301
Journal of Organometallrc Chemtstry, 422 (1992) 301-681 Elsevier Sequoia S.A, Lausanne
JOM 22225AS TRANSITION METALS IN ORGANIC SYNTHESIS ANNUAL SURVEY COVERINGTHE YEAR 1990* Louis S Hegedus Department of Chemistry, USA
Colorado State University,
Fort Colhns, CO 80523
CONTENTS I. General Comments Carbon-Carbon Bond Forming Reactions II A Alkylations 1. Alkylation of Organic Halides, Tosylates, Trdlates, Acetates, and Epoxides 2 Alkylation of Acid Derivatives Alkylation of Olefins 3. 4. Decomposition of Diazoalkanes and Other Cyclopropanations Cycloaddition Reactions 5 6. Alkylation of Alkynes 7 Alkylation of Allyl, Propargyl, and Allenyl Systems 8. Coupling Reactions 9 Alkylation of x-Ally1 Complexes 10. Alkylation of Carbonyl Compounds 11 Alkylation of Aromatic Compounds 12. Alkylation of Dienyl and Diene Complexes Reactions 13. Metal/Carbene 14. Alkylation of Metal Acyl Enolates B. Conjugate Addition C. Acylation Reactions (Excluding Hydroformylation) 1 Carbonylation of Alkenes and Arenes 2 Carbonylation of Alkynes (including the Pauson-Khand Reaction) Carbonylation of Halides and Triflates 3 4 Carbonylation of Nitrogen Compounds Carbonylation of Oxygen Compounds 5. 6. Miscellaneous Carbonylations 7 Decarbonylation Reactions 8 Reactions of Carbon Dioxide * Reprints References
P 643
for this
review
are not available.
303 303 303 303 346 349 371 389 398 406 424 431 436 443 452 461 469 470 495 495 504 511 517 518 520 521 522
302
D E
Oligomerization (including Cyclotrimerization Methathesis Polymerization) Rearrangements 1. 2
Metathesis Olefin Isomerization
3.
Rearrangement of Allylic and Propargylic Skeletal Rearrangements
4. I II
IV.
of Alkynes,
5. Miscellaneous Rearrangements Functional Group Preparations A Halides B Amides, Nitriles Amines, Alcohols C. D Ethers, Esters, Acids E Heterocycles F Alkenes, Alkanes G Ketones, Aldehydes H. Organosilanes I Miscellaneous Reviews
and 523 535
Compounds
535 536 537 543 543 543 543 545 550 566 575 616 625 628 634 637
General Comments This annual survey covers the literature for 1990 dealing with the use of transition metal intermediates for organic synthetic transformations. It IS not a comprehensive review but is limited to reports of discrete systems that lead to at least moderate yields of organic compounds, or that allow unique organic transformations, even if low yields are obtained. Catalytic reactions that lead cleanly to a major product and do not involve extreme conditions are also included This is not a critical review, but rather a listing of the papers published in the title area The papers in this survey are grouped primarily by reaction type rather than by organometallic reagent, since the reader is likely to be more interested in the organic transformation effected than the metal causing it Oxidation, reduction, and hydroformylation reactions are specifically excluded, and will be covered in a different annual survey. Also excluded are structural and mechanistic studies of organometalhc systems unless they present data useful for synthetic application. Finally, reports from the patent literature have not been surveyed since patents are rarely sufficiently detailed to allow reproduction of the reported results. I.
Carbon-Carbon Bond-Forming Reactions Alkylations Alkylation of Organic Halides, Tosylates, Triflates, Acetates and 1 Epoxides Transition metal catalyzed reactions of Grignard reagents continue to be extensively used for synthesis. Substituted styrenes were synthesized by the cross-coupling of substituted phenylmagnesium bromides with vinyl bromide in the presence of nickellll) phosphine complexes Ill Choral ferrocenylamine sulfide and selenide (of Pd, Pt and Ni complexes) were used to catalyze the enantioselective cross-coupling of ally1 magnesium chloride with 1-chloro- 1-phenylethane I21 Nickel phosphine complexes catalyzed the alkylatlon of halides by bridge-head Grignard reagents (equation 1) 131. Nickel phosphine complexes were also used to catalyze the cross-coupling of Grignard reagents with di-, tri-, and polychlorobiphenyls I41 Unsymmetrical biaryls were synthesized by the nickeRI chloride catalyzed coupling of aryl halides with aryl Grignard reagents (equation 2) 151 Orthothioesters were converted to oleflns by reaction with Grignard reagents in the presence of nickel(I1) phosphine complexes (equation 3) 161. Arylpalladium(II1 halides coupled with vinyl magnesium bromide to II. A
References
P 643
304 produce
catalyze
Nlckel(II) and palladium(II) complexes were used to the coupling of aryl iodides with vinylmagnesium bromides 181 styrenes
(71
(Equation
1)
(Equation
2)
modest yields
ArMgX
+
Ar’X
-
NlC&THF
Ar--Ar’ major 60-98%
tnphenyls Br
0I= Br-
trlphenyls
+
Ar-Ar
30.5
(Equatton
Ar =
I-Naphth,BNaphth,
3)
pt&Ph, pkkOPh, 2,4-(WO)2Ph, 2,5-WO)2Phs Ph
R’ = Me, TM!xH2
Copper(I) chloride catalyzed the coupling of brsallyhc halides wtth alkynyl Grrgnard reagents (equation 4) 191, (equation 5) I101 a,wbishaloalkanes were monoalkylated by Grignard reagents in the presence of a copper catalyst. Arylmanganese halides coupled to thirteen different alkenyl halides, while Li2MnCl.t catalyzed the alkylatron of allyhc hahdes by arylmagnesru m haltdes 1121. (Equatron
CI~CI
-.
oat Am-.z.--MgCI
References
P 643
+
or
-Cl
CUCI
@ Ad
4)
306
(Equation *
W'
-E3r CUCI
.@
-W
+
‘*.
1) PEW,
**.
A/o*
73%
BrW, -ohnea
.@
-W
--\\
2) same 3) *20 4) Per3
‘.v’
#
-Ew mg ”
49%
e
l -co,w
w
(Equatron
Rb@r
5
+ Br(CH.,),Br
6)
5% Ll&uC14 *
WHz)n--Br
The evolution of higher-otder cuprates has been revlewed (56 formatlon vra references) 1131. A paper deahng with in situ cuprate transmetallatron between vinyl stannanes and higher-order cuprates was were prepared from ally1 stannanes and pubhshed I1 41. Affykuprates higher-order (methylkyanocuprates, and these efflclently coupled with halides and epoxtdes (equation 7) iI51 Stannyl cuprates were prepared, and they transferred their tin group to a varrety of substrates (equation 8) (161
30;
(Equation
1R Me&uCNL12
n OM3
References
p 643
7)
308
(Equatton
Me$3I-siMe~ + h&u
-
rule$SILi -
lU@tlCl
8)
Me&SnMe3
85% 78%
71%
Functlonalized organocopper species were readily prepared from organozlnc compounds, were used m a variety of useful processes (equatton 9) 1171, (equation 10) 1181, (equation 11) 1191, (equation 12) 1201, (equation 13) [Zll Cuprates alkylated alkynyl todrdes (equation 14) 1221 Heterocyclic organocuprates Introduced these functional groups Into amino acids (equation 1s) 1231
309
(Equation
E+
P
-
2) CuCN, PLiCl
9)
RyYo E 67-93%
(Equation
R
R 1) Wl-HF
FG
2) CuCNLiCl 3) E FG 32 cases high yields
RG
p 643
= RC-, COzR, OAc, OMe, CN, Cl, I
XI
Er. Cl
R=
H, Me, Bu. NC-’
E=
RCOCI, RCHO, R3SnCI,-X
7
10)
310
(Equation X
11)
X
RCu(CN)ZIIX . Cl
R’
Sn2’ R
R = nBu, PhCHP, MeO& -/
R’=
NC-/
NC-/
Me,H
Y = SPh, SePh
(Equation
1) ZtvDMF
FG
2) CuCN*2 LiCl 3) E+
FG
FGAr = Ph, oNCPh, nNCPh, mEtO&Ph, pCIPh, oPhCOPh.
Ph
12)
311
1) iMTHF er
R’CH-SPh
2) CuCN.2 LICI 3) E+
Cl
(Equation
13 1
(Equation
14)
(Equation
15)
R HSPh F E 7&92%
R = H, Me, nPr, CH&N, CH2CH2C02Et .,Br .e E = PhCHO, -
+
Roc3.2-I
R=D,T
R’CuCNZnX
Q
R’ = Et, Ph.
..,,,,,
-f+
cH2c
-
ROC=C-R
Et&C-/
HCO#e NHSOC
+
Ar&uCNU
-
~H2w&Hm~
I NHBOC
312
Ally1 cuprates coupled to vmyl trlflates (equation 16) 1241 Triflates of optically active lactic acids were alkylated by cuprates with inversion (equation 17) 1251 Triflates of cephams (equation 18) [261 and penems (equation 19) [271 were alkylated by cuprates. Enol trlflates of lactones were similarly alkylated (equation 20) 1281 (Equation
16)
OTf
*
+
4UcNL’z
-
2
60-76%
Mate
= PhA
,,noTf
PhmOTf
tr OTf
(Equation
R ,,COzEt +
CT f
R’$xb4
-
YopE’ R’ 1050%
17)
313
(Equation 0
18)
0 RUCULi
.
R’
BFyOEt,
OTf
R
C02Et
C02Et 40-70%
R = Me, Et, nBu, tBu, Ph, 6
,’
UN
(Equation
OTBS
191
OTBS R&Li+iCN
5040%
-
R = Me, MOM0Cl-t~
(Equation
OTf 0
-0
Obk *
0
PWOW, M&N
0
0
\,,o”
0
0
--,oG),
OTf
CuLi
,,o”
63%
20)
314
Cuprates alkylated 22) 1301, and a-mesyloxy trifluoromethyl epoxides 25)
a-methoxy amlnes (equation 2 1) 1291, (equation epoxides (equation 23) 1311; and ring opened (equation 24) [321 and N-tosylazlnnes (equation
[331 (Equation
2 1)
(Equation
22)
(Equation
23)
R = Bu, Pr, nC7
Rku COR’
. BF3
COR’ ao-80%
n = 1,2 R’ = OMe,tvle R2 = nBu, nC,
f
0 BuCu(R)(CN)L12
BuLi
.WO~ BFgOEt
BuCuR(CN)U2
HO -z&Y 57% Overall
.
