs were designed based on the human mRNA sequence (Table 3) using Primer Express software (Applied Biosystems). The GenBank accession number and the position from the initiation codon are also shown in Table 3. Each primer and W or probe was homology searched by an NCBI BLAST search to ensure that it was speciˆc for the target mRNA transcript. The primers and TaqMan probes were synthesized by the Genosys Division of SIGMAALDRICH JAPAN K.K. (Ishikari, Hokkaido, Japan). The TaqMan probes contained 6-carboxy‰uorescein (FAM) at the 5? end and 6-carboxytetramethylrhodamine (TAMRA) at the 3? end and were designed to hybridize to a sequence located between the PCR primers. TaqMan RT-PCR conditions: Total RNA samples obtained from adult human tissues were diluted under the same conditions as in our previous studies.15,16) Total

RNA at 25,000 pg per 50 mL of reaction mixture was used for measurement of the target mRNA in each tissue. The RT-PCR assay was performed using the ABI PRISM 7700 Sequence Detector system (Applied Biosystems) under the same conditions as in our previous studies.15,16,18) Data analysis: Samples were deemed positive at any given cycle when the value of the emitted ‰uorescence was greater than the threshold value calculated by the instrument's software (Sequence Detector Ver. 1.9.1). The threshold cycle (Ct), which is deˆned as the cycle at which PCR ampliˆcation reaches a signiˆcant value (i.e., usually 15 times greater than the standard deviation of the baseline), is given as the mean value. The relative expression of each mRNA was calculated by the DCt method (where DCt is the value obtained by subtracting the Ct value of PPIA mRNA from the Ct value of the target mRNA), as employed in previous studies.15,19–21) Speciˆcally, the amount of target mRNA relative to PPIA mRNA is expressed as 2-(DCt). Data are expressed as the ratio of the target mRNA to PPIA mRNA. Results and Discussion In this study, we investigated the mRNA expression levels of 46 human ABC family transporters and 108 human SLC family transporters in adult human tissues. Analysis was conducted by RT-PCR using the ABI PRISM 7700 Sequence Detector System in the presence

Table 3. mRNA (GenBank No.)

Forward primer (Position)

Primers and Probes Used for RT-PCR Analysis Reverse primer (Position)

Probe (Position)

5?-GGCTGCATCACCATCATAGGT-3? (1096–1116) 5?-TTCTCCTTTGGGCTGGTCAT-3? (547–566) 5?-AAGACCATTGCACTTCGTGC-3? (541–560)

5?-CAGTGCTCACATGGCTGACTT-3? (1183–1163) 5?-CAGGAAGCGAGAATGCAGAGT-3? (648–628) 5?-TGGTTCGTGGCTCTCTTATCC-3? (628–608)

5?-TGTGCCAAATGGAACACGGAGGA-3? (1138–1160) 5?-AGCAGGTGTTCGACAATGGCAGCATC-3? (569–594) 5?-AACGCCGAATATAATCCCAAGCGGTTTG-3? (565–592)

ABC transporters ABCA3 (NM– 001089) ABCA5 (NM– 018672) ABCA6 (NM– 080284) ABCA7 (AF250238) ABCA9 (NM– 080283) ABCA10 (NM– 080282) ABCA12 (NM– 173076) ABCB5 (NM–178559) ABCB9 (NM–019625) ABCB10 (NM–012089) ABCC4 (NM–005845) ABCC7 (NM–000492) ABCC8 (NM–000352) ABCC10 (NM–033450) ABCC11 (NM–032583) ABCC12 (NM–145187) ABCD2 (NM– 005164) ABCD4 (NM– 005050) ABCG4 (NM– 022169) ABCG5 (NM– 022436) ABCG8 (NM– 022437)

5?-CTTGTTCAACAACCAGGCGTA-3? (3120–3140) 5?-GGCTGCTATTCTGACCACTCA-3? (4452–4472) 5?-TGCCCTCAAGAGAACGTGC-3? (4075–4093) 5?-AGAATTTCATGTATCGCCGGAG-3? (38–59) 5?-CAATGAGCAGCATTGGTGACT-3? (3122–3142) 5?-GATCACAAACTGCGTTTCTCCT-3? (2823–2844) 5?-ACAGACCTACACACGGTACGGA-3? (4231–4252) 5?-CAGTGAGAAGGTGGTTCAGCA-3? (2232–2252) 5?-TGGTCTCCCAGAACATCAATG-3? (896–916) 5?-ATATGCCAGCAAAGTGGACCAT-3? (1128–1149) 5?-CGAGTAGCCATGTGCCATATGA-3? (199–520) 5?-TAAAGCTGTCAAGCCGTGTTC-3? (494–514) 5?-CATATCTTGGTCACACCGCTGT-3? (1750–1771) 5?-GCTGCAGGAAGAAAGCAAGAA-3? (2487–2507) 5?-GGGTCTACCACCACTACATCCA-3? (2372–2393) 5?-AAAAGCCCCCCATCTTACATC-3? (1252–1272) 5?-CTGGTCTGGATGGAAAAATCG-3? (374–394) 5?-TGACCCTACTGGAGCAATTTGT-3? (146–167) 5?-TGCTCACCTTCCCCTTAGAGA-3? (1328–1348) 5?-CCAGCGGAAATGCTTGATT-3? (829–847) 5?-TTCTGGATGTCATCTCCAAATGTTA-3? (1391–1415)

5?-CTCGTTAAACTGGTCCTTGGC-3? (3279–3259) 5?-TTAACTGCCCAGACACCATGA-3? (4534–4514) 5?-ACGGCAGCATACACCTCCA-3? (4142–4124) 5?-CACATTACAGATGAGACCCTGGA-3? (231–209) 5?-AAGTACAGGGAAACATCCACCAG-3? (3236–3214) 5?-CAGAGGCCTGAAATCCATAACTG-3? (2915–2893) 5?-TTACTTCCTCGTGGAGCTGCTT-3? (4378–4357) 5?-GCGTTCTGAATTGCAGAGAGC-3? (2324–2304) 5?-AGGTGACCAAGGAGAGCTGC-3? (997–978) 5?-AGCCCAGTTGCTCCAAAGAAAC-3? (1211–1190) 5?-TTGACTATCTGGCCTGTGGTTGT-3? (587–565) 5?-CAGATTAGCCCCATGAGGAGT-3? (647–627) 5?-ACTCGCTTAGCTTTTGCACGC-3? (1837–1817) 5?-GGCTTGCATGAGAAGCAGAGA-3? (2607–2587) 5?-CGATCAGCACCACGAAGAA-3? (2449–2431) 5?-CATGTCAAGGTGGCATTTGC-3? (1328–1309) 5?-AGGTAGCAGGGATGGCAATCA-3? (475–455) 5?-GCAGGTTGCAGGTGAACTGAT-3? (319–299) 5?-GTCTTGGCCAGGTAATACGCT-3? (1415–1395) 5?-GCTTTGGGTATCCACTGACGT-3? (933–913) 5?-AATATGGACCAGTGGTGTACAGC-3? (1477–1455)

5?-CTCACGCCTCCATTGTGGTCTCCAACTT-3? (3203–3230) 5?-AGGCAGAGGCTGTCTGTGATCGAGTAGC-3? (4484–4511) 5?-CCCATGCTGACGTTGAGGGAACA-3? (4099–4121) 5?-CCATGAATGCCACTTCCCAAACAAGC-3? (153–178) 5?-TTCCCAGCTACGGATTTCAGGCCTCTA-3? (3159–3185) 5?-TTATCGGCATGAGCAGCATCAGCGA-3? (2846–2870) 5?-AGTCTGTATGCAGCACGACGTCTTGTTCAGT-3? (4263–4293) 5?-CCTTGATAAAGCCAGGACGGGAAGGA-3? (2256–2281) 5?-CTGCGGAACACAGTCAAGGTCACGG-3? (922–946) 5?-AATGCAGTTAGCAAGGAAAGAGGCAGTCGC-3? (1152–1181) 5?-TCGGAAGGCACTTCGTCTTAGTAACATGGC-3? (525–554) 5?-ATGAAGGACTTGCATTGGCACATTTCGT-3? (575–602) 5?-TCCAGTGTGGTCCGATCTACCGTCAA-3? (1780–1805) 5?-CCTTGCACGTGTACCAAGCTTACTGGAA-3? (2522–2549) 5?-CAGCTGGAGGTTACATGGTCTCTTGCATAA-3? (2396–2425) 5?-CCCAACCAGAAGACCCAGATACTGTCTTGCT-3? (1274–1304) 5?-AAAGCATTGTGGAAAAGAAGCCTCGGAC-3? (398–425) 5?-ATCTACCAGGTTGGCTTGATCCCCAGTC-3? (169–196) 5?-TCTTCATGAGGGAGCACCTCAACTACTGGTACA-3? (1355–1387) 5?-TTCAATGACTGCGGTTACCCTTGTCCT-3? (850–876) 5?-AGAGGGCAATGCTTTACTATGAACTGGAAGACG-3? (1421–1453)

5?-CTGTGCAATAAACACCGCTG-3? (1149–1130) 5?-CCCATAGCGATGCCAAAAG-3? (770–752) 5?-CCTCCAATAAAAACCCAAGGG-3? (1052–1032) 5?-CACTCCTAACACCAGAGCAAACA-3? (705–683) 5?-AGAGTATGAGCGAAAGGCTGC-3? (615–595) 5?-CAGTTTCGAGAAGCCCATGAG-3? (345–325) 5?-TAGAAAGAGAGAACGTCGCCC-3? (1110–1090)

5?-CTCGATTCGTGTTACCCGTTGGTGCA-3? (1064–1089) 5?-TGGGATGAACGTCTTAGGTCTGATAGGGTT-3? (714–743) 5?-CATCGTCTTGCCACTCCTCTACTTCTTGGT-3? (990–1019) 5?-CAGCAGCTCTGGAAATGTAACCCATGAA-3? (603–630) 5?-CGAGAAATATCTTCCCTTCCAACCTGGTGTCA-3? (563–594) 5?-CCGGCGGAATTCAATGCTGATGAT-3? (273–296) 5?-ACCTGTTTATGCAACCATTGGAGTTGGC-3? (1011–1038)

5?-AGTATTAACCACACCCGCGC-3? (948–929) 5?-AGTTGGAGAAACCAGCCACA-3? (1282–1263) 5?-TCTATGAACGTCTTGGCCTTG-3? (1409–1389) 5?-GAAACATGGAGACGGTGCAAG-3? (289–269) 5?-CCCTCAAAATGGGCTGTGATT-3? (1427–1407) 5?-TGACGGTGCCTGCAATGAT-3? (1372–1354) 5?-GACAGCGGTCAGTCCGTAGA-3? (1461–1442) 5?-TTGGAAGGTCTTGCCTTTGG-3? (1416–1397) 5?-AGATTTACGATGCCCATGGTC-3? (1097–1077) 5?-GGTTACCACGCATCTGAGATAAAAT-3? (799–775) 5?-CTTCAGTCCCCATGAACCTGT-3? (1153–1133) 5?-GGGTGAAGAGCATCAGCTGGTA-3? (1075–1054) 5?-AATAAGTGCATGCGCCAGG-3? (2507–2489) 5?-CTGGTTTTTGTCCAGGAGCAA-3? (1008–988) 5?-TGATGATTCCCCAGAACCG-3? (1442–1424) 5?-TGGAACGAACCAACCTCGG-3? (2181–2163) 5?-AAACCTGGTTGGAACAGGGA-3? (1401–1382) 5?-AGTGAAACGGGTAATGTAGCAGAC-3? (1779–1756) 5?-CCCCCAAAAGTGATGGCATTA-3? (1190–1170)

5?-ATCTTCAAGGATGCAGGTGTTCAAGAGCC-3? (883–911) 5?-ATTGGCCCTGGCCCCATTCCTTG-3? (1189–1211) 5?-CTCCTCACCACCATCTACATCTTCTTGATTGTCC-3? (1348–1381) 5?-ACGGGAAGCTCATGCTGCTTCTATGG-3? (242–267) 5?-CTGTGTCCCTGAAACTAAAGGAAAGACTCTGGAAC-3? (1371–1405) 5?-CAGGTGGCATCCCGTTCATCTTGA-3? (1289–1312) 5?-ACAGCTTCAACTGGGCGGCCAAC-3? (1355–1377) 5?-CCATCTACACTGGCCTGTTCCTTCCTGAGA-3? (1367–1396) 5?-TCCTCTGTGATGGCAGCTTCGTTGGT-3? (1051–1076) 5?-TCAGAAAGGACAGACTCAGAAGGCCCGT-3? (744–771) 5?-CTGTACCATGACTTCACCACCACGCA-3? (1036–1061) 5?-CTGACTTCCTTCTTGCCGGCTCAACT-3? (1018–1043) 5?-CAAGTATCACCCAGATGTGCCCTACGTCA-3? (2448–2476) 5?-AAAGGTTCCACACAGAGTGGCCGAGAA-3? (880–906) 5?-AAACCCATCGAGCTCCAGCATGAAC-3? (1398–1422) 5?-ACTAATTGTGCCAAGTGAGTTCAAGCCAACAAGT-3? (2124–2157) 5?-TTGGAAAGGCCAATAATTGCATTTGTGAGACT-3? (1315–1346) 5?-TTTCCTGTGTATTGTCCTTGTGGCAACTG-3? (1713–1741) 5?-CTTCTCGGCCGTACTCTACATTTACCTGGC-3? (1131–1160)

SLC transporters SLC1A1 (NM–004170) 5?-AACCAGGTGGACAAGAGGATC-3? (1042–1062) SLC1A2 (NM–004171) 5?-AAGAAGGGCCTGGAGTTCAA-3? (691–710) 5?-GTTGGCTTACTCATTCACGCA-3? (967–987) SLC1A3 (NM–004172) SLC1A4 (NM–003038) 5?-GCAACCGATTATAAAGTCGTGACC-3? (574–597) 5?-AAGGAGGTGCTCGATTCGTTC-3? (532–552) SLC1A5 (NM–005628) SLC2A1 (NM–006516) 5?-TGTGGGCCTTTTCGTTAACC-3? (246–265) 5?-AGCATTTTTCAGACGGCTGG-3? (982–1001) SLC2A2 (NM–000340) W SLC2A3 (NM–006931) SLC2A14 (NM–153449) 5?-CAATGCTGTGTTCTATTACTCAACAGG-3? (855–881) SLC2A4 (NM–001042) 5?-GGCTTCGTGGCATTTTTTG-3? (1168–1186) SLC2A5 (NM–003039) 5?-TCATTGTCTTCGCCGTGATC-3? (1325–1344) SLC2A7 (NM–207420) 5?-GAGCGACACGCAACATTCA-3? (220–238) 5?-TCCGCTTTCTGCATCTTCAGT-3? (1333–1353) SLC2A8 (NM–014580) SLC2A9 (NM–020041) 5?-TCATCGCCTCTTTCTGCAGT-3? (1265–1284) SLC2A10 (NM–030777) 5?-AAGAGCCTTCGCCTTCTGC-3? (1335–1353) 5?-CTCTATGTCCCTTTCCTTGGTGT-3? (1330–1352) SLC2A11 (NM–030807) SLC2A12 (NM–145176) 5?-GTCGGCAGCAAAACATTCC-3? (1021–1039) SLC2A13 (NM–052885) 5?-TTGCCTGAAAGCCCTCGAT-3? (718–736) SLC3A1 (NM–000341) 5?-CACGGTCACACAATACTCGGA-3? (1014–1034) 5?-TGGAGTTTGTCTCAGGCAAGG-3? (994–1014) SLC3A2 (NM–002394) SLC4A1 (NM–000342) 5?-TCTTTGACCGCATCTTGCTTC-3? (2414–2434) SLC4A2 (NM–003040) 5?-GCACTTGGTGCGGAAGAATG-3? (858–877) 5?-CAAGGACAGTGGCTTCTTTCC-3? (1374–1394) SLC4A3 (NM–201574) SLC4A4 (NM–003759) 5?-GATGCCCTAGTAGGCGTGGA-3? (2095–2114) SLC4A7 (NM–003615) 5?-TCCTGGTGGGCGAAGTAGA-3? (1292–1310) SLC4A8 (NM–004858) 5?-CCTGCGAGCTTGTATTGGACT-3? (1683–1703) SLC4A9 (NM–031467) 5?-ACCCCAGCGATTTCTTGGA-3? (1094–1112)

457

continued

mRNA Expression Proˆles of Human Drug Transporters

Housekeeping genes PGK1 (NM–000291) RPLPO (NM–001002) TBP (NM–003194)

(continued)

mRNA (GenBank No.)

