Toluene Disproportionation and Coke Formation on Mordenites Effect of Catalyst Modifications and of Operating Conditions

Toluene Disproportionation and Coke Formation on Mordenites Effect of Catalyst Modifications and of Operating Conditions

B. Delmon and G.F. Froment (Editors), Catalyst Deactivation 0 1980 Elsevier Scientific Publishing Company, Amsterdam -- Printed in The Netherlands 79...

490KB Sizes 1 Downloads 86 Views

B. Delmon and G.F. Froment (Editors), Catalyst Deactivation 0 1980 Elsevier Scientific Publishing Company, Amsterdam -- Printed in The Netherlands

79

TOLIJENE DISPROPOR'I'IONATION AND COKE FORMATION ON MORDENITES

EFFECT OF CATALYST MODIFICATIONS AND OF OPERATING CONDITIONS

N.S.

GNEP

1

,

M.L.

MARTIN d e ARMANDOl, C. MARCILLY

2

,

B.H.

HA

3+

and M.

GUISNET

1++

1 - L a b o r a t o i r e d e Chimie 7 - Groupe d e Recherches s u r l a C a t a l y s e e n Chimie Organique (ERA CNRS 371)

- 4 0 , avenue du R e c t e u r P i n e a u - 8 6 0 2 2 POITIERS

CEDEX

FRANCE.

2 - S e r v i c e d e C a t a l y s e - I n s t i t u t FranGais du P e t r o l e - RUEIL MALMAISON. 3 - L a b o r a t o i r e d e C a t a l y s e Organique - L.A.

CNRS 231

-

VILLEURBANNE.

ABSTRACT Improving c a t a l y t i c s t a b i l i t y o f m o r d e n i t e h a s been a t t e m p t e d by u s i n g t h r e e t y p e s of t r e a t m e n t : d e a l u m i n a t i o n , w e t a i r h e a t i n g , n i c k e l - i o n - e x c h a n g e .

The

r a t e s o f d i s p r o p o r t i o n a t i o n and c o k i n g on t h e s e samples have been compared under d i f f e r e n t o p e r a t i n g c o n d i t i o n s : low and h i g h hydrogen o r n i t r o g e n p r e s s u r e s . Under n i t r o g e n , m o r d e n i t e d e a c t i v a t i o n i s v e r y f a s t . Dealumination i n c r e a s e s i t s a c t i v i t y f o r d i s p r o p o r t i o n a t i o n and c o k i n g a s w e l l a s t h e d e a c t i v a t i o n r a t e , w h i l e

w e t a i r t r e a t m e n t d e c r e a s e s i t s c o k i n g a c t i v i t y . T h i s d e c r e a s e may b e c o n n e c t e d w i t h t h e e l i m i n a t i o n o f B r d n s t e d a c i d s i t e s . The c a t a l y t i c s t a b i l i t y o f a l l samples i s c o n s i d e r a b l y improved by o p e r a t i n g under h i g h hydrogen p r e s s u r e , t h e b e s t c a t a l y s t being t h e w e t a i r t r e a t e d nickel-exchanged mordenite. T h i s s t a b i l i z i n g e f f e c t

of hydrogen i s t h e r e s u l t o f c o k i n g i n h i b i t i o n and o f a b e t t e r d i s t r i b u t i o n o f c o k e i n t h e b u l k o f t h e c a t a l y s t p e l l e t t h a n under n i t r o g e n .

I t i s suggested t h a t

c o k i n g i n h i b i t i o n comes from t h e p r e s e n c e o n m o r d e n i t e o f s i t e s c a p a b l e o f a c t i v a t i n g m o l e c u l a r hydrogen.

INTRODUCTION Numerous s t u d i e s a r e d e v o t e d t o t h e t r a n s f o r m a t i o n s o f h y d r o c a r b o n s o n morden i t e s , and i n p a r t i c u l a r t o t h e h y d r o c r a c k i n g and h y d r o i s o m e r i z a t i o n of p a r a f f i n s , t h e t r a n s a l k y l a t i o n and i s o m e r i z a t i o n o f aromatics [ 1 , 2 ] . s e n t v a r i o u s advantages o v e r t h e widely used Y-zeolites

Indeed, mordenites pre: they

a r e t h e r m a l l y more

s t a b l e ; t h e y a r e a l s o more a c i d i c , and c o n s e q u e n t l y more a c t i v e [11 ; f i n a l l y t h e i r p o r o u s s t r u c t u r e g i v e s them a s h a p e - s e l e c t i v i t y w i t h r e g a r d t o c e r t a i n reacU n i v e r s i t y , S e o u l , Corea ++Hanayang To whom c o r r e s p o n d e n c e s h o u l d b e a d d r e s s e s . +

-,

..

80 t i o n s [3-51.

On t h e o t h e r hand, t h i s p o r o u s s t r u c t u r e makes them v e r y s e n s i t i v e

t o c o k i n g and t h e i r d e a c t i v a t i o n i s g e n e r a l l y v e r y f a s t [ I ] . The aim of t h e p r e s e n t work i s t o d e t e r m i n e how d i f f e r e n t t r e a t m e n t s and o p e r a t i n g c o n d i t i o n s i n f l u e n c e t h e c a t a l y t i c s t a b i l i t y and t h e c o k i n g o f m o r d e n i t e d u r i n g t h e d i s p r o p o r t i o n a t i o n o f t o l u e n e . The f o l l o w i n g treatment.5 were e x p e r i m e n t e d : cnemical dealumination, nickel-exchange,

a c t i v a t i o n i n d r y o r wet a i r . The r a t e s

o f t h e d i s p r o p o r t i o n a t i o n and c o k i n g r e a c t i o n s on t h e c a t a l y s t s t h u s t r e a t e d were compared under d i f f e r i n g o p e r a t i n g c o n d i t i o n s : low and h i g h p r e s s u r e s of hydroqen and n i trogen.

