~Solid ~Prlnted
State C o ~ u n i c a t i o n s , in Great Brltaln.
Vol.64,No.6
TRANSIENT
pp.851-854
PHDTOCONDUCTIVITY
BOUNDARY
1987.
ANALYSIS
OF P O L Y C R Y S T A L L I N E
0038-1098/87 $3.00 + .00 ©|987 Pergamon Journals Ltd.
NEAR
A GRAIN
SEMICONDUCTORS
C. A. Dimitriadis D e p a r t m e n t of Physics, Solid STate Physics Section, U n i v e r s i t y of T h e s s a l o n l k i , T h e s s a l o n l k l 540 06, Greece (Received: January , 1987, by C . W . M c C o m b i e ) The effect of grain b o u n d a r y r e c o m b i n a t i o n on the p h o t o c o n d u c T a n c e transient r e s p o n s e , after e x c i t a t i o n with a delta function light pulse near a grain b o u n d a r y , is studied here. An a n a l y t i c a l e x p r e s s i o n is derived for This decay which can be r e a d i l y computed n u m e r i c a l l y . The photocond u c t a n c e Turns out to be a n o n - e x p o n e n t i a l function of Time even at large decay Times. A p r a c t i c a l method, based on such n o n - e x p o n e n t i a l decay curves o b t a i n e d wlth the light beam p o s i t i o n e d away or near a grain b o u n d a r y , is d e v e l o p e d %o deduce accurate value of the bulk lifetime and the grain b o u n d a r y r e c o m b i n a t i o n velocity.
Various e x p e r i m e n t a l Techniques have been used to obtain i n f o r m a t i o n about the r e c o m b i n a t i o n process at grain b o u n d a r i e s of p o l y c r y s t a l l i n e s e m i c o n d u c t o r s . (a) I-V, C-V and deep level t r a n s i e n t s p e c t r o s c o p y (DLTS) t e c h n i q u e s which require large c o n t a c t areas, thus g i v i n g only a v e r a g e d r e s u l t s l-s. (b) E l e c t r o n - b e a m - i n d u c e d current (EBIC) or l i g h t - b e a m - l n d u c e d - c u r r e n t (LBIC) t e c h n i q u e s which require the f a b r i c a t i o n of a p-n j u n c t i o n or s e m i t r a n s p a r e n t S c h o t t k y barrier for the c o l l e c t i o n of m i n o r i t y c a r r i e r s 6-10. These m e t h o d s have the advantage that the e x c i t a t i o n by e l e c t r o n or light beam allow local p r o b i n g of small area of the grain b o u n d a ries. H o w e v e r , the high precessing T e m p e r a t u r e may change The grain b o u n d a r y c h a r a c t e r i s t i c s , which is u n d e s i r a b l e II. (c) P h o t o c o n d u c T i v i t y m e a s u r e m e n t s which, also, allows local probing of small area of the grain boundaries, but require v e r y simple n o n - d e s t r u c t i v e sample prep a r a t i o n I~,13.
\
X$
IBEAM T t
~X
h
""GRAIN BOUNDARY
Z
R e c e n t l y a s t e a d y - s t a t e p h o t o c o n d u c t i v i t y experimental t e c h n i q u e , using a focused laser beam to g e n e r a t e e x c e s s carriers in a b i a s e d sample, was used to obtain information c o n c e r n i n g the m a g n i t u d e of the r e c o m b i n a t i o n v e l o c i t y at the grain b o u n d a r y i n t e r f a c e s I~. In this m e t h o d the fitting of the e x p e r i m e n t a l data with the theory r e q u i r e s a k n o w l e d g e of the hulk m i n o r i t y carrier l i f e t i m e (T) and %he d i f f u s i o n coefficient (D). Here, we present a t r a n s i e n t - s t a t e p h o t o c o n d u c t i v i t y method which enables us to determine quite e a s i l y both hulk lifetime and grain b o u n d a r y r e c o m b i n a t i o n velocity if the optical a b s o r p t i o n c o e f f i c i e n t and the d i f f u s i o n c o e f f i c i e n t of m i n o r i t y carriers are known.