Forward primer (Position) 5?-GCTGTCATACCTATCTTTAAGAGCTAGCA-3? (1671–1699) 5?-CGGGCCTGTGGAATAGTTTCT-3? (1388–1408) 5?-TGCCCTGGTTTTGGTGGTT-3? (312–330) 5?-CTGCTGGTCATTGGCGTTG-3? (100–118) 5?-TCTTGGAGCAGTCCGTTTGA-3? (1437–1456) 5?-TGAATGCGTGAAACACTGTGG-3? (1047–1067) 5?-ATCTGCACCTTCTACACGGCTG-3? (520–541) 5?-TCCCTCTAATGGGTCCAGCTT-3? (1458–1478) 5?-CCATGTTTGCACGGAACATC-3? (1070–1089) 5?-AACCTTACTTCAGATCGCTCTCAG-3? (1109–1132) 5?-GATGTGCCCTTGGGAACTAAA-3? (1570–1590) 5?-CGAGATGGTTCAAGAAAACACG-3? (1785–1806) 5?-AACTTCCCGAGAGTTCCTGGT-3? (108–128) 5?-TGTTCTGCATAACCAAGGGTG-3? (1373–1393) 5?-TCATCGTCCTGGCGACCTT-3? (1352–1370) 5?-CATGGCTGAGATGAGGAATGA-3? (1155–1175) 5?-TGCCACAAGCATCTTTGCC-3? (1530–1548) 5?-GGAAAAGATCTGCCCCTTGTT-3? (339–359) 5?-GCTTCTGACTCTCGGCCTAGATA-3? (1173–1195) 5?-TTCTTCTCGTCCATGACGCA-3? (415–434) 5?-GACTTGGTGGACCTCATGTCC-3? (1219–1239) 5?-TGTCCATTGGCACACTCATG-3? (1238–1257) 5?-CACACGCACCCCAATCATA-3? (1137–1155) 5?-CCAGCAACAGTATCGGGAAGA-3? (1596–1616) 5?-TCCAAATCGGGCGGAGA-3? (331–347) 5?-ACACGTTCACTTACGCCAAGG-3? (578–598) 5?-CCCTCAAGCTCAGCGTTTT-3? (1238–1256) 5?-ATGCCCATTTCTGTTGCCC-3? (952–970) 5?-ATCTCCATCATCGTGGGCA-3? (106–124) 5?-ACAGGCCCATCAAGGTGAA-3? (1250–1268) 5?-GTGAAATCCCTGAACTTGCGA-3? (473–493) 5?-CCCATGCAGTGGAGCTCAATA-3? (222–242) 5?-ATGTTTGCCATGACACCACTC-3? (643–663) 5?-GATGCAGAACACGCAGCTATG-3? (789–809) 5?-CCACTTCTCGGAAAACCCA-3? (555–573) 5?-TGACTCTGGTGGTCCTTTTCA-3? (824–844) 5?-GCTCTTGCCGTTATTCAGCTG-3? (1138–1158) 5?-TCGTGATCATGGTCCCGAT-3? (998–1016) 5?-TTTACTCCCATCCTGGGAGCA-3? (283–303) 5?-TGAAGGACCGCTTGATCGA-3? (1166–1184) 5?-TTATGCGATCCCCACTGTCTG-3? (675–695) 5?-ACTGACACTCGTTGGGTCGGT-3? (709–729) 5?-GCAGCTATATTGGTGCTTTTACTTATG-3? (1049–1075) 5?-TGTCTCCAAGCTGCATGGAG-3? (1454–1473) 5?-CACGATGCTGGTATTTGGACC-3? (657–677) 5?-CCATAGCCTGCTTCTTATACAAGC-3? (2048–2071) 5?-ATTCTCTGTTCGGCATGGTGA-3? (1100–1120) 5?-TGGAGCAGTCATTGACACCA-3? (2115–2134) 5?-CTGAGCTGTACCCCACATTCA-3? (1364–1384) 5?-TCTCCAACTATGTGGTAGCCTTCA-3? (623–646) 5?-GGCTGGCATCTCCCTCAACT-3? (597–616) 5?-CAGCCTCCGTCAGCTATGTAA-3? (563–583) 5?-ATGGCTGGGTCTACAACAGCA-3? (290–310) 5?-AGAAATGCAGACGCTGCGT-3? (1287–1305) 5?-GGTGGCTGATTATTAAGGGCA-3? (842–862) 5?-TGGTGCTAACCTGGAGCTACC-3? (521–541)

Reverse primer (Position) 5?-TTCAGTAAACCGAGTGATGTAGCAG-3? (1785–1761) 5?-ACGTGATGGAAATGAAGAGGG-3? (1504–1484) 5?-CTCAGGTACTCTGGCATTGTCAC-3? (398–376) 5?-ATGTTGCTGGCGAAGAGAGA-3? (227–208) 5?-GATGAAGCCCGGCCTATTATC-3? (1518–1498) 5?-ATGACCGAAAGCATCAGGC-3? (1157–1139) 5?-CCACTTAGCATCACCACGACCT-3? (602–581) 5?-GACAAGGAATAGAACCGCTGC-3? (1577–1557) 5?-TTTTCGTCAGCAAGGCCAT-3? (1201–1183) 5?-CCATTCCAATACACAGGGCTC-3? (1198–1178) 5?-GGCATTGAAGCCACAGACA-3? (1653–1635) 5?-ATGGCCTTCACCACTTTGGA-3? (1862–1843) 5?-CATGAAGCTGGCTGTCAGAGA-3? (186–166) 5?-TGCTGGATGTCGTTGCTGA-3? (1520–1502) 5?-AAAGAGGATGGACGTGCCG-3? (1458–1440) 5?-TGTTGGCTATCGCTTCTGCA-3? (1249–1230) 5?-CTTGGTCTGCCACATTCTCAA-3? (1624–1604) 5?-GTAGACATTCAGGAGGGACACAAT-3? (411–388) 5?-TTCTTGGGCCGCAGGTAGTAT-3? (1268–1248) 5?-TTGAGCAGGTGGGAGAGGTT-3? (563–544) 5?-CAGGTTAGGCTGCTCTGGCT-3? (1317–1298) 5?-GAACATTTGGGCTGGTCGTA-3? (1334–1315) 5?-AGCAGGGTCCCAATTGACA-3? (1247–1229) 5?-CAGCATGAGGCAGATGTTGAG-3? (1686–1666) 5?-ATGTACTGCGATGAAGGCCG-3? (440–421) 5?-CCTCAAAGGCGTCCTGAAA-3? (682–664) 5?-TAAAGTGGAACAGCCACCAGG-3? (1310–1290) 5?-AGCGCTTCACGTGGATCAT-3? (1084–1066) 5?-CGTGTTGCTGAGCACAGACTT-3? (177–157) 5?-AGCTGAAGACCAGCAGGAAGG-3? (1324–1304) 5?-GCTGTGAGCTTGCAAAAGGTT-3? (602–582) 5?-CCTGACCCCAGAAACAAGGAT-3? (317–297) 5?-CATAACCCAGCAGAAAGCCA-3? (715–696) 5?-AATGCTGTAGATGAGCGGGAA-3? (885–865) 5?-GAGTTCCACTTTGCACCCAA-3? (639–620) 5?-AACAGCTGCAGGGATACTTGC-3? (900–880) 5?-TCACATCCAGAACACATGGCT-3? (1229–1209) 5?-TCGATTTCCACCTGCACGAT-3? (1148–1129) 5?-ACATGGCCAAGCACATACACC-3? (377–357) 5?-AACCAAAGAACATCCCCAGC-3? (1255–1236) 5?-TTGGTGATGAAAACGCTCTGG-3? (749–729) 5?-TGGAAGTGTGTTGGGCAAAA-3? (813–794) 5?-TGACTCCCAATAAGATGTTAGCCTT-3? (1141–1117) 5?-TGGCTGTTGTCCAGAGCATC-3? (1598–1579) 5?-TTGTGTCAATGAAGACCGCA-3? (745–726) 5?-CTGGCTATCTGTGGCACTGTCA-3? (2151–2130) 5?-GGAATGTTGATGAGCCCGAT-3? (1202–1183) 5?-CAAAACGAAACGACGTCACG-3? (2209–2190) 5?-CAAGTACGCCGAAAACCATCA-3? (1510–1490) 5?-CCAACTGCAAAAAATGTGCAC-3? (725–705) 5?-ACATAGCCAATCAAGGTGCCC-3? (686–666) 5?-ATGATGGTAAAACCAGCCAGG-3? (638–618) 5?-TGCCATGAAGATAGACTGGGC-3? (393–373) 5?-AGCAAGGGTATTGGCAAGAGC-3? (1359–1338) 5?-TCCTTGTGGCCATTTATCCTG-3? (920–900) 5?-TGTTCATCATGACGCCTGC-3? (649–631)

Probe (Position) 5?-AACTCTATGTATCATACTTGTGGCCACAGATGCTAGT-3? (1716–1752) 5?-CCTTGCGCTTTATGCCTTTTTCAACC-3? (1410–1435) 5?-CTGGGCTGGCTGTTTGTCCCCATCTATA-3? (334–361) 5?-CTTGTGGTCCATGTGCAGAACCAACA-3? (120–145) 5?-TTTGCCTACCGTGCCCCAGAATGT-3? (1465–1488) 5?-TTGATGTTGGCTGCACCAACTACGCATAC-3? (1070–1098) 5?-CATGAAGGCTGTGGTCTGGACTGATGTGTT-3? (549–578) 5?-TCCCTGCCCACCAATCTAACCGTT-3? (1480–1503) 5?-CAGCTTTCCTTCAGACAAAATGCTTCGGAC-3? (1093–1122) 5?-AAGGTCTCTGTCTTGGATTTCCCAAGGAATGAG-3? (1134–1166) 5?-CCAAACACCCCAGAAACACGCCTT-3? (1602–1625) 5?-ACAGCTGTGACATGACCCCAAAGCA-3? (1817–1841) 5?-AAGGCAAATGAGCTTTGGCCCTGTC-3? (135–159) 5?-TCTTGACCCTCCTGGACACCTTTGCT-3? (1403–1428) 5?-TCTGCGTCACCAACGGTGGCATCTA-3? (1385–1409) 5?-ATGTGTCTGAGGTGGCCAAAGACGCA-3? (1178–1203) 5?-CTTCGTCATCTTCTCCGTTATCGGCTTCAT-3? (1551–1580) 5?-TCTGGTATCGGCTATGCCTCCGTTGT-3? (361–386) 5?-CCAGTTTGCTTTTCTGGAGACCATTGTGAC-3? (1197–1226) 5?-TGCTGCCCTGGGCCTACTGCAATA-3? (437–460) 5?-TGGCACTCTCCTGGCTTACTCGTTGG-3? (1242–1267) 5?-CTACTCTCTGGTGGCAGCCTGTGTTCTCATC-3? (1260–1290) 5?-ACCGTGGTCTCTGGCATTATTGCAGCATT-3? (1159–1187) 5?-TTATTTCAGATCCCCATGGTTCCCCTG-3? (1618–1644) 5?-TACGCCTACATGCTGGAGGTCTACGGCT-3? (349–376) 5?-CGTAGCGCTCATTGCCATCATTGTC-3? (600–624) 5?-CCGATTGTCTTCTGCCTCTGCACCAT-3? (1261–1286) 5?-AGTTAATGGGTCTCTCTTCACCTCCTCTCGG-3? (987–1017) 5?-CATCATTGGCTCTGGGATCTTCGTTTCC-3? (126–153) 5?-CTTCTCATCCCCGTGGCGTACTTGG-3? (1270–1294) 5?-CAGCTGTGGGCATAACTGTAGTGATGGTCC-3? (506–535) 5?-TCAAGAGATACTTTGGCTCCACGGTTGC-3? (251–278) 5?-ATTGCCACCTCCTCCCTGATGCCTTTTA-3? (667–694) 5?-TCCACCATCGTTCAGCTCTCCTTCACTC-3? (811–838) 5?-TCCTCTACCTGCTCCTGCCTCTTATCTTTGT-3? (575–605) 5?-ATGACCGGCACTATGTTAGGACCTGAACTG-3? (847–876) 5?-TTCCACAGTCCAAGGCCAATTTAGCTTC-3? (1163–1190) 5?-TTCGATGCTGTGCTGTACCCTCTCATTG-3? (1018–1045) 5?-TGCTGACTCGTGGTTGGGAAAATTCAAG-3? (309–336) 5?-CTTTACTGCTGCGGTGCAAGCTGCTT-3? (1187–1212) 5?-TCGGCCTTGCTTTTGTGGTCTTCCTCT-3? (698–724) 5?-TTTGGCTTTCTGATTTGTGCAGGAGTTAACGT-3? (739–770) 5?-TACGTAGAGCAACAGTATGGTCAGCCTTCATC-3? (1084–1115) 5?-CCTGCCCATTGGACGGCTTTAACC-3? (1481–1504) 5?-CCTGGGCTCTTTCTGTACCAAAATCTACGTG-3? (693–723) 5?-CTGTCGGAGTCTTCAGATGGCCTGGAAA-3? (2074–2101) 5?-ACCAAAGTACATTGAGCAGCAGTATGGACAGTC-3? (1128–1160) 5?-CTGCATGCTCTGGCAACAGGAATGTG-3? (2136–2161) 5?-ATCTTGGCGTCCACATCTGTTCCTCAAT-3? (1391–1418) 5?-CTAGGAACAGAAATTCTTGGCAAGTCAGTTCGT-3? (649–681) 5?-ACTGAATGTGGAGTGGATGCCCATTCA-3? (624–650) 5?-ATCACCCGCACCCTTACTGGCTCA-3? (592–615) 5?-ATTGTGACAGAGTGGGACTTGGTGTGCAACT-3? (322–352) 5?-TTTTGGCAACACTGGGCTTAGGAGCGT-3? (1310–1336) 5?-ACCAGACCAAGCACTTCAGGAGCTCAGAAAG-3? (864–894) 5?-TCAGATGGCTGTGATGGGTACGGC-3? (543–566)

continued

Masuhiro NISHIMURA and Shinsaku NAITO

SLC4A10 (NM–022058) SLC4A11 (NM–032034) SLC5A1 (NM–000343) SLC5A2 (NM–003041) SLC5A3 (NM–006933) SLC5A4 (NM–014227) SLC5A5 (NM–000453) SLC5A6 (NM–021095) SLC5A7 (NM–021815) SLC5A8 (NM–145913) SLC5A10 (NM–152351) SLC5A11 (NM–052944) SLC5A12 (NM–178498) SLC6A2 (NM–001043) SLC6A3 (NM–001044) SLC6A4 (NM–001045) SLC6A5 (NM–004211) SLC6A6 (NM–003043) SLC6A7 (NM–014228) SLC6A9 (NM–006934) SLC7A1 (NM–003045) SLC7A2 (NM–003046) SLC7A3 (NM–032803) SLC7A4 (NM–004173) SLC7A5 (NM–003486) SLC7A6 (NM–003983) SLC7A7 (NM–003982) SLC7A8 (NM–012244) SLC7A9 (NM–014270) SLC7A10 (NM–019849) SLC7A11 (NM–014331) SLC7A13 (NM–138817) SLC10A1 (NM–003049) SLC10A2 (NM–000452) SLC10A3 (NM–019848) SLC10A4 (NM–152679) SLC10A5 (NM–001010893) SLC15A1 (NM–005073) SLC15A2 (NM–021082) SLC15A3 (NM–016582) SLC15A4 (NM–145648) SLC21A3 (NM–134431) SLC21A6 (NM–006446) SLC21A9 (NM–007256) SLC21A11 (NM–013272) SLC21A12 (NM–016354) SLC21A14 (NM–017435) SLC21A15 (NM–030958) SLC22A2 (NM–003058) SLC22A4 (NM–003059) SLC22A6 (AF124373) SLC22A7 (NM–006672) SLC22A8 (NM–004254) SLC22A9 (NM–080866) SLC22A11 (NM–018484) SLC22A12 (NM–144585)

458

Table 3.

Table 3.

(continued)

mRNA (GenBank No.)

5?-AGCCACCGCTTCAATGAGA-3? (298–316) 5?-CCTGGACTTCTGTAAGAATAGGCA-3? (1104–1127) 5?-GTTATTGCCGGAGACCCTTAA-3? (1401–1421) 5?-ATGGAAAAGCACTGCGGTG-3? (405–423) 5?-CCGCAACATCTGGAAAAATC-3? (903–922) 5?-AACGTGGTCACCGACAGCA-3? (1036–1054) 5?-GGGTGATCCTGAAGATTGCCT-3? (863–883) 5?-CAGGAATCTGCATGTTCATCC-3? (533–553) 5?-TGCCAATATCGGGTCCCTA-3? (1689–1707) 5?-TGCCTTCGGCTACTTTATCACA-3? (612–633) 5?-GGTACTTTATCACGCCCTATGTGG-3? (581–604) 5?-AGTATGCCAGGTACTACATGAGGC-3? (764–787) 5?-TGAACAACGTCCTGGTGGAGA-3? (365–385) 5?-TGATAGAAGCGGCCAATGG-3? (506–524) 5?-TTTGGGAATGTCCATCGTCA-3? (900–919) 5?-ATGCAACATTGGCACAGGG-3? (159–177) 5?-CTTGTGCCGGAGCAATTCT-3? (1205–1223) 5?-TACCGTGGTTACCTGCATACTCTT-3? (1179–1202) 5?-GGGATATAAGGCATTTGGATTAGTT-3? (411–435) 5?-AAGGAGCCTGCAAGATCCA-3? (1378–1396) 5?-CCCAATTCGTACATCAGTGATCA-3? (1296–1318) 5?-CCCAGCCAAGGACTCAACA-3? (715–733) 5?-GCATTGTGTTCCCTCTTGCAC-3? (530–550)

Reverse primer (Position) 5?-TCATTCTTCAGGGATGGGAGC-3? (377–357) 5?-AGGTGTAACTGACGGTAAACCAC-3? (1183–1161) 5?-CAGCCTGCGATACGAATACAC-3? (1476–1456) 5?-TGGATCAGCATTGCAAGCC-3? (473–455) 5?-TAGCAGTGGCGAATGGCAT-3? (974–956) 5?-GTGGTTGTACAGAGGCGCAGA-3? (1123–1103) 5?-TAGGGCCGGATCAGTAATGGA-3? (986–966) 5?-ACCTAGGCCCGAAAACACTGT-3? (621–601) 5?-GAGGCGATATCACGCTTTCTG-3? (1766–1746) 5?-ATGAGGTCCAACTTGGTCTCCTG-3? (758–736) 5?-CTTGGGCCTGGGATGATTT-3? (694–676) 5?-GTGGGAATCAATGAATCTGGAG-3? (882–861) 5?-CACGTCGCAGATGCTGATAAA-3? (465–445) 5?-CTCGGAGGTTCCTGATGAAAA-3? (646–626) 5?-GGCAGGTTAAGGCTTATGCTG-3? (1001–981) 5?-GTGTTGAGCACAGTTCAACAGGA-3? (297–275) 5?-ATTAGGGCCAATGTGCTGC-3? (1289–1271) 5?-GTTAGCAGATGTAACTCCTACGACTCC-3? (1281–1255) 5?-TTTCACTATGAAGAGGTAGCTTGACA-3? (510–485) 5?-TCAGCAAGAAGCCAAGCATAG-3? (1444–1424) 5?-TTATAGTTGGCACAAGGATGACC-3? (1423–1401) 5?-CTCAGGGTGGCAGACAAAAG-3? (822–803) 5?-GGACAAGGGATGGACCATTT-3? (656–637)

Probe (Position) 5?-CCTTGTGATATGGGCTGGGAATATCCTGAG-3? (322–351) 5?-CTCTGCAAGGTGACCTTGGTGATGAGCT-3? (1129–1156) 5?-CCGCTGCTAGAAACATTCTCCGACCTTCA-3? (1426–1454) 5?-CAGTGGAACCTGGTCTGTGACCGAAAA-3? (427–453) 5?-CTTATCCTGGGCTTCACCAACTTCATTGC-3? (925–953) 5?-CTGATCAAGGCTGTCTCCACCTCGGA-3? (1057–1082) 5?-TGATGCAAGTCACCATGGGCACCA-3? (887–910) 5?-TATCCTCTTTGCCTGCTCCAAACACCA-3? (555–581) 5?-AATCGTGATCGGCGGACTCACATC-3? (1710–1733) 5?-TTGACCATCATCTGTTACCTGGGCCTGC-3? (652–679) 5?-CATCCTCATGTCCATCGTGTGTTACCTG-3? (606–633) 5?-TGTTCTTGCGGCCCATGTGTTTTCT-3? (789–813) 5?-TACCTCTTAGCCTTGGGCCCTCTCCTTT-3? (418–445) 5?-ACCACCAATAACTGCCACAACAATGAGACG-3? (526–555) 5?-TTCCCTATACATTGGCATGGCGGCTC-3? (921–946) 5?-TTCCCCTGGCCATAAAGAATGCCG-3? (188–211) 5?-CATTGTGATTTCCTTCGTTGGAGCTGTG-3? (1239–1266) 5?-ACTTGTTGGTGATCTTCATACCCTCCATGAAGG-3? (1214–1246) 5?-AAGCTTGCAGCATCTGGATCAATTACAATG-3? (439–468) 5?-CCCCAAAATCCTGGCCCTGTGTTT-3? (1398–1421) 5?-CTGTTATTTCCCAAACGACCCTTCAGCTG-3? (1321–1349) 5?-CTGTGAGGCCCAGATGTTCACAGTTGA-3? (738–764) 5?-CTTCCCAAAATAGGCTTTCTTGGCTACACA-3? (553–582)

The positions of the primers and probes were counted from the position of the initiation codon.