EXPERIMENTAL The m o r d e n i t e s have been d e s c r i b e d p r e v i o u s l y [ 61. T h e i r p r o p e r t i e s a r e r e p r o duced i n t a b l e 1. These m o r d e n i t e s were used under t h e forms i n reference [6], i.e.

(I)o r

air

of w e t a i r

(1)and (2) d e f i n e d

a f t e r a t r e a t m e n t a t 500°C f o r 15 h o u r s i n a f l o w o f d r y

(2). The

c r y s t a l l i n i t y of t h e s e c a t a l y s t s r e m a i n s h i g h a f t e r

both treatments. The s i l i c a - a l u m i n a

(LA3P from K e t j e n ) w a s p r e t r e a t e d a t 500°C f o r 15 h o u r s i n

d r y a i r flow b e f o r e use. The r e a c t i o n was s t u d i e d i n t h e p r e v i o u s l y d e s c r i b e d dynamic r e a c t o r s [ 7 , 8 ] a t 450'12 w i t h a hydrogen

( o r n i t r o g e n ) t o t o l u e n e m o l a r r a t i o e q u a l t o 4 . The r e a c t o r

p r o d u c t s were a n a l y z e d by G.L.C.

The p e r c e n t c o n v e r s i o n i s g e n e r a l l y l e s s t h a n 15 % .

The coke c o n t e n t o f t h e c a t a l y s t s was d e t e r m i n e d by t h e " C e n t r e d e M i c r o a n a l y s e du CNRS, V i l l e u r b a n n e , F r a n c e " . TABLE 1

Chemical c o m p o s i t i o n a n d p r e p a r a t i o n o f t h e m o r d e n i t e s Mordenites

SiO / A 1 2 0 3

wt

wt

% N i

Preparation

M

10

0.36

0

NH4 i o n - exchange of N a 900 Zeolon ( N o r t o n )

MD

18

0.15

0

dealumination of M with H C l

MNi

10

0.36

1.45

N i ion

- exchange o f

M

MDNi

18

0.15

0.5

N i ion

- exchange o f

MD

2

% Na

RESULTS D i s p r o p o r t i o n a t i o n o f t o l u e n e under a t m o s p h e r i c p r e s s u r e Under hydrogen a l l t h e m o r d e n i t e s p r e s e n t a h i g h i n i t i a l a c t i v i t y ( a l 0 i n t a b l e 2 ) r a n g i n g from 50 t o 120,10-4 mole.h-l.g-'., t h a t o f t h e most a c t i v e f l u o r i n a t e d alumina

i.e.

from 5 t o 10 t i m e s h i g h e r t h a n

[91. The t r e a t m e n t of t h e m o r d e n i t e ,

h a s l i t t l e e f f e c t o n i t s i n i t i a l a c t i v i t y , e x c e p t f o r i t s chemscal d e a l u m i n a t i o n which m u l t i p l i e s t h e i n i t i a l a c t i v i t y by a f a c t o r o f 1 . 3 t o 2. The d e a c t i v a t i o n

81 of t i i f

m o r d e n i t e s i s v e r y f a s t ( f i g u r e 1) and a f t e r 7 hours o f r e a c t i o n , the a c t i -

v j . t y is l e s s t h a n 5

‘t2

of t h e i n i t i a l a c t i v i t y (table 2 ) .

121 I

100

3

I

75

i

I

i’. ar

ri

2 I

2

50

25

Fig. 1 . Disproportionation of toluene on mordenites a t 4 5 O o C ; pH2 = 0.8 b a r , p toluene = 0 . 2 b a r . A c t i v i t y (a,) a g a i n s t t i m e on stream ( t )

.

The expression (1)proposed by Voorhies

10 1 accounts f o r t h e e v o l u t i o n of t h e d i s -

p r o p o r t i o n a t i o n a c t i v i t y a of mordenites with t h e r e a c t i o n time t

:

The value f o r n and consequently t h e r a t e of d e a c t i v a t i o n , i n c r e a s e s with dealumin a t i o n , b u t decreases s l i g h t l y with nickel-exchange and s t r o n g l y with wet a i r treatment (table 2 ) . The amount of t o l u e n e d i s p r o p o r t i o n a t e d during each run w a s c a l c u l a t e d by i n t e g r a t i o n of t h e a c t i v i t y curves i n f i g u r e 1. This q u a n t i t y of d i s p r o p r t i o n a t e d t o l u e n e mD, i n c r e a s e s with dealumination and with wet a i r t r e a t ment. The amount of toluene transformed i n t o coke during each experiment, mk, v a r i e s by a f a c t o r of 6 according t o t h e treatment of t h e mordenite Aealumination and d e c r e a s e s with nickel-exchange. nickel-exchange and wet a i r treatment ( t a b l e 2).

