Transient photoconductivity analysis near a grain boundary of polycrystalline semiconductors

Transient photoconductivity analysis near a grain boundary of polycrystalline semiconductors

~Solid ~Prlnted State C o ~ u n i c a t i o n s , in Great Brltaln. Vol.64,No.6 TRANSIENT pp.851-854 PHDTOCONDUCTIVITY BOUNDARY 1987. ANALYSIS...

215KB Sizes 8 Downloads 43 Views

~Solid ~Prlnted

State C o ~ u n i c a t i o n s , in Great Brltaln.

Vol.64,No.6

TRANSIENT

pp.851-854

PHDTOCONDUCTIVITY

BOUNDARY

1987.

ANALYSIS

OF P O L Y C R Y S T A L L I N E

0038-1098/87 $3.00 + .00 ©|987 Pergamon Journals Ltd.

NEAR

A GRAIN

SEMICONDUCTORS

C. A. Dimitriadis D e p a r t m e n t of Physics, Solid STate Physics Section, U n i v e r s i t y of T h e s s a l o n l k i , T h e s s a l o n l k l 540 06, Greece (Received: January , 1987, by C . W . M c C o m b i e ) The effect of grain b o u n d a r y r e c o m b i n a t i o n on the p h o t o c o n d u c T a n c e transient r e s p o n s e , after e x c i t a t i o n with a delta function light pulse near a grain b o u n d a r y , is studied here. An a n a l y t i c a l e x p r e s s i o n is derived for This decay which can be r e a d i l y computed n u m e r i c a l l y . The photocond u c t a n c e Turns out to be a n o n - e x p o n e n t i a l function of Time even at large decay Times. A p r a c t i c a l method, based on such n o n - e x p o n e n t i a l decay curves o b t a i n e d wlth the light beam p o s i t i o n e d away or near a grain b o u n d a r y , is d e v e l o p e d %o deduce accurate value of the bulk lifetime and the grain b o u n d a r y r e c o m b i n a t i o n velocity.

Various e x p e r i m e n t a l Techniques have been used to obtain i n f o r m a t i o n about the r e c o m b i n a t i o n process at grain b o u n d a r i e s of p o l y c r y s t a l l i n e s e m i c o n d u c t o r s . (a) I-V, C-V and deep level t r a n s i e n t s p e c t r o s c o p y (DLTS) t e c h n i q u e s which require large c o n t a c t areas, thus g i v i n g only a v e r a g e d r e s u l t s l-s. (b) E l e c t r o n - b e a m - i n d u c e d current (EBIC) or l i g h t - b e a m - l n d u c e d - c u r r e n t (LBIC) t e c h n i q u e s which require the f a b r i c a t i o n of a p-n j u n c t i o n or s e m i t r a n s p a r e n t S c h o t t k y barrier for the c o l l e c t i o n of m i n o r i t y c a r r i e r s 6-10. These m e t h o d s have the advantage that the e x c i t a t i o n by e l e c t r o n or light beam allow local p r o b i n g of small area of the grain b o u n d a ries. H o w e v e r , the high precessing T e m p e r a t u r e may change The grain b o u n d a r y c h a r a c t e r i s t i c s , which is u n d e s i r a b l e II. (c) P h o t o c o n d u c T i v i t y m e a s u r e m e n t s which, also, allows local probing of small area of the grain boundaries, but require v e r y simple n o n - d e s t r u c t i v e sample prep a r a t i o n I~,13.

\

X$

IBEAM T t

~X

h

""GRAIN BOUNDARY

Z

R e c e n t l y a s t e a d y - s t a t e p h o t o c o n d u c t i v i t y experimental t e c h n i q u e , using a focused laser beam to g e n e r a t e e x c e s s carriers in a b i a s e d sample, was used to obtain information c o n c e r n i n g the m a g n i t u d e of the r e c o m b i n a t i o n v e l o c i t y at the grain b o u n d a r y i n t e r f a c e s I~. In this m e t h o d the fitting of the e x p e r i m e n t a l data with the theory r e q u i r e s a k n o w l e d g e of the hulk m i n o r i t y carrier l i f e t i m e (T) and %he d i f f u s i o n coefficient (D). Here, we present a t r a n s i e n t - s t a t e p h o t o c o n d u c t i v i t y method which enables us to determine quite e a s i l y both hulk lifetime and grain b o u n d a r y r e c o m b i n a t i o n velocity if the optical a b s o r p t i o n c o e f f i c i e n t and the d i f f u s i o n c o e f f i c i e n t of m i n o r i t y carriers are known.