459

of the TaqMan probe. In order to prepare the transporter calibration curves, the total RNA obtained from the tissue exhibiting the highest mRNA expression levels was used for the individual transporter isoforms. When preparing the calibration curves, various amounts ranging from 1.28 to 100,000 pg of total RNA were used. The lower limit of quantiˆcation for each mRNA ranged between 1.28 and 4000 pg of total RNA per 50 mL of reaction mixture. The upper limit of quantiˆcation for each mRNA was higher than 100,000 pg of total RNA per 50 mL of reaction mixture. The relative amounts of housekeeping gene mRNAs in each tissue used in this study are shown in Table 4. Data are expressed as the ratio to the lowest value for each housekeeping gene. For example, the expression of b-actin mRNA was 41.9-fold higher in peripheral leukocytes than in the pancreas, and the expression of GAPDH mRNA was 108-fold higher in skeletal muscle than in the pancreas. Consistent with the ˆndings of our previous studies,15,16) the expression of PPIA mRNA showed the lowest variability among the housekeeping genes studied. The expression of GUSB, PGK1, and RPLPO mRNA also showed low variability among the housekeeping genes studied. Therefore, in the present study, we considered GUSB, PGK1, PPIA, and RPLPO mRNA to be suitable as endogenous controls for the measurement of transporter mRNAs, and we then selected PPIA, which showed the lowest variability and was used as an endogenous control in our previous studies.15,16) The process used to select the best housekeeping gene has been described in detail in our previous studies.16,22) The mRNA expression levels of 46 human ABC transporters in various tissues are shown in Table 5. ABCA1 mRNA was found to be widely expressed in adult tissues, with the highest level of expression in the adrenal gland. The results for ABCA1 were similar to those reported in human subjects23–26) and the mouse.27) Consistent with the ˆndings of other studies in human subjects,28) the mouse,27) and the rat,29) ABCA2 mRNA was expressed at high levels in the brain and spinal cord. Consistent with the ˆndings of other studies in human subjects,30–32) ABCA3 mRNA levels were the highest in the lung. ABCA3 mRNA was also expressed at high levels in the brain and spinal cord, with low levels of expression in other tissues. ABCA4 mRNA showed no or very weak expression in many tissues. Consistent with the ˆndings of other studies in human subjects,30,33,34) ABCA5 mRNA and ABCA6 mRNA were expressed ubiquitously and were expressed at the highest levels in skeletal muscle and the liver, respectively. Consistent with the ˆndings of another study in human subjects,24) ABCA7 mRNA was expressed at high levels in the bone marrow, peripheral leukocytes, spleen, and thymus. However, in the rat, ABCA7 mRNA was not expressed

mRNA Expression Proˆles of Human Drug Transporters

SLC22A13 (NM–004256) SLC22A14 (NM–004803) SLC22A15 (NM–018420) SLC22A16 (NM–033125) SLC22A17 (NM–020372) SLC22A18 (NM–002555) SLC28A1 (NM–004213) SLC28A2 (NM–004212) SLC28A3 (NM–022127) SLC29A1 (NM–004955) SLC29A2 (NM–001532) SLC29A3 (NM–018344) SLC29A4 (NM–153247) SLC36A1 (NM–078483) SLC36A2 (NM–181776) SLC36A3 (NM–181774) SLC36A4 (NM–152313) SLC38A1 (NM–030674) SLC38A2 (NM–018976) SLC38A3 (NM–006841) SLC38A4 (NM–018018) SLC38A5 (NM–033518) SLC38A6 (NM–153811)

Forward primer (Position)

460

Masuhiro NISHIMURA and Shinsaku NAITO Table 4.

Relative Amounts of Human Housekeeping Gene mRNAs in Various Tissues

Tissue

b-actin

B2M

GAPDH

GUSB

HPRT1

PGK1

PPIA

Adrenal gland Bone marrow Brain Colon Heart Kidney Liver Lung Pancreas Peripheral leukocytes Placenta Prostate Salivary gland Skeletal muscle Small intestine Spinal cord Spleen Stomach Testis Thymus Thyroid gland Trachea Uterus

16.0 24.2 20.0 31.6 4.42 11.1 3.36 24.6 1.00 41.9 12.3 15.4 5.26 2.99 33.2 23.3 26.4 24.8 10.6 29.8 10.9 9.58 36.0

10.8 6.04 1.53 15.4 6.28 4.39 3.42 25.8 1.00 35.6 2.86 10.8 3.75 1.81 11.3 3.77 21.6 7.78 1.47 9.65 6.61 8.49 5.43

6.59 6.84 13.6 12.9 28.3 17.1 3.78 4.84 1.00 7.89 3.82 6.73 3.31 108 11.6 18.0 3.27 7.11 7.67 9.95 5.72 4.55 6.23

6.39 6.61 2.81 7.75 2.96 6.63 6.43 8.43 2.06 10.0 11.6 6.92 3.28 1.00 7.11 2.80 4.92 4.32 9.29 6.19 6.68 3.78 6.13

6.13 6.08 23.8 8.75 5.28 5.50 1.80 5.26 2.38 5.33 1.00 4.86 1.31 2.03 6.94 6.59 3.08 4.59 33.4 6.75 5.21 2.15 3.18

8.14 3.26 9.78 5.72 11.6 9.42 1.78 6.89 1.00 6.75 3.61 5.15 2.16 8.97 4.84 6.45 3.69 3.53 2.07 6.39 5.01 2.83 2.82

5.82 3.02 9.42 6.94 3.42 5.19 2.20 6.84 2.31 5.43 2.06 4.96 1.94 1.00 5.74 5.35 3.47 4.48 3.59 8.63 4.42 2.56 4.14

RPLPO

TBP

TFRC

4.10 1.99 1.00 12.09 2.23 1.94 1.43 3.14 5.74 5.13 1.88 4.45 2.84 4.29 4.10 1.42 2.33 3.47 2.74 3.71 3.39 2.61 3.78

7.41 4.86 6.89 5.56 5.13 5.08 1.00 7.29 1.44 4.35 5.56 7.52 2.39 3.45 4.48 4.89 4.47 4.01 50.4 6.99 7.39 4.71 6.06

8.25 52.7 10.8 30.5 6.28 5.37 1.10 17.6 1.00 6.92 34.3 7.11 1.29 6.99 10.2 6.43 3.00 7.44 7.65 5.84 3.39 3.76 3.48

Data are expressed as the ratio to the lowest value for each housekeeping gene. Total RNA at 25,000 pg per 50 mL of reaction mixture was used for each tissue. Experiments were performed in duplicate. The highest values of Ct for b-actin, b-2-microglobulin (B2M), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), b-glucuronidase (GUSB), hypoxanthine phosphoribosyltransferase 1 (HPRT1), phosphoglycerate kinase 1 (PGK1), peptidylprolyl isomerase A (PPIA), ribosomal protein large P0 (RPLP0), TATA box binding protein (TBP), and transferrin receptor (TFRC) in various tissues were 22.65, 22.99, 23.04, 27.27, 28.48, 24.81, 23.48, 22.10, 28.33, and 28.17, respectively.

Table 5. Tissue Adrenal gland Bone marrow Brain Colon Heart Kidney Liver Lung Pancreas Peripheral leukocytes Placenta Prostate Salivary gland Skeletal muscle Small intestine Spinal cord Spleen Stomach Testis Thymus Thyroid gland Trachea Uterus

Expression of Human ABC Transporter mRNAs in Various Tissues

ABCA1 ABCA2 0.363 0.0370 0.0196 0.0661 0.0640 0.0180 0.124 0.171 0.0198 0.0326 0.173 0.0450 0.0230 0.157 0.0282 0.0921 0.0851 0.0369 0.0725 0.0822 0.0524 0.0608 0.0569

0.0402 0.0190 0.311 0.0280 0.0502 0.0517 0.0184 0.0231 0.0172 0.0448 0.0175 0.0367 0.0272 0.0701 0.0163 1.22 0.0364 0.0205 0.0437 0.0129 0.108 0.0385 0.0223

ABCA3

ABCA4

0.00259 0.000176 0.00982 0.000743 0.00120 0.00105 0.0000604 0.0361 0.00105 0.000527 0.00116 0.00222 0.00145 0.00188 0.000748 0.0153 0.000672 0.000421 0.00473 0.00163 0.00483 0.00158 0.00112

0.000207 0.00125 0.000610 0.000301 0.000281 0.00809 0.000377 0.000544 BLQ BLQ 0.00193 0.000383 0.0000881 0.000413 0.000281 0.000304 0.000274 0.000329 0.00293 0.000233 0.00103 0.000295 0.000777

ABCA5 ABCA6 ABCA7 ABCA8 ABCA9

ABCA10

ABCA12

0.0689 0.0487 0.105 0.0573 0.129 0.0434 0.0497 0.0391 0.0811 0.0150 0.0393 0.0890 0.0223 0.543 0.0281 0.0575 0.0198 0.0485 0.102 0.0129 0.0881 0.0538 0.0204

0.00826 0.00245 0.00882 0.00340 0.0474 0.00558 0.00486 0.0226 0.00692 0.000593 0.000662 0.00855 0.0106 0.0589 0.00246 0.00855 0.00156 0.00861 0.0302 0.00326 0.0214 0.0186 0.0155

BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ 0.000813 0.0000903 BLQ BLQ BLQ BLQ BLQ 0.000782 0.00375 BLQ BLQ 0.00169 BLQ

0.0794 0.0433 0.0228 0.0353 0.300 0.0239 0.379 0.184 0.0330 0.00190 0.00554 0.0402 0.0402 0.189 0.0234 0.0925 0.0120 0.0518 0.0663 0.0146 0.0934 0.121 0.0713

0.00643 0.0550 0.00840 0.00521 0.00308 0.00478 0.00195 0.0125 0.00277 0.0317 0.00867 0.00370 0.0137 0.0118 0.00478 0.00461 0.0208 0.00773 0.00260 0.0286 0.00702 0.0185 0.00232

0.139 0.00510 0.0311 0.0319 0.429 0.0184 0.0540 0.0947 0.00999 BLQ 0.00450 0.0292 0.0228 0.102 0.0223 0.101 0.0256 0.0405 0.0957 0.00716 0.0686 0.0520 0.0230

0.0150 0.00959 0.00929 0.0120 0.131 0.00789 0.0187 0.0430 0.00739 0.000375 0.000413 0.0110 0.0118 0.0557 0.00537 0.0317 0.00191 0.0143 0.0475 0.00809 0.0352 0.0394 0.0329

BLQ, below the limit of quantiˆcation. Data are expressed as the ratio of the target mRNA to PPIA mRNA. Experiments were performed in duplicate. The highest values among the various tissues are shown in boxes.

461

mRNA Expression Proˆles of Human Drug Transporters Table 5.

(continued) Tissue

Adrenal gland Bone marrow Brain Colon Heart Kidney Liver Lung Pancreas Peripheral leukocytes Placenta Prostate Salivary gland Skeletal muscle Small intestine Spinal cord Spleen Stomach Testis Thymus Thyroid gland Trachea Uterus

ABCB1

ABCB2

ABCB3

ABCB4

ABCB5

ABCB6

ABCB7

ABCB8

ABCB9

ABCB10

ABCB11

0.297 0.00291 0.00913 0.0133 0.00503 0.0851 0.0230 0.00789 0.00171 0.00907 0.0255 0.00814 0.00121 0.00154 0.0337 0.0163 0.00891 0.00313 0.00209 0.00127 0.00521 0.00402 0.0102

0.0513 0.0459 0.00979 0.0836 0.0373 0.0256 0.0259 0.166 0.0144 0.154 0.0698 0.0634 0.0348 0.0529 0.0610 0.0475 0.210 0.0531 0.0693 0.0715 0.0261 0.0703 0.0415

0.0127 0.0181 0.00763 0.0179 0.0106 0.0103 0.00752 0.0470 0.00607 0.0472 0.0115 0.0112 0.00662 0.0175 0.0186 0.0106 0.0418 0.0148 0.00742 0.0210 0.00985 0.0178 0.0130

0.0110 0.00141 0.0000887 0.000480 0.0107 0.000425 0.150 0.000248 0.000187 0.000824 0.000122 0.000669 0.000516 0.0270 0.000614 0.000743 0.00870 0.000883 0.00289 0.000284 0.000688 0.000549 0.000375

0.0000180 0.000977 0.0000178 0.000361 0.0000539 0.0000185 BLQ 0.0000461 0.0000279 0.0000199 BLQ 0.000408 0.0000415 BLQ 0.000101 0.0000733 0.0000162 0.000136 0.00498 0.0000522 0.0000335 0.0000427 0.000309

0.00687 0.0133 0.00493 0.00319 0.0120 0.00600 0.00992 0.00198 0.00304 0.000523 0.00643 0.0104 0.00498 0.103 0.00416 0.00867 0.00142 0.00752 0.0652 0.00149 0.00812 0.00657 0.00721

0.00458 0.00632 0.00407 0.00624 0.0224 0.00697 0.00457 0.00469 0.00255 0.00721 0.00273 0.00664 0.00345 0.0336 0.00607 0.00582 0.00433 0.00460 0.00498 0.00379 0.00867 0.00392 0.00425

0.0569 0.0205 0.0442 0.0314 0.0354 0.0459 0.0244 0.0261 0.0151 0.0238 0.157 0.0311 0.0263 0.0775 0.0320 0.0445 0.0217 0.0292 0.0925 0.0238 0.0393 0.0294 0.0390

0.0103 0.00439 0.0428 0.00592 0.0123 0.00936 0.00124 0.00372 0.00419 0.00182 0.00965 0.0104 0.0140 0.00611 0.0112 0.0268 0.00486 0.00300 0.164 0.00476 0.0115 0.0103 0.0135

0.0315 0.441 0.0307 0.0411 0.0561 0.0428 0.0310 0.0386 0.0181 0.0450 0.0385 0.0415 0.0319 0.158 0.0538 0.0221 0.0439 0.0322 0.0401 0.0219 0.0409 0.0490 0.0393

BLQ BLQ BLQ 0.000284 BLQ BLQ 0.163 BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ 0.0396 0.000361 BLQ 0.000361 BLQ

BLQ, below the limit of quantiˆcation. Data are expressed as the ratio of the target mRNA to PPIA mRNA. Experiments were performed in duplicate. The highest values among the various tissues are shown in boxes.

Table 5.

(continued)

Tissue

ABCC1

ABCC2

ABCC3

ABCC4

ABCC5

ABCC6

ABCC7

ABCC8

Adrenal gland Bone marrow Brain Colon Heart Kidney Liver Lung Pancreas Peripheral leukocytes Placenta Prostate Salivary gland Skeletal muscle Small intestine Spinal cord Spleen Stomach Testis Thymus Thyroid gland Trachea Uterus

0.0307 0.0389 0.00855 0.0215 0.0291 0.0141 0.00326 0.0414 0.00776 0.0437 0.0224 0.0563 0.00913 0.268 0.0184 0.0173 0.0480 0.0447 0.133 0.0494 0.0365 0.0691 0.0338

0.00106 0.00169 0.000408 0.000581 0.000597 0.0751 0.208 0.00119 0.00180 0.00208 0.00311 0.00142 0.00104 0.00514 0.0273 0.000877 0.00165 0.00135 0.00387 0.00245 0.000853 0.00126 0.000927

0.315 0.00843 0.000360 0.142 0.000750 0.0484 0.114 0.0107 0.0506 0.0136 0.0183 0.0163 0.00483 0.000332 0.0513 0.00852 0.0222 0.103 0.00635 0.00413 0.00433 0.0150 0.00936

0.00823 0.0616 0.0105 0.0360 0.0207 0.180 0.00294 0.110 0.0126 0.0253 0.00942 0.493 0.0129 0.0830 0.0396 0.0436 0.0223 0.0390 0.0713 0.0149 0.0587 0.0520 0.0360

0.0194 0.0327 0.0484 0.0125 0.0597 0.0193 0.00500 0.0188 0.00342 0.0145 0.00803 0.0280 0.0106 0.120 0.00820 0.0267 0.0320 0.0347 0.0581 0.0160 0.00752 0.0464 0.0181

0.000242 0.0000828 0.0000275 0.000473 0.0000881 0.00873 0.00982 0.00224 0.000311 0.000135 0.0000869 0.000428 0.00114 0.00314 0.000960 0.000116 0.0000196 0.000440 0.0000380 0.0000226 0.000276 0.000520 0.0000287

0.0000111 0.0000039 0.000374 0.0691 0.000883 0.000522 0.000853 0.0185 0.187 0.0000118 0.000160 0.00580 0.0358 0.0000135 0.0173 0.000953 0.000459 0.0139 0.0117 0.0000181 0.00160 0.00236 0.000499

0.00726 0.000230 0.0307 0.000780 0.00414 0.000237 0.0000349 0.00121 0.0161 BLQ 0.000197 0.00368 0.000126 0.00264 0.000892 0.0144 0.000153 0.000761 0.000551 0.0000552 0.00812 0.000464 0.00422

ABCC9 0.00949 0.00402 0.00809 0.00814 0.203 0.00724 0.0902 0.0369 0.0104 BLQ 0.000631 0.0244 0.00227 0.253 0.00680 0.0176 0.00949 0.0239 0.00372 0.00149 0.0223 0.00975 0.0285

ABCC10 0.0377 0.0217 0.0155 0.0125 0.0120 0.0219 0.00570 0.0226 0.0188 0.0295 0.0531 0.0265 0.0293 0.0354 0.0230 0.0142 0.0297 0.0273 0.0258 0.0266 0.0194 0.0379 0.0223

ABCC11 0.000222 0.0000417 0.000551 0.0000471 0.000116 0.000237 0.00381 0.000103 0.000120 0.0000330 0.00104 0.00371 0.000212 0.000128 0.000633 0.00180 0.0000132 0.0000168 0.0302 0.000113 0.000228 0.000148 0.0000762

ABCC12 BLQ BLQ BLQ BLQ BLQ BLQ BLQ 0.000111 0.00155 BLQ 0.0000432 0.000159 0.0000327 BLQ 0.0000288 0.000105 BLQ 0.00121 0.0931 0.0000222 0.0000273 BLQ 0.0000072

BLQ, below the limit of quantiˆcation. Data are expressed as the ratio of the target mRNA to PPIA mRNA. Experiments were performed in duplicate. The highest values among the various tissues are shown in boxes.

or was expressed at lower levels in the bone marrow, peripheral leukocytes, spleen, and thymus.35) Consistent with the ˆndings of another study in human subjects,36) ABCA8 mRNA was expressed at the highest levels in the heart. Similar to the ˆndings of other studies in human subjects,37,38) ABCA9 mRNA and ABCA10 mRNA were

expressed ubiquitously. Consistent with the ˆndings of another study in human subjects,39) ABCA12 mRNA showed no or very weak expression in all of the tissues analyzed in the present study. ABCB1 mRNA was expressed at the highest levels in the adrenal gland. Consistent with the ˆndings of

462

Masuhiro NISHIMURA and Shinsaku NAITO

Table 5.