315
C02Et
E4026
R
R2CULl
s 4
_) N TS
(Equation
24)
(Equation
25)
C02Et
: Y Et028
NHTs 60-80%
Manganese iodide promoted the alkylatlon of organic nlckelacyclic proplonic acid equivalent (equation 26) [341[351
RI
+
dlpyNI(yO -2L n
R = Ph
References
p. 643
R/‘(
p-”
halides
by a
(Equation
26)
316
Alkylatron of organrc halides and triflates by palladrum(0) catalyzed oxrdatrve addrtion/transmetallation/reductive elimination process has become a growth Industry, and many, many papers dealrng with this process have recently appeared Aryl ethylenes (styrenes) were prepared by the palladium catalyzed cross-couphng of vinyl zinc chlorrde and vinyl trimethyl tin wrth aryl halides [361 Heteroaryl zrnc reagents alkylated vinyl halides in the presence of palladium(O) catalysts (equation 27) 137). Organic rodrdes were cross-coupled via transmetallatron processes (equation 28) [381 Palladium catalyzed the alkylation of hrghly substituted fury1 zinc halides by organic halides (equation 29) 1391. Aryl halides were crosscoupled to organozinc chlorides using palladrum catalysis (equation 30) I401 (Equation
27)
(Equation
28)
X = 0, S. NMe
1) tsuLi
RI
-
R’I
2) ZnClp
L4Pd
317
(Equation
291
Br RX = Phi, 83: PhCOBr, 32%. e
Br, 79%;
, 89%;
Br 173%;
Phfi
Ph
Ph-Br,
~&-b’~.86%
85%,
=(k
,!WT’O TMS
bO2C
(Equation
30)
bPd cat. RMX
+ Arx
-
RAr 8040%
R = pkd+NPh, pMeOPh, pMeSPh. M = ZnCI, Mar
+/
t&j I
-
I
Ar = pCNPh, pNO2Ph. pBuCOsPh, pHO$Ph, pEt#COPh
Palladium(O) catalyzed the coupling of long chain vinyl rodIdes with organoztnc reagents (equatton 31) 1411, (equation 32) I421. Aryl and vinyl triflates coupled to heteroaryl zinc halides In the presence of palladrum catalysts (equation 33) [43l. a-Lithiated enol carbamates coupled to organic halides m the presence 34) 1441.
References
P 643
of zrnc chlorrde and palladu_tm(O) catalysts
(equation
318
(Equation
1) Cul 2) W&H
I
3)
12
4) &@,
Et-
F&b
‘am
I
OAc
Et/==\-
-
OAc
(Equation
&-vbv-Jg
tBuO-
3 1)
Pm +
BrA&E#
~ZnBr WV
-
*
Pd(O)
32)
319
(Equation
33)
(Equation
34)
5040%
Ar = PNaphth, pMeOPh, pPhGOPh,
cy
m{
steroidal
1) BuLifl-MEDA %OCONRz
RX F
2) fiBr2
-
R2NO&
R
4Pd
Transmetallation from tin to palladium has also been extensively investigated. “Synthesis of natural products using the palladium-catalyzed coupling of vinyltins and vinylhalides” was the tttle of a dissertation 1451. Palladium(0 1 catalyzed the coupling of f unctionalized vinyltins with halides (equation 35) [461 and triflates (equation 36) 1471.
References
P 643
Et0
(Equation
36)
OEt BuSSn /
-t-
35)
Bu,SnH
OEt HCEC
(Equation
AIBN
OEt
+
R
ArBr PdK’)
RmClEt
bEt 55-95%
0
YEt RX +
&WAea
R
A
and 0
0 R RX
+
SnfMj
5f
H+R
OEt +
H
0
OEt \
0
03
OEt R
+f 0
?Tf
RX = PhOTf, PhBr, pfQPhBr,
OTf
good yields FTf
321
Cyclobutene drones were alkylated using palladium/tin chemistry (equation 37) 1481. (equation 38) [491[501, as were a-stannylated dihydrofurans and dlhydropyranes (equation 39) IS 11
+
(Equation
37)
(Equation
381
‘-.iPd R-*E?-SnBu,
.-p Cl mC’
R = Ph. 70%; PhC-C, 11%; nPr, 51%; TblS, 30%
Me
xc
X
0
Me
0
R
or iPf0
I DC
+
Bu$3R
iPI
0
I
References
P 643
Rxc
0
R = Ph. ptvlePh,pCtPh, TMSC-C-, f3uC-G
THPO
7040%
Of
7
0 Dz
0
U’d
I Cl
0
PhS, Em
0
322
(Equation
39)
RX SnBu3
Pd(‘3 -80%
n=1,2
R = oMeOPh,
BrUco2E’
Ph
This chemistry has been extensively used to prepare alkylated dehydro sugars (equation 40) [521, (equation 41) 1531, (equation 42) IS41, (equation 43) 1551, and alkylated nucleosides (equation 44) [56J (Equation
40)
SnBu3 L,PdCI, +
ArX
cat
-
OTBS
OTBS
Ar = Ph, pNO2Ph, pCNPh, 1-naphth,NWeO&Ph, pCIPh, omPh,
oBnOPh, 2,~(hkO),Ph
(Equation
,OTSS
5% bPdCI, .
\
OAc
41)
323
(Equation
42)
(Equation
43 1
(Equation
44)
BnO BnO
BnX or ArCOCl or ex or
&x
W3 R2
RSnR3
R2
R’ 80-90?6
References
p 643
324
Palladium been
used
(equation ene
catalyzed
couplmg
to functlonallze 46) 1581, qumolines
dlynes
(equation
of hahdes
Indoles
to organostannanes
(equation
(equation
45)
I571,
has
also
cyclopentenols
47) [59l, and to make
medium
ring
(Equation
45)
(Equation
46)
48) I601
Bl
CO+
+ /bx
= DMFf120” good yields
X = OAc, OCOpEt
0 @SnBua L4Pd
$?H and
p
/ f
325
(Equation
t t
U’d GUI
47)
t
(Equation
48)
Palladium(O) complexes also catalyzed the coupling of organotriflates with stannanes (equation 49) I6 11 This has been extensively used In functionalizing @lactams (equation SO) 1621, (equation 51) 1631, (equation References
P f,43
326
[64], [66] and trrflates (equation 52)
prostanoid chemistry 1651, steroid functionalization (equation 53) Highly functionalized aryl nucleoside chemistry (equation 54) (671 were also alkylated utilizing this reaction (equation 55) 1681, 56) 1691, (equation 57) 1701, (equation 58) I711 (Equation
49)
(Equation
50)
Pd(0) + R’SnRa
Rl
OTf C02R
C02R
321
5 1)
(Equation
52)
G
G
Pd(OAck +
0
(Equation
RSnBu3
NMP CH&kt
011
0
COzPNB
%PNB 3040%
f’QJ&
OTf+
ArSnM+
Ar
ZnCI*
CO2R
;?&4tQPh)aP 40-70%
Ar = Ph. pNCPh, pHOCH*Ph, pMeOPh, oMeOPh, pMCOPh, pHCj-Ph 0
Qy x=o,s
(Equation
OTf
OR OM8 +
AC0
A
SnBu3 of OBll ZnCl
References
P 643
53)
328
(Equation 0
0
R
OTf
+
AC0
54)
R$nR’
7
PW’) AC0
AC0
OAc
OAc
70-95%
R’ = Ph, pMeOPh, pFPh, pCF3Ph, 3,5-F2Ph, 3,5-(CF&Ph,
TM-’
&--‘-/
Ph/r\/
\\
‘-c02Et
(Equation
Tf”f-$oEt +4 $$$f WdCh
SnBu:,
0
F
55)
329
(Equation 0
OH
0
56)
OH R’
R’ = Ph, nBu, 6
Ph*l i
(Equation
57)
R’ = iPr. QFPh: R3 = Ph. Me, tBu; R4 = H, Me; R5 = pFPh, 3-W-4-FPh, Et
(Equation
z
z E
RSnB+
oMe
Me0
-
Pd(O) L, LiCl
OTI E.Z = H,Z = OMe: E = Br,SMe.CI R = l-l, alkyt, alkenyl, awl, allyl. alkynyl
OMe R
58)
330
Palladium(O) complexes also catalyze the reactions between organrc halides or trlflates and organoboron compounds (transmetallations from B to Pd). Braryls were synthesnzed by the palladium catalyzed coupling of aryl trlflates wrth aryl borates (equation 59) [72l and aryl halides (equation 60) I731 Organrc hahdes were methylated by methyl boron compounds (equation 6 1) 1741 and arylated by aryl borates (equatron 62) 1751, (equation 63) 1761, (equation 64) 1771 Vinyl boranes coupled to vinyl halides In the presence of palladium(O) catalysts (equatron 65) [781, (equation 66) 1791. (Equation
59)
U’d ArOTf
+
Ar-Arl
Ar’B(OH)p v act. Na&Os DME
7040%
Ar = mMeOPh, P-naphth, 9phen. 4quinaldine; also OTf
Ar’ = Ph, otBOCNHPh. ototyi, oiPr2NC0
(Equation
Pd(0) cat. ArBr
+
[Ar14B]Na
-
ArAr’ 80” ankle
major
+
ArlArl minor
60)
331
O-B’
(Equation
6 1)
(Equation
62)
Me A& * base PW)
R = pkOPh,
pOHCPh, d
R-MS 74-95%
&,,A$yl
Ph
0
0
RB(OHk -yiNa2C03 R&IO OSiR~
OS& -
R = Ph, p&NPh,
pI=Ph, pCFsPh, pMeOPh, 3,5-F2Ph, 3,5-CFsPh,
332
WW, many
cases
R’ = H,OMs R2 = H, OMe, NO2 R3 = H, OMe, Br
(Equation
63)
(Equation
64)
X = S, N, 0 Z = S, N, 0
333
(Equation
65)
OTBS
C02H PW’) . OHOTBS
OTBS
goodyields
(Equation
BrY/
R
Br
+
bPd -HO TIOH
HO-B(OHh
Br 6cMo%
p 643
66)
334
Transmetallation from sihcon to palladium, mediated by fluoride ion has been achreved, and was recently reviewed (42 references) [SO]. Aryl iodides (equation 67) 1811 and aryl (equation 68) [821 and vtnyl triflates (equation 69) 1831 coupled to fluorosilanes. Palladium(O) catalyzed the coupling of vinyl germanes to aryl dlazonium salts (equation 70) I841
(!
(Equation
67)
(Equation
68)
PdCU2 cat.