:

i t i n c r e a s e s with

The r a t i o mk/mD decreases

W i t h

82 The t r a n s f o r m a t i o n o f t o l u e n e h a s been i n v e s t i g a t e d under n i t r o g e n on t h r e e d e a l u m i n a t e d m o r d e n i t e s MDII), _. MD(3) and MDNi(3), and on t h e m o r d e n i t e M(1). With t h e m o r d e n i t e s t r e a t e d under d r y a i r M(1) and MD(L), t h e r e s u l t s o b t a i n e d under n i t r o g e n a r e s i m i l a r t o t h o s e o b t a i n e d under hydrogen ( t a b l e 2 ) . On t h e o t h e r hand, t h e d e a c t i v a t i o n o f t h e m o r d e n i t e s t r e a t e d i n w e t a i r i s much f a s t e r under n i t r o i j e n t h a n under hydrogen, and t h e s e m o r d e n i t e s l o s t a l l t h e i r a c t i v i t y a f t e r t h r e e h o u r s o f work. However, t h e r a t i o o f t h e amount o f t o l u e n e t r a n s f o r m e d i n t o coke t o t h a t o f d i s p r o p o r t i o n a t e d t o l u e n e i s t h e same under n i t r o g e n a s under hydrogen f o r MD(2), w h i l e f o r M D N i ( i ) , t h i s r a t i o i s t h r e e t i m e s h i g h e r under n i t r o g e n t h a n under hydrogen ( t a b l e 2 ) . TABLE 2

T r a n s f o r m a t i o n o f t o l u e n e a t 45OoC, p t o l u e n e = 0.2 b a r ; pH o r pN2 = 0 . 8 b a r . 2 a F ( 10-4mole.h-1 . g - l . ) : f i n a l d i s p r o p o r t i o n a t i o n a c t i v i t y o f m o r d e n i t e ( t i m e between b r a c k e t s ) ; a10 ( 10-4mole.h-1 . g - l ) : d i s p r o p o r t i o n a t i o n a c t i v i t y o f m o r d e n i t e a f t e r 10 m i n u t e s ; n : d e a c t i v a t i o n c o e f f i c i e n t f o m V o o r h i e s [ l o ] ; m ( 9 . g - l . of morden i t e ) : d i s p r o p o r t i o n a t e d t o l u e n e ; mk (g.g-'. of m o r d e n i t e ) : t o f u e n e t r a n s f o r m e d i n t o coke d u r i n g t h e e x p e r i m e n t s .

n

a10

Catalyst

H M (1)

2

N2

aF'a 10

m

D

3 10 mk

3 10 mk/mD

63

1.5

O.Ol(120mn)

0.25

18

70

50

2.0

0.005(120mn)

0.20

20

100 25

MNi(L)

H2

79

1.1

0.015(400mn)

0.45

11

MNi(3)

H2

57

0.7

0.05(400mn)

0.7

7

10

H

82

2

0.00 (200mn)

0.55

45

80

MD

(1)

2

N2 MD

(3)

H2 N2

H MDNi

(2)

2

N,

130

3.3

O.OO(200mn)

0.75

45

65

117

1.1

0.05(400mn)

1.9

13

7

12

10

115

2.5

O.OO(200mn)

1.2

121

1.1

0.04(400mn)

1 .o

95

2.5

O.OO(200mn)

0.4

8.5 11

8.5 25

D i s p r o p o r t i o n a t i o n o f t o l u e n e under h i g h p r e s s u r e T h i s r e a c t i o n w a s performed under hydrogen and t o l u e n e p r e s s u r e s o f 12 b a r and 3 b a r r e s p e c t i v e l y . F i g u r e 2 shows how t h e d i s p r o p o r t i o n a t i o n a c t i v i t y o f m o r d e n i t e s e v o l v e s w i t h r e a c t i o n t i m e . T h i s a c t i v i t y i s i n i t i a l l y low, t h e n it i n c r e a s e s r a p i d l y d u r i n g t h e 2 o r 3 f i r s t h o u r s o f work and f i n a l l y d e c r e a s e s s l o w l y . The v a l u e f o r t h e a c t i v i t i e s o b t a i n e d by e x t r a p o l a t i n g t h e d e c r e a s i n g l i n e a r p a r t o f t h e c u r v e s

a t z e r o t i m e , ao , ( f i g u r e 2 ) v a r i e s from 15 t o 100 a c c o r d i n g t o t h e m o r d e n i t e t r e a t m e n t . The d e a l u m i n a t i o n c a u s e s a s t r o n g d e c r e a s e i n a o , a t l e a s t f o r t h e mord e n i t e s t r e a t e d under d r y a i r , w h i l e t h e n i c k e l - e x c h a n g e and t h e w e t a i r t r e a t m e n t have a n o p p o s i t e e f f e c t ( t a b l e 3 ) . A f t e r 9 h o u r s o f work, t h e a c t i v i t y o f t h e

83 Illordcnitfs remains general~lyhigher t h a n 70

h

of the a.

activity. The amounts of

dis~)roportioiiat~~d toluene, mu, are similar for all the mordenites treated under wet air and for MNi M(1)

(2.) ;

they arc2 markedly higher than the amounts obtained on

and M D ( I ) . The amounts of toluene transformed into coke are often less than

10 mg per gram of mordenite

; the

ratio of the amounts of toluene transformed int.0

coke to those of disproportionated toluene is generally close to 1/1000 (table 3 ) .

dl

Fig. 2. Disproportionation of toluene on mordenites and silica-alumina ( S A ) at 450°C ; pH2 - 12 h r , p toluene = 3 bar. Activity (aD) against time on stream (t).