(continued)

Tissue

ABCD1

ABCD2

ABCD3

ABCD4

ABCE1

ABCF1

ABCF2

ABCG1

ABCG2

ABCG4

ABCG5

Adrenal gland Bone marrow Brain Colon Heart Kidney Liver Lung Pancreas Peripheral leukocytes Placenta Prostate Salivary gland Skeletal muscle Small intestine Spinal cord Spleen Stomach Testis Thymus Thyroid gland Trachea Uterus

0.183 0.0254 0.00834 0.0411 0.0836 0.0307 0.0292 0.0368 0.0310 0.0730 0.318 0.0374 0.0356 0.475 0.137 0.0242 0.0597 0.0291 0.292 0.0402 0.0329 0.0331 0.0679

0.00904 0.0179 0.0736 0.00975 0.0728 0.00271 0.000328 0.00452 0.000538 0.0301 0.000107 0.00339 0.00709 0.00350 0.00496 0.0275 0.0126 0.00913 0.00384 0.00478 0.00238 0.00817 0.0164

0.0693 0.0822 0.0634 0.162 0.202 0.258 0.115 0.0805 0.0713 0.0170 0.0533 0.113 0.0520 0.296 0.130 0.117 0.0451 0.134 0.107 0.0652 0.0918 0.101 0.0571

0.00985 0.00483 0.00436 0.00697 0.0106 0.0184 0.0112 0.00596 0.00678 0.00724 0.0149 0.00752 0.00657 0.0161 0.00789 0.0138 0.00809 0.00468 0.0147 0.00562 0.0135 0.00765 0.00904

0.0563 0.0723 0.0614 0.0433 0.137 0.0529 0.0260 0.0577 0.0682 0.0524 0.0338 0.0851 0.0386 0.150 0.0389 0.0645 0.0593 0.0711 0.145 0.0196 0.0842 0.0518 0.0400

0.101 0.0957 0.0715 0.116 0.173 0.118 0.0645 0.143 0.0921 0.0808 0.296 0.115 0.0951 0.983 0.0890 0.0954 0.115 0.118 0.358 0.0974 0.117 0.134 0.140

0.105 0.0746 0.0896 0.0559 0.209 0.122 0.0249 0.0887 0.0649 0.0600 0.135 0.109 0.0811 0.714 0.0561 0.124 0.109 0.0730 0.357 0.0583 0.0938 0.105 0.0947

0.113 0.0117 0.0204 0.0205 0.0350 0.0190 0.00602 0.0619 0.00264 0.0201 0.0931 0.0244 0.0295 0.0902 0.0110 0.0225 0.0854 0.0143 0.00742 0.0422 0.0230 0.0550 0.0174

0.0117 0.0104 0.0224 0.00784 0.00541 0.00463 0.0139 0.0106 0.000267 0.000264 0.0954 0.0147 0.00855 0.00163 0.0492 0.0355 0.00288 0.00199 0.0113 0.000899 0.00834 0.00413 0.0492

0.000434 0.000360 0.0173 0.000296 0.00177 0.000402 0.000176 0.000182 0.0000577 0.0000256 0.000216 0.000516 0.000108 0.000850 0.000499 0.00781 0.000222 0.000382 0.0333 0.00515 0.000877 0.000409 0.00101

0.000234 0.0000320 0.0000520 0.000143 0.0000680 0.0000834 0.128 BLQ BLQ BLQ BLQ BLQ 0.0000299 BLQ 0.0619 0.000188 0.0000133 0.000627 0.000157 BLQ 0.0000159 0.0000244 0.0000268

ABCG8 0.000415 0.0000159 0.000807 0.000681 0.000116 0.000607 0.234 0.0000964 BLQ BLQ BLQ BLQ 0.0000411 0.0000851 0.0540 0.000405 0.0000115 0.000780 0.000555 0.0000083 0.0000102 0.0000496 0.0000408

BLQ, below the limit of quantiˆcation. Data are expressed as the ratio of the target mRNA to PPIA mRNA. Experiments were performed in duplicate. The highest values among the various tissues are shown in boxes.

another study in the rat,40) ABCB1 mRNA was also expressed at high levels in the small intestine. Similar to the ˆndings of another study in the rat,41) ABCB2 mRNA and ABCB3 mRNA were expressed ubiquitously. Consistent with the ˆndings of another study in human subjects,42) ABCB4 mRNA was expressed at the highest levels in the liver. ABCB5 mRNA was expressed at high levels in the testis, with no or very weak expression in other tissues. Consistent with the ˆndings of another study in the rat,43) ABCB6 mRNA was also expressed ubiquitously. ABCB7 mRNA and ABCB8 mRNA were also expressed ubiquitously. Similar to the ˆndings of other studies in human subjects,44,45) ABCB9 mRNA and ABCB10 mRNA were expressed ubiquitously and were expressed at the highest levels in the testis and bone marrow, respectively. Consistent with the ˆndings of another study in the rat,46) ABCB11 mRNA was expressed at the highest levels in the liver, with no or very weak expression in other tissues. Similar to the ˆndings of another study in the rat,47) ABCC1 mRNA was widely expressed in many tissues, and ABCC2 mRNA was expressed at high levels in the kidney, liver, and small intestine. ABCC3 mRNA was expressed at the highest levels in the adrenal gland. Consistent with the ˆndings of other studies in human subjects30) and the mouse,48) ABCC3 mRNA was also expressed at high levels in the colon, liver, pancreas, small intestine, and stomach. However, in the rat, ABCC3 mRNA was expressed at very low levels in the liver.47,49) ABCC4 mRNA and ABCC5 mRNA were expressed ubiquitously and were expressed at the highest levels in the prostate and skeletal muscle, respectively.

Consistent with the ˆndings of other studies in the rat50) and the mouse,51) ABCC6 mRNA was expressed at high levels in the liver. ABCC7 mRNA and ABCC8 mRNA were expressed at the highest levels in the pancreas and brain, respectively. Consistent with the ˆndings of another study52) in human subjects, the mouse, and the rat, ABCC9 mRNA was expressed at very high levels in the heart and skeletal muscle. ABCC10 mRNA was expressed ubiquitously. ABCC11 mRNA was expressed at the highest levels in the testis, with very weak expression in other tissues. Consistent with the ˆndings of another study in the rat,53) ABCC12 mRNA was also expressed at the highest levels in the testis, with no or very weak expression in other tissues. Similar to the ˆndings of another study in human subjects,54) ABCD1 mRNA was expressed ubiquitously. ABCD2 mRNA was also expressed ubiquitously. However, consistent with the ˆndings of another study in human subjects,55) ABCD2 mRNA was found at high levels in the brain and heart, with weak expression in skeletal muscle. ABCD3 mRNA was expressed ubiquitously. Similar to the ˆndings of other studies in human subjects,56,57) ABCD4 mRNA was expressed ubiquitously. Consistent with the ˆndings of another study in human subjects,58) ABCE1 mRNA was expressed ubiquitously and was expressed at high levels in the heart, skeletal muscle, and testis. Consistent with the ˆndings of another study in human subjects,59) ABCF1 mRNA was expressed ubiquitously and was expressed at the highest levels in skeletal muscle. ABCF2 mRNA was also expressed

463

mRNA Expression Proˆles of Human Drug Transporters Table 6.

Expression of Human SLC Transporter mRNAs in Various Tissues

Tissue

SLC1A1

SLC1A2

SLC1A3

SLC1A4

SLC1A5

SLC2A1

SLC2A2

SLC2A14 SLC2A3 W

SLC2A4

Adrenal gland Bone marrow Brain Colon Heart Kidney Liver Lung Pancreas Peripheral leukocytes Placenta Prostate Salivary gland Skeletal muscle Small intestine Spinal cord Spleen Stomach Testis Thymus Thyroid gland Trachea Uterus

0.00484 0.00136 0.0467 0.0305 0.0144 0.167 0.0367 0.0672 0.00600 0.00119 0.0105 0.0367 0.0112 0.0173 0.0912 0.0247 0.00108 0.0135 0.0123 0.00161 0.103 0.0294 0.0175

0.00406 0.0000400 0.555 0.000101 0.00514 0.000141 0.0198 0.000850 0.0112 0.0000134 0.00353 0.000504 0.00800 0.000514 0.0000673 0.396 0.000614 0.00327 0.00196 0.000283 0.00113 0.00721 0.00227

0.00837 0.00803 0.215 0.00193 0.0723 0.000404 0.000676 0.00204 0.00141 0.0000909 0.00182 0.000918 0.000635 0.0172 0.000451 0.145 0.00407 0.00132 0.00177 0.00130 0.000977 0.00172 0.000366

0.0921 0.0350 0.0679 0.0169 0.0149 0.00532 0.0118 0.00803 0.0848 0.00692 0.0157 0.0234 0.0107 0.310 0.0181 0.0575 0.0167 0.0219 0.0805 0.0270 0.00817 0.0531 0.0324

0.0422 0.227 0.00184 0.144 0.0277 0.137 0.0112 0.104 0.0759 0.0347 0.221 0.350 0.378 0.0472 0.0881 0.0344 0.0833 0.109 0.326 0.0548 0.0261 0.426 0.0890

0.0194 0.446 0.127 0.0394 0.0851 0.0502 0.00271 0.0201 0.00945 0.0361 7.36 0.101 0.0314 0.0147 0.00962 0.200 0.0367 0.0218 0.0401 0.0280 0.0321 0.230 0.0511

BLQ BLQ BLQ BLQ BLQ 0.184 1.61 BLQ BLQ BLQ BLQ BLQ BLQ BLQ 0.159 BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ

0.0842 0.868 0.174 0.0121 0.0845 0.0334 0.00996 1.14 0.0183 0.973 0.126 0.0890 0.0148 0.0875 0.0126 0.130 0.169 0.0391 0.530 0.0621 0.0961 0.171 0.110

0.00923 0.00923 0.00158 0.0125 0.241 0.00367 0.00449 0.00167 0.000302 BLQ 0.00156 0.0106 0.0190 1.05 0.00879 0.00282 0.0000347 0.0136 0.0118 0.00237 0.00558 0.00539 0.0157

BLQ, below the limit of quantiˆcation. Data are expressed as the ratio of the target mRNA to PPIA mRNA. Experiments were performed in duplicate. The highest values among the various tissues are shown in boxes.

ubiquitously and was expressed at the highest levels in skeletal muscle, as was the case for ABCF1. Consistent with the ˆndings of other studies in human subjects,23,60) ABCG1 mRNA was expressed ubiquitously and was expressed at the highest levels in the adrenal gland. Similar to the ˆndings of other studies in human subjects,61,62) ABCG2 mRNA was also expressed ubiquitously and was expressed at high levels in the placenta, small intestine, and uterus. Similar to the ˆndings of another study in human subjects,60) ABCG4 mRNA was expressed at high levels in the brain, spinal cord, and testis. Consistent with the ˆndings of another study in the mouse,63) ABCG5 mRNA and ABCG8 mRNA were expressed at high levels in the liver and small intestine, with no or very weak expression in other tissues. The mRNA expression levels of 108 human SLC transporters in various tissues are shown in Table 6. Similar to the ˆndings of another study in the mouse,64) SLC1A1 mRNA was expressed ubiquitously. Consistent with the ˆndings of another study in human subjects,65) SLC1A2 mRNA was expressed at high levels in the brain and spinal cord. Consistent with the ˆndings of other studies in human subjects,66,67) SLC1A3 mRNA was also expressed at high levels in the brain and spinal cord. Consistent with the ˆndings of other studies in human subjects,68,69) SLC1A4 mRNA was expressed ubiquitously and was expressed at the highest levels in skeletal muscle. SLC1A5 mRNA was expressed ubiqui-

tously. Kekuda et al.70) reported that SLC1A5 mRNA was detectable in the human placenta, lung, skeletal muscle, kidney, and pancreas. SLC2A1 mRNA was expressed ubiquitously and was expressed at the highest levels in the placenta, with relatively high expression in the bone marrow, brain, prostate, spinal cord, and trachea. Bell et al.71) reported that SLC2A1 mRNA and protein are present at high levels in the brain, with weak expression in the liver and muscle. Consistent with the ˆndings of another study in human subjects,72) SLC2A2 mRNA was most abundant in the liver and was detectable in the kidney and small intestine. SLC2A3 W SLC2A14 mRNA was expressed ubiquitously. Similar to the ˆndings of other studies in human subjects73) and the mouse,74) SLC2A4 mRNA was abundant in the heart and skeletal muscle. Similar to the ˆndings of another study in human subjects,75) SLC2A5 mRNA was expressed at high levels in the bone marrow, kidney, skeletal muscle, small intestine, and testis. Similar to the ˆndings of another study in human subjects,76) SLC2A7 mRNA was expressed at high levels in the small intestine and testis, with no or very weak expression in other tissues. Similar to the ˆndings of another study in the rat,77) SLC2A8 mRNA was expressed ubiquitously and was expressed at the highest levels in the testis. Similar to the ˆndings of another study in human subjects,78) SLC2A9 mRNA was expressed ubiquitously, was most abundant in the

464 Table 6.

Masuhiro NISHIMURA and Shinsaku NAITO (continued) Tissue

Adrenal gland Bone marrow Brain Colon Heart Kidney Liver Lung Pancreas Peripheral leukocytes Placenta Prostate Salivary gland Skeletal muscle Small intestine Spinal cord Spleen Stomach Testis Thymus Thyroid gland Trachea Uterus

SLC2A5

SLC2A7

SLC2A8

SLC2A9

SLC2A10

SLC2A11

SLC2A12

SLC2A13

SLC3A1

SLC3A2

0.0136 BLQ 0.343 BLQ 0.0201 BLQ 0.0214 BLQ 0.0284 BLQ 0.323 BLQ 0.000428 BLQ 0.00189 BLQ 0.000960 BLQ 0.00524 BLQ 0.0303 BLQ 0.186 BLQ 0.00609 BLQ 0.993 BLQ 0.618 0.0629 0.213 BLQ 0.0229 BLQ 0.0105 0.0000814 1.05 0.0235 0.0125 BLQ 0.00578 BLQ 0.00861 BLQ 0.0134 BLQ

0.116 0.0120 0.0434 0.0352 0.0447 0.0506 0.0581 0.0255 0.0195 0.00907 0.148 0.0467 0.0261 0.454 0.0513 0.0649 0.0439 0.0494 0.532 0.00641 0.0647 0.0359 0.0577

0.0148 0.00650 0.00224 0.00547 0.0193 0.268 0.0764 0.0120 0.00246 0.0184 0.0278 0.0175 0.0915 0.00731 0.0183 0.0103 0.00554 0.00514 0.00784 0.00704 0.0280 0.0497 0.00716

0.0338 0.0118 0.00687 0.0454 0.0254 0.0104 0.146 0.0451 0.107 0.0000998 0.0487 0.189 0.0899 0.0252 0.0210 0.0212 0.0116 0.0691 0.0360 0.00680 0.112 0.122 0.0585

0.0322 0.0122 0.0636 0.0156 0.0708 0.199 0.0123 0.0148 0.0470 0.0116 0.678 0.0492 0.0369 0.0863 0.0123 0.0550 0.0185 0.0210 0.0445 0.00907 0.0583 0.0239 0.0307

0.0116 0.00247 0.0723 0.0106 0.463 0.0675 0.0355 0.0759 0.00450 0.000683 0.0203 0.547 0.0497 0.254 0.0285 0.0233 0.00110 0.0625 0.0168 0.00650 0.00752 0.0589 0.0918

0.143 0.0450 0.415 0.123 0.109 0.110 0.0335 0.0738 0.0604 0.0461 0.0347 0.0397 0.0715 0.0326 0.0600 0.0494 0.0329 0.0591 0.178 0.0213 0.0333 0.106 0.125

BLQ BLQ 0.000448 0.00500 BLQ 0.491 0.0223 0.0000219 0.0629 BLQ BLQ 0.000585 BLQ BLQ 0.0207 0.0000515 0.000155 0.000764 0.00227 BLQ BLQ BLQ 0.00127

0.372 0.222 0.156 0.126 0.106 1.09 0.121 0.236 0.180 0.225 1.91 0.271 0.285 0.697 0.225 0.357 0.180 0.141 0.493 0.0980 0.239 0.291 0.284

BLQ, below the limit of quantiˆcation. Data are expressed as the ratio of the target mRNA to PPIA mRNA. Experiments were performed in duplicate. The highest values among the various tissues are shown in boxes.

Table 6.

(continued) Tissue

SLC4A1

SLC4A2

SLC4A3

SLC4A4

SLC4A7

SLC4A8

SLC4A9

SLC4A10

SLC4A11

Adrenal gland Bone marrow Brain Colon Heart Kidney Liver Lung Pancreas Peripheral leukocytes Placenta Prostate Salivary gland Skeletal muscle Small intestine Spinal cord Spleen Stomach Testis Thymus Thyroid gland Trachea Uterus

BLQ 7.09 BLQ BLQ BLQ 0.271 0.00152 BLQ BLQ 0.0154 0.131 BLQ BLQ BLQ BLQ 0.00897 0.0264 BLQ BLQ 0.00234 BLQ BLQ BLQ

0.00321 0.00177 0.000577 0.00163 0.00132 0.00461 0.00212 0.00273 0.00232 0.00141 0.0249 0.00258 0.00269 0.00396 0.00239 0.00285 0.00156 0.00354 0.00258 0.00106 0.00214 0.00202 0.00367

0.0114 0.000326 0.0292 0.000790 0.333 0.00254 0.0000548 0.000970 0.00178 0.000452 0.00423 0.00692 0.00277 0.00124 0.000930 0.0238 0.00396 0.00252 0.0230 0.00250 0.00233 0.00479 0.0161

0.00380 0.00387 0.154 0.243 0.0736 1.00 0.0652 0.0591 1.00 0.00682 0.00992 0.412 0.00685 0.0575 0.0632 0.329 0.00779 0.0623 0.00716 0.0101 0.218 0.0402 0.00317

0.0226 0.0267 0.114 0.0462 0.0477 0.0445 0.00501 0.0623 0.00846 0.0830 0.0135 0.0663 0.0298 0.129 0.0595 0.0434 0.0537 0.0462 0.150 0.0246 0.0308 0.0764 0.0368

0.0561 0.00702 0.259 0.00481 0.00267 0.0290 0.00112 0.0168 0.00613 0.0161 0.00385 0.00476 0.0103 0.00108 0.00697 0.137 0.0144 0.0149 0.564 0.00687 0.00306 0.0522 0.00294

0.00103 0.000467 0.00208 0.000667 0.000516 0.0682 0.000188 0.000821 0.000478 0.000240 0.000504 0.00106 0.000307 0.000612 0.000656 0.00306 0.000205 0.000454 0.0110 0.000622 0.00123 0.000924 0.000589

0.000695 0.000555 0.0822 0.00885 0.000192 0.0000741 0.000287 0.000375 0.000618 0.00354 0.0000472 0.000577 0.0000376 0.0000948 0.000224 0.00959 0.00185 0.000416 0.00178 0.0000388 0.0000757 0.000262 0.0000925

0.00643 0.000106 0.00198 0.000310 0.000676 0.0137 0.000133 0.00121 0.000219 0.0000283 0.000722 0.00346 0.0336 0.00353 0.000225 0.00170 0.000196 0.00260 0.0134 0.000740 0.0162 0.0283 0.00117

BLQ, below the limit of quantiˆcation. Data are expressed as the ratio of the target mRNA to PPIA mRNA. Experiments were performed in duplicate. The highest values among the various tissues are shown in boxes.

465

mRNA Expression Proˆles of Human Drug Transporters Table 6.