@Slb&F +
Arl
.
F-
ArSi(Ei)F*
ArAf
Ar = Ph,
Af = pWOPh,
mHOCH2Ph,
-3o%ee W-51%, m
X=H,MeO -3woee
Y = H. 3-CHO. 4-COMe
335
bPd R’SIR,Fs,
+
l&T!
(Equation
69)
(Equation
70)
R’--R2
TBAF
50-90%
I
K
R’ = pMeOPh, v/
Ph
/
p,,bG8MB3 P&z-% $JeM”s
+
ArN2BF4
-
P”+
Ph Ar
+ Ar
Ph& 82-95% mixlure
Ar = pMePh, Ph, pBrPh, p02NPh
The long-known palladium-catalyzed coupling of terminal alkynes to aryl and vinyl halides is enjoying a resurgence with the advent of enyne natural products. Palladium on carbon catalyzed the coupling of terminal alkynes to aryl bromides (equation 71) 1851. Palladium(I1) phosphine complexes catalyzed the coupling of terminal alkynes to vinyl halides (equation 72) [861. The conventional catalyst system consisting of palladium complexes, copper salts and amines coupled alkynes to vinyl hahdes (equation 73) 1871, (equation 74) [881, fluoro vinyl halides (equation 75) 1891, (equation 761 [9Ol, iodopurrnes (equation 77) [911, (equation 78) [92l, and bromothiophenes (equation 79) [931.
References
I) 643
336
(Equation
R-*=*-H
+
ArBr -
7 1)
PdC R-as-Ar 60-90%
R = Ph, nPr, TMS Ar = Bnaphth, pOCHPh, pNCPh, oNCPh.
(Equation 72)
~PdC12 p
,,r-.s.
Cl Cl
(Equation 73)
Br
Cul/L.,Pd +
R-a-
p EtNI(Pr);! PhH
CHO
93%
(Equation 0
0 L2PdC12 OEt Br
-
OEt GUI Et3N THF
74)
337
(Equation
75)
(Equation
76)
(Equation
77)
Ar +
RCS2H
F
k
= Ph, pCIPh, p02NPh, pMeOPh
R = Ph,
OH
F
L2PdC12 . Clil Et3N
I
RCGC
X
F
F
R
50-87% R = nPr, nBu, nC5, Ph, nC&, Hclc
-
R’ = F, Ph, CFs, (IPQ2P(0)
COCF3HN’ X = NH2, OH 80%
338
(Equation
78)
(Equation
79)
L2PdC12 +
TMSCECH cucl Et3N
HO OH
HO OH high yield
TM!3 Br I H
Br \ S
L2PdC12 +
HCECTMS
Cul Ei2NH 7442%
Palladium(O) medrated synthesis of polyacetylenic compounds calicheamicin/esperamicin, was the topic of a dissertation 1941 Polyacetylenes were prepared by the palladium/copper catalyzed alkylation of vinyl trrflates (equation 80) 1951, vrnyl halides (equation 81) 1961, (equatron 82) 1971, (equation 83) 1981, and aryl hahdes (equation 84) 1991, (equatron 85) I1001 Qune complex systems have been made by this procedure (equation 86) 11011, (equation 87N [lo21
339
(Equation
80)
(Equation
8 1)
+ CUCI E~NH/DMF
.=.-OH
L2Pdcl2
Bf cut tPr2NH
(Equation’ 82)
References
p 643
340
(Equation
Oh?
83)
L4Pd
+ CIA PrNH2 OMe 92%
(Equation
OR
84)
341
(Equation
85)
(Equation
86)
CHO Pd(0) lCul Br
+
WS-.z.-H
-
EbN 80%
TMS
342
(Equation
87)
Palladium(O) catalyzed the coupling of lithium acetyiides to aryl bromides (equation 88) ilO3l, and acetylenic tin reagents to chloroimines (equation 891 11041. Copper catalyzed the coupling of alkynes to allylie halides (equation 90) I1051 and Wodofurfural (equation 91) II061 (Equation
PWY RC--zC-U
+
ArBr
-
R0-k 40-7096
R = Ph, n0u, Me ,,/OPh Ar = Ph, pMeoPh, pMeph, PM@‘J
88)
343
(Equation
Cl
Buss”--\
NO4
+ Bu~S”~‘~)
X
-
R-N
(XI
L2PdCI, PhCHB
(Equation
R2
R’-=-H-
+ Cl
chlorides =
References
p 643
cu ‘%N
)
89)
R’,-AR*
90)
344
(Equation
Hy&,
+
PhC=CCu
9 1)
-
1:
Ph
Palladium complexes catalyzed the alkylatron of aryl halides by stabilized carbanrons (equatron 92) I1071, (equation 93) 11081 Complexation of diketoesters to metals permitted the control of regioselectivrty of alkylation (equation 94) I1 091 Vinyl halides were dialkylated by stabilized carbanions in the presence of copper catalysts (equation 95) [ 1101 (Equation
Ph Y +
Ph NaH
(4 X
Pd(ll) X
Br also
X = CN, CO&l& C02Et;
Y = CN
92)
345
(Equation
CN
X = Br, I Y = B02Ph, P(0)(OEt)2 R = H, Me, MeO, CN, NO2
I
RX
R = PhCH2, 7’
R’ = Et, nBu, PhCHP, MEO~CCH~ N
References
D 643
I
NaH RX
PhAj#
\
93)
346
(Equation
95)
R’ = Ph, -R* = H R’s R4 =
P3+2)2,
(CH2)3. K
Alkylatlon of Acid Derivatives 2. Palladium catalyzed the coupling of L-probe acid chloride with vlnyl stannanes (equation 96) [ 111 I, azetldinone stannanes with acid chlorides (equation 97) [I 121, and cyclization reactions (equation 98) 11131 (Equation
0
0 PdCl&pf Cl
+ R3SnR’
-
R’
96)
347
(Equation
97)
0 OAc
S&u, R’
(Equation
Acid chlorides
98)
were
alkylated by butyliron complexes (equation 99) complexes (equation 100) 11151 Acid derivatives were methylenated CpzTiMez (equation 10 1) (1 161 Ruthenium complexes catalyzed the alkylation of arenes by fluormated sulfonyl halides (equation 102) 11171 [ 1141 and alkylmanganese
(Equation
PhCOCl
+
Bu,Fe-3b&~BtCl -
PhCOBu 94%
References
P 643
99)
348
(Equation
100 1
(Equation
10 1)
(Equation
102 1
R’ = Bu, IPr, Ph, tBu, Et,
PhCH3
cp2lwle2
+
-
THF
works well with &Ih
OJO
OM9
cs”
WHO, R&O also work
RuC12Ls ArH
+
RrS02CI
-
ArRr +
SO2
100” mixed isomers 3664%
Rf = CF3, CsF3 ArH = PhH, PhCHS, MeOPh, +
t&OeO,
349
Alkylation of Olefins 3. By far the most popular way to alkylate olefins has been the “Heck” arylation procedure, involving palladium(O) catalyzed oxidative addition/ Many improvements olefin insertion/@hydrogen elimination processes and modifications have been made Lithium chloride was found to improve the yields of the Heck arylation of olefins (equation 103) 11181 Sulfonated phenyl phosphines - PhgP(m-03SPh) were efficient ligands for carrying out Heck arylation in aqueous solutions [ 1191. Acrylic acid was arylated by aryl iodides or bromides (0 and pMePh, pMeOPh, pClPh, mCFgPh, pOgNPh, pHOPh, mH02CPh) in aqueous solution using palladium(II1 acetate as catalyst 11201 Palladium catalysts supported on perfluorosulfonated resins also catalyzed the arylation of acrylate derivatives 11211 Palladium chloride supported on montmorillonite-silica-phosphines catalyzed the arylation of methyl acrylate by p-iodoanisole but not o-iodoanisole [ 1221 Polyhaloarenes (halogen = Br, I) were polyethylated by olefins under palladium catalysis(equation 104) 11231 A range of palladium(I1) salts catalyzed the arylation of acrylonitrile by aryl halides 11241 Substituted aryl halides were also alkylated by olefins under Heck conditions (equation 105) I1 251 (Equation
ArX + ey
-
WO)
ArbY
LiCl
ArX = Phi, pMeOPhl, oCIPhl, oMeOPhl, oHpNPhl,
Olefln =
103 1
350
(Equation
104 1
n52
0
+ HyH
xnl
pd(o))
(3402*,n n52
PhCrCH
n = l-6
3.51
(Equation
105 I
Pd(OAch - &IN. RSP Br
R’&lR HVTMS Pd(O)
/\
Pd(O)
i-MS
R = Ph, Ph
=
e i
Aryl bromides (equation 106) I1261 and triflates cleanly alkylated acetamidoacrylates
(equation
107) 1127)
(Equation
106 I
352
(Equation
OTf
107)
COgAe +
pd(o)
.
m-&
+ NHAc
Electron rich olefins also underwent Heck arylatlon (equation 108) [1281, (equatron 109) 11291 The regloselectlvity depended on the substrate and conditions (equatlon 1 10) 11301 Vinyl acetate underwent a double arylation, Indicating that p-acetate elimination rather than p-hydride ellmlnatlon had occurred (equatton 11 1) I13 11 Dlhydrofuran was also doubly arylated (equation 112) I1321 (Equation
Pd(OAc)p I DMF ArX
+
&OR Bu4NCI
)
K2C03
Ar = Ph, pMeOPh, p02NPh, mhleOPh, 1-naphth,
A/b-OR 50-85%
108 1
353
(Equation
109)
OEI OTf
boEt/
Pd(OAc)n
I i”Etor
-&
,
97%
bPd/LiCI
(-joTfboTf
also worked
2
(Equation
Ar
Pd(OA& ArOTf
.t
FOB”
-
DPPP DMF
110 1
&-
OBn 95%
(Equation
FOAc
+ b-g-SR
80-85% Ar = Ph, pMePh, oMePh, oMeOPh, pMeOPh, iPrPh cat = L-PdC12on interlamellar montmottllonite
111)
354
(Equation
112)
1% Pd(OAc)2/1L/Bu.,NCI
E-O
_d
4% Pd(OAc), Ag2C03 MeCN
Protected glycals were excellent substrates for (equation 113) [1331, (equation 114) [1341. Ally1 alcohols 11351 oleflnic epoxides (equation 116) 11361, cychc enamldes 11371, and protected ally1 ammes (equation 1 18) 11381 all under Heck condltlons, as were vinyl sllanes (equation 119) 120) 11401
Heck arylatlon (equation 115) (equation 117) were alkylated [ 1391, (equation
355
(Equation
113)
P”
c I
0
%
Ok48
I= +
0
‘o-o
0.1 eq Pd(OAc),
-SF+= \
1
0
O/
0
Y
c
‘o-o
I
o
’
OSiRs 85%
R,SiO
(Equation
114)
Pd(OA% +
ArH
-
HOAc
Ar
AcO
(Equation
R’ R+’
Pd(OAc), cat.