Fig.
i: Geometry
tance, The geometry rier mobility.
of the problem.
of the sample and the car-
In the analysis the following assumptions are made: (i) The sample is of semi-infinite T h i c k n e s s , i.e. b o u n d e d only by the top surface at z =0. (2) The grain b o u n d a r y can be c o n s i d e r e d as a surface with r e c o m b i n a t i o n velocity s. (3) The d u r a t i o n of ~he pulsed light is much smaller than the lifetime (T). (4) The injection level is low. (5) The excess m i n o r i t y carrier p o p u l a t i o n decay is not i n f l u e n c e d by the effect of surface r e c o m b i n a t i o n . This can be a c c o m b ~ s h e d either by p o l i s h i n g The surface so thai the surface r e c o m b i n a t i o n velocity To be zero or by using e x c i t i n g light of small absorption c o e f f i c i e n t so That the g e n e r a t i o n To take place deep in the sample. (6) The e l e c t r o n - h o l e pair generation rate can be w r i t t e n
The g e o m e t r y of the method is shown in Fig. 1. The n - t y p e sample is illuminated by a finely focused m o n o c h r o m a t i c pulsed light beam, incident n o r m a l l y to The surface, near a grain boundary. Excess c a r r i e r are created at (Xs,Ys,Zs). by the f o c u s e d b e a m which s u b s e q u e n t l y d i f f u s e and drift away. If an e l e c t r i c field along the xaxis is e s t a b l i s h e d by a constant bias current, Then a p h o t o c o n d u c t i v e signal (AV) r e s u l t s the m a g n i t u d e of which is p r o p o r t i o n a l to the total m i n o r i t y - c a r r i e r c o n t e n t I~, i.e. AV = Bfffdp(x,y,z)dxdydz
--
SURFACE
(i)
g(z,T)
where the c o n s t a n t B d e p e n d s on the e l e c t r i c field a l o n g the x-axis, %he sample bulk resis-
= N(l-R)me-~Z6(t)
(2)
where T is the Time, N is the number of photons carried by a simple pulse just out-
851
TRANSIENT PHOTOCONDUCTIVITY
852
side the s a m p l e s u r f a c e , R is the s u r f a c e r e f l e c t i v i t y and 6(t) is the Dirac d e l t a function. In o r d e r to c a l c u l a t e the total p o p u l a t i o n of the m i n o r i t y c a r r i e r s A P t o t ( t ) i n d u c e d in the sample by a pulse, we will first c a l c u l a t e t h e i r d e n s i t y A p ( x , y , z , t ) due to a p o i n t s o u r c e Z at d e p t h h (Fig. i) and then i n t e g r a t e over all the p o i n t s a l o n g the beam and over the entire s a m p l e volume. The d e n s i t y of the m i n o r i t y excess c a r r i e r s due to an i n s t a n t a n e o u s p o i n t source of u n i t y s t r e n g t h has been c a l c u l a t e d by Van R o o s b r o e c k Is. U n d e r the c o n d i t i o n s stated above~ by comb i n i n g Eqn. (22) of Ref. 15 with Eqn. (2) for the g e n e r a t i o n rate, we obtain the f o l l o w i n g exp r e s s i o n for Ap: (Z-H)2+y 2 N(I-R)A(41U)-3/2 Ap = L3
e -AH
e
~U
=2J6(
I -H/2/'U
= 2/~-U
,
and
Vol. 64, No. 6
ANALYSIS
using
e_b 2
e I H/2/'U
db +
_b 2 db):
(7) the p r o p e r t i e s
for
the
i n t e g r a t i o n 16
b2-ac I e - ( a t 2 + 2 b t + C ) d t = ~--[ e2 a o
f e-aXerf(bx)dx o we o b t a i n
6Ptot(t)
the
=
= ~
final ~(I-R)
a
ea2/4b 2
e r f C ( ~ ab)
erfc(
) ,
(B)
(9)
result e-U[l+eA2Uerfc(A¢~)]×
x X ~X +S2U X x [err(2_~U) + e s erf c (2 + u + S ¢r~)] ( i0 )
x[e
(X-Xs)2 ~U +e
(X+Xs)2 S(X+Xs)+S2U ~U -2/~'USe ×
Also,substituting
X+X x e r f c ( 2~
+ SvrU)]
,
A : eL,
U : t/T,
Z = z/L,
H : h/L
X : x/L, and
APtot(0)
(3)
w h e r e e r f c ( x ) is the c o m p l e m e n t a r y error function and A, U, X, Y, Z, H and S are the d i m e n s i o n l e s s q u a n t i t i e s n o r m a l i z e d with the bulk c a r r i e r l i f e t i m e • and d i f f u s i o n l e n g t h L = (DT)I/2:
S : s/(L/~)
(Z_H)2 x~
e
4U
(i0)
2N(I-R) = L----~
(II)
A P t o t (t) AV : A P t o t ( 0 )
re-
:
Y : y/L
2N(I-R)A(4~U)-3/2e-AHe L3
:
in Eqn.