(continued)

Tissue

SLC5A1

Adrenal gland Bone marrow Brain Colon Heart Kidney Liver Lung Pancreas Peripheral leukocytes Placenta Prostate Salivary gland Skeletal muscle Small intestine Spinal cord Spleen Stomach Testis Thymus Thyroid gland Trachea Uterus

BLQ BLQ 0.000918 0.0436 0.622 0.0665 0.00498 0.00650 0.00281 BLQ 0.0000438 0.0218 0.0243 0.00489 1.83 0.00126 BLQ 0.0431 0.0276 0.000252 0.00172 0.291 0.00457

SLC5A2

SLC5A3

SLC5A4

SLC5A5

SLC5A6

BLQ BLQ BLQ BLQ BLQ 0.212 BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ

0.191 0.108 0.117 0.119 0.139 0.527 0.0625 0.222 0.0427 0.128 0.131 0.145 0.0623 0.153 0.0819 0.128 0.0836 0.138 0.570 0.0977 1.63 0.222 0.136

0.00122 0.00154 0.000686 0.000583 0.00111 0.00175 0.000460 0.00664 0.000261 BLQ 0.000113 0.00212 0.000665 0.000567 0.0470 0.00209 0.000930 0.00112 0.00297 0.000237 0.00479 0.00156 0.00716

BLQ 0.00131 0.00444 BLQ BLQ BLQ BLQ 0.00110 BLQ 0.00282 BLQ 0.000310 0.850 BLQ 0.000997 0.0155 0.00157 0.176 0.00576 0.000338 1.22 0.00391 0.000633

0.0241 0.0117 0.0172 0.0211 0.0158 0.0238 0.0437 0.0130 0.0147 0.00873 1.03 0.0180 0.0244 0.0696 0.0430 0.0273 0.0176 0.0201 0.217 0.0141 0.0166 0.0132 0.0216

SLC5A7

SLC5A8

SLC5A10

SLC5A11

SLC5A12

0.000740 BLQ 0.000126 0.00120 0.00100 0.000199 0.0000160 0.000154 0.0000863 BLQ BLQ 0.000589 0.000258 0.000145 0.00103 0.0232 0.0000348 0.00103 0.000285 0.0000059 0.00142 0.000785 0.000518

0.0156 BLQ 0.00302 0.00153 BLQ 0.148 BLQ 0.00354 BLQ BLQ BLQ 0.0537 0.0320 BLQ BLQ 0.00279 BLQ BLQ 0.0106 0.00237 0.299 0.249 0.00858

0.000439 0.00468 0.0000721 0.000138 0.000111 0.342 0.000230 0.000437 0.0000323 0.00124 0.000431 0.000118 0.0000819 0.0000945 0.000161 0.000116 0.00178 0.000172 0.00109 0.00144 0.000123 0.000150 0.000312

0.000229 0.000220 0.0540 0.000331 0.000343 0.0890 0.00438 0.000665 0.000142 0.000408 0.000810 0.000308 0.000179 0.000475 0.0248 0.226 0.000672 0.0000778 0.00294 0.000225 0.000171 0.000265 0.000296

BLQ BLQ 0.000166 BLQ 0.00402 1.71 0.00100 BLQ BLQ BLQ BLQ BLQ BLQ BLQ 0.124 0.000346 BLQ BLQ 0.00128 BLQ BLQ BLQ 0.00457

BLQ, below the limit of quantiˆcation. Data are expressed as the ratio of the target mRNA to PPIA mRNA. Experiments were performed in duplicate. The highest values among the various tissues are shown in boxes.

Table 6.

(continued) Tissue

SLC6A2

SLC6A3

SLC6A4

SLC6A5

SLC6A6

SLC6A7

SLC6A9

Adrenal gland Bone marrow Brain Colon Heart Kidney Liver Lung Pancreas Peripheral leukocytes Placenta Prostate Salivary gland Skeletal muscle Small intestine Spinal cord Spleen Stomach Testis Thymus Thyroid gland Trachea Uterus

0.0243 BLQ 0.0000273 0.0000797 0.0000869 0.000308 0.000283 0.000176 BLQ BLQ 0.331 0.00104 0.00232 0.000914 0.000165 0.000235 BLQ 0.000431 0.0450 0.0000579 0.000185 0.000874 0.00285

0.0000928 BLQ BLQ BLQ BLQ 0.00133 BLQ 0.00327 BLQ BLQ BLQ 0.000990 BLQ BLQ 0.00109 0.000133 BLQ BLQ 0.00427 0.00484 0.00267 0.000118 0.000480

0.000527 0.00271 0.000557 0.00297 0.00286 0.00186 0.0000256 1.21 0.00468 0.00345 0.226 0.000997 0.0000373 0.000488 0.117 0.000847 0.00215 0.00131 0.00476 0.000134 0.00145 0.00129 0.000298

0.000238 BLQ 0.00545 BLQ 0.000272 BLQ BLQ BLQ 0.0000964 BLQ 0.0000201 0.0000282 0.0000479 0.0000744 0.0000128 0.0632 0.0000220 0.0000167 0.0115 0.0000773 0.0000221 0.0000255 BLQ

0.357 0.171 0.0480 0.0298 0.116 0.110 0.00659 0.0866 0.00626 0.249 0.333 0.0480 0.0696 0.233 0.128 0.0575 0.243 0.0725 0.0600 0.0548 0.0715 0.434 0.143

BLQ BLQ 0.0257 0.00584 0.0000456 0.0000048 BLQ BLQ BLQ BLQ 0.0000085 0.0000047 0.0000068 BLQ 0.00182 0.00125 BLQ 0.0000106 0.0000382 0.0000106 BLQ BLQ 0.0000034

0.0991 0.0501 0.0209 0.0165 0.00332 0.00457 0.000250 0.0144 0.00576 0.0000643 0.0103 0.00635 0.0132 0.000688 0.00870 0.120 0.00175 0.00932 0.00283 0.00191 0.00541 0.0243 0.0199

BLQ, below the limit of quantiˆcation. Data are expressed as the ratio of the target mRNA to PPIA mRNA. Experiments were performed in duplicate. The highest values among the various tissues are shown in boxes.

kidney, and was expressed at relatively high levels in the liver and salivary gland. Similar to the ˆndings of other studies,74,79,80) SLC2A10 mRNA, SLC2A11 mRNA, SLC2A12 mRNA, and SLC2A13 mRNA were also expressed ubiquitously. Similar to the ˆndings of another study in human

subjects,81) SLC3A1 mRNA was expressed at high levels in the kidney, liver, pancreas, and small intestine, with no or very weak expression in other tissues. Similar to the ˆndings of another study in the mouse,82) SLC3A2 mRNA was expressed ubiquitously. SLC4A1 mRNA was most abundant in the bone

466

Masuhiro NISHIMURA and Shinsaku NAITO

Table 6.

(continued)

Tissue

SLC7A1

SLC7A2

Adrenal gland Bone marrow Brain Colon Heart Kidney Liver Lung Pancreas Peripheral leukocytes Placenta Prostate Salivary gland Skeletal muscle Small intestine Spinal cord Spleen Stomach Testis Thymus Thyroid gland Trachea Uterus

0.0165 0.0360 0.0302 0.0238 0.0140 0.00737 0.00120 0.00962 0.0788 0.00787 0.124 0.0349 0.0540 0.00932 0.0250 0.0513 0.0118 0.0196 0.0718 0.0106 0.0158 0.0393 0.0215

0.0573 0.0147 0.0304 0.0121 0.0869 0.0308 0.467 0.0836 0.271 BLQ 1.56 0.152 0.0181 2.27 0.0154 0.154 0.0173 0.0236 0.362 0.0102 0.198 0.128 0.0964

SLC7A3

SLC7A4

SLC7A5

SLC7A6

SLC7A7

SLC7A8

SLC7A9

SLC7A10

SLC7A11

SLC7A13

0.0000564 0.0000407 0.00198 0.000214 0.0000881 0.0000837 0.0000421 0.000146 0.0000875 0.0000677 0.0000781 0.00447 0.000354 0.000115 0.000332 0.000947 0.0000442 0.00149 0.00965 0.0414 0.000231 0.000167 0.0141

0.0114 0.0000814 0.0227 0.00932 0.00303 0.00115 0.000953 0.00444 0.000459 0.0000654 0.578 0.0242 0.00682 0.000836 0.00564 0.00832 0.00259 0.00910 0.460 0.00146 0.00101 0.0130 0.00419

0.0163 0.0974 0.0188 0.0378 0.00779 0.00535 0.00187 0.0537 0.00425 0.0833 0.0890 0.0208 0.0178 0.0301 0.0443 0.0775 0.0205 0.00919 0.171 0.0216 0.0178 0.0696 0.0244

0.0221 0.0102 0.0145 0.0103 0.0472 0.0109 0.000782 0.0237 0.00483 0.0508 0.0334 0.00999 0.0117 0.129 0.00939 0.00817 0.0342 0.0129 0.0682 0.105 0.0227 0.0198 0.0119

0.0354 0.0944 0.0104 0.0310 0.0179 1.53 0.0359 0.124 0.0196 0.503 0.104 0.0162 0.0181 0.0448 0.260 0.0418 0.261 0.0526 0.282 0.0249 0.0268 0.0422 0.0363

0.0319 0.0106 0.0197 0.0180 0.0154 0.779 0.00809 0.0201 0.0344 0.00190 0.473 0.168 0.0495 0.0741 0.0585 0.0198 0.0454 0.0912 0.166 0.00617 0.0736 0.0627 0.0693

0.00141 0.000616 0.00272 0.000844 0.000649 0.874 0.0778 0.00145 0.00103 0.000790 0.00134 0.00582 0.000934 0.00264 0.249 0.00317 0.00137 0.00549 0.0115 0.00108 0.00414 0.00275 0.00541

0.0123 0.0241 0.0415 0.0152 0.00554 0.00671 BLQ 0.000282 0.000616 0.000322 0.0387 0.000416 0.00694 0.0136 0.0105 0.0405 0.000727 0.000841 0.0156 0.00702 0.00491 0.00776 0.000233

0.000850 0.00897 0.125 0.00800 0.00493 0.000341 0.000534 0.0101 0.00852 0.00101 0.00271 0.0152 0.000943 0.000902 0.00749 0.245 0.00219 0.0243 0.0263 0.00314 0.0215 0.0337 0.00177

BLQ BLQ 0.0000444 BLQ 0.0000239 0.246 BLQ BLQ BLQ BLQ BLQ 0.000111 BLQ 0.0000878 BLQ 0.0000380 BLQ BLQ 0.000229 BLQ BLQ BLQ 0.0000447

BLQ, below the limit of quantiˆcation. Data are expressed as the ratio of the target mRNA to PPIA mRNA. Experiments were performed in duplicate. The highest values among the various tissues are shown in boxes. Table 6.

(continued) Tissue

SLC10A1

SLC10A2

SLC10A3

SLC10A4

SLC10A5

SLC15A1

SLC15A2

SLC15A3

SLC15A4

Adrenal gland Bone marrow Brain Colon Heart Kidney Liver Lung Pancreas Peripheral leukocytes Placenta Prostate Salivary gland Skeletal muscle Small intestine Spinal cord Spleen Stomach Testis Thymus Thyroid gland Trachea Uterus

0.00152 0.000802 0.00260 0.00174 0.00118 0.00185 0.486 0.00244 0.000439 0.0194 0.00246 0.000499 0.000774 0.00535 0.00138 0.000816 0.00113 0.000725 0.00570 0.00164 0.000911 0.00292 0.000446

0.0000067 BLQ 0.0000094 0.000241 0.0000133 0.0565 BLQ BLQ 0.0000632 BLQ BLQ 0.0000220 BLQ 0.00122 0.0902 0.0000168 0.0000389 0.000302 0.0000919 0.0000058 0.0000235 BLQ 0.0000231

0.0805 0.0786 0.0176 0.0495 0.0756 0.0533 0.0140 0.0736 0.0408 0.0736 0.370 0.0696 0.0365 0.131 0.0408 0.0292 0.0610 0.0629 0.0951 0.0344 0.0741 0.0701 0.0951

0.0123 0.00352 0.00891 0.00224 0.00141 0.000276 0.0000974 0.00141 0.000442 0.000547 0.00174 0.00154 0.0261 0.00537 0.00259 0.0379 0.000391 0.00125 0.00699 0.000320 0.00247 0.000595 0.000868

0.000301 0.000248 0.00203 0.00635 0.00121 0.0106 0.0172 0.000686 0.000756 0.000401 0.0000894 0.00326 0.000573 0.00134 0.0111 0.000633 0.000322 0.00481 0.000883 0.000341 0.00108 0.00530 0.000379

BLQ BLQ BLQ 0.0110 BLQ 0.0292 0.0522 BLQ 0.0155 BLQ 0.00635 0.00673 BLQ BLQ 0.148 BLQ BLQ 0.00264 0.000649 0.000339 0.00113 0.00101 0.0113

0.00287 0.0214 0.0271 0.00127 0.0148 0.0297 0.000631 0.0456 0.00438 0.00549 0.00131 0.202 0.0474 0.00205 0.000804 0.0246 0.0111 0.00776 0.0235 0.00243 0.0212 0.0830 0.00388

0.0407 0.0706 0.00952 0.0361 0.0467 0.0143 0.0276 0.135 0.00763 0.163 0.283 0.0249 0.0166 0.0506 0.0509 0.0780 0.222 0.0368 0.0365 0.0397 0.0172 0.0337 0.0554

0.0751 0.224 0.0663 0.0447 0.0957 0.0778 0.0689 0.105 0.0504 0.333 0.112 0.0931 0.0780 0.607 0.0533 0.115 0.164 0.0778 0.378 0.123 0.0718 0.0981 0.144

BLQ, below the limit of quantiˆcation. Data are expressed as the ratio of the target mRNA to PPIA mRNA. Experiments were performed in duplicate. The highest values among the various tissues are shown in boxes.

marrow and was detectable in the kidney, liver, peripheral leukocytes, placenta, spinal cord, spleen, and thymus. SLC4A2 mRNA and SLC4A3 mRNA were expressed ubiquitously and were expressed at the highest levels in the placenta and heart, respectively. Similar to the ˆndings of other studies in human subjects,83,84) SLC4A4 mRNA was expressed ubiquitously and was

abundant in the kidney and pancreas. SLC4A7 mRNA was expressed ubiquitously. Consistent with the ˆndings of another study in human subjects,85) SLC4A8 mRNA was expressed ubiquitously and was expressed at higher levels in the brain, spinal cord, and testis. Consistent with the ˆndings of another study in human subjects,86) SLC4A9 mRNA was abundant in the kidney, with weak

467

mRNA Expression Proˆles of Human Drug Transporters Table 6.

(continued) Tissue

SLC21A3

SLC21A6

SLC21A9

SLC21A11

SLC21A12

SLC21A14

SLC21A15

Adrenal gland Bone marrow Brain Colon Heart Kidney Liver Lung Pancreas Peripheral leukocytes Placenta Prostate Salivary gland Skeletal muscle Small intestine Spinal cord Spleen Stomach Testis Thymus Thyroid gland Trachea Uterus

0.0000132 0.0000131 0.0825 0.0000107 0.000442 0.00199 0.00324 0.00429 0.000114 0.0000219 0.000130 0.00151 0.00316 0.0000596 0.0000198 0.148 0.00148 0.000138 0.00403 0.0000912 0.000428 0.0131 0.0000267

0.000263 BLQ 0.0000357 BLQ 0.000208 BLQ 0.252 0.0000101 BLQ BLQ BLQ 0.0000773 BLQ 0.000163 BLQ 0.0000845 BLQ BLQ 0.00357 BLQ 0.0000339 0.000150 0.0000831

0.0319 0.00632 0.00975 0.0120 0.00975 0.0262 0.0677 0.0314 0.00471 BLQ 0.0557 0.00423 0.00494 0.00907 0.0277 0.0318 0.0233 0.00646 0.00929 0.00870 0.00564 0.00692 0.0111

0.0201 0.0431 0.0283 0.0167 0.0725 0.0160 0.00549 0.0608 0.00419 0.0842 0.00580 0.0202 0.00630 0.0425 0.0106 0.104 0.0331 0.0114 0.284 0.00600 0.0354 0.0167 0.0158

0.00916 0.0102 0.0200 0.0139 0.00996 0.0169 0.00100 0.0741 0.00414 0.000810 0.0501 0.00979 0.00671 0.0161 0.00711 0.0131 0.00289 0.0150 0.0110 0.00639 0.00348 0.0158 0.0112

0.000105 0.00116 0.0409 0.000219 0.00273 0.000135 BLQ 0.00248 0.000114 BLQ BLQ 0.000224 BLQ BLQ 0.000303 0.0317 BLQ 0.0000670 0.00639 0.000270 0.000862 0.00189 BLQ

0.000132 0.00637 0.00178 0.00176 0.0311 0.000319 0.0000718 0.00115 0.000877 0.000468 0.000656 0.0178 0.00133 0.481 0.00185 0.00145 0.00214 0.00350 0.00702 0.0184 0.00100 0.00247 0.00127

BLQ, below the limit of quantiˆcation. Data are expressed as the ratio of the target mRNA to PPIA mRNA. Experiments were performed in duplicate. The highest values among the various tissues are shown in boxes.

Table 6.

(continued) Tissue

SLC22A1

SLC22A2

SLC22A3

SLC22A4

SLC22A5

SLC22A6

SLC22A7

SLC22A8

SLC22A9

Adrenal gland Bone marrow Brain Colon Heart Kidney Liver Lung Pancreas Peripheral leukocytes Placenta Prostate Salivary gland Skeletal muscle Small intestine Spinal cord Spleen Stomach Testis Thymus Thyroid gland Trachea Uterus

0.00151 0.000137 0.0000706 0.0000285 0.000182 0.00389 2.23 0.0000684 0.0000413 0.000237 0.0000830 0.000464 0.000309 0.00105 0.0000241 0.0000477 0.000178 0.000130 0.00128 0.0000539 0.000331 0.000161 0.000327

BLQ BLQ 0.0000494 0.0000208 BLQ 0.139 0.0000367 BLQ BLQ BLQ 0.0000884 BLQ BLQ BLQ BLQ 0.00117 BLQ 0.0000204 0.000242 0.0000062 BLQ 0.000116 0.0000221

0.133 0.0203 0.00578 0.0327 0.0297 0.0499 0.124 0.0501 0.00367 BLQ 0.146 0.376 0.486 0.895 0.0256 0.0243 0.00317 0.0330 0.0470 0.00699 0.0230 0.105 0.135

0.00301 0.0249 0.00217 0.00244 0.00209 0.0274 0.000202 0.00904 0.000177 0.00246 0.00582 0.00923 0.000398 0.00747 0.00694 0.0136 0.00149 0.000575 0.00114 0.000415 0.000465 0.0246 0.00112

0.00864 0.00254 0.00435 0.0116 0.0125 0.0511 0.00248 0.00425 0.00422 0.00143 0.0338 0.0171 0.00707 0.0612 0.0136 0.00664 0.00213 0.00466 0.0105 0.00238 0.00734 0.00668 0.00551

0.0000072 BLQ 0.00114 BLQ 0.0000228 0.853 0.0000606 0.0000067 BLQ BLQ BLQ BLQ 0.0000305 BLQ BLQ 0.00594 BLQ BLQ 0.0000192 0.0000040 0.0000173 0.0000146 0.0000442

0.000330 0.0000848 0.000555 0.0000160 0.00136 0.471 0.818 0.0000264 0.0000945 0.000160 0.0000503 0.000232 0.0000249 0.000201 0.000686 0.000205 0.000170 0.0000129 0.0193 0.0000759 0.0000617 0.0000632 0.000116

BLQ BLQ 0.000504 BLQ BLQ 0.818 0.000135 BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ 0.00136 BLQ BLQ BLQ BLQ BLQ 0.0000414 0.0000404

0.0000157 BLQ 0.00119 0.0000199 0.0000201 0.000206 0.0343 0.000101 0.0000154 0.0000078 BLQ 0.0000134 BLQ BLQ BLQ 0.0000116 0.0000435 0.000165 0.000191 BLQ 0.0000066 0.0000423 0.0000184

BLQ, below the limit of quantiˆcation. Data are expressed as the ratio of the target mRNA to PPIA mRNA. Experiments were performed in duplicate. The highest values among the various tissues are shown in boxes.