84

TABLE 3 TransForiation of toluene a t 4SO"C, p toluene = 3 bar ; pH2 o r pN2 = 12 bar. a" ( 1 mole.h-l ~ ~ .g-l . I : disproportionation activity extrapolated d t time zero ; m o l e . k ~ - ' . g - ~. ) : disproportionation activity after 9 hours ; a9 ( rnD(g.g-l. of catalyst) : disproportionated toluene, mk (g.g-l. of catalyst) : toluene

transformed into coke during the experiments.

55

H

+

85

0

0.25

0.88

6.4

8

0

0.3

30

0.92

8.1

7

2 N-

90

M(a

H,

102

MNi(3

H,,

107

1

9

MD(U

H3

12

0.5

1.4

MD(L)

H2

73

0.9

6.7

MNi (A)

MDNi(1) H

H SA +

N

2

+

31

4 .-5 28

135 1.25 100

o .9 0.5 20

103

0.73

7.4

3.5

10

0.5

0.5

8.5

17

10

0.5

0.55

9.5

17

2

2

0.5

activity after 10 minutes.

.

T,c/ L

50

I 0

Iar

I

1

I 5

,,m,=

1 2 ba

pH2 = 1 2 bar

10

Fig. 3. Substitution of nitrogen for hydrogen during disproportionation of toluene at 400°C on wet air dealuminated mordenite MD(2).

85 O n c e r t a i n c a t a l y s t s n i t r o g e n was s u b s t i t u t e d f o r hydrogen. When t h i s was

c a r r i e d o u t d u r i n g t o l u e n e d i s p r o p o r t i o n a t i o n on MD(3) - and MDNi(?), t h e i r a c t i v i t y seemed t o i n c r e a s e , b u t t h e i r d e a c t i v a t i o n became v e r y f a s t

;

t h e r e t u r n t o hydro-

gen d i d n o t c a u s e any r e a c t i v a t i o n o f t h e c a t a l y s t ( f i g u r e 3 ) . T h i s v e r y r a p i d d e a c t i v a t i o n under n i t r o g e n p r e s s u r e w a s a l s o found w i t h t h e m o r d e n i t e s t r e a t e d under d r y a i r M(l-1

and M N i ( l ) , when f r e s h samples were u s s d . T h e i r i n i t i a l a c t i v i t y

was h i g h b u t t h e i r d e a c t i v a t i o n v e r y f a s t ( n

=

2.7

f o r t h e two c a t a l y s t s ) . A f t e r

9 h o u r s o f work u n d e r n i t r o g e n p r e s s u r e , t h e i r a c t i v i t y i s z e r o . The amount o f t o l u e n e t r a n s f o r m e d i n t o c o k e , mk, i s 3 t i m e s h i g h e r under n i t r o g e n t h a n under hydrogen and t h e r a t i o of mk t o t h e amount o f d i s p r o p o r t i o n a t e d t o l u e n e , mD, i s from 30 t o 80 t i m e s h i g h e r ( t a b l e 3 ) . These m o r d e n i t e s d e a c t i v a t e d under n i t r o g e n r e g a i n t h e i r a c t i v i t y by a n o v e r n i g h t t r e a t m e n t under hydrogen a t 450°C [ l l ] . P a r t o f coke w a s removed d u r i n g t h i s t r e a t m e n t : M ( 1 ) contained about 3 w t

%

coke

;

and M N i ( L ) u s e d under n i t r o g e n

a f t e r t h e o v e r n i g h t t r e a t m e n t and d i s p r o p o r t i o n a t i o n

o f t h e t o l u e n e f o r 8 h o u r s under hydrogen p r e s s u r e , t h e y c o n t a i n e d o n l y 1 . 2 w t

%

and 1.3 w t % c o k e . On t h e c o n t r a r y , t h e b e h a v i o u r o f s i l i c a - a l u m i n a i s s i m i l a r under n i t r o g e n and under hydrogen ( t a b l e 3 ) .

DISCUSSION Under a l l o p e r a t i n g c o n d i t i o n s and whatever i t s t r e a t m e n t , t h e m o r d e n i t e p r e s e n t s a n i n i t i a l d i s p r o p o r t i o n a t i o n a c t i v i t y h i g h e r t h a n t h a t o f f l u o r i n a t e d alumina [ 9 o r silica-alumina

1

( t a b l e 3 ) . Under n i t r o g e n o r l o w hydrogen p r e s s u r e , i t s d e a c t i v a -

t i o n i s much more r a p i d t h a n t h a t o f t h e s e two c a t a l y s t s , y e t i t becomes s l o w e r under h i g h hydrogen p r e s s u r e . Under h i g h hydrogen p r e s s u r e , t h i s s t a b i l i z a t i o n o f t h e c a t a l y t i c a c t i v i t y i s o b s e r v e d f o r a l l t h e m o r d e n i t e s , w h i l e under low hydrogen p r e s s u r e , i t o c c u r s o n l y f o r w e t a i r t r e a t e d samples ( t a b l e 2 ) . T h i s e f f e c t i s connected with a v e r y important d e c r e a s e i n t h e r a t i o of t h e coking t o d i s p r o p o r t i o n a t i o n r a t e s (m /m k

D

)

; f o r example when n i t r o g e n i s r e p l a c e d by hydro-

i s d i v i d e d by 35 on M(L) and by 80 on M N i ( L ) ( t a b l e 3 ) . gen under h i g h p r e s s u r e m /m k D The most s t a b l e and s e l e c t i v e m o r d e n i t e i s t h a t exchanged by n i c k e l and t h e n t r e a t e d

under wet a i r : M N i ( 3 ) . I t s a c t i v i t y i s 10 t i m e s h i g h e r t h a n t h a t o f s i l i c a -

i s 4 t i m e s lower t h a n on s i l i c a - a l u m i n a and t h i s makes t h i s c a t a alumina ; m /m k D l y s t v e r y s u i t a b l e f o r t h e d i s p r o p o r t i o n a t i o n o f t o l u e n e [ 1 2 1.