Fig.

i: Geometry

tance, The geometry rier mobility.

of the problem.

of the sample and the car-

In the analysis the following assumptions are made: (i) The sample is of semi-infinite T h i c k n e s s , i.e. b o u n d e d only by the top surface at z =0. (2) The grain b o u n d a r y can be c o n s i d e r e d as a surface with r e c o m b i n a t i o n velocity s. (3) The d u r a t i o n of ~he pulsed light is much smaller than the lifetime (T). (4) The injection level is low. (5) The excess m i n o r i t y carrier p o p u l a t i o n decay is not i n f l u e n c e d by the effect of surface r e c o m b i n a t i o n . This can be a c c o m b ~ s h e d either by p o l i s h i n g The surface so thai the surface r e c o m b i n a t i o n velocity To be zero or by using e x c i t i n g light of small absorption c o e f f i c i e n t so That the g e n e r a t i o n To take place deep in the sample. (6) The e l e c t r o n - h o l e pair generation rate can be w r i t t e n

The g e o m e t r y of the method is shown in Fig. 1. The n - t y p e sample is illuminated by a finely focused m o n o c h r o m a t i c pulsed light beam, incident n o r m a l l y to The surface, near a grain boundary. Excess c a r r i e r are created at (Xs,Ys,Zs). by the f o c u s e d b e a m which s u b s e q u e n t l y d i f f u s e and drift away. If an e l e c t r i c field along the xaxis is e s t a b l i s h e d by a constant bias current, Then a p h o t o c o n d u c t i v e signal (AV) r e s u l t s the m a g n i t u d e of which is p r o p o r t i o n a l to the total m i n o r i t y - c a r r i e r c o n t e n t I~, i.e. AV = Bfffdp(x,y,z)dxdydz

--

SURFACE

(i)

g(z,T)

where the c o n s t a n t B d e p e n d s on the e l e c t r i c field a l o n g the x-axis, %he sample bulk resis-

= N(l-R)me-~Z6(t)

(2)

where T is the Time, N is the number of photons carried by a simple pulse just out-

851

TRANSIENT PHOTOCONDUCTIVITY

852

side the s a m p l e s u r f a c e , R is the s u r f a c e r e f l e c t i v i t y and 6(t) is the Dirac d e l t a function. In o r d e r to c a l c u l a t e the total p o p u l a t i o n of the m i n o r i t y c a r r i e r s A P t o t ( t ) i n d u c e d in the sample by a pulse, we will first c a l c u l a t e t h e i r d e n s i t y A p ( x , y , z , t ) due to a p o i n t s o u r c e Z at d e p t h h (Fig. i) and then i n t e g r a t e over all the p o i n t s a l o n g the beam and over the entire s a m p l e volume. The d e n s i t y of the m i n o r i t y excess c a r r i e r s due to an i n s t a n t a n e o u s p o i n t source of u n i t y s t r e n g t h has been c a l c u l a t e d by Van R o o s b r o e c k Is. U n d e r the c o n d i t i o n s stated above~ by comb i n i n g Eqn. (22) of Ref. 15 with Eqn. (2) for the g e n e r a t i o n rate, we obtain the f o l l o w i n g exp r e s s i o n for Ap: (Z-H)2+y 2 N(I-R)A(41U)-3/2 Ap = L3

e -AH

e

~U

=2J6(

I -H/2/'U

= 2/~-U

,

and

Vol. 64, No. 6

ANALYSIS

using

e_b 2

e I H/2/'U

db +

_b 2 db):

(7) the p r o p e r t i e s

for

the

i n t e g r a t i o n 16

b2-ac I e - ( a t 2 + 2 b t + C ) d t = ~--[ e2 a o

f e-aXerf(bx)dx o we o b t a i n

6Ptot(t)

the

=

= ~

final ~(I-R)

a

ea2/4b 2

e r f C ( ~ ab)

erfc(

) ,

(B)

(9)

result e-U[l+eA2Uerfc(A¢~)]×

x X ~X +S2U X x [err(2_~U) + e s erf c (2 + u + S ¢r~)] ( i0 )

x[e

(X-Xs)2 ~U +e

(X+Xs)2 S(X+Xs)+S2U ~U -2/~'USe ×

Also,substituting

X+X x e r f c ( 2~

+ SvrU)]

,

A : eL,

U : t/T,

Z = z/L,

H : h/L

X : x/L, and

APtot(0)

(3)

w h e r e e r f c ( x ) is the c o m p l e m e n t a r y error function and A, U, X, Y, Z, H and S are the d i m e n s i o n l e s s q u a n t i t i e s n o r m a l i z e d with the bulk c a r r i e r l i f e t i m e • and d i f f u s i o n l e n g t h L = (DT)I/2:

S : s/(L/~)

(Z_H)2 x~

e

4U

(i0)

2N(I-R) = L----~

(II)

A P t o t (t) AV : A P t o t ( 0 )

re-

:

Y : y/L

2N(I-R)A(4~U)-3/2e-AHe L3

:

in Eqn.