+ =L
OH
)
R&+0
1 eq As&O, Bu4NHS04
H 40-8096
R = nBu, /\/\/\/l R’ = H, Me
?eferences p 643
115 1
356
(Equation
116 1
(Equation
117)
4040% Ar = Ph. pMePh, pMeOPh, pMeCOPh, pEtO&Ph n = 1,2,4. 10
0
I
N
JI? I
Arl
N
WJ)
Al
Ar = Ph. I-naphth, pMeOPh, mMeOPh, oMeOPh, pMePh, pMeO&Ph
590% with oHOPh, pBrPh, p02NPh,
(Equation 7=2
OTf
PW +
/x_,NBOC2
w
R
118 1
357
(Equation
119 1
TMS L2P-2
Arl+ems
-
A
EIBN 17-50%
Ar = Ph. pMeOPh, pN02Ph II with 2,4,6k@Ph,
+
Ar/\\ 22%
&ll%
&attack only
(Equation
120 1
Et3N RX
+
&SW3
Pd cat. 40-70%
R = Ph, pMePh, 1-Naphth,
Ph-’
R13 = t&012, Ma&I
Intramolecular arylpalladation was promoted by ultrasound [ 14 11 and was used to synthesize polycyclic systems (equation 121) 11421, (equation 122) 11431, (equation 1231 11441. An annulation procedure involving Heck arylation followed by alkylation of a n-allylpalladium intermediate has been a-alkylpalladium(1 I) developed (equation 124) [ 1451 The intermediate complexes has been intercepted by cyanide (equation 125) 11461 With uiodoketones. the cyclization occurs by atom transfer not redox (equation 126) [ 1471.
References
P 643
358
(Equation
12 1)
Pd(O) BINAP Ag3PO4
R=
cage, Cl+oTBDMs 67%,upto8o%ee
(Equation
122)
10% Pd(OAc), .
1
4O%L 2 eq AWX),
0 NHC02Me
H NHC02Me
70%
(Equation
123 1
359
(Equation
E
5% Pd(OAc), +#Fl
Yg-&. Bu4NCI
80-90%
(Equation
halide =
phABr
’ OSiRp
-1
124)
MOPhI,
ptBuPhl, 1-BrNaphth
125 1
360
(Equation
126)
0
0 R R
I
Olefins were also alkylated by palladium-catalyzed transmetallation/ insertion reactions from tm (equation 127) 11481, thallium (equation 128) 11491, and mercury (equation 129) 11501, (equation 130) [1511, (equation 131) 11521 (Equation
FMOCN H
e
R SnBuB
+
5-1 \
PdCI#eCN)2 * DMF
FMOCN H
R
127)
361
I;
N
(Equation
128 1
(Equation
129 1
/“““*
o
N
/O
’;
c4lvle
%
30%
Li2PdC14 PhHgCl
+
w
Ph&
-
OH
0
(Equation 0
0
HsCl
Li2PdC14 -
130 1
362
(Equation
13 1)
Olefins were arylated by arylazoalkyl sulfones (equation 132) 11531 I1 54) I1531 and arylsulfonyl chlorides [equation 133) I1561 under palladium catalysis Palladium catalyzed hydroarylation and hydrovinylation of oleflns was reviewed (36 references) 11571. (Equation
Ar-y=N-SO&
+
0
Ar = Ph, pMePh, pUPh R f = H, Me, Ph R* = C02Et, CN
R’-+xR2
U’d
132 1
363
(Equation
PdC12(PhCN)2 .
R2
H
K2C03
Ar
R’
t( R3 -
R2
133 1
90?4l
Ar = Ph, pMeOPh, pCIPh, pFPh, mCIPh, p02NPh, 1-naphth,P-naphth
R’ = C02Bu, CO#Ae, Ph, H R2 = H, Me R3 = H, C4Me
The palladium(II) assisted alkylation of olefins was used to synthesize a relay to (+I-thlenamycm, using optically active ene carbamates as the olefin (equation 134) IlSSl. Olefins were dlalkylated by combined insertion, nucleophile attack chemistry (equation 135) 11591, (equation 136) I1601
Ph
(Equation
134)
(Equation
135 1
Ph 1) PdCl#eCN)2 2) Et3N 3) CHfCHr
4) CO, MeOH
0 z97%de high yield
E N
References
p 643
+
ArX
+
)
\c E
-
Pd(O)
364
(Equation
136 1
R = Ph, pMePh. oMeOPh, z,z = 00$de, COMe, S02Ph
The C-14 positlon of diterpenoids was functionallzed by cyclomanganation/olefm insertion (equation 137) 116 11 Manganese(III) acetate cychzed olefinic p-dicarbonyl compounds (equation 138) [1621 Iron carbonyls 11631 and ruthenium complexes (equation 139) 11641, (equation 140) I1651 catalyzed the addition of halocarbons to oleflns
365
(Equation
mc heptane
Ft2
& :I
R3 ALSO R
0
R,
;\
3040%
72% R’ = C4Me,
CH20Me,
R2 = H, OMe; R3 = H, C02Me
R = C02Me, CN, CHO, CH20Ac
References
I) 643
137)
366
(Equation
co*Me
138 1
WOW 0
CU(OAC)~ HOAc
61%
(Equation
139 1
(Equatron
140 1
H 6% RuC12L3 PhH
severalcases
Copper powder catalyzed the addition of rododlfluoroacetates to alkenes [166l and the addrtion of perfluoroalkyl rodides to bromo Vinyl sulfones were alkylated by heterocyclic compounds I1 671. organocopper complexes (equation 14 1) [ 1681. Cyclopropenone ketals were alkylated by organocuprates (equation 142) I1691 as were cychc olefinrc ethers (equation 143) 11701, (equation 144) [1711
367
(Equation
Phm FGR-CuCN
+
E q
THF, -30” w
E
1 hr
X-
FGR
E
H
E
14 1)
7040%
= PhMe$i,EtO&
FGR
-/
(Equation
142 1
(Equation
143)
CICQEl
R.@U
L4Pd R
H
OTBDMS OTBDMS
R = nBu, SBU.tBu
,p 643
R2CuUCN
0SiR3 OSIRS
368
(Equation
144)
RO
RO
OEt
H
RO
RO H
OkA8 H
R = TBDMS
R = TBDMS
..
R’ = H,
R’ = H,Me
R* = BTz, H
R*=Me.H
Manganese( I I I) difunct!onalization of alkenes was the topic of a dissertation [ 1721 Cobalt(I) complexes catalyzed the alkylation of oleflns by halides (equation 145) (1731 while cobalt(I1) catalyzed the alkylation of enol ethers by stablhzed carbanions (equation 146) [1741. (Equation
/4/902Ph
NC02Ph co*Me +
Br
C02Et to:t:5
72%
145 1
369
(Equation
OBu
enolether
=
WOE,
A
146 1
OEt
Zn-conium catalyzed coupling of oleflns with heteroaromatics was the Oleflns were alkylated by subject of a lecture (15 references) I1751 alkyltitanium(IV) species in the presence of aluminum alkyls (equation 147) [ 1761, (equation 148) 11771. Zn-conocene alkylated olefins with nitriles (equation 149) 11781. (Equation
Ticicpp 98-100% R1 = H, Me; R= = H, Me, (CH2)=, (CH&,,
References
P 643
R3 = Hi R4 = H, (CH2)2.
(CH2)3
147)
370
‘1
(Equation
148 1
(Equation
149 1
Ml
CPzWI* EWCI, 3) HCI 2)
Ph
Ph
34%
Rhodium(I) complexes catalyzed the C-alkylation of phenols with myrcene (1791 and the alkylation of olefins by indoles (equation 150) 11801. Cyclic enol ethers were alkylatively ring opened in nickel catalyzed Grignard reactions (equation 15 1) [ 18 11 Catalytic iron(O)-mediated carbocyclizations of triene esters and triene-ethers was the subject of a disseration 11821.
371
(Equation
1SO)
&y-_&H H
H
0J-Q H
q$‘p
N'
0
also cydize
(Equation
+
BuMgX
-
15 1)
()n,,OH
MCI:!
B4 n = 1,2
68-75%
Decomposition of Diazoalkanes and Other Cyclopropanations 4 Metal-catalyzed decomposition of diazoalkanes continues to be popular for cyclopropanation of olefins. A variety of transition metal complexes was screened for reactivity in the cyclopropanation of norbornene by diazomethane, with Pd(acac)z being the best 11831. Palladium chloride catalyzed the cyclopropanation of 1-alkoxy butadienes by diazomethane 11841, as well as ally1 alcohol and ally1 amine I1851I1861. Rhodium(I1) salts catalyzed the cyclopropanation of olefins by a-nitro diazo acetate 11871. Silylenol ethers were cyclopropanated by diazoacetate in the presence of copper acetylacetonate (equation 1521 11881. The cfs/trans ratio in the cyclopropanation of olefins by a-diazoesters using Rh(III catalysts could be affected by the rhodium salt and by the alcohol group on the ester (equation References
p 613
372
153) 11891 as well
as by secondary interactlons between the carbenold complex and the substrate (equation 154) 11901. Furan (equation 155) [1911 and propargyl ethers (equation 156) I1921 gave mixtures of products when treated with dlazo compounds and rhodlum(I1) catalysts (Equation
152 1
R
OTMS
N&HCO&fe .
Gu(acac)p
A co&l8 TMSO (Equation
@R
+
N2CH$-Z 0
--*
Rh2X4
Ftfy;dz
+
RfiuH
cat
coz
high franswhen Z = 0
OR olefin =
w
Ph/\\
153)
373
0I \
(Equation
154 1
(Equation
155)
C02Et
ww4
+ND+CW
+
H
0
+
HLCO
2
Et
(Equation
+ 8
OMe
N,CHC-R2
0 lll@MhOk
References
I) 643
156)
majorwithCF&Q-
314
Intramolecular cyclopropanations with optically actrve catalysts have also been developed (equation 157) I1931 A mechanistic study of the rhodium(II) carboxylate catalyzed reactions of diazo esters indicated that an equilibrium between free carbene and a metal-carbene complex existed 11941 (Equation
157)
0
b
( )” cd
cat.