468

Masuhiro NISHIMURA and Shinsaku NAITO

Table 6.

(continued) Tissue

SLC22A11

SLC22A12

SLC22A13

SLC22A14

SLC22A15

SLC22A16

SLC22A17

SLC22A18

Adrenal gland Bone marrow Brain Colon Heart Kidney Liver Lung Pancreas Peripheral leukocytes Placenta Prostate Salivary gland Skeletal muscle Small intestine Spinal cord Spleen Stomach Testis Thymus Thyroid gland Trachea Uterus

BLQ BLQ BLQ BLQ BLQ 0.125 BLQ BLQ BLQ BLQ 0.106 BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ

BLQ BLQ BLQ BLQ BLQ 0.976 BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ 0.000175 BLQ BLQ BLQ BLQ

0.000239 0.0000985 0.00113 0.000182 0.000103 0.0548 0.000112 0.000133 0.000106 0.000425 0.000544 0.000292 0.000128 0.00146 0.000329 0.000237 0.000106 0.000176 0.000908 0.000118 0.000136 0.000373 0.000257

0.000114 0.000676 0.00119 0.0000794 0.000177 0.00235 0.0000765 0.0000775 0.0000295 0.000118 0.000139 0.000205 0.000110 0.00243 0.0000573 0.000665 0.0000773 0.0000390 0.0893 0.0000906 0.0000900 0.0000684 0.000154

0.0173 0.153 0.0518 0.00384 0.0313 0.0110 0.00160 0.0153 0.00609 0.0238 0.00734 0.00885 0.0109 0.00436 0.00242 0.0634 0.00817 0.00737 0.0152 0.00136 0.00923 0.00952 0.00402

0.000103 0.151 0.0000306 0.0000204 0.000112 0.0000389 0.000114 0.000246 0.0000663 0.00162 0.000320 0.000186 0.000123 0.000462 0.0000207 0.000159 0.000374 0.0000566 0.0902 0.00157 0.0000659 0.00310 0.00367

0.157 0.0192 1.36 0.0606 0.101 0.121 0.0107 0.0531 0.0477 0.00737 0.0550 0.380 0.255 0.0431 0.0974 0.979 0.0291 0.0616 0.203 0.0162 0.175 0.205 0.138

0.00795 0.0112 0.00652 0.115 0.0625 0.238 0.0830 0.00952 0.00449 0.0181 0.0275 0.0311 0.0480 0.00429 0.129 0.00913 0.0185 0.0343 0.0600 0.00639 0.0377 0.0447 0.0147

BLQ, below the limit of quantiˆcation. Data are expressed as the ratio of the target mRNA to PPIA mRNA. Experiments were performed in duplicate. The highest values among the various tissues are shown in boxes.

Table 6.

(continued) Tissue

SLC28A1

SLC28A2

SLC28A3

SLC29A1

SLC29A2

SLC29A3

SLC29A4

Adrenal gland Bone marrow Brain Colon Heart Kidney Liver Lung Pancreas Peripheral leukocytes Placenta Prostate Salivary gland Skeletal muscle Small intestine Spinal cord Spleen Stomach Testis Thymus Thyroid gland Trachea Uterus

0.000120 0.0000168 0.0000866 0.0000234 0.000583 0.0778 0.0348 0.0000243 0.0000180 0.0000080 0.0103 0.0000550 0.000211 0.000483 0.0109 0.00209 0.0000169 0.0000408 0.000348 0.0000181 0.0000517 0.000117 0.000338

0.0000857 BLQ 0.0000174 0.000587 BLQ 0.00335 0.000213 0.0000342 BLQ BLQ 0.000500 0.0000087 BLQ BLQ 0.0616 0.000205 BLQ 0.0153 0.000470 BLQ 0.0000733 0.000147 0.000712

0.0000161 0.0243 0.0000324 0.00212 0.000987 0.0000663 0.000374 0.00193 0.0200 0.000522 0.000493 0.00186 0.00172 BLQ 0.00332 0.000329 0.000318 0.00789 0.00246 0.000892 0.000320 0.0218 0.00119

0.122 0.0526 0.0156 0.0383 0.225 0.0213 0.0614 0.0268 0.0267 0.00560 0.0656 0.0178 0.0443 0.454 0.0302 0.0147 0.0115 0.0561 0.0433 0.0608 0.0542 0.0334 0.0492

0.000681 0.000799 0.00726 0.00926 0.0113 0.00724 0.000394 0.00284 0.00372 0.00148 0.00455 0.00724 0.00643 0.300 0.00602 0.00702 0.00163 0.00558 0.00102 0.00283 0.00605 0.00483 0.00134

0.00180 0.00168 0.00184 0.00151 0.00123 0.00197 0.00226 0.00215 0.00137 0.00179 0.0236 0.00259 0.00326 0.00108 0.00221 0.00366 0.00439 0.00281 0.00537 0.00213 0.00263 0.00252 0.00484

0.00160 0.0000981 0.00236 0.000547 0.000836 0.000676 0.0000530 0.000186 0.00133 0.0000135 0.000107 0.00313 0.000662 0.00246 0.00249 0.00507 0.000187 0.000490 0.00177 0.000324 0.00419 0.000740 0.00182

BLQ, below the limit of quantiˆcation. Data are expressed as the ratio of the target mRNA to PPIA mRNA. Experiments were performed in duplicate. The highest values among the various tissues are shown in boxes.

469

mRNA Expression Proˆles of Human Drug Transporters Table 6.

(continued) Tissue

Adrenal gland Bone marrow Brain Colon Heart Kidney Liver Lung Pancreas Peripheral leukocytes Placenta Prostate Salivary gland Skeletal muscle Small intestine Spinal cord Spleen Stomach Testis Thymus Thyroid gland Trachea Uterus

SLC36A1

SLC36A2

SLC36A3

SLC36A4

SLC38A1

SLC38A2

SLC38A3

SLC38A4

SLC38A5

SLC38A6

0.0169 0.105 0.0649 0.0377 0.00729 0.0220 0.00486 0.00755 0.00680 0.0155 0.0169 0.0723 0.0141 0.0627 0.0529 0.0184 0.0160 0.0158 0.0878 0.0327 0.00929 0.0160 0.00939

BLQ BLQ BLQ BLQ BLQ 0.871 BLQ BLQ BLQ BLQ BLQ BLQ BLQ 1.71 BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ

BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ 0.0145 BLQ BLQ BLQ BLQ

0.0246 0.140 0.0459 0.0190 0.0401 0.0212 0.00666 0.0226 0.0105 0.0517 0.0238 0.0286 0.0188 0.0283 0.00803 0.0552 0.0208 0.0241 0.0398 0.00888 0.0400 0.0185 0.0228

0.0149 0.0640 0.147 0.139 0.541 0.0368 0.0138 0.0542 0.109 0.193 0.660 0.119 0.0640 0.256 0.0743 0.322 0.131 0.0811 0.0112 0.0720 0.120 0.0954 0.0479

0.185 0.0822 0.0845 0.0461 0.151 0.0571 0.0554 0.232 0.0487 0.0499 0.367 0.121 0.112 0.871 0.0268 0.106 0.0595 0.0748 0.0878 0.0569 0.0748 0.152 0.124

0.000462 0.000587 0.0190 0.000207 0.0128 0.0344 0.880 0.000353 0.0499 BLQ 0.00295 0.000987 0.00276 0.222 0.00187 0.0733 0.000105 0.00218 0.0112 0.000141 0.00385 0.00457 0.000622

0.00144 0.00267 0.000419 0.00489 0.00261 0.00714 0.195 0.00145 0.0122 0.00112 0.00109 0.00387 0.000830 0.0538 0.00141 0.000947 0.000908 0.00244 0.00156 0.000561 0.00381 0.00219 0.00185

0.00164 0.0619 0.0137 0.0129 0.00302 0.00137 0.000345 0.0186 0.275 0.00781 0.00549 0.00455 0.0387 0.00199 0.0180 0.0267 0.00803 0.0169 0.00189 0.00724 0.0381 0.0179 0.0111

0.00792 0.00271 0.00888 0.00299 0.00465 0.0121 0.00376 0.00574 0.00235 0.00262 0.00491 0.00682 0.00837 0.0141 0.00324 0.00861 0.00729 0.00435 0.0196 0.00280 0.00913 0.0100 0.00503

BLQ, below the limit of quantiˆcation. Data are expressed as the ratio of the target mRNA to PPIA mRNA. Experiments were performed in duplicate. The highest values among the various tissues are shown in boxes.

expression in other tissues. Consistent with the ˆndings of another study in the rat,87) SLC4A10 mRNA was most abundant in the brain, with weak expression in other tissues. Consistent with the ˆndings of another study in human subjects,86) SLC4A11 mRNA was expressed at high levels in the kidney, salivary gland, testis, thyroid gland, and trachea, with weak expression in other tissues. Similar to the ˆndings of other studies in the rabbit,88) the rat,89) and the cow,90) SLC5A1 mRNA was most abundant in the small intestine and was expressed at relatively high levels in the heart and trachea. Similar to the ˆndings of another study in the rat,91) SLC5A2 mRNA was abundant in the kidney, with no expression in other tissues. Similar to the ˆndings of another study in human subjects,92) SLC5A3 mRNA was expressed ubiquitously and was expressed at high levels in the kidney, testis, and thyroid gland. SLC5A4 mRNA was expressed at the highest levels in the small intestine, with no or very weak expression in other tissues. Similar to the ˆndings of another study in human subjects,93) SLC5A5 mRNA was expressed at the highest levels in the thyroid gland and was expressed at relatively high levels in the salivary gland and stomach, with no or very weak expression in other tissues. Consistent with the ˆndings of another study in human subjects,94) SLC5A6 mRNA was expressed ubiquitously and was expressed at the highest levels in the placenta. SLC5A7 mRNA was expressed at the highest levels in the spinal cord, with no

or very weak expression in other tissues. SLC5A8 mRNA was expressed at high levels in the kidney, thyroid gland, and trachea. Similar to the ˆndings of another study in the cow,90) SLC5A10 mRNA was expressed at the highest levels in the kidney, with very weak expression in other tissues. SLC5A11 mRNA was expressed at the highest levels in the spinal cord and was expressed at relatively high levels in the brain, kidney and small intestine, with very weak expression in other tissues. SLC5A12 mRNA was expressed at the highest levels in the kidney and was expressed at relatively high levels in the small intestine, with no or very weak expression in other tissues. SLC6A2 mRNA was expressed at the highest levels in the placenta and was expressed at relatively high levels in the adrenal gland and testis, with no or very weak expression in other tissues. SLC6A3 mRNA showed no or very weak expression in all tissues. Consistent with the ˆndings of another study in human subjects,95) SLC6A4 mRNA was expressed ubiquitously, was expressed at the highest levels in the lung, and was expressed at relatively high levels in the placenta and small intestine. SLC6A5 mRNA was expressed at high levels in the spinal cord and testis, with no or very weak expression in other tissues. SLC6A6 mRNA was expressed ubiquitously. Consistent with the ˆndings of another study in human subjects,96) SLC6A7 mRNA was expressed at the highest levels in the brain, with no or very weak expression in other tissues. SLC6A9

470

Masuhiro NISHIMURA and Shinsaku NAITO

mRNA was expressed ubiquitously and was expressed at the highest levels in the spinal cord. SLC7A1 mRNA was expressed ubiquitously and was expressed at the highest levels in the placenta. Similar to the ˆndings of another study in human subjects,97) SLC7A2 mRNA was expressed ubiquitously except in peripheral leukocytes and was expressed at high levels in the placenta and skeletal muscle. Similar to the ˆndings of another study in the rat,98) SLC7A3 mRNA was expressed at high levels in the brain, prostate, spinal cord, stomach, testis, thymus, and uterus. SLC7A4 mRNA was expressed ubiquitously and was expressed at high levels in the placenta and testis. SLC7A5 mRNA was expressed ubiquitously and was expressed at the highest levels in the testis. SLC7A6 mRNA was also expressed ubiquitously and was expressed at the highest levels in skeletal muscle. Consistent with the ˆndings of another study in human subjects,99) SLC7A7 mRNA was expressed ubiquitously and was expressed at high levels in the kidney and peripheral leukocytes. Both SLC7A8 mRNA and SLC7A9 mRNA were also expressed ubiquitously and were expressed at the highest levels in the kidney. Similar to the ˆndings of other studies in human subjects100) and the mouse,101) SLC7A10 mRNA was expressed ubiquitously except in the liver and was expressed at high levels in the brain, placenta, and spinal cord. Similar to the ˆndings of another study in the mouse,102) SLC7A11 mRNA was expressed ubiquitously and was expressed at high levels in the brain and spinal cord. Similar to the ˆndings of other studies in human subjects103) and the mouse,104) SLC7A13 mRNA was most abundant in the kidney and was only very weakly detectable in the brain, heart, prostate, skeletal muscle, spinal cord, testis, and uterus. SLC10A1 mRNA was expressed ubiquitously and was most abundant in the liver. Similar to the ˆndings of another study in the mouse,48) SLC10A2 mRNA was expressed at high levels in the kidney and small intestine, with no or very weak expression in other tissues. SLC10A3 mRNA, SLC10A4 mRNA, and SLC10A5 mRNA were expressed ubiquitously and were expressed at the highest levels in the placenta, spinal cord, and liver, respectively. Similar to the ˆndings of other studies105,106) in the rat, sheep, dairy cow, pig, and chicken, SLC15A1 mRNA was most abundant in the small intestine and was detectable in the colon, kidney, liver, pancreas, placenta, prostate, stomach, testis, thymus, thyroid gland, trachea, and uterus. SLC15A2 mRNA was expressed ubiquitously and was expressed at the highest levels in the prostate. Saito et al.107) reported that the mRNA expression of rat SLC15A2 mRNA was predominant in the kidney. SLC15A3 mRNA and SLC15A4 mRNA were expressed ubiquitously. Furthermore, consistent with the ˆndings of another study in human subjects,108)

SLC15A3 mRNA was expressed at high levels in the lung, peripheral leukocytes, placenta, and spleen. On the other hand, SLC15A4 mRNA was expressed at the highest levels in skeletal muscle. SLC21A3 mRNA was expressed at high levels in the brain, spinal cord, and trachea, with very weak expression in other tissues. SLC21A6 mRNA was expressed at the highest levels in the liver, with no or very weak expression in other tissues. SLC21A9 mRNA was expressed ubiquitously except in peripheral leukocytes and was expressed at the highest levels in the liver. SLC21A11 mRNA and SLC21A12 mRNA were expressed ubiquitously and were expressed at the highest levels in the testis and placenta, respectively. The results for SLC21A3, SLC21A6, SLC21A9, SLC21A11, and SLC21A12 were similar to those reported in human subjects.109–112) Consistent with the ˆndings of another study in human subjects,113) SLC21A14 mRNA was expressed at high levels in the brain, spinal cord, and testis, with no or weak expression in other tissues. SLC21A15 mRNA was expressed ubiquitously and was expressed at the highest levels in skeletal muscle. SLC22A1 mRNA was expressed at the highest levels in the liver, with very weak expression in other tissues. However, in the rat, SLC22A1 mRNA was expressed at the highest levels in the kidney.114) Consistent with the ˆndings of another study in the rat,114) SLC22A2 mRNA was expressed at the highest levels in the kidney, with no or very weak expression in other tissues; SLC22A3 mRNA was expressed ubiquitously except in peripheral leukocytes and was expressed at the highest levels in skeletal muscle; SLC22A4 mRNA was expressed ubiquitously and was expressed at the highest levels in the kidney; and SLC22A5 mRNA was expressed ubiquitously and was expressed at high levels in the kidney and skeletal muscle. Consistent with the ˆndings of other studies in human subjects,115,116) SLC22A6 mRNA was expressed at the highest levels in the kidney, with no or very weak expression in other tissues. Consistent with the ˆndings of another study in human subjects,115) SLC22A7 mRNA was expressed at high levels in the kidney, liver, and testis, with very weak expression in other tissues. Consistent with the ˆndings of other studies in human subjects,115,117) SLC22A8 mRNA was expressed at the highest levels in the kidney, with no or very weak expression in other tissues. Consistent with the ˆndings of another study in human subjects,115) SLC22A9 mRNA was expressed at the highest levels in the liver, with no or very weak expression in other tissues. SLC22A11 mRNA was expressed at high levels in the kidney and placenta, with no expression in other tissues. Consistent with the ˆndings of another study in human subjects,118) SLC22A12 mRNA was expressed at high levels in the kidney and was expressed at very low levels in the testis, with no expression in other tissues.

mRNA Expression Proˆles of Human Drug Transporters

Similar to the ˆndings of another study in human subjects,119) SLC22A13 mRNA and SLC22A14 mRNA were expressed ubiquitously and were expressed at the highest levels in the kidney and testis, respectively. Both SLC22A15 mRNA and SLC22A16 mRNA were also expressed ubiquitously and were expressed at the highest levels in the bone marrow. SLC22A17 mRNA was also expressed ubiquitously and was expressed at the highest levels in the brain. Similar to the ˆndings of another study in human subjects,120) SLC22A18 mRNA was expressed ubiquitously and was expressed at high levels in the colon, kidney, and small intestine. Similar to the ˆndings of another study in the rat,121) SLC28A1 mRNA was expressed ubiquitously and was expressed at high levels in the kidney, liver, placenta, and small intestine. SLC28A2 mRNA was expressed at high levels in the small intestine and stomach, with no or very weak expression in other tissues. Consistent with the ˆndings of another study in human subjects,122) SLC28A3 mRNA was expressed ubiquitously except in skeletal muscle and was expressed at high levels in the bone marrow, pancreas, and trachea. Similar to the ˆndings of other studies in human subjects123) and mammals,124) SLC29A1 mRNA, SLC29A2 mRNA, SLC29A3 mRNA, and SLC29A4 mRNA were expressed ubiquitously and were expressed at the highest levels in skeletal muscle, skeletal muscle, the placenta, and the spinal cord, respectively. Both SLC36A1 mRNA and SLC36A4 mRNA were expressed ubiquitously and were expressed at the highest levels in the bone marrow. SLC36A2 mRNA was expressed at high levels in the kidney and skeletal muscle, with no expression in other tissues. Consistent with the ˆndings of another study in the mouse,125) SLC36A3 mRNA was expressed at high levels in the testis, with no expression in other tissues. SLC38A1 mRNA, SLC38A2 mRNA, SLC38A3 mRNA, SLC38A4 mRNA, SLC38A5 mRNA, and SLC38A6 mRNA were expressed ubiquitously except in peripheral leukocytes for SLC38A3 and were expressed at the highest levels in the heart, skeletal muscle, liver, liver, pancreas, and testis, respectively. The results for SLC38A4 were similar to those reported in human subjects.126) Recent research, including the present study, has identiˆed the ABC and SLC transporters that are expressed selectively in the liver, kidney, and other organs and has conˆrmed that these transporters may be a potential target for drug delivery. In particular, the ˆndings of the present study may be useful in selecting transporters that are involved in absorption from the gastrointestinal tract, elimination by tissues such as the liver and kidney, and distribution in important barrier tissues such as the brain (the blood-brain barrier), testis (the blood-testis barrier), and placenta (the placental