The p h o t o c o n d u c t i v e signal normalized with spect to its v a l u e at t=0 is given by
.
(4)
e
The total c o n t e n t of e x c e s s m i n o r i t y c a r r i e r s can now be o b t a i n e d b y i n t e g r a t i n g Eqn. (3) w i t h r e s p e c t to H f r o m zero to i n f i n i t y and then over the e n t i r e s a m p l e v o l u m e , i.e.
APtot(t)
t=U:0
-U ×
x
When from
-U
2 [ l+eA
Uerfe(A/U) ]x
X SXs+S2U X s [erfc(2---~)+e erfc(2-~U
+ S~)].(12)
the p u l s e d light beam is p o s i t i o n e d away the g r a i n b o u n d a r y , Eqn. (12) b e c o m e s
y2 dZ
f
o
e
~U
dY
AV = ~e -U [ l + e A 2 U e r f c ( A/6)]
x
.
(13)
o
(X-Xs)2 4U
×U (e
+e
In o r d e r to c a l c u l a t e the bulk l i f e t i m e T f r o m the d e c a y of the p h t o c o n d u c t i v e signal, the par a m e t e r s t and • are s e p a r a t e d by p u t t i n g %:a2Dt. Then A 2 : ~ 2 % T , U : % / A 2 and s u b s t i t u t i n g for U in Eqn. (13) we o b t a i n
(X+Xs)2 4U )dX -
o
-2/~-U" Se
SX +S2U s x
X+X x I e SX e r f c ( ~ o
AV - e - t / A 2 ----~[l+e%erfc(/%)]
+ S~)dX]
(5)
Since
®_y_2 f e O
~U dY
(X-Xs)2 oo f (e o
4U
~6)
: 2/~-U
(X+Xs)2 + e
4U
) dX:
.
(14)
Thus, when a and D are known, AV can be m e a s u r e d at a g i v e n v a l u e of % and E~n. (14) can be s o l v e d for A to y i e l d T as T=A / s 2 D . F i g u r e 2 s h o w s the p a r a m e t e r A as a f u n c t i o n of % for v a r i o u s v a l u e s of AV as o b t a i n e d from E q n . ( 1 4 ) . C l e a r l y , the s l o p e of the c u r v e s i n c r e a s e s w~th i n c r e a s i n g % and b e c o m e s i n f i n i t e at a c e r t a i n v a l u e of %. T h i s v a l u e of % b e c o m e s s m a l l e r for l a r g e r v a l u e s of the p h o t o c o n d u c t i v e s i g n a l AV and~ t h e r e f o r e , the a c c u r a c y b e c o m e s p r o g r e s s i v e l y h i g h e r for s m a l l e r v a l u e s of AV. W h e n the p u l s e d light b e a m is p o s i t i o n e d n e a r the g r a i n b o u n d a r y , then for S=0 Eqn. (12) red u c e s to Eqn. (13). For S~O, the p h o t o c o n d u c -
TRANSIENT PHOTOCONDUCTIVITY ANALYSIS
Vol. 64, No. 6
853
.soZ
JV 0.95
0.9
0.8
0.7
0.6
0.5
0.4
IO
J~
10-I
10-1
.
10-2 ~o-Z
~-3
-jO-Z
i
10-
1
i
i
10
10Z ~=a2Dt
Fig.
2: N o r m a l i z e d a b s o r p t i o n c o e f f i c i e n t A v e r s u s the n o r m a l i z e d time % for var i o u s values of the p h o t o c o n d u c t a n c e d e c a y ratio AV from eqn. (14).
10-3
10-4
I 1
I 2
I 3
I 4
I 5
I 6
U tire signal d e c a y for large v a l u e s of U a p p r o a c h e s a s y m p t o t i c a l l y to
-U e Av ~ U ~
'
Fig.