Several other approaches to asymmetric induction in this process have been studied. They are summarized in equation 158 [19Sl, equation 159 [1961, equation 160 11971, and equation 161 [1981 (Equation
158 1
375
(Equation
r 4
159 1
0
Ph6
+
1
OR
-
A
QT
Ph
CW
96%eew?hR = L-llwhyi
SamecganjaSeq.158
75irans125cls
(Equation
R/\\
cI-c’
+N2cHGo2R’
v
R
*
50”
CO&V
3:l bmei!s 704mm
F”
(Equation
+
&Ph
-
u%
p 643
16 1)
A CO,R
Ph
References
160 1
316
Low valent
titanium
cyclopropanated
olefins with CFC13(equation
1621
[1991 (Equation
162 1
Transition metals catalyzed a variety of other reactions of diazo The rhodiumt I I) catalyzed species, in addition to cyclopropanations decomposition of optically active a-amino diazoketones to give optically active products resulting from C-H insertion. aromatic cycloaddition, cyclopropanation, a,a’-substitutions and fi-diketone formation have been Rhodium( II 1 catalyzed decomposition resulting in C-H studied I2001 insertions have been used to produce cychc enones (equation 1631 12011, hydroxyindoles (equation 1641 12021, cychc f5ketoesters (equation 1651 [2O3], alkenes (equation 1661 12041, furanones (equation 167) 12051, lactones (equation 168) 12061, lactams (equation 1691 12071, and other cyclic systems Unsaturated diazoketones cycloadded to (equation 1701 l2081[2091 cyclopentadiene (equation 17 1) I2 101
(Equation
Q.
Q2R
59%
spaw”
R 47-53%
57%
53%
(Equation
0
R = Me,Bn,Ph, R’ = H.t&,OMe
References p 643
163 1
0
164)
378
(Equation
165 1
R
NZ 6xwo
1346%ee
R=Me,Ph,
Lt
-
fi 3
cab2xylate =
OZC\/\Ph iPhTh
NZ Ar
.JL
O,C,,
02cv
IiPhTh
Ph 6-P,
166 1
(Equatlon
167)
CH,R
kR Ar
(Equation
lWcycH-3cb
-A
Ar
Ar -it%
R = H,CI, Me R’ = H,U.Me
0
0
Ph QJ(=)2
\rh 0
N2
‘I
Ph
PM
-xx
Ph
0 4%
Ph
319
(Equation
RoJgLo&* -
)
v
ROO O
NZ
I32
R’
O
(Equation
0
0
0
N% N2
L
CO,Me C&Me 1Wh
BUT
v 0
N2
0
0
0
mdmo4
NAtBu CO,Me
N+
-KT
0 r’ Et0
References
0 643
168 )
-
169 1
380
(Equation
cl-+ CL ( )
170 1
N2
/’
-Q?
+
N
co2
0
3FYoee
4Rh2
H
czd
EUT
0
4
..,dW=”
Phqo+0
l%ee
&S02Ph
-
&2ph
(Equation
17 1)
381
Ylids can be formed by trapping the carbene produced by catalyzed diazo decomposition with adjacent heteroatoms, leadrng to a variety of products (equation 172) (2 111, (equation 173) [2121, (equation 174) 12 131. Alkynes can trap the carbene to grve cyclopropenes which cleave to grve ally1 carbenes and ultimately produce polycyclic compounds (equation 175) (2141, (equation 176) 12 151. w-Hydroxy-a-diazoesters rearrange to f3dicarbonyl compounds (equation 177) 12 161 (Equation
MeO&--E--C02Me
0
MeO,C
References
I) 643
CO,Me
172 1
382
(Equation
A=0
173)
*
0
(Equation
A.H
Ph \
R
Ph
C02Et
174)
383
(Equation
175)
y6+o_.*., - y%. 0
C02Et
References
p 643
(Equation
176 1
(Equation
177)
OEt
384
Cyclopropanes are also made by the reaction of olefins with GroupNIl carbene complexes The carbene route to donor-acceptor substituted cyclopropanes has been reviewed 12171, and the full details published (equation 1781 I2181 Depending on the geometry of the olefin and on the solvent, C-H insertion IS sometimes observed (equation 1791 12191. O-A@ carbene complexes cyclopropanated olefins under very mild conditions (equation 1801 I2201 as did molybdenum carbenes (equation 1811 I2211 Intramolecular versions were also efficient (equation 1821 I2221. Tungsten benzyhdenes cyclopropanated allenes (equation 183) I2231 Thermolysis of iminocarbene complexes led to intramolecular cyclopropanations (equation 184) 12241. (Equation
178)
385
(Equation
Ph OMe
179)
Ph OMe
&
CN +
1
2
+ B
4 Q-b
A
92% 3 7i% 1 60% 4
B
s5”/ 2
(Equation (! 0 ONMe, (COkCr
1
R2 KBr IV0
=c R’
R4
0
R4>n<
K
R2
R’
q 409m
_( OR3 -m
ONBIJ,
W)&r =i
rices p 643
c5
PNBO
TBsi-5 OPNB
%
180 1
386
(Equation
Me0
OMe
PhjMo
4
+
Px
-
85” n-F
R
o? );I\\ (W5Cr
=t
A
18 1)
R
4
X
(Equation
182 1
(Equation
183 1
A
Ar Ar
=.
4
Ph
Ph
387
(Equation
184)
Me Ph
WV&r
L 2
Carbene complexes having remote unsaturation underwent combined metathesis/cyclopropanation (equation 185) 12251, (equation 186) 12261. Similar chemistry was observed in metal catalyzed decomposition of appropriate diazo compounds (equation 187) 12271. (Equation
R
A *
References
p 643
C02Me
\ $J
OMe
185 1
388
(Equation
OMe CWO),Mn4 +
186 1
OMe
R rzv E !ah?
*
4
E
0”
R’ R3 R2
R
R-71% E
R=
Me,Ph
R’=H, R2=H,Me, F?=H,Me, i+=Me,F’h n= 1,2 (Equation
187)
Rhodium(I1) acetate catalyzed an amlne rearrangement (equation 188) I2281 Ketones were oleflnated by diazoesters in the presence of copper catalysts and tributyl stlbane (equation 189) I2291
389
(Equation
188)
0
0
NR'W
NZ 1050
NR’FC
H
0 “‘2
(Equatton
Y b.=+
N,
==t X
R’ + l= R*
189)
cul o-
y = co2Me.ycoMe
x=w?kq_12ccMe
Cycloadditron Reactions 5 Palladium-catalyzed cyclization of enynes has been reviewed (69 references) 12301. Thus process IS very useful for the synthesis of cyclic compounds from simple starting materials (equation 190) 12311, (equation 191) 12321, (equatton 192) 12331 Enynes were cyclized wtth incorporation of carbon monoxide using titanium chemistry (equation 1931 12341
References
p 643
390
(Equation
190 1
408x!
(Equation
19 1)
391
(Equation
E
References
p 643
E
E H
H
192 1
392
(Equation
193 1
7\ -
c-
Palladium catalyzed polyene cycloadditions were also initiated by hydrosllylatlon (equation 194) 12351 and by oxidatlve addltlon/insertlon (equation 195) [2361 Regio- and stereocontrolled catalytic Pd and NI “enetype” cyclizatlons have been reviewed (equation 196) 12371 Cyclization was also affected by palladium catalyzed nucleophllic attack on dienes (equation 197) 12381. (Equation
194)
393
(Equation
195)
(Equation
196 1
(Equation
197)
w(O)of
Iron(O) complexes cyclized ene-dienes (equation 198) Unsaturated chromium carbene complexes underwent facile cycloaddition reactions (equation 199) 12401, (equation 200) I24 11. References
p 643
12391 [4+21
394
(Equation
198 1
(Equation
199 1
1) l%~Fe(O) *
Ph
2)T_
OMe
(W5M
==h R3
-
R’
Fl2
+
OMe
_f
\”
_
W),M
‘r
R2
R’
R3
Xi--
(Equation OMe
WkCr +
On0 -
R2
R3
0
200 1
395
Metal cycloheptatrlene complexes underwent a variety of cycloaddition reactions (equation 20 1) [2421, (equation 202) 12431, (equation 203) [2441. Cobalt complexes catalyzed the cycloaddition of alkynes to nonbornadiene (equation 204) [2451
_
(Equation
oh p(CQ3
\‘I R,
$2
20 1)
z
+
’
1) hv
/X
2) PM%
Y
/\ H
H *,.’
*
Y
8-
R2 R’ -
“Z
X
R’ = H,OMe,Me,I? = H,OMe;X = H,Me,OlMS
(Equation
R = OTM!S,OAc,H R=H,OlMS
References
p 643
202 1
396
R = Ph,ESu,lPr
(Equation
203 1
(Equatron
204)
lJptoSl%de 87%yleld
Iron acetylide complexes underwent a varrety of cycloaddition reactions (equation 205) I2461. Oxallyliron complexes cycloadded to N-s~lyl enamines (equation 206) I2471 Metal-coordinated thio and selenoketones underwent cycloaddrtion to cyclopentadlene (equation 207) 12481. Benzocyclobutane cobalt complexes underwent thermal cycloaddition with olefrns (equation 208) 12491
391
(Equation
205)
(Equation
206)
L(CO),CpFe-*S.-R’
CN
References
p 643
+
Me0
2
c&co2Me
(Equation
207)
(Equation
208 1
v
200”
co Ph
C02Me
5*eco*Me
Ph
k Ph
Ph WV0
6. Alkylation of Alkynes Cuprates added to alkynes to give vinylcopper complexes which could be further elaborated (equation 209) [25Ol, (equation 210) 12511 Trimethyl stannyl cuprates transferred the tin group to substrates (equation 21 1) [2521.