The p h o t o c o n d u c t i v e signal normalized with spect to its v a l u e at t=0 is given by

.

(4)

e

The total c o n t e n t of e x c e s s m i n o r i t y c a r r i e r s can now be o b t a i n e d b y i n t e g r a t i n g Eqn. (3) w i t h r e s p e c t to H f r o m zero to i n f i n i t y and then over the e n t i r e s a m p l e v o l u m e , i.e.

APtot(t)

t=U:0

-U ×

x

When from

-U

2 [ l+eA

Uerfe(A/U) ]x

X SXs+S2U X s [erfc(2---~)+e erfc(2-~U

+ S~)].(12)

the p u l s e d light beam is p o s i t i o n e d away the g r a i n b o u n d a r y , Eqn. (12) b e c o m e s

y2 dZ

f

o

e

~U

dY

AV = ~e -U [ l + e A 2 U e r f c ( A/6)]

x

.

(13)

o

(X-Xs)2 4U

×U (e

+e

In o r d e r to c a l c u l a t e the bulk l i f e t i m e T f r o m the d e c a y of the p h t o c o n d u c t i v e signal, the par a m e t e r s t and • are s e p a r a t e d by p u t t i n g %:a2Dt. Then A 2 : ~ 2 % T , U : % / A 2 and s u b s t i t u t i n g for U in Eqn. (13) we o b t a i n

(X+Xs)2 4U )dX -

o

-2/~-U" Se

SX +S2U s x

X+X x I e SX e r f c ( ~ o

AV - e - t / A 2 ----~[l+e%erfc(/%)]

+ S~)dX]

(5)

Since

®_y_2 f e O

~U dY

(X-Xs)2 oo f (e o

4U

~6)

: 2/~-U

(X+Xs)2 + e

4U

) dX:

.

(14)

Thus, when a and D are known, AV can be m e a s u r e d at a g i v e n v a l u e of % and E~n. (14) can be s o l v e d for A to y i e l d T as T=A / s 2 D . F i g u r e 2 s h o w s the p a r a m e t e r A as a f u n c t i o n of % for v a r i o u s v a l u e s of AV as o b t a i n e d from E q n . ( 1 4 ) . C l e a r l y , the s l o p e of the c u r v e s i n c r e a s e s w~th i n c r e a s i n g % and b e c o m e s i n f i n i t e at a c e r t a i n v a l u e of %. T h i s v a l u e of % b e c o m e s s m a l l e r for l a r g e r v a l u e s of the p h o t o c o n d u c t i v e s i g n a l AV and~ t h e r e f o r e , the a c c u r a c y b e c o m e s p r o g r e s s i v e l y h i g h e r for s m a l l e r v a l u e s of AV. W h e n the p u l s e d light b e a m is p o s i t i o n e d n e a r the g r a i n b o u n d a r y , then for S=0 Eqn. (12) red u c e s to Eqn. (13). For S~O, the p h o t o c o n d u c -

TRANSIENT PHOTOCONDUCTIVITY ANALYSIS

Vol. 64, No. 6

853

.soZ

JV 0.95

0.9

0.8

0.7

0.6

0.5

0.4

IO

J~

10-I

10-1

.

10-2 ~o-Z

~-3

-jO-Z

i

10-

1

i

i

10

10Z ~=a2Dt

Fig.

2: N o r m a l i z e d a b s o r p t i o n c o e f f i c i e n t A v e r s u s the n o r m a l i z e d time % for var i o u s values of the p h o t o c o n d u c t a n c e d e c a y ratio AV from eqn. (14).

10-3

10-4

I 1

I 2

I 3

I 4

I 5

I 6

U tire signal d e c a y for large v a l u e s of U a p p r o a c h e s a s y m p t o t i c a l l y to

-U e Av ~ U ~

'

Fig.