Influence of t h e mordenite treatments The e f f e c t of t h e d i f f e r e n t t r e a t m e n t s a p p l i e d t o t h e m o r d e n i t e on i t s p h y s i c o c h e m i c a l p r o p e r t i e s and e s p e c i a l l y on i t s a c i d i t y h a s been examined by C. M i r o d a t o s

e t al.

[61. The c a t a l y t i c m o d i f i c a t i o n s i n d u c e d by t h e s e t r e a t m e n t s w i l l be d i s -

c u s s e d i n c o n n e c t i o n w i t h t h e o b s e r v a t i o n s o f t h e s e a u t h o r s . For t h i s p u r p o s e ,

86 w e s h a l l u s e o n l y t h e r e s u l t s o b t a i n e d under n i t r o g e n , assuming t h a t c o n t r a r y t o

hydrogen,

i t p l o y s no r 6 1 e i n t h e r e a c t i o n .

Chemical d e a l u m i n a t i o n . Dealuminated m o r d e n i t e t r e a t e d under d r y a i r i s t w i c e a s a c t i v e f o r t o l u e n e d i s p r o p o r t i o n a t i o n and f o r coke f o r m a t i o n a s non-dealuminated m o r d e n i t e ; i t s d e a c t i v a t i o n i s a l i t t l e more r a p i d . T h i s c o u l d q u i t e p l a u s i b l y be e x p l a i n e d by t h e f o r m a t i o n o f new s t r o n g a c i d s i t e s f o l l o w i n g s l i g h t dealuminat i o n a s r e c e n t l y proposed by i n v e s t i g a t o r s o f t h e Norton Company [ 13 1. Unfortunat e l y , t h e a c i d i t y measurements c a r r i e d o u t o n o u r s a m p l e s by C. M i r o d a t o s e t

a l . 161 show t h a t t h e r e i s no i n c r e a s e i n t h e numiier o f a c i d s i t e s b u t on t h e c o n t r a r y a d e c r e a s e b o t h i n t h e i r number and s t r e n g t h . Dry and wet a i r t r e a t m e n t s . The comparison o f MD(1) - and MD(2) shows t h a t t h e wet a i r t r e a t e d mordenite e x h i b i t s an i n i t i a l d i s p r o p o r t i o n a t i o n a c t i v i t y s l i g h t l y lower t h a n t h a t o f d r y a i r t r e a t e d m o r d e n i t e .

Its coking a c t i v i t y i s c o n s i d e r a b l y

lower and i t s d e a c t i v a t i o n i s a l i t t l e l e s s r a p i d ( t a b l e 2 ) . The d e c r e a s e i n d i s p r o p o r t i o n a t i o n and c o k i n g a c t i v i t i e s may be c o n n e c t e d w i t h t h e e l i m i n a t i o n of t h e BrBnsted a c i d s i t e s r e s p o n s i b l e f o r t h e 3600 cm-'

I R band

[6 1. The d i s p r o p o r t i o n a -

t i o n o f t o l u e n e and t h e f o r m a t i o n o f coke would t h e r e f o r e b e c a t a l y z e d by B r d n s t e d a c i d s i t e s . The v e r y s t r o n g a c i d s i t e s c r e a t e d by wet a i r t r e a t m e n t [6] do n o t seem t o b e v e r y a c t i v e under n i t r o g e n . Nickel mordenites.

The d i s p r o p o r t i o n a t i o n a c t i v i t y o f MNi(1) - under n i t r o g e n

high p r e s s u r e i s s l i g h t l y higher than t h a t of M ( 1 ) .

The c o k i n g a c t i v i t y o f b o t h

c a t a l y s t s i s i d e n t i c a l , a s i s t h e i r d e a c t i v a t i o n r a t e . These o b s e r v a t i o n s c a n b e connected w i t h t h e s l i g h t i n c r e a s e i n t h e p r o t o n i c a c i d i t y of mordenites due t o t h e reduction of nickel ions [ 6

1.