399
(Equation
XR
tBuo& tBuO,C-*Z--CO,tBu
E+
+ I?CIJ(~~~
XR
tBuO,C w
-
COdBu
CU
CQtBu
E
(Equation
n-
1,2
R = M&h
R = ~,Et,pr,mu,tBu,ph,
References
p 643
209 1
210)
400
(Equation
2 11)
SnMe,
Palladium(O) complexes catalyzed the alkylative cyclization of alkynes with aryl halides (equation 212) 12531, (equation 213) 12541, (equation 2 14) [2551, (equation 215) I2561, (equation 216) 12571. (Equation
Ph
2 12 1
401
(Equation
2 13 1
2 = H,Me,lMS
E
T I’
E
E
’ BrII
Flizha-
t
(Equation
M = Zn ZfiP&’
P 643
69 19 cl:84
2 14)
402
(Equation
2 15)
X CO+le
--TX
CO&le
+Els?+-R45
(Equation
2 16 1
TMS 1) ieu;pcl PhCsC-TMS 2)
Palladium catalyzed (equation 2 18) [2591
ene-yne
cyclizations
(equation
2 17)
(Equation X
[2581,
2 17)
403
(Equation
x=
2 18 1
E?r,U,I
Titanocene dichloride promoted the stannylation of alkynes (equation 2 19) 12601. Alkynes inserted into Zirconium-benxyne complexes to produce olefinated arenes (equation 2201 12611 and unusual heterocycles (equation 22 1) 12621. It also catalyzed the alkylation of alkynes by trialkyl aluminum reagents (equation 222) [2631. (Equation
References
p 613
219)
404
(Equation
220 1
OMe
OMe Br
4) 2BlJLl 5) 6) Q-W-J 7) H+
(Equation
R
X LI
HMe w
+I; ‘Cl
iy / Y
R=Me;
X=HH.MeO. Y=H,MeO
FIeFI
t
C&Q
R
,
-
I --Y x!? \)J
22 1)
405
(Equation
TMS
=
=
TMS
222)
1)w 2) E+
TMS
E’ = H+,II+,&+, AC’, r,y
47%3Yo
Arylmanganese compounds inserted alkynes under oxidative conditions (equation 223) 12641. Ruthenium(I1) complexes catalyzed the alkylation of alkynes by ally1 alcohols (equation 224) [2651. Rhodium(I) complexes catalyzed the addition of arenes to alkynes to produce styrenes (equation 225) [2661. (Equation
OMe
References
p 643
R
223)
406
+ PH-I
224)
(Equatron
225)
Ph
hv PhCfCH
(Equation
m 0
7. Alkylation of Allyl, Propargyl and Allenyl Systems Palladium(O) catalyzed reactions of allylic substrates haveremained a popular activity and is finding very wide application, although few if any conceptual advances have been made. Palladium(O) catalyzed macrocyclization reactions were the subject of a dissertation 12671. Cyclopropane-containing ally1 systems were alkylated by stabilized carbanions without ring opening, In the presence of palladium(O) catalysts (equation 226) j2681. A formal nucleophilic alkylation of the a-position of ketones was achieved via palladium catalyzed alkylation of an ally1 carbonate (equatron 227) I2691 Palladium(O) complexes catalyzed the alkylation of ally1 perfluoroalkanoates by malonates and by alkyl perfluoroalkyl- ketones 12701. Ally1 acetates were alkylated by tetronic acid derivatives in the presence of palladium catalysts (equation 228) j27 11.
407
(Equation
226 1
(Equation
227)
Me02CAS02Ph
0
ROKOO\/O,
+
w-w2
*
CO,Me C02Me
O-O\
Nut
2
1% I-gQ
W=
-
MJCH
NW
^r(0
0
C02Me
PhnCO
2
Me PhACN
408
(Equation
228 1
Nitrogen containing ally1 acetates were alkylated by stabilized carbanions in the presence of palladium(O) catalysts (equation 229) 12723, (equation 230) [2731, (equation 23 1) (2741 Silyl enol ethers alkylated ally1 carbonates in the presence of palladium(0) on silica (equation 232) 12751 (Equation OAc
BOCNH& + y ;,
R’ =
R”
BnO CH2
F+=H,OAc, Ro-
bW 4
x
BocNH_X
Rl
Y
I32
229)
409
(Equation
Ph.$=NfH-CO$t
+ (-) (’
= X
230)
Ph&=N-CH-CO+3 Mea
OAc
v
A
x
(Equation
23 1)
0
K,
V
OAc
AcO
NH 0
X
Ph
-
P NCR -
lur
40x%
NCOPh I OH
(Equatlon
232)
0 OTMS
0 w(o) K +
//“\/O
Ally1 carboxylates were alkylated by organoboron compounds (equation 233) [2761, (equation 234) 12771, stannylated by MezAlSnR3 (equation 235) 12781, and alkylated by organostannanes (equation 236) I2791 m the presence of palladium(O) catalysts. Thromboxane B2 precursors References
p 643
410
were synthesized utlking palladium(O) ally1 acetates (equation 2371 [2801
e”
I
woAc 2-Phstramfer
K0
+ pthB-Na+
catalyzed
allyllc functionalization
of
(Equation
233 1
(Equation
234)
OEt
--=-w ePh
411
AC0
(Equation
235 1
(Equation
236 1
+-
,C02Me
THPO +
:rences p 643
412
(Equation
237)
Chiral llgands were used to Induce asymmetry into the palladiumcatalyzed allylic alkylation process (equation 238) 12811, (equation 239) 12821, (equation 2401 12831, (equation 241) [2841, (equation 242) [2851. Functionalized allyllc substrates reacted with norbornenes to produce cyclopropanes (equation 243) 12861, (equation 244) [2871 (Equation
TMS
L-33
+ MgBr
OAc
-d /
TMS
238 1
413
(Equation
R2
,lJh ’
t-1
OAc R’
+
FP-C02R4
L’w
239 1
JJ$C02R4 lq.m82%ee
for
PhJh
0 OAc
L* =
n=2,3 HO,C
(Equation
References
I) 643
240 1
114
Phq””
+
MeO
OAC
crN;Ac
r’W
(Equation
24 1)
(Equation
242 1
phV-q(ph
)
2
Me02C
COye NH PC
(Equation 0
0Ts
+ co
-l&7 I
NTs
0
243)
41.5
(Equation
244)
OSiR3 OCO.)Je +
+
R
A variety of heterocycles were made by palladium(O) catalyzed allylic alkylation of acetates (equatron 245) [2881, (equation 246) 12891, palladium catalyzed insertion of alkynes into n-allylpalladium intermediates (equation 247) I2901 and insertion of alkenes into the same species (equation 248) [2911, (equation 249) [2921, (equation 250) 12931. (Equation
245 1
416
(Equation
246 I
(Equation
247)
SOPPh
--
(-)--
R’
x
I32
5?hM HOk
X = Cl, Br, I,
R’ = H,
R=H
(Equation
248 1
417
“‘6‘”
N’K=%W
(Equation
249 1
(Equation
250)
)
Co. THF MeOH
CO$Ae WWP
.P
OCOPh (XL
HO&
OCOPh
-+3-L
3%
N J+ Ph
0
+ CO&de II
‘h.. 0, N
pI OCOPh
B’a
418
From a very broad study of catalysts, Mo(RNCLt(COI2 proved to be the best general MO catalyst for ally1 alkylation of ally1 acetates I2941. Molybdenum catalysts favored attack at the g&q& substituted end of an ally1 system (equation 25 1) 12951 (Equation
25 1)
SO,Ph
In the copper catalyzed reactions of Grignard reagents with allylic acetates and sulfones, the regiochemistry was controlled by the reaction conditions 12961, (equation 252) [2971 Copper complexes alkylated chit-al ally1 carbamates with high ee (equation 253) 12981 (Equation
252 I
419
(Equation
253 1
0 0
A. HN OMe
R = Me,rfbPtl; 4cm% 8E91%ee
Palladium(O) complexes catalyzed the coreactlon of allenes, vinyl and aryl halrdes and triflates, and malonates (equation 254) [2991, and the alkylation of allenic esters by alkynes (equation 255) [3001. Stannyl cuprates added to allenes and the resulting vinyl cuprates were further functionahted (equation 256) I3011 Ally1 metal complexes alkylated allenic ethers (equation 257) 13021. (Equation
o-\
+ XL + (
w(a)_
);_
R, y
X
Z
N=CPb R = H,n’+,TMTMS;X,Y = w
References
p 643
(
CO&le
254)
420
(Equation
p2Me
R
ti
‘1
+
R
4%mpPc~ TDMpp
R’e
C02Me -
) -P
H
H
255)
f
R +
E
‘-c -
+
RT,Me
I/(
ti
‘\
R’
8085%
R’
(Equation
-==c SnBu,
=.= -100"
278”
cu
I
I
=lE
SnBu,
f3
Ek
ET+= H.Ac,Me,C&H
-4
cu
=c E
SnBu,
iwu?b
SnBu,
256 1
421
(Equation
257 1
OEt
R)-.-fEt+
“\)&A
H
H
E+
M
OEt
y+N H
E
Propargyl ethers were alkylated to allenes by Grignard reagents In the presence of copper catalysts (equation 258) I3031 Perfluoroalkyl copper reagents alkylated propargyl systems to give allenes (equation 259) 13041, (equation 260) [3051 Palladium(O)/copper(I) catalysts alkylated propargyl carbonates wrth alkynes (equation 26 1) 13061. (Equation
vlil
synaddibon, pekrinctihn.RMgl+ antietnnabon RMgCl-i syn elimination
chml
References
P 643
ether -i chralallsne960/o ee
258 1
422
(Equation
259 1
(Equation
260)
(Equation
26 1)
t3* R’
WJ+
tj = !=(CF&; R’=H,Me;
R,CH=C
n = 1,3,6,6 ti=H.Me,(CH&;
m+flBr
X=C~OT
-
R,CH=C=CH,
R* R’
+
R4=
-
-
w(a) (11
A dissertation dealing with the dynamics and stereochemistry of reactions of cobalt carbonyl stabilized propargyl cations has appeared 13071 These stabilized cations were alkylated by indoles (equation 262) [3081, trimethylsilylenol ethers (equation 2631 13091, and phenols (equation 264)
423
13101 Allylic halides cross coupled to ally1 organomanganese(I1)
compounds
[3111.