(15)

i.e. even at large d e c a y t i m e s the p h o t o c o n d u c tance decay is still not e x p o n e n t i a l . F r o m Eqn. (15) it f o l l o w s that the plot of ( A V F ~ ) v s U a p p r o a c h e s an e x p o n e n t i a l for large d e c a y times. An e x a m p l e of a £ n ( A V v ~ ) v s U plot, as o b t a i n e d from Eqn. (12), for X_:0.5 A = 0 . 1 and two values of S is shown in ~ig. ~. A m a x i m u m of the p h o t o e o n d u c t a n t e decay c u r v e a p p e a r s at a pos i t i o n U m w h i c h d e p e n d s on the value of S . F o r S=0 the m a x i m u m lies at U m = 0 . 5 and for lar.ge v a l u e s of S the m a x i m u m is at Um:0. F i g u r e 4 shows a plot of the p o s i t i o n of the m a x i m u m U m as a f u n c t i o n of S for two v a l u e s of A. F r o m Fig. 4 and the e x p e r i m e n t a l value of U m it is p o s s i b l e to e s t i m a t e the grain b o u n d a r y r e c o m b i n a t i o n v e l o c i t y if the a b s o r p t i o n c o e f f i c i e n t of the e x c i t i n g light and the diffusion c o e f f i cient of m i n o r i t y c a r r i e r s are known. In c o n c l u s i o n , a n a l y t i c a l e x p r e s s i o n for the p h o t o c o n d u c t a n c e d e c a y is o b t a i n e d when the m o n o c h r o m a t i c p u l s e d light b e a m is p o s i t i o n e d at d i f f e r e n t d i s t a n c e s f r o m a grain boundary. It turns out that the p h o t o c o n d u c t a n c e d e c a y is not e x p o n e n t i a l even at large decay times. A method, b a s e d on such n o n - e x p o n e n t i a l d e c a y curves, is d e v e l o p e d to d e t e r m i n e the bulk l i f e t i m e and the grain b o u n d a r y r e c o m b i n a t i o n velocity.

3: P l o t of the n o r m a l i z e d p h O t o c o n d u e t a n c e AV versus the n o r m a l i z e d time U for n o r m a l i z e d a b s o r p t i o n c o e f f i c i e n t A=0.1, d i s t a n c e b e t w e e n grain b o u n d a r y light beam Xs=0.5 and two v a l u e s of the grain b o u n d a r y r e c o m b i n a t i o n velocity S.

102

101

lO 0

.I

I •1

I -2

I -3

I% .4

% I .5

I

.6 Um

Fig. Ackgowled~ements The a u t h o r w i s h to thank the Greek M i n i s t r y of R e s e a r c h and T e c h n o l o g y for f i n a n c i a l support.

4: Plot of the m a x i m u m U m of the decay of the s e m i l o g a r l t h m i c A V v ~ curve as a f u n c t i o n of the n o r m a l i z e d grain houndary r e c o m b i n a t i o n ve.locity for two values of the n o r m a l i z e d a b s o r p t i o n coeff i c i e n t A.

854

TRANSIENT PHOTOCONDUCTIVITY ANALYSIS

Vol. 64, No. 6

References I. C.H. Seager and G.E. Pike, Appl. Phys. Lett. 35, 709 (1979). 2. C~.H. Seager and G.E. Pike,'Appl. Phys. Lett. 37, 747 (1980). 3. G.E. Pike and C.H.Seager, J. Appl. Phys. 50, 3414 (1979). 4. ~ Siegel, G.Kuhnel and H. Schneider, Phys. Star. Sol. (a) 97, 609 (1986). 5. O.S.Sastry, V. Durra, A.K. Mukerjee and K. L. Chopra, J. Appl. Phys. 57, 5506 (1985). 6. C.H. Seager, J. Appl. Phys. 53, 5968 (1982). 7. J.D. Zook, Appl. Phys. Lett. 37,224 (1980). 8. J. Marek, J. Appl. Phys. 53, I--~54 (1982). 9. D.E. ~urk, S. Kanner, J.E--Muyshondt, D.S. Shaulls and P.E. Russell, J. Appl. Phys. 5_~4, 169 (1983).

i0. C.A. Dimitrladls, IEEE Trans. Electr. Dev. ED-32, 1761 (1985). ii. D. Redfield, Appl. Phys. Lett. 40,163(1982) 12. P. Panayotatos, E.S. Yang and W. Hwang, Solid State Electron, 25, 417 (1982). 13. E. Poon, E.S. Yang, H.L. Evans, W. Hwang and R.M. Osgood, Appl. Phys. Lett. 4__22,285 (1983). 14. F.W. Scholl, a. Appl. Phys. 52, 3439 (1981) 15. W. Van Rooshroeck,J. Appl. Phys. 26, 380 (1955). 16. A. Abramowitz and I . A . Stegun, HandSook of Mathematical Functions (Dover, New York, 1965).