R e l a t i o n s h i p between d e a c t i v a t i o n and c o k i n g Figure 4 r e p r e s e n t s t h e r e s i d u a l a c t i v i t y o f mordenites,

taken a s t h e r a t i o

o f t h e f i n a l a c t i v i t y t o t h e i n i t i a l o n e a g a i n s t t h e i r coke c o n t e n t . Under a l l o p e r a t i n g c o n d i t i o n s t h i s a c t i v i t y d e c r e a s e s w i t h t h e coke c o n t e n t . T h e r e f o r e , t h e d e a c t i v a t i o n o f t h e c a t a l y s t p r o b a b l y comes from c o k e p o i s o n i n g . A s i s gener a l l y a d m i t t e d f o r m o r d e n i t e s [14-161,

coke a c t s by b l o c k i n g t h e p o r e s and n o t

by s i m p l y c o v e r i n g t h e a c t i v e s i t e s [ 1 7 ] . q u a n t i t y o f coke However,

(2

Indeed, t h e d e p o s i t of a v e r y s m a l l

1 w t % f i g u r e 4 ) e l i m i n a t e s more t h a n 95 % o f t h e a c t i v i t y .

t h e a g e i n g e f f e c t o f coke s t r o n g l y depends on t h e o p e r a t i n g c o n d i t i o n s

under h i g h hydrogen p r e s s u r e t h e a g e i n g e f f e c t i s v e r y small ( c u r v e A ,

figure 4 ) ,

w h i l e it i s v e r y i m p o r t a n t under n i t r o g e n and s t i l l i m p o r t a n t under low hydrogen p r e s s u r e (curve B,

figure 4 ) .

:

87

I

0

Iw? 1'

% I 2

wt

%

3 coke

-4

5

Fig. 4. Disproportionation of toluene : Residual a c t i v i t y of mordenites a g a i n s t coke c o n t e n t i n c a t a l y s t . Molar r a t i o o f c a r r i e r g a s t o t o l u e n e = 4 ; T = 450'C.

The g r e a t e r c o k e t o x i c i t y under l o w hydrogen p r e s s u r e i s p r o b a b l y d u e t o d i f f u s i o n a l i n t r a g r a n u l a r l i m i t a t i o n s . Indeed, comparing t h e v a l u e o f t h e T h i e l e modulus 0 t o 1 [181,

t h e r e a c t i o n under h i g h hydrogen p r e s s u r e i s n o t found t o be d i f f u s i o n

l i m i t e d ( e f f e c t i v e n e s s f a c t o r q e q u a l t o 1 ) whereas i t i s under l o w hydrogen p r e s s u r e . On t h e o t h e r hand a naked eye e x a m i n a t i o n o f a p e l l e t shows t h a t , a s i n cumene

1,

d e a l k y l a t i o n [19,20

t h e coke formed d u r i n g t o l u e n e d i s p r o p o r t i o n a t i o n forms a

s h e l l around t h e m o r d e n i t e p e l l e t w i t h o u t r e a c h i n g t h e c e n t e r . I t i s w e l l known t h a t t h i s c o k e s h e l l d e p o s i t h a s a g r e a t e r p o i s o n i n g e f f e c t on t h e r e a c t i o n [ 211 when i t i s l i m i t e d by i n t r a g r a n u l a r d i f f u s i o n a s i s t h e c a s e under low hydrogen p r e s s u r e . However,

t h i s e x p l a n a t i o n d o e s n o t a c c o u n t f o r t h e g r e a t s e n s i t i v i t y of

m o r d e n i t e s t o t h e c o k e d e p o s i t e d under n i t r o g e n a s compared t o what i s o b s e r v e d under hydrogen. I n d e e d , on t h e f r e s h c a t a l y s t s , t h e e f f e c t i v e n e s s f a c t o r r? h a s s i m i l a r v a l u e s under b o t h hydrogen and n i t r o g e n . To a c c o u n t f o r t h e d i f f e r e n c e i n a g e i n g e f f e c t s o n e must assume e i t h e r t h a t t h e coke i s d i s t r i b u t e d d i f f e r e n t l y i n t h e p e l l e t o r t h a t i t s n a t u r e i s n o t t h e same under hydrogen as under n i t r o g e n . A s a matter o f f a c t ,

t h e h i g h e r r a t e o f c o k i n g under n i t r o g e n (mk i n t a b l e s 2 and 3 )

c a n l e a d t o a v e r y i m p o r t a n t coke d e p o s i t o n t h e p e l l e t ' s o u t e r s u r f a c e and conseq u e n t l y t o a v e r y r a p i d d e a c t i v a t i o n of t h e m o r d e n i t e . But. t h e mass s p e c t r u m o f t h e p r o d u c t s d e s o r b e d a t 4 0 O o C o u t o f t h e coked m o r d e n i t e shows t h a t t h e n a t u r e o f t h e coke depends o n o p e r a t i n g c o n d i t i o n s

:

t h e coke d e p o s i t e d under n i t r o g e n

c o n t a i n s compounds which have a h i g h e r m o l e c u l a r w e i g h t t h a n t h o s e o f coke d e p o s i t e d under hydrogen pressure [ 2 2

1.

88

I n f l u e n c e o f hydrogen on d i s p r o p o r t i o n a t i o n and c o k i n g r a t e s Under h i g h hydrogen p r e s s u r e , t h e d i s p r o p o r t i o n a t i o n a c t i v i t y o f m o r d e n i t e s ( a o t a b l e 3 ) i s of t h e same o r d e r of magnitude a s t h e i n i t i a l a c t i v i t y found under

low hydrogen p r e s s u r e ( a by 1 5 . Now a.

10

t a b l e 2 1 , even though t h e t o l u e n e p r e s s u r e i s m u l t i p l i e d

i s c l e a r l y higher than t h e a c t i v i t y obtained a t t h e very begining

o f t h e e x p e r i m e n t s ( f i g u r e 2 ) . These o b s e r v a t i o n s a r e c o n s i s t e n t w i t h t h e i n h i b i t i n g e f f e c t o f hydrogen on t o l u e n e d i s p r o p o r t i o n a t i o n , a s r e v e a l e d by a k i n e t i c s t u d y of the reaction[231.