OR2
References
p 643
OTMS
(Equation
262)
(Equation
263 1
OR2 0
424
(Equation
264)
Me0
Coupling Reactions 8 Reductive homocoupling of hahdes has been further developed The classical Ullmann coupling of bromobenzene was compared with that effected by copper metal vapor [312l Fluoroalkyl iodobenzenes were coupled under Ullmann conditions (equation 2651 I31 31. Activated copper homo coupled allylic, benzylic and ahphatic bromides efficiently 13 141. in pyridine coupled z-chloromethyl Nickeh I I) chloride/phosphine/zinc benzoate to the biphenyl in good yield I3 151 A related system homocoupled a wide range of aryl and heteroaryl halides (equation 2661 I3 161 Aryl and vinyl halides cross coupled to a-chloro esters under electrochemical reduction in the presence of nickel complexes (equation 267) 13171 Chromium carbonyl amine complexes coupled a variety of halides (equation 2681 13181 (Equation
265 1
425
(Equation
0 I
‘J--R
X w2
,;
ZlllEf4N THF
R
Ha o-
,\
\’
/
-@ I R
*
x
@Itwo
63-B
(Equation
R Ax R +
Y Cl
@X
References
p 643
266)
C02Me
bYt=2
e-
Ar A
CO#e
267)
426
(Equation
268)
Intramolecular coupling of aryl halides was promoted by palladium(O)/hexamethyldistannane catalysts (equation 269) 13 191. Arylsulfonyl chlorides coupled to biaryls in the presence of palladium(II)/tltanlum(IV) catalysts (equation 270) 13201. Reduced tltanlum species homocoupled halldes (equation 271) I32 1I (Equation
X = Br, I,OTf Y=a-f,H
269)
421
RX + cp$llA
-
(Equation
270 1
(Equation
27 1)
R-R
goodyields
--, McMurray’s reagent (“Ti(0)“) has been extensively utihzed for the reductive coupling of ketones to olefins (equation 272) 13221, (equation 273) 13231, (equation 274) 13241, (equation 275) [3251, (equation 276) I3261, (equation 277) 13273. Reduced vanadium coupled ketones to dials (equation 278) 13281.
: Eh !
_---
References
p 643
‘.._
.
0
(Equation
THF
PY
x-
s+
TM *
-%H
*LL,
272)
428
(Equation
273)
(Equation
274)
(Equation
275)
429
\, :
0
276 1
(Equation
277)
-tc Y
Y eQ O”,
(Equation
0”
miw
O”/
0”
X = OSF&,H,Wc n = 0,1,2
(Equation
!?=H,OTEWMS
278)
430
Tungsten hexacarbonyl coupled dithioketals to olefins (equation 2791 13291. Cobalt ally1 complexes coupled dtenes to electron deficient olefins (equation 280) I3301 Manganese porphyrin complexes oxrdatively coupled phenols to make benzylisoqutnohne alkaloids [33 11. Alkylcuprates and alkylhthiums were coupled (equation 28 1) 13321.
n
R’
(Equation
279 1
(Equation
280 1
R’
4fdd-w(co), -l=t
x
R
R
431
(Equation
28 1)
LI +
CuRLi
J ‘%,
OtBlJ
Alkylation of n-Ally1 Complexes 9 Allylic halides coupled to brs-n-allylnickel complexes to produce biallyls [3331. n-Allylpalladium chloride complexes reacted with methyl formate to produce unsaturated carboxylic acid esters 13341. Chloromethyl allylpalladium complexes were arylated by tetraphenylborate (equation 282) 13351 and stabilized enolates (equation 283) 13361. Ic-Allylpalladium complexes with optically active DIOP ligands allylated optically active esters with good de (equation 284) 13371 Z-Stereochemistry could be forced in the alkylation of n-crotyl palladium complexes by using a-methylated phenanthroline ligands (equation 285) 13381. The stereochemistry of oxidative addition of palladium(O) complexes to allylic chlorides depended on the solvent and the ligands (equation 286) 13391. (Equation
Ph
References
p 643
282 1
132
(Equation
Q-
283 1
+
Ar
2
(_)
(COzMe C02Me
1) UlX4F NaH
Ar
Ar
AJ = z3, YMeO)~Rl
(Equation
PCI(-J-DC+
+
Ph,NIoo& Ph
-
284)
phyN&oR Ph
H %Ilyl
433
(Equation
+ MeO.$ (-)
C02Me
285)
ZpDdrds
-
Y
(Equation
CO,Me
\ 0 I
“‘WC,
w4w
286)
m-8 +ce / CO,Me
PZ
Pd
‘Cl
/ ‘Cl
2
2
100’0 n PH-I 3
97 n DMSO
n-Allyliron complexes of tropones were alkylated by iron ally1 and propargyl compounds (equation 287) 13401. Catlonic rhenium n-ally1 complexes were alkylated (equation 288) 13411. n-Ally1 iridium and rhodium complexes underwent alkylation at the central carbon to give metallacyclobutanes (equation 289) 13421
References
P 643
434
(Equation
287)
(Equation
288 1
0
Fp GOWe
Nut
435
(Equation
289 1
CP; Me,P
HM
M = Ir.Rh
A paper dealing wrth controlling the regiochemistry of nucleophihc attack on unsymmetrical ally1 complexes of the type CpMo(NOI(CO)(allyl)+ has appeared 13431. Cationrc Jc-allylmolybdenum complexes condensed with aldehydes (equation 290) 13441, and were alkylated by allyliron complexes Acetyl-n-allylmolybdenum complexes were (equation 29 1) 13451. elaborated into polyhydroxy compounds with a high degree of stereoselectivity (equation 292) [3461[3471. (Equation
+ F R B4-
Me
+2 0 %+R
References
P 643
290 1
436
(Equation
29 1)
+ Mo\Cp(NO(CO) +
FpM
-
M
\ FP+ wo
(Equation
CPT
co
292)
‘co
9H -
9H
OH
,,u,,
2
10. Alkylation of Carbonyl Compounds Vmyl copper reagents reacted with aldehydes and CH212/Zn to give allylic alcohols (equation 293) 13481. Aldehydes and acid bromides combined in the presence of zinc chloride, and the copper complex of the resulting product alkylated a variety of electrophiles (equation 294) 13491 Cuprates ring opened bicychc ally1 ethers (equation 295) 13501 Manganese metal reductively allylated ketones with allylic bromides (equation 296) [3511 Chromium(II) chloride carried out a similar process (equation 297) 13521, (equation 298) 13531.
431
(Equation
R&i
293)
JL f
(Equation
0
A
,a,+A,, + OAc R
.A
Is
R
A
1)zn w
2) ClKN*2Liu
Br
OAC w
Cu(CN)ZnBr
R
A.
E
Br E+ =
E-.=.-E
PhJcN
H--.=.-E
yBr E
encap
643
ph+NOz
CB-.c._~
RCXI
’
294)
438
(Equation
295 1
(Equation
296 1
(Equation
297)
R
x,y,,Br
+RCHO X m;iw
x=;cl,Br
a I
\
O&Br
’ OPO
n = 0,1,2
rIhY
439
(Equation
298 1
cQ/Lll
FP MF, 0” OH
OH
Alkynes reacted with ketones in the presence of tantalum(V) chloride and zinc to produce allylic alcohols (equation 299) 1354113551. Niobiuna(V) chloride condensed alkynes with dialdehydes (equation 300) [3561. Zirconium catalysts promoted the p-alkylation of naphthol by a-keto esters (equation 30 1) [3571. (Equation
TaCWn RI-.=.-#
THF m
PY
References
p 643
299 1
440
(Equation
300 1
(Equation
30 1)
R’
!
NbCl5
‘t’ -
2,04utidine )
DME
R2
R’ = nC5, Ph. nC6,nC7,MRnClo
~~ =
nC5, Ph. nC6,I-LTMs
OH
OH
+
OH
CHjXO,R
27% ee
upto 84%ee
Cobalt complexed acetylenlc aldehydes underwent alkylatlon by ylides (equation 302) [3581 and tr~methyls~lylenol ethers (equation 303) 13591 Chromium complexed benzaldehyde was allylated by choral ally1 boranes with high enantioselectlvlty, as were cobalt-complexed acetylenic aldehydes (equation 304) [3601 Nickel chloride catalyzed the converslon of dlthlanes to oleflns by Grignard reagents (equation 305) I3611[3621. Tebbe’s reagent converted a lactone Into an enol ether (equation 306) I3631
441
(Equation
302)
(Equation
303 1
R = 00$k H,Me,(0&‘)!+(CH2)4,
c
OTMS
0
R-8-H I co2wb3
R = TMS, nBu, Ph n = 1,2,3
+ /
0
oil
OH 1)
Tic14
2) CAN
0
R-y-?” SO-87% 80.20 to 95.5 eryihro/threo uncomplexed - 1’1 to 8.94
442
(Equation
304)
OH
CrGO)3
AND
c,eCHO I co2(co)s
92% ee
(Equation
NiC12L2 +
RCH2M9X
305 1
Ar
R
R’
R’ = TMS, H, Me,.% AI = Ph, l-mph, OMePh, 35MPh,
pMeOPh
(Equation 0
306)
443
Ruthenium carbonyls catalyzed the reductive alkylation of aldehydes by stabilized carbanlons (equation 307) 13641. Rhodium carbonyls catalyzed the condensation/silylatlon reaction of enones with aldehydes (equation 308) I3651. (Equation
307)
(Equatron
308 1
CH2R’ 4m%2
RCH2Z
+
R’CHO
t
H21C0 150-230” 100 at
R = Ph. CN, C02Me,
RCHZ 70-100%
COMe
Z = CN,C02Me,COMe R’ = H, nPr
h0
+y 0
RUCOh2 +
Et2MeSiH
_
R Ph,PMe 0
OTMS
60-80%
yvpPhyy4
0
Q 0
1 1. Alkylatron of Aromatic Compounds Applications of arene chromtum tricarbonyl in asymmetric synthesis has been reviewed (21 references) 13661, as has stereocontrolled synthesis using arene tricarbonyl chromiumcomplexesas catalysts (9 references) 13671, and application of $ arene complexes in organic synthesis (26 references) I3681 The chemistry of arene-manganese complexes was the subject of a References
p 643
444