471

barrier). One example of the involvement of speciˆc ABC and SLC transporters in drug delivery to the liver is described here. The most well-known example is pravastatin, in which exposure of the liver to the drug is prolonged and adverse eŠects in other tissues are minimized.12,14) Speciˆcally, pravastatin is taken up by the liver from the portal vein by SLC21A6 located on the sinusoidal membrane. After exerting its pharmacological action in the liver, pravastatin is then excreted into the bile via ABCC2 with only minimal metabolic conversion. The pravastatin released into the duodenum is then reabsorbed by active transport. Therefore, e‹cient hepatobiliary transport by SLC21A6 and ABCC2, transporters that are expressed speciˆcally in the liver (Tables 5, 6), plays an important role in the enterohepatic circulation, which is responsible for maintaining signiˆcant concentrations of this drug in the liver. Thus, the targeting strategy should focus on the diŠerential expression of transporters between the target organ and other organs, and the ˆndings of our present study are essential for selecting transporters that show higher expression levels in the target organ than in other organs. In our previous studies16,17,127) as well as the present study, the TaqMaq method was found to be exquisitely sensitive, to provide high throughput, to exhibit good linearity over a wide range of mRNA concentrations, and to permit accurate quantitative evaluation. In the present study, total RNA at 25 ng per 50 mL of reaction mixture was used for each tissue. This is in contrast to existing methods such as Northern blotting, which often require 5–20 mg of total RNA. This method could therefore prove to be particularly useful in studies where the amount of target mRNA is very small, such as studies involving cultured human hepatocytes17–19,128) or clinical materials129,130) such as blood samples or biopsy specimens. In conclusion, the results of this study provide valuable information concerning the tissue-speciˆc proˆles of mRNA expression of 46 human ABC family transporters and 108 human SLC family transporters. These ˆndings should be helpful in studies concerning the regulation of transport in drug screening systems for new chemical entities in new drug development as well as in research related to the clinical diagnosis of disease. In particular, the information obtained in this study is expected to be important in assessing the feasibility of measuring the mRNA expression levels of target genes in various tissues. Acknowledgments: The authors would like to thank David G. Spear, M.D., for reviewing this manuscript. References 1)

Van Aubel, R. A., Masereeuw, R. and Russel, F. G.:

472

2) 3)

4)

5)

6)

7) 8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

Masuhiro NISHIMURA and Shinsaku NAITO

Molecular pharmacology of renal organic anion transporters. Am. J. Physiol. Renal. Physiol., 279: F216–F232 (2000). Mikkaichi, T., Suzuki, T., Tanemoto, M., Ito, S. and Abe, T.: The organic anion transporter (OATP) family. Drug Metab. Pharmacokinet., 19: 171–179 (2004). Han, B. and Zhang, J. T.: Multidrug resistance in cancer chemotherapy and xenobiotic protection mediated by the half ATP-binding cassette transporter ABCG2. Curr. Med. Chem. Anti-Canc. Agents, 4: 31–42 (2004). Sai, Y.: Biochemical and molecular pharmacological aspects of transporters as determinants of drug disposition. Drug Metab. Pharmacokinet., 20: 91–99 (2005). Hagenbuch, B. and Meier, P. J.: The superfamily of organic anion transporting polypeptides. Biochim. Biophys. Acta, 1609: 1–18 (2003). ½Stefkov áa, J., Poledne, R. and Hub áa ¾cek, J. A.: ATPbinding cassette (ABC) transporters in human metabolism and diseases. Physiol. Res., 53: 235–243 (2004). Tsuji, A.: Transporter-mediated Drug Interactions. Drug Metab. Pharmacokinet., 17: 253–274 (2002). Masuda, S.: Functional characteristics and pharmacokinetic signiˆcance of kidney-speciˆc organic anion transporters, OAT-K1 and OAT-K2, in the urinary excretion of anionic drugs. Drug Metab. Pharmacokinet., 18: 91–103 (2003). Nakamura, N., Masuda, S., Takahashi, K., Saito, H., Okuda, M. and Inui, K.: Decreased expression of glucose and peptide transporters in rat remnant kidney. Drug Metab. Pharmacokinet., 19: 41–47 (2004). Kanai, Y. and Endou, H.: Functional properties of multispeciˆc amino acid transporters and their implications to transporter-mediated toxicity. J. Toxicol. Sci., 28: 1–17 (2003). Lu, H., Chen, C. and Klaassen, C.: Tissue distribution of concentrative and equilibrative nucleoside transporters in male and female rats and mice. Drug Metab. Dispos., 32: 1455–1461 (2004). Mizuno, N., Niwa, T., Yotsumoto, Y. and Sugiyama, Y.: Impact of drug transporter studies on drug discovery and development. Pharmacol. Rev., 55: 425–461 (2003). Katsura, T. and Inui, K.: Intestinal absorption of drugs mediated by drug transporters: mechanisms and regulation. Drug Metab. Pharmacokinet., 18: 1–15 (2003). Mizuno, N. and Sugiyama, Y.: Drug transporters: their role and importance in the selection and development of new drugs. Drug Metab. Pharmacokinet., 17: 93–108 (2002). Nishimura, M. and Naito, S.: Tissue-speciˆc mRNA expression proˆles of human toll-like receptors and related genes. Biol. Pharm. Bull., 28: 886–892 (2005). Nishimura, M., Naito, S. and Yokoi, T.: Tissue-speciˆc mRNA expression proˆles of human nuclear receptor subfamilies. Drug Metab. Pharmacokinet., 19: 135–149 (2004). Nishimura, M., Yoshitsugu, H., Naito, S. and Hiraoka, I.: Evaluation of gene induction of drug-

18)

19)

20)

21)

22)

23)

24)

25)

26)

27)

28)

metabolizing enzymes and transporters in primary culture of human hepatocytes using high-sensitivity real-time reverse transcription PCR. Yakugaku Zasshi, 122: 339–361 (2002). Nishimura, M., Yokoi, T., Tateno, C., Kataoka, M., Takahashi, E., Horie, T., Yoshizato, K. and Naito, S.: Induction of human CYP1A2 and CYP3A4 in primary culture of hepatocytes from chimeric mice with humanized liver. Drug Metab. Pharmacokinet., 20: 121–126 (2005). Nishimura, M., Imai, T., Morioka, Y., Kuribayashi, S., Kamataki, T. and Naito, S.: EŠects of NO-1886 (Ibrolipim), a lipoprotein lipase-promoting agent, on gene induction of cytochrome P450s, carboxylesterases, and sulfotransferases in primary cultures of human hepatocytes. Drug Metab. Pharmacokinet., 19: 422–429 (2004). Nishimura, M., Yamaguchi, M., Yamauchi, A., Ueda, N. and Naito, S.: Role of soybean oil fat emulsion in the prevention of hepatic xenobiotic transporter mRNA up- and down-regulation induced by overdose of fat-free total parenteral nutrition in infant rats. Drug Metab. Pharmacokinet., 20: 46–54 (2005). Nishimura, M., Yamauchi, A., Yamaguchi, M., Ueda, N. and Naito, S.: Soybean oil in total parenteral nutrition maintains albumin and antioxidant enzyme mRNA levels. Biol. Pharm. Bull., 28: 1265–1269 (2005). Yamaguchi, M., Yamauchi, A., Nishimura, M., Ueda, N. and Naito, S.: Soybean oil fat emulsion prevents cytochrome P450 mRNA down-regulation induced by fat-free overdose total parenteral nutrition in infant rats. Biol. Pharm. Bull., 28: 143–147 (2005). Klucken, J., B äuchler, C., Ors áo, E., Kaminski, W. E., Porsch-Ozc Ä äur äumez, M., Liebisch, G., Kapinsky, M., Diederich, W., Drobnik, W., Dean, M., Allikmets, R. and Schmitz, G.: ABCG1 (ABC8), the human homolog of the Drosophila white gene, is a regulator of macrophage cholesterol and phospholipid transport. Proc. Natl. Acad. Sci. USA, 97: 817–822 (2000). Kaminski, W. E., Orso, E., Diederich, W., Klucken, J., Drobnik, W. and Schmitz, G.: Identiˆcation of a novel human sterol-sensitive ATP-binding cassette transporter (ABCA7). Biochem. Biophys. Res. Commun., 273: 532–538 (2000). Kielar, D., Dietmaier, W., Langmann, T., Aslanidis, C., Probst, M., Naruszewicz, M. and Schmitz, G.: Rapid quantiˆcation of human ABCA1 mRNA in various cell types and tissues by real-time reverse transcription-PCR. Clin. Chem., 47: 2089–2097 (2001). Lawn, R. M., Wade, D. P., Couse, T. L. and Wilcox, J. N.: Localization of human ATP-binding cassette transporter 1 (ABC1) in normal and atherosclerotic tissues. Arterioscler. Thromb. Vasc. Biol., 21: 378–385 (2001). Su, Y. R., Linton, M. F. and Fazio, S.: Rapid quantiˆcation of murine ABC mRNAs by real time reverse transcriptase-polymerase chain reaction. J. Lipid Res., 43: 2180–2187 (2002). Vulevic, B., Chen, Z., Boyd, J. T., Davis, W. Jr.,

mRNA Expression Proˆles of Human Drug Transporters

29)

30)

31)

32)

33)

34)

35)

36)

37)

38)

39)

40)

Walsh, E. S., Belinsky, M. G. and Tew, K. D.: Cloning and characterization of human adenosine 5?triphosphate-binding cassette, sub-family A, transporter 2 (ABCA2). Cancer Res., 61: 3339–3347 (2001). Zhao, L. X., Zhou, C. J., Tanaka, A., Nakata, M., Hirabayashi, T., Amachi, T., Shioda, S., Ueda, K. and Inagaki, N.: Cloning, characterization and tissue distribution of the rat ATP-binding cassette (ABC) transporter ABC2 W ABCA2. Biochem. J., 350 Pt 3: 865–872 (2000). Allikmets, R., Gerrard, B., Hutchinson, A. and Dean, M.: Characterization of the human ABC superfamily: isolation and mapping of 21 new genes using the expressed sequence tags database. Hum. Mol. Genet., 5: 1649–1655 (1996). Klugbauer, N. and Hofmann, F.: Primary structure of a novel ABC transporter with a chromosomal localization on the band encoding the multidrug resistanceassociated protein. FEBS Lett., 391: 61–65 (1996). Connors, T. D., Van Raay, T. J., Petry, L. R., Klinger, K. W., Landes, G. M. and Burn, T. C.: The cloning of a human ABC gene (ABC3) mapping to chromosome 16p13.3. Genomics, 39: 231–234 (1997). Petry, F., Kotthaus, A. and Hirsch-Ernst, K. I.: Cloning of human and rat ABCA5 W Abca5 and detection of a human splice variant. Biochem. Biophys. Res. Commun., 300: 343–350 (2003). Kaminski, W. E., Wenzel, J. J., Piehler, A., Langmann, T. and Schmitz, G.: ABCA6, a novel a subclass ABC transporter. Biochem. Biophys. Res. Commun., 285: 1295–1301 (2001). Sasaki, M., Shoji, A., Kubo, Y., Nada, S. and Yamaguchi, A.: Cloning of rat ABCA7 and its preferential expression in platelets. Biochem. Biophys. Res. Commun., 304: 777–782 (2003). Tsuruoka, S., Ishibashi, K., Yamamoto, H., Wakaumi, M., Suzuki, M., Schwartz, G. J., Imai, M. and Fujimura, A.: Functional analysis of ABCA8, a new drug transporter. Biochem. Biophys. Res. Commun., 298: 41–45 (2002). Piehler, A., Kaminski, W. E., Wenzel, J. J., Langmann, T. and Schmitz, G.: Molecular structure of a novel cholesterol-responsive A subclass ABC transporter, ABCA9. Biochem. Biophys. Res. Commun., 295: 408–416 (2002). Wenzel, J. J., Kaminski, W. E., Piehler, A., Heimerl, S., Langmann, T. and Schmitz, G.: ABCA10, a novel cholesterol-regulated ABCA6-like ABC transporter. Biochem. Biophys. Res. Commun., 306: 1089–1098 (2003). Annilo, T., Shulenin, S., Chen, Z. Q., Arnould, I., Prades, C., Lemoine, C., Maintoux-Larois, C., Devaud, C., Dean, M., Den àe‰e, P. and Rosier, M.: Identiˆcation and characterization of a novel ABCA subfamily member, ABCA12, located in the lamellar ichthyosis region on 2q34. Cytogenet. Genome Res., 98: 169–176 (2002). Brady, J. M., Cherrington, N. J., Hartley, D. P., Buist, S. C., Li, N. and Klaassen, C. D.: Tissue distribution and chemical induction of multiple drug

41)

42)

43)

44)

45)

46)

47)

48)

49)

50)

51)

52)

473

resistance genes in rats. Drug Metab. Dispos., 30: 838–844 (2002). Yamaguchi, Y., Iseoka, H., Kobayashi, A. and Maeda, M.: The carboxyl terminal sequence of rat transporter associated with antigen processing (TAP)-like (ABCB9) is heterogeneous due to splicing of its mRNA. Biol. Pharm. Bull., 27: 100–104 (2004). Smit, J. J., Schinkel, A. H., Mol, C. A., Majoor, D., Mooi, W. J., Jongsma, A. P., Lincke, C. R. and Borst, P.: Tissue distribution of the human MDR3 Pglycoprotein. Lab. Invest., 71: 638–649 (1994). Hirsch-Ernst, K. I., Gaini-Rahimi, S., Ernst, B. P., Schmitz-Salue, C., Blume, S. and Kahl, G. F.: Molecular cDNA cloning and tissue distribution of mRNA encoding a novel ATP-binding cassette (ABC) halftransporter. Biochem. Biophys. Res. Commun., 249: 151–155 (1998). Zhang, F., Zhang, W., Liu, L., Fisher, C. L., Hui, D., Childs, S., Dorovini-Zis, K. and Ling, V.: Characterization of ABCB9, an ATP binding cassette protein associated with lysosomes. J. Biol. Chem., 275: 23287–23294 (2000). Zhang, F., Hogue, D. L., Liu, L., Fisher, C. L., Hui, D., Childs, S. and Ling, V.: M-ABC2, a new human mitochondrial ATP-binding cassette membrane protein. FEBS Lett., 478: 89–94 (2000). GerloŠ, T., Stieger, B., Hagenbuch, B., Madon, J., Landmann, L., Roth, J., Hofmann, A. F. and Meier, P. J.: The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J. Biol. Chem., 273: 10046–10050 (1998). Cherrington, N. J., Hartley, D. P., Li, N., Johnson, D. R. and Klaassen, C. D.: Organ distribution of multidrug resistance proteins 1, 2, and 3 (Mrp1, 2, and 3) mRNA and hepatic induction of Mrp3 by constitutive androstane receptor activators in rats. J. Pharmacol. Exp. Ther., 300: 97–104 (2002). Dawson, P. A., Hubbert, M., Haywood, J., Craddock, A. L., Zerangue, N., Christian, W. V. and Ballatori, N.: The heteromeric organic solute transporter alphabeta, Ostalpha-Ostbeta, is an ileal basolateral bile acid transporter. J. Biol. Chem., 280: 6960–6968 (2005). Ortiz, D. F., Li, S., Iyer, R., Zhang, X., NovikoŠ, P. and Arias, I. M.: MRP3, a new ATP-binding cassette protein localized to the canalicular domain of the hepatocyte. Am. J. Physiol., 276: G1493–G1500 (1999). Madon, J., Hagenbuch, B., Landmann, L., Meier, P. J. and Stieger, B.: Transport function and hepatocellular localization of mrp6 in rat liver. Mol. Pharmacol., 57: 634–641 (2000). Beck, K., Hayashi, K., Nishiguchi, B., Le Saux, O., Hayashi, M. and Boyd, C. D.: The distribution of Abcc6 in normal mouse tissues suggests multiple functions for this ABC transporter. J. Histochem. Cytochem., 51: 887–902 (2003). Chutkow, W. A., Simon, M. C., Le Beau, M. M. and Burant, C. F.: Cloning, tissue expression, and chromosomal localization of SUR2, the putative drug-binding subunit of cardiac, skeletal muscle, and vascular

474

53)

54)

55)

56)

57)

58)

59)

60)

61)

62)

63)

64)

65)

Masuhiro NISHIMURA and Shinsaku NAITO

KATP channels. Diabetes, 45: 1439–1445 (1996). Bera, T. K., Iavarone, C., Kumar, V., Lee, S., Lee, B. and Pastan, I.: MRP9, an unusual truncated member of the ABC transporter superfamily, is highly expressed in breast cancer. Proc. Natl. Acad. Sci. USA, 99: 6997–7002 (2002). Mosser, J., Douar, A. M., Sarde, C. O., Kioschis, P., Feil, R., Moser, H., Poustka, A. M., Mandel, J. L. and Aubourg, P.: Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature, 361: 726–730 (1993). Holzinger, A., Kammerer, S., Berger, J. and Roscher, A. A.: cDNA cloning and mRNA expression of the human adrenoleukodystrophy related protein (ALDRP), a peroxisomal ABC transporter. Biochem. Biophys. Res. Commun., 239: 261–264 (1997). Holzinger, A., Kammerer, S. and Roscher, A. A.: Primary structure of human PMP69, a putative peroxisomal ABC-transporter. Biochem. Biophys. Res. Commun., 237: 152–157 (1997). Shani, N., Jimenez-Sanchez, G., Steel, G., Dean, M. and Valle, D.: Identiˆcation of a fourth half ABC transporter in the human peroxisomal membrane. Hum. Mol. Genet., 6: 1925–1931 (1997). Aubry, F., Mattei, M.G., Barque, J. P. and Galibert, F.: Chromosomal localization and expression pattern of the RNase L inhibitor gene. FEBS Lett., 381: 135–139 (1996). Richard, M., Drouin, R. and Beaulieu, A. D.: ABC50, a novel human ATP-binding cassette protein found in tumor necrosis factor-alpha-stimulated synoviocytes. Genomics, 53: 137–145 (1998). Oldˆeld, S., Lowry, C. A., Ruddick, J. and Lightman, S. L.: ABCG4: a novel human white family ABC-transporter expressed in the brain and eye. Biochim. Biophys. Acta, 1591: 175–179 (2002). Doyle, L. A., Yang, W., Abruzzo, L. V., Krogmann, T., Gao, Y., Rishi, A. K. and Ross, D. D.: A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. USA, 95: 15665–15670 (1998). Maliepaard, M., ScheŠer, G. L., Faneyte, I. F., van Gastelen, M. A., Pijnenborg, A. C., Schinkel, A. H., van De Vijver, M. J., Scheper, R. J. and Schellens, J. H.: Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res., 61: 3458–3464 (2001). Lu, K., Lee, M. H., Yu, H., Zhou, Y., Sandell, S. A., Salen, G. and Patel, S. B.: Molecular cloning, genomic organization, genetic variations, and characterization of murine sterolin genes Abcg5 and Abcg8. J. Lipid Res., 43: 565–578 (2002). Jin, X. P., Peng, J. B., Huang, F., Zhu, Y. N., Fei, J. and Guo, L. H.: A mRNA molecule encoding truncated excitatory amino acid carrier 1 (EAAC1) protein (EAAC2) is transcribed from an independent promoter but not an alternative splicing event. Cell Res., 12: 257–262 (2002). Kim, S. Y., Chao, W., Choi, S. Y. and Volsky, D. J.: Cloning and characterization of the 3?-untranslated

66)

67)

68)

69)

70)

71)

72)

73)

74)

75)

