Transformation of Field Variables between Cartesian, Cylindrical, and Spherical Components
This appendix contains some three-dimensional transformation relations between displacement and stress components in Cartesian, cylindrical, and spherical coordinates. The coordinate systems are shown in Figure A.1 in Appendix A, and the related stress components are illustrated in Figure B.1. These results follow from the general transformation laws (1.5.1) and (3.3.3). Note that the stress results can also be applied for strain transformation.
z
z
τ Rθ
σz
σR τR φ
τθ z
τ rz
σθ τ rθ
φ
σr
σθ
τ φθ y
r x
θ
σφ
y
θ
dθ dr
R
x
(Cylindrical System)
(Spherical System)
FIGURE B.1 Stress Components in Cylindrical and Spherical Coordinates.
537
538
APPENDIX B Transformation of Field Variables
Cylindrical components from Cartesian The transformation matrix for this case is given by 2
cosq
sinq
6 ½Q ¼ 6 4 sinq 0
0
3
cosq
7 07 5
0
1
(B.1)
Displacement transformation ur ¼ u cosq þ v sinq uq ¼ u sinq þ v cosq
(B.2)
uz ¼ w
Stress transformation sr ¼ sx cos2 q þ sy sin2 q þ 2sxy sinq cosq sq ¼ sx sin2 q þ sy cos2 q 2sxy sinq cosq sz ¼ sz
Spherical components from cylindrical The transformation matrix from cylindrical to spherical coordinates is given by 2
sinf
6 ½Q ¼ 6 4 cosf 0
0 cosf
3
7 0 sinf 7 5 1 0
(B.4)
APPENDIX B Transformation of Field Variables
539
Displacement transformation uR ¼ ur sinf þ uz cosf uf ¼ ur cosf uz sinf
(B.5)
uq ¼ uq
Stress transformation sR ¼ sr sin2 f þ sz cos2 f þ 2srz sinf cosf sf ¼ sr cos2 f þ sz sin2 f 2srz sinf cosf sq ¼ sq
sRf ¼ ðsr sz Þsinf cosf srz sin2 f cos2 f
(B.6)
sfq ¼ srq cosf sqz sinf sqR ¼ srq sinf þ sqz cosf
Spherical components from Cartesian The transformation matrix from Cartesian to spherical coordinates can be obtained by combining the previous transformations given by (B.1) and (B.4). Tracing back through tensor transformation theory, this is accomplished by the simple matrix multiplication 2
sinf
6 ½Q ¼ 4 cosf 0 2
0
cosf
3 2
cosq
7 6 0 sinf 5 4 sinq 1
sinf cosq ¼ 4 cosf cosq sinq
0 sinf sinq cosf sinq cosq
0
sinq cosq 0 3
0
3
7 05 1
(B.7)
cosf sinf 5 0
Displacement transformation uR ¼ u sinf cosq þ v sinf sinq þ w cosf uf ¼ u cosf cosq þ v cosf sinq w sinf uq ¼ u sinq þ v cosq
(B.8)
540
APPENDIX B Transformation of Field Variables
Stress transformation sR ¼ sx sin2 f cos2 q þ sy sin2 f sin2 q þ sz cos2 f þ2sxy sin2 f sinq cosq þ 2syz sinf cosf sinq þ 2szx sinf cosf cosq sf ¼ sx cos2 f cos2 q þ sy cos2 f sin2 q þ sz sin2 f þ 2sxy cos2 f sinq cosq 2syz sinf cosf sinq 2szx sinf cosf cosq sq ¼ sx sin2 q þ sy cos2 q 2sxy sinq cosq sRf ¼ sx sinf cosf cos2 q þ sy sinf cosf sin2 q sz sinf cosf þ 2sxy sinf cosf sinq cosq syz sin2 f cos2 f sinq szx sin2 f cos2 f cosq sfq ¼ sx cosf sinq cosq þ sy cosf sinq cosq þ sxy cosf cos2 q sin2 q
(B.9)
syz sinf cosq þ szx sinf sinq
sqR ¼ sx sinf sinq cosq þ sy sinf sinq cosq þ sxy sinf cos2 q sin2 q þ syz cosf cosq szx cosf sinq Inverse transformations of these results can be computed by formally inverting the system equations or redeveloping the results using tensor transformation theory.