Hydrogen a l s o i n h i b i t s c o k i n g t o a l a r g e e x t e n t , a s i s shown

by t h e amount o f t o l u e n e t r a n s f o r m e d i n t o c o k e , m k ,

and more p a r t i c u l a r l y by t h e

( t a b l e s 2 a n d 3 ) . To a c c o u n t f o r a n i n h i b i t i n g e f f e c t o f hydrogen d e c r e a s e o f m /m k D on c e r t a i n p a r a f f i n t r a n s f o r m a t i o n s o v e r a c i d c a t a l y s t s [24-261, t h e r e a c t i o n (2) whose e x i s t e n c e i s c l e a r l y shown i n a s u p e r a c i d medium [ 2 7 - 2 8 1 , R+

+ n, --+RH + n+

h a s been s u g g e s t e d

:

(2)

T h i s p r o p o s i t i o n o f f e r s a good e x p l a n a t i o n f o r o u r r e s u l t s s i n c e t h e i n t e r m e d i a t e s f o r c o k i n g and d i s p r o p o r t i o n a t i o n r e a c t i o n s c a n b e carbonium i o n s s u c h a s b e n z i l i c carbonium i o n s [29]. R e a c t i o n ( 2 ) r e d u c e s t h e c o n c e n t r a t i o n o f carbonium s p e c i e s and c o n s e q u e n t l y i n h i b i t s t h e c o k i n g and d i s p r o p o r t i o n a t i o n r e a c t i o n s which o c c u r t h r o u g h t h e s e i n t e r m e d i a t e s . Under t h i s h y p o t h e s i s t h e f o r m a t i o n o f coke which r e q u i r e s t h e p a r t i c i p a t i o n o f s e v e r a l m o l e c u l e s and t h e r e f o r e s e v e r a l r e a c t i o n s i n v o l v i n g carbonium i o n s , s h o u l d b e more i n h i b i t e d t h a n t h e b i m o l e c u l a r r e a c t i o n o f d i s p r o p o r t i o n a t i o n , which i s a c t u a l l y what o u r e x p e r i m e n t s show. R e a c t i o n ( 2 ) a l s o e x p l a i n s t h e coke d e s o r p t i o n by a l o n g t r e a t m e n t under hydrogen p r e s s u r e i f o n e s u p p o s e s t h a t t h e coke i s formed by b u l k y carbonium i o n s d i f f i c u l t t o d e s o r b The i n h i b i t i o n by hydrogen of t h e r e a c t i o n s o f d i s p r o p o r t i o n a t i o n and c o k i n g o c c u r s o n l y on m o r d e n i t e s ; no e f f e c t i s found on s i l i c a - a l u m i n a

( t a b l e 3 ) . This

o b s e r v a t i o n i m p l i e s t h a t , u n l i k e s i l i c a - a l u m i n a , mordenites are capable of a c t i v a t i n g hydrogen i n s u c h a way as t o e n a b l e i t t o remove t h e a d s o r b e d carbonium i o n s p e c i e s . I t i s w e l l known t h a t m o l e c u l a r hydrogen c a n b e a c t i v a t e d i n a s u p e r a c i d medium,

by s t r o n g a c i d s i t e s [ 3 0 ] . One c a n suppose t h a t m o r d e n i t e , which e x h i b i t s v e r y s t r o n g a c i d s i t e s [l],

c a n a l s o a c t i v a t e m o l e c u l a r hydrogen. However, it i s a l s o

w e l l known t h a t t h e m o l e c u l a r hydrogen a c t i v a t e d by h y d r o g e n a t i n g s i t e s c a n remove coke on a c i d s i t e s [ 3 1 ] . Hydrogenating c e n t e r s p r o b a b l y e x i s t on nickel-exchanged m o r d e n i t e , s i n c e a g r e a t p a r t o f n i c k e l i o n s are r e d u c e d d u r i n g p r e t r e a t m e n t s [6]. Moreover, s t r o n g a c i d s i t e s c r e a t e d by t r e a t m e n t o f m o r d e n i t e s under w e t a i r a r e probably a s s o c i a t e d with hydrogenating s i t e s , s i n c e t h e s e mordenites are a b l e t o decompose ammonia [ 6 ] .

Thus, t h e a c t i v a t i o n o f m o l e c u l a r hydrogen by n i c k e l f r e e

mordenites could be due t o t h e presence of i m p u r i t i e s such a s i r o n , a s r e p o r t e d i n t h e case o f X and Y z e o l i t e s [ 3 2 , 331. ACKNOWLEDGEMENT

:

The a u t h o r s t h a n k D.G.R.S.T.

f o r s u p p o r t i n g t h i s work.

89 REFERENCES P o u t x m , i n J.A. Rabo ( E d . ) , Z e o l i t e Chemi.stry and C a t a l y s i s , ACS Monograph, L71, Wa.;l,ingtori, 1 9 7 6 , cl:. E , 13.437. 2 . Braun, k’. F e t t i n g and H . S c h o e n e b e r g e r , 111 J . K . K a t z e r ( E d . ) , M o l e c u l a r

1 4.L.