76)

region of the human excitatory amino acid transporter 2 transcript. J. Neurochem., 86: 1458–1467 (2003). Shashidharan, P. and Plaitakis, A.: Cloning and characterization of a glutamate transporter cDNA from human cerebellum. Biochim. Biophys. Acta, 1216: 161–164 (1993). Kawakami, H., Tanaka, K., Nakayama, T., Inoue, K. and Nakamura, S.: Cloning and expression of a human glutamate transporter. Biochem. Biophys. Res. Commun., 199: 171–176 (1994). Arriza, J. L., Kavanaugh, M. P., Fairman, W. A., Wu, Y. N., Murdoch, G. H., North, R. A. and Amara, S. G.: Cloning and expression of a human neutral amino acid transporter with structural similarity to the glutamate transporter gene family. J. Biol. Chem., 268: 15329–15332 (1993). Shafqat, S., Tamarappoo, B. K., Kilberg, M. S., Puranam, R. S., McNamara, J. O., Guadano-Ferraz, A. and Fremeau, R. T. Jr.: Cloning and expression of a novel Na+-dependent neutral amino acid transporter structurally related to mammalian Na+ W glutamate cotransporters. J. Biol. Chem., 268: 15351–15355 (1993). Kekuda, R., Prasad, P. D., Fei, Y. J., TorresZamorano, V., Sinha, S., Yang-Feng, T. L., Leibach, F. H. and Ganapathy, V.: Cloning of the sodiumdependent, broad-scope, neutral amino acid transporter B9from a human placental choriocarcinoma cell line. J. Biol. Chem., 271: 18657–18661 (1996). Bell, G. I., Burant, C. F., Takeda, J. and Gould, G. W.: Structure and function of mammalian facilitative sugar transporters. J. Biol. Chem., 268: 19161–19164 (1993). Fukumoto, H., Seino, S., Imura, H., Seino, Y., Eddy, R. L., Fukushima, Y., Byers, M. G., Shows, T. B. and Bell, G. I.: Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein. Proc. Natl. Acad. Sci. USA, 85: 5434–5438 (1988). Fukumoto, H., Kayano, T., Buse, J. B., Edwards, Y., Pilch, P. F., Bell, G. I. and Seino, S.: Cloning and characterization of the major insulin-responsive glucose transporter expressed in human skeletal muscle and other insulin-responsive tissues. J. Biol. Chem., 264: 7776–7779 (1989). Wood, I. S., Hunter, L. and Trayhurn, P.: Expression of Class III facilitative glucose transporter genes (GLUT-10 and GLUT-12) in mouse and human adipose tissues. Biochem. Biophys. Res. Commun., 308: 43–49 (2003). Kayano, T., Burant, C. F., Fukumoto, H., Gould, G. W., Fan, Y. S., Eddy, R. L., Byers, M. G., Shows, T. B., Seino, S. and Bell, G. I.: Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene-like sequence (GLUT6). J. Biol. Chem., 265: 13276–13282 (1990). Li, Q., Manolescu, A., Ritzel, M., Yao, S., Slugoski,

mRNA Expression Proˆles of Human Drug Transporters

77)

78)

79)

80)

81)

82)

83)

84)

85)

86)

87)

M., Young, J. D., Chen, X. Z. and Cheeseman, C. I.: Cloning and functional characterization of the human GLUT7 isoform SLC2A7 from the small intestine. Am. J. Physiol. Gastrointest. Liver Physiol., 287: G236–G242 (2004). Ibberson, M., Uldry, M. and Thorens, B.: GLUTX1, a novel mammalian glucose transporter expressed in the central nervous system and insulin-sensitive tissues. J. Biol. Chem., 275: 4607–4612 (2000). Phay, J. E., Hussain, H. B. and Moley, J. F.: Cloning and expression analysis of a novel member of the facilitative glucose transporter family, SLC2A9 (GLUT9). Genomics, 66: 217–220 (2000). Sasaki, T., Minoshima, S., Shiohama, A., Shintani, A., Shimizu, A., Asakawa, S., Kawasaki, K. and Shimizu, N.: Molecular cloning of a member of the facilitative glucose transporter gene family GLUT11 (SLC2A11) and identiˆcation of transcription variants. Biochem. Biophys. Res. Commun., 289: 1218–1224 (2001). Uldry, M., Ibberson, M., Horisberger, J. D., Chatton, J. Y., Riederer, B. M. and Thorens, B.: Identiˆcation of a mammalian H(+)-myo-inositol symporter expressed predominantly in the brain. EMBO J., 20: 4467–4477 (2001). Bertran, J., Werner, A., Chillaron, J., Nunes, V., Biber, J., Testar, X., Zorzano, A., Estivill, X., Murer, H. and Palacin, M.: Expression cloning of a human renal cDNA that induces high a‹nity transport of L-cystine shared with dibasic amino acids in Xenopus oocytes. J. Biol. Chem., 268: 14842–14849 (1993). Rossier, G., Meier, C., Bauch, C., Summa, V., Sordat, B., Verrey, F. and K äuhn, L. C.: LAT2, a new basolateral 4F2hc W CD98-associated amino acid transporter of kidney and intestine. J. Biol. Chem., 274: 34948–34954 (1999). Burnham, C. E., Amlal, H., Wang, Z., Shull, G. E. and Soleimani, M.: Cloning and functional expression of a human kidney Na+:HCO3- cotransporter. J. Biol. Chem., 272: 19111–19114 (1997). Abuladze, N., Lee, I., Newman, D., Hwang, J., Boorer, K., Pushkin, A. and Kurtz, I.: Molecular cloning, chromosomal localization, tissue distribution, and functional expression of the human pancreatic sodium bicarbonate cotransporter. J. Biol. Chem., 273: 17689–17695 (1998). Grichtchenko, I. I., Choi, I., Zhong, X., Bray-Ward, P., Russell, J. M. and Boron, W. F.: Cloning, characterization, and chromosomal mapping of a human electroneutral Na+-driven Cl–HCO3 exchanger. J. Biol. Chem., 276: 8358–8363 (2001). Parker, M. D., Ourmozdi, E. P. and Tanner, M. J.: Human BTR1, a new bicarbonate transporter superfamily member and human AE4 from kidney. Biochem. Biophys. Res. Commun., 282: 1103–1109 (2001). Wang, C. Z., Yano, H., Nagashima, K. and Seino, S.: The Na+-driven Cl- W HCO3- exchanger. Cloning, tissue distribution, and functional characterization. J. Biol. Chem., 275: 35486–35490 (2000).

88)

89)

90)

91)

92)

93)

94)

95)

96)

97)

98)

99)

475

Pajor, A. M. and Wright, E. M.: Cloning and functionnucleoside cotransal expression of a mammalian Na+ W porter. A member of the SGLT family. J. Biol. Chem., 267: 3557–3560 (1992). Lee, W. S., Kanai, Y., Wells, R. G. and Hediger, M. A.: The high a‹nity Na+ W glucose cotransporter. Reevaluation of function and distribution of expression. J. Biol. Chem., 269: 12032–12039 (1994). Zhao, F. Q., Zheng, Y. C., Wall, E. H. and McFadden, T. B.: Cloning and expression of bovine sodium W glucose cotransporters. J. Dairy Sci., 88: 182–194 (2005). You, G., Lee, W. S., Barros, E. J., Kanai, Y., Huo, T. L., Khawaja, S., Wells, R. G., Nigam, S. K. and Hediger, M. A.: Molecular characteristics of Na+coupled glucose transporters in adult and embryonic rat kidney. J. Biol. Chem., 270: 29365–29371 (1995). Berry, G. T., Mallee, J. J., Kwon, H. M., Rim, J. S., Mulla, W. R., Muenke, M. and Spinner, N. B.: The human osmoregulatory Na+ W myo-inositol cotransporter gene (SLC5A3): molecular cloning and localization to chromosome 21. Genomics, 25: 507–513 (1995). Smanik, P. A., Ryu, K. Y., Theil, K. S., Mazzaferri, E. L. and Jhiang, S. M.: Expression, exon-intron organization, and chromosome mapping of the human sodium iodide symporter. Endocrinology, 138: 3555–3558 (1997). Wang, H., Huang, W., Fei, Y. J., Xia, H., Yang-Feng, T. L., Leibach, F. H., Devoe, L. D., Ganapathy, V. and Prasad, P. D.: Human placental Na+-dependent multivitamin transporter. Cloning, functional expression, gene structure, and chromosomal localization. J. Biol. Chem., 274: 14875–14883 (1999). Ramamoorthy, S., Bauman, A. L., Moore, K. R., Han, H., Yang-Feng, T., Chang, A. S., Ganapathy, V. and Blakely, R. D.: Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc. Natl. Acad. Sci. USA, 90: 2542–2546 (1993). Shafqat, S., Velaz-Faircloth, M., Henzi, V. A., Whitney, K. D., Yang-Feng, T. L., Seldin, M. F. and Fremeau, R. T. Jr.: Human brain-speciˆc L-proline transporter: molecular cloning, functional expression, and chromosomal localization of the gene in human and mouse genomes. Mol. Pharmacol., 48: 219–229 (1995). Hoshide, R., Ikeda, Y., Karashima, S., Matsuura, T., Komaki, S., Kishino, T., Niikawa, N., Endo, F. and Matsuda, I.: Molecular cloning, tissue distribution, and chromosomal localization of human cationic amino acid transporter 2 (HCAT2). Genomics, 38: 174–178 (1996). Hosokawa, H., Sawamura, T., Kobayashi, S., Ninomiya, H., Miwa, S. and Masaki, T.: Cloning and characterization of a brain-speciˆc cationic amino acid transporter. J. Biol. Chem., 272: 8717–8722 (1997). Torrents, D., Estevez, R., Pineda, M., Fernandez, E., Lloberas, J., Shi, Y. B., Zorzano, A. and Palacin, M.: Identiˆcation and characterization of a membrane protein (y+L amino acid transporter-1) that associates

476

100)

101)

102)

103)

104)

105)

106)

107)

108)

109)

110)

Masuhiro NISHIMURA and Shinsaku NAITO

with 4F2hc to encode the amino acid transport activity y+L. A candidate gene for lysinuric protein intolerance. J. Biol. Chem., 273: 32437–32445 (1998). Nakauchi, J., Matsuo, H., Kim, D. K., Goto, A., Chairoungdua, A., Cha, S. H., Inatomi, J., Shiokawa, Y., Yamaguchi, K., Saito, I., Endou, H. and Kanai, Y.: Cloning and characterization of a human brain Na+-independent transporter for small neutral amino acids that transports D-serine with high a‹nity. Neurosci. Lett., 287: 231–235 (2000). Fukasawa, Y., Segawa, H., Kim, J. Y., Chairoungdua, A., Kim, D. K., Matsuo, H., Cha, S. H., Endou, H. and Kanai, Y.: Identiˆcation and characterization of a Na+-independent neutral amino acid transporter that associates with the 4F2 heavy chain and exhibits substrate selectivity for small neutral D- and L-amino acids. J. Biol. Chem., 275: 9690–9698 (2000). Sato, H., Tamba, M., Ishii, T. and Bannai, S.: Cloning and expression of a plasma membrane cystine W glutamate exchange transporter composed of two distinct proteins. J. Biol. Chem., 274: 11455–11458 (1999). Blondeau, J. P.: Homologues of amino acid permeases: cloning and tissue expression of XAT1 and XAT2. Gene, 286: 241–248 (2002). Matsuo, H., Kanai, Y., Kim, J. Y., Chairoungdua, A., Kim do, K., Inatomi, J., Shigeta, Y., Ishimine, H., Chaekuntode, S., Tachampa, K., Choi, H. W., Babu, E., Fukuda, J. and Endou, H.: Identiˆcation of a novel Na+-independent acidic amino acid transporter with structural similarity to the member of a heterodimeric amino acid transporter family associated with unknown heavy chains. J. Biol. Chem., 277: 21017–21026 (2002). Saito, H., Okuda, M., Terada, T., Sasaki, S. and Inui, peptide K.: Cloning and characterization of a rat H+ W cotransporter mediating absorption of beta-lactam antibiotics in the intestine and kidney. J. Pharmacol. Exp. Ther., 275: 1631–1637 (1995). Chen, H., Wong, E. A. and Webb, K. E. Jr.: Tissue distribution of a peptide transporter mRNA in sheep, dairy cows, pigs, and chickens. J. Anim. Sci., 77: 1277–1283 (1999). Saito, H., Terada, T., Okuda, M., Sasaki, S. and Inui, K.: Molecular cloning and tissue distribution of rat peptide transporter PEPT2. Biochim. Biophys. Acta, 1280: 173–177 (1996). Botka, C. W., Wittig, T. W., Graul, R. C., Nielsen, C. U., Higaki, K., Amidon, G. L. and Sadee, W.: Human proton W oligopeptide transporter (POT) genes: identiˆcation of putative human genes using bioinformatics. AAPS PharmSci, 2: E16 (2000). (http: WW www.pharmsci.org W ) Kullak-Ublick, G. A., Hagenbuch, B., Stieger, B., Schteingart, C. D., Hofmann, A. F., WolkoŠ, A. W. and Meier, P. J.: Molecular and functional characterization of an organic anion transporting polypeptide cloned from human liver. Gastroenterology, 109: 1274–1282 (1995). Tamai, I., Nezu, J., Uchino, H., Sai, Y., Oku, A., Shimane, M. and Tsuji, A.: Molecular identiˆcation and characterization of novel members of the human

111)

112)

113)

114)

115)

116)

117)

118)

119)

120)

121)

organic anion transporter (OATP) family. Biochem. Biophys. Res. Commun., 273: 251–260 (2000). K äunig, J., Cui, Y., Nies, A. T. and Keppler, D.: A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am. J. Physiol. Gastrointest. Liver Physiol., 278: G156–G164 (2000). Adachi, H., Suzuki, T., Abe, M., Asano, N., Mizutamari, H., Tanemoto, M., Nishio, T., Onogawa, T., Toyohara, T., Kasai, S., Satoh, F., Suzuki, M., Tokui, T., Unno, M., Shimosegawa, T., Matsuno, S., Ito, S. and Abe, T.: Molecular characterization of human and rat organic anion transporter OATP-D. Am. J. Physiol. Renal Physiol., 285: F1188–F1197 (2003). Pizzagalli, F., Hagenbuch, B., Stieger, B., Klenk, U., Folkers, G. and Meier, P. J.: Identiˆcation of a novel human organic anion transporting polypeptide as a high a‹nity thyroxine transporter. Mol. Endocrinol., 16: 2283–2296 (2002). Slitt, A. L., Cherrington, N. J., Hartley, D. P., Leazer, T. M. and Klaassen, C. D.: Tissue distribution and renal developmental changes in rat organic cation transporter mRNA levels. Drug. Metab. Dispos., 30: 212–219 (2002). Sun, W., Wu, R. R., van Poelje, P. D. and Erion, M. D.: Isolation of a family of organic anion transporters from human liver and kidney. Biochem. Biophys. Res. Commun., 283: 417–422 (2001). Eraly, S. A. and Nigam, S. K.: Novel human cDNAs homologous to Drosophila Orct and mammalian carnitine transporters. Biochem. Biophys. Res. Commun., 297: 1159–1166 (2002). Cha, S. H., Sekine, T., Fukushima, J. I., Kanai, Y., Kobayashi, Y., Goya, T. and Endou, H.: Identiˆcation and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol. Pharmacol., 59: 1277–1286 (2001). Anzai, N., Miyazaki, H., Noshiro, R., Khamdang, S., Chairoungdua, A., Shin, H. J., Enomoto, A., Sakamoto, S., Hirata, T., Tomita, K., Kanai, Y. and Endou, H.: The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate-anion exchanger URAT1 via its C terminus. J. Biol. Chem., 279: 45942–45950 (2004). Nishiwaki, T., Daigo, Y., Tamari, M., Fujii, Y. and Nakamura, Y.: Molecular cloning, mapping, and characterization of two novel human genes, ORCTL3 and ORCTL4, bearing homology to organic-cation transporters. Cytogenet. Cell Genet., 83: 251–255 (1998). Dao, D., Frank, D., Qian, N., O'Keefe, D., Vosatka, R. J., Walsh, C. P. and Tycko, B.: IMPT1, an imprinted gene similar to polyspeciˆc transporter and multidrug resistance genes. Hum. Mol. Genet., 7: 597–608 (1998). Huang, Q. Q., Yao, S. Y., Ritzel, M. W., Paterson, A. R., Cass, C. E. and Young, J. D.: Cloning and functional expression of a complementary DNA encoding a mammalian nucleoside transport protein. J. Biol.

mRNA Expression Proˆles of Human Drug Transporters

122)

123)

124)

125)

126)

Chem., 269: 17757–17760 (1994). Ritzel, M. W., Ng, A. M., Yao, S. Y., Graham, K., Loewen, S. K., Smith, K. M., Ritzel, R. G., Mowles, D. A., Carpenter, P., Chen, X. Z., Karpinski, E., Hyde, R. J., Baldwin, S. A., Cass, C. E. and Young, J. D.: Molecular identiˆcation and characterization of novel human and mouse concentrative Na+-nucleoside cotransporter proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides (system cib). J. Biol. Chem., 276: 2914–2927 (2001). Engel, K., Zhou, M. and Wang, J.: Identiˆcation and characterization of a novel monoamine transporter in the human brain. J. Biol. Chem., 279: 50042–50049 (2004). Baldwin, S. A., Beal, P. R., Yao, S. Y., King, A. E., Cass, C. E. and Young, J. D.: The equilibrative nucleoside transporter family, SLC29. P‰ugers Arch., 447: 735–743 (2004). Boll, M., Foltz, M., Rubio-Aliaga, I. and Daniel, H.: A cluster of proton W amino acid transporter genes in the human and mouse genomes. Genomics, 82: 47–56 (2003). Gu, S., Adan-Rice, D., Leach, R. J. and Jiang, J. X.: A novel human amino acid transporter, hNAT3: cDNA cloning, chromosomal mapping, genomic structure, expression, and functional characterization. Genomics,

127)

128)

129)

130)

477

74: 262–272 (2001). Nishimura, M., Yaguti, H., Yoshitsugu, H., Naito, S. and Satoh, T.: Tissue distribution of mRNA expression of human cytochrome P450 isoforms assessed by high-sensitivity real-time reverse transcription PCR. Yakugaku Zasshi, 123: 369–375 (2003). Nishimura, M., Ueda, N. and Naito, S.: EŠects of dimethyl sulfoxide on the gene induction of cytochrome P450 isoforms, UGT-dependent glucuronosyl transferase isoforms, and ABCB1 in primary culture of human hepatocytes. Biol. Pharm. Bull., 26: 1052–1056 (2003). Moustafa, M. A., Ogino, D., Nishimura, M., Ueda, N., Naito, S., Furukawa, M., Uchida, T., Ikai, I., Sawada, H. and Fukumoto, M.: Comparative analysis of ATP-binding cassette (ABC) transporter gene expression levels in peripheral blood leukocytes and in liver with hepatocellular carcinoma. Cancer Sci., 95: 530–536 (2004). Furukawa, M., Nishimura, M., Ogino, D., Chiba, R., Ikai, I., Ueda, N., Naito, S., Kuribayashi, S., Moustafa, M. A., Uchida, T., Sawada, H., Kamataki, T., Funae, Y. and Fukumoto, M.: Cytochrome p450 gene expression levels in peripheral blood mononuclear cells in comparison with the liver. Cancer Sci., 95: 520–529 (2004).