(15)
i.e. even at large d e c a y t i m e s the p h o t o c o n d u c tance decay is still not e x p o n e n t i a l . F r o m Eqn. (15) it f o l l o w s that the plot of ( A V F ~ ) v s U a p p r o a c h e s an e x p o n e n t i a l for large d e c a y times. An e x a m p l e of a £ n ( A V v ~ ) v s U plot, as o b t a i n e d from Eqn. (12), for X_:0.5 A = 0 . 1 and two values of S is shown in ~ig. ~. A m a x i m u m of the p h o t o e o n d u c t a n t e decay c u r v e a p p e a r s at a pos i t i o n U m w h i c h d e p e n d s on the value of S . F o r S=0 the m a x i m u m lies at U m = 0 . 5 and for lar.ge v a l u e s of S the m a x i m u m is at Um:0. F i g u r e 4 shows a plot of the p o s i t i o n of the m a x i m u m U m as a f u n c t i o n of S for two v a l u e s of A. F r o m Fig. 4 and the e x p e r i m e n t a l value of U m it is p o s s i b l e to e s t i m a t e the grain b o u n d a r y r e c o m b i n a t i o n v e l o c i t y if the a b s o r p t i o n c o e f f i c i e n t of the e x c i t i n g light and the diffusion c o e f f i cient of m i n o r i t y c a r r i e r s are known. In c o n c l u s i o n , a n a l y t i c a l e x p r e s s i o n for the p h o t o c o n d u c t a n c e d e c a y is o b t a i n e d when the m o n o c h r o m a t i c p u l s e d light b e a m is p o s i t i o n e d at d i f f e r e n t d i s t a n c e s f r o m a grain boundary. It turns out that the p h o t o c o n d u c t a n c e d e c a y is not e x p o n e n t i a l even at large decay times. A method, b a s e d on such n o n - e x p o n e n t i a l d e c a y curves, is d e v e l o p e d to d e t e r m i n e the bulk l i f e t i m e and the grain b o u n d a r y r e c o m b i n a t i o n velocity.
3: P l o t of the n o r m a l i z e d p h O t o c o n d u e t a n c e AV versus the n o r m a l i z e d time U for n o r m a l i z e d a b s o r p t i o n c o e f f i c i e n t A=0.1, d i s t a n c e b e t w e e n grain b o u n d a r y light beam Xs=0.5 and two v a l u e s of the grain b o u n d a r y r e c o m b i n a t i o n velocity S.
102
101
lO 0
.I
I •1
I -2
I -3
I% .4
% I .5
I
.6 Um
Fig. Ackgowled~ements The a u t h o r w i s h to thank the Greek M i n i s t r y of R e s e a r c h and T e c h n o l o g y for f i n a n c i a l support.
4: Plot of the m a x i m u m U m of the decay of the s e m i l o g a r l t h m i c A V v ~ curve as a f u n c t i o n of the n o r m a l i z e d grain houndary r e c o m b i n a t i o n ve.locity for two values of the n o r m a l i z e d a b s o r p t i o n coeff i c i e n t A.
854
TRANSIENT PHOTOCONDUCTIVITY ANALYSIS
Vol. 64, No. 6
References I. C.H. Seager and G.E. Pike, Appl. Phys. Lett. 35, 709 (1979). 2. C~.H. Seager and G.E. Pike,'Appl. Phys. Lett. 37, 747 (1980). 3. G.E. Pike and C.H.Seager, J. Appl. Phys. 50, 3414 (1979). 4. ~ Siegel, G.Kuhnel and H. Schneider, Phys. Star. Sol. (a) 97, 609 (1986). 5. O.S.Sastry, V. Durra, A.K. Mukerjee and K. L. Chopra, J. Appl. Phys. 57, 5506 (1985). 6. C.H. Seager, J. Appl. Phys. 53, 5968 (1982). 7. J.D. Zook, Appl. Phys. Lett. 37,224 (1980). 8. J. Marek, J. Appl. Phys. 53, I--~54 (1982). 9. D.E. ~urk, S. Kanner, J.E--Muyshondt, D.S. Shaulls and P.E. Russell, J. Appl. Phys. 5_~4, 169 (1983).
i0. C.A. Dimitrladls, IEEE Trans. Electr. Dev. ED-32, 1761 (1985). ii. D. Redfield, Appl. Phys. Lett. 40,163(1982) 12. P. Panayotatos, E.S. Yang and W. Hwang, Solid State Electron, 25, 417 (1982). 13. E. Poon, E.S. Yang, H.L. Evans, W. Hwang and R.M. Osgood, Appl. Phys. Lett. 4__22,285 (1983). 14. F.W. Scholl, a. Appl. Phys. 52, 3439 (1981) 15. W. Van Rooshroeck,J. Appl. Phys. 26, 380 (1955). 16. A. Abramowitz and I . A . Stegun, HandSook of Mathematical Functions (Dover, New York, 1965).