2

;ieves-11, ACS Symposium S e r i e s 4 0 , Washington, 1977, pp. 504-514. B u r b i d g e , I.M. Keen and M . K . E y l e s , i n R.F. Gould ( E d . ) , M o l e c u l a r S i e v e 5 e o l i t e s - 1 1 , A d v . Chem. S e r . , 102, Washington, 1971, pp.400-409. 4 ;.M. C s i c s e r y , i n J . A . Rabo ( E d . ) , Z e o l i t e C h e m i s t r y and C a t a l y s i s , ACS Monograph, - 7 1 , Washingtoc, 1976, c h . 12, p.680. N a m b a , 0. I w a s e , N. T a k a h a s h i , T. Yashima and N . Hara, J. C a t a l . , 56 ( 1 9 7 9 ) 5 145-452. M i r o d a t o s , B . H . Ha, K . o t s u k a and D. Barthomeuf, F i f t h I n t e r n a t i o n a l C o n f e r e n c e 6 )n Z e o l i t e , N a p l e s , 1980, i n p r e s s . 7 i. Maurel and J.E. Germain, B u l l . Soc. C h i m . , ( 1 9 6 0 ) 930-934. 8 J . S . Gnep and M. G u i s n e t , B u l l . SOC. C h i m . , ( 1 9 7 7 ) 429-434. 9 I . M a r s i c o b e t r e , N.S. Gnep, M. G u i s n e t and R. Maurel, Rev. P o r t . Quim., 18 ( 1 9 7 6 ) 313-3 16. 10 A. V o o r h i e s , I n d . Eng. Chem., 37 ( 1 9 4 5 ) 318-322. 11 N.S. Gnep, M.L. M a r t i n d e Armando and M. G u i s n e t , R e a c t i o n K i n e t i c s and C a t a l y s i s Letters, i n press. 12 C . M a r c i l l y , F r e n c h P a t e n t s 75/33.601, 77/01.265. G o y e t t e and T.M. Notermann, J. C a t a l . , 52 ( 1 9 7 8 ) 25-31. 13 J . R . Kiovsky, W.J. 14 H . S . Bierenbaum, R.D. P a r t r i d g e and A . H . Weiss, i n W.M. Meier and J . B . U y t t e r hoeven ( E d s . ) , M o l e c u l a r S i e v e s , Adv. Chem. S e r . , 121, Washington, 1978, pp.605617. 1 5 S.M. C s i c s e r y , J . C a t a l . , 23 ( 1 9 7 1 ) 124-130. K a t z e r and W.R. V i e t h , I n d . Eng. Chem. Fundamentals, 16 C.N. S a t t e r f i e l d , J . R . 10 (1971) 478-486. Beeckman and G.F. Froment, I n d . Eng. Chem. Fundamentals, 18 (1979) 245-256. 17 J . N . 18 J . M . Smith, i n Chemical E n g i n e e r i n g K i n e t i c s , Chem. Eng. S e r . , New York, 1970, p.435. 19 J . B . B u t t , S . D e l g a d o - D i a z a n d W.E. Muno, J. C a t a l . , 3 7 ( 1 9 7 5 ) 158-165. 20 J . B . B u t t , J. C a t a l . , 41 ( 1 9 7 6 ) - 190-191. 2 1 J . B . B u t t , i n R.F. Gould ( E d . ) , Chemical R e a c t i o n E n g i n e e r i n g , Adv. Chem. S e r . , 109, Washington, 1972, pp.259-495. 2 2 N.S. Gnep, F. C h e v a l i e r and M. G u i s n e t , E x p e r i m e n t s u n d e r p r o g r e s s . 23 N.S. Gnep, M. G u i s n e t , i n p r e p a r a t i o n . 24 K h . Minachev, V. G a r a n i n , T. I s a k o v a , V . Kharlamov and V. Bogomolov, i n R.F. Gould ( E d . ) , M o l e c u l a r S i e v e Z e o l i t e s - 1 1 , Adv. Chern. S e r . , 102, Washington, 1971, pp.441-450. Kouwenhoven, i n W.M. Meier and J . B . U y t t e r h o e v e n ( a s . ) Adv. Chem. S e r . , 25 H.W. 121, Washington, 1973, pp.529-539. 26 F.E. Condon, i n P.H. E m m e t t ( E d . ) , C a t a l y s i s , Vol. V I , R e i n h o l d P u b l i s h i n g C o r p o r a t i o n , N e w York, 1958, c h . 2 , p . 4 3 . 27 H. Hogeveen a n d C.J. Gasbeek, R e c . T r a v . Chim. Pays-Bas, 88 ( 1 9 6 9 ) 719-724. 28 H. Hogeveen, R e C . T r a v . Chim. Pays-Bas, 89 (1970) 74-76. 29 A. S t r e i t w i e s e r a n d L. R e i f , J . Amer. Chem. Scc., 8 2 (1960) 5003-5005. 30 G.A. Olah, J. Shen and R.H. S c h t o s b e r g , J . Amer. Chem. SOC., 92 ( 1 9 6 4 ) 3831-3832. 31 P . J . L u c c h e s i , J . L . C a r t e r and J . H . S i n f e l t , J. h e r . Chem. SOC., 86 (1964) 1494-1497. 32 C.F. Heylen, P.A. J a c o b s and J . B . U y t t e r h o e v e n , J . C a t a l . , 43 ( 1 9 7 6 ) 99-110. 33 P.A. J a c o b s a n d J . B . U y t t e r h o e v e n , J . C a t a l . , 50 (1977) 109-114.

3

I3 . W .

:.

:.