dtssertation 13691 ‘Substitutron nucleophile aromatrque; actrvatton par les metaux de transitron” was the subject of a revrew (128 references) 13701 Stabrlrzed carbanions contarning imines alkylated chromrum complexed fluorobenzenes (equatron 309) 137 1I and manganese coordinated arenes (equation 310) [3721 Benxyl alcohol groups du-ected the sate of nucleophilic attack on chromrum complexes benzyl alcohols (equation 3 11) Arenes were alkylated then acylated by a process involving I3731 nucleophrhc attack on a chromium arene complex (equatron 3 12) [3741 tButylhthlum attacked chromtum complexed toluene ortho to the methyl group (equation 313) 13751 (Equation
309)
+ &N==(H Ph
Y
40-60$ R = OMe,
mM8,pMe,pm0
x = co#Jle Y = CN
(Equation
+xY
“Y” Ph
fwm3 6040%
3 10 1
445
(Equation
3 11)
R’
/(>I\ 4
CN CH20H
+
A
N e
Nud.attackpandmto CHpOH group
f-1
&(CO), OH
-_p-JoHq-JoH ““,‘d OMe
13
18
OH
,,d
t
t
47
89
(Equation
01; I df(C0)3 +
(‘I-w
s+s
I
r-7
RX/CO
. 6
s s
..A
‘/
3040%
References
p 643
o
R
3 12)
446
(Equatron
3 13 1
CH3 +
~BIJLI
-
WCQ3 WV3
Chromium du-ected regio- and stereocontrol was the subject of a revrew (3761 Arenechromtum tricarbonyl complexes were hthiated then alkylated by ally1 bromide (equation 314) 13771 Lrthiatron of ($- Itriisopropylsrloxy-3-methoxybenzene) chromrum trrcarbonyl occurred at C2 not C-4 as expected 13783 Chromium complexed a-phenethyl amine underwent directed orthometallation (equation 315) 13791 A hrgh degree of stereocontrol was manifest (equation 3 16) j3801. Chromrum complexed benzocyclobutanes were regrospecifrcally lithiated and alkylated (equation 317) I3811 Arenechromium trtcarbonyl complexes were used In the syntheses of 6,7_benzomorphans j3821 (Equatron
r
1) tBuLi
w
*)eBr WCQ3
CrKQ3
314)
ty*& WC03
Cu cat
/\ c-w WIH
NW2
(Equatron __
1) tBuLl 2) E+
\
CGQ3
WCQ3
~88%de, E+ = D, Me, Me3Si, PPh,, PhS
4040%
yield
315)
447
(Equation
3 16 1
(Equation
3 17)
OM8 1) tBuLi - 2) CYl 3) ox CWV3
CrGO)3 AND
CGO)3
CrWki
R = TM,
D. Me, I, CHO, C4Me
+
\ICD ;
1:2wittlBuu 1:11 with TMPLI
I
CrWV3
Chromium complexed aryl aldehydes were alkylated with a high degree of stereoselectivity (equation 318) [3831, (equation 319) [384], (equation 320) 13851, (equation 321) 13861. Arene complexes having benxyl hydrogens alkylated formaldehyde (equation 322) [387l and bromoacetic References
p 643
acid (equation 323) I3881 The stability of chromium complexed benzyl catlons was used III a cyclizatlon reaction (equation 324) 13891. Chromium complexed benzocyclobutanes were in equilibrium with the dlene form and underwent cycloaddltlon reactlons (equation 325) [3901. (Equation
318)
(Equation
3 19 1
(Equation
320
x+o+(==J
1) BF3*OEt,
2) CAN
n
Nuc-
Nut = CH3, D
(4 NC-CO*Et
CW23
(resolved)
1) 02 -
2) H+
-loo%ee
1
449
(Equation
0
cf) 1,;
/
(C0)3Cr
Meo
32 1)
65 .,,m
_MlCl
1,; * (C0)3Cr Meo Oti /
0
Lf
81%
I
1) IAH 2) A%0
OAc
80%
(Equation
+
HCHO
-
Bmajor
8&l OF% de 1548% yield
A = OMe, OiPr, NMq,, NED* R = Me, iPr
minor
322)
450
(Equation
323)
(Equation
324)
1) NaH 2) BrCH&02Na 3) H+
1) HBF4
w 2) 4,
hv
Me0
Me0 complete retention
(Equation
dr(CO),
325 1
dr(CO), 53%
BIS complexed biphenyls were reduced then alkylated by halides (equation 326 1 I39 1I. Iron arene complexes were alkylated by chloroform (equation 327) [3923 and were reduced, alkylated and acylated (equation 328) [3931
451
(Equation
326 I
(Eauation
327)
R’X
-I ox
TFA
R’ = H, Me, Et, Bu,
452
(Equatron
328 1
1) Ph&+ 1) NaBH4
2) tBuO-
3) PhCOCl 4) tBuO5) A1203
Alkylatton of Drenyl and Drene Complexes 12 The alkylatlon of cyclohexadienyln-on complexes continues to be developed for use In organic synthesis (equatron 329) 13941, (equatron 330) 13951, (equation 331) 13961, (equation 332) 13971 Drenyl complexes with external olefins underwent attack at either the rrng or the side chain depending on condttrons (equatton 333) 13981. Cationic molybdenum drene complexes have also been utiltzed to functionalize cyclohexyl systems (equation 334), cycloheptyl systems (equatron 335) 13991, and pyran systems (equations 336 and 337) I4001 (Equation ‘329 1 OMe GOMe
(3 *02c
\’ 3
NaCN
‘..,,,
r SOpPh
W&Fe
Ph02S --
S02Ph
co2Me
453
(Equation
c Ohh
\ -Fe(CO)3 /
330)
Ph t-) (E
1) Ph&+ -
Fe(CO)3 2) PhLi 3) TFA
OMe
E
0 Oh48 63%
Ph ..6 i, Me0 Fe(CO)3 75%
(Equation
NH2
References
p 643
33 1)
454
(Equation
332)
KOaFe
1) LiNHSRBuOH .
aftersep of
2) TsOH 3) WW5
1) Ph3C+ 2) wcy 3) CuCI.2 t
x
X.,,
R 0
65%
(Equation
Fe&Ok
Nut = Me&U 73% Bu@lLi 60% c”
-
73%
BH.,-
76%.
CN-
66% 73%
333)
455
(Equation
334)
0
0
goodyields E, E’ = D@, Mel, PhCHO, MeCOCI,
Br-C02M3
PQPh
(Equation
335)
(Equation
336)
0
+
+
~(CO)&P 1’ [‘7
WCO)&P R-
0
THF
( R\\“’9 o 56-92%
x,,,,CO2H
3) CF&&H “m2
R- = D, Me, ptolyl. (-)CH&02Me,
BuCC-, A /
(-)( (4
References
P 643
Y
456
(Equation
+
MoamJQcP
0rx 0
,i<,.
(4 <; -__c_)
\
0, 0
“‘,,,
I
337)
““#, cqh4e
co*Me
Acychc dienyhron complexes also underwent (equation 338) 14011, (equation 339) 14021, (equation
attack by nucleophiles 340) 14031. (Equation
338 1
+ Nut -
Nut = H20, 93%; H-. 76%, PPh,, 95%,@‘---ms
(Equation
RLI
R = Me, tBu
L = CO. tBuNC
339)
457
(Equation
340)
0
R
Fe(CO)s+
J5 I
+ 2) air
40-60% R = Me. Bu, Ph
Iron-complexed diene aldehydes were extensively elaborated (equation 341) 14041, (equation 342) 14051, (equation 3431 [4061, (equation 344) 14071. (Equation
_
Bu+
Bu&Nxph Fe(CO)3
(+)
Fe(CO)3
34 1)
(3
(3
N I
Ph
1) BuLi .
. w
Bu~CHO
2)
0
k(CO,, (3 2s 5R high seiecfivffy for matched pair
References
P 643
winig
458
BU
(Equation
342 1
(Equation
343)
30%
70% AND
I
459
(Equation
WC%
2R
(fast)
344)
WCOh
>100: 1
Palladium catalyzed the bis alkylation of b-dicatbonyl compounds by dienes (equation 345) 14081, as well as the arylation/alkylation of dienes reaction with (equation 346) 14091 Iron complexed enones underwent methyllithium to give vinyl ketene complexes which reacted with isonitriles to give vinyl ketenimine complexes (equation 347) 14101, (equation 348) 14111. (Equation
ALSO
References
1, 643
345 1
460
Y
N
+
ArX
+
(Equation
346 1
(Equation
347)
PW’)
(
*
ArdX
X 40-600~
Ar = Ph. pMePh, mMePh, pClPh X, Y = CN, COpEt
G33Fe
(COMe
i
I,
0 1) EtLi phy
:i %
Ph H”
Ph\\
(/”
-2) TFA 3) ox
separate I( VWe
70% 75% 1 1 at Iron
Ph
461
(Equation
348 1
0 Nuc-
.
Nut = Me. PhCH2NH, b&O. StBu.
Nut
X
NHtBu
Metal Carbene Reactions 13. A large number of reviews on carbene complexes in organic synthesis “Carbene complexes in catalysis” (83 have been published. These include references) 14121, “Transition metal complexes of unsaturated carbenes synthesis structure and reactivity” (280 references) (4131; “The role of metals In carbene synthon introduction” (37 references) 14141, “Carbene complexes m stereoselective cycloaddition reactions” (52 references) I4151; “Amlnocarbene complexes” (23 references) [4 161, “Metal mediated cyclizatlon of alkynes and carbenes - a new route to highly substituted cyclopentanords” (8 references) I4 171; “Chromium carbene complexes in the synthesis of molecules of brologrcal interest” (18 references) [4 181; “Alkene carbene complexes of tungsten and chromium Therr reactions wrth alkynes” (32 references) 14191, and “Carbene complexes derived from the activation of lsocyanides and alkynes by electron-rich metal centers” (77 references) 14201. and “Metal carbene complexes from alkynes” 142 11. An optrmrzed procedure for the synthesis of chromium aminocarbene complexes from amrdes and KzCr(C015 has appeared 14221. Tungsten throcarbenes underwent reaction with ynamines to give low yrelds of rndenones (equatron 349) I4231 References
P 643
462
(Equation
349 1
SR ww(
+ Ph
+ 0
1; / 05 The reactions of unsaturated chromium carbene complexes with alkynes continues to produce an array of complex cyclic compounds (equation 350) 14241, (equation 351) I4251, (equation 352) 14261, (equation 353) 14273, (equation 354) [4281, (equation 355) 14293. (Equation
OR3 WWr +
R’&f2
&
0
,34
R’
R3 30-60%
350 1
463
(Equation
x
OR
m+
;:“;I”
35 1)
J-q20 8040%
R’ R’
Ft20
R’ =
H, C02Et, CH_PSIR3, l-MS,
t /*Ok&
OR
x = 0, H-SiR3
R’ = CO&l@, COW, R2 = H, CO@,
NC
0SiR3
MBOel
TMS, Cti@SiR3
(Equation
t) A OMe
2) CAN
28%
Referencesp 643
352 1
(Equation
353 1
X = H; major 43% x = oMe;o%
x = H, 34% X = OMe, 24%
X = Oh,
24%
(Equation
Oh463 Re
+
(CO)&r Me0
if R = 0, furans, indenes predominate
A -
quinones, furanes, indenes (see equatkm
3%)
354)
465
(Equation
+
x-ray of
+
low
355)
yields of mixtures
0 N
\ 9
o*-+cr(u3,,
Cyclopropyl carbenes having acetylenic 0x0 groups formed blcychc compounds upon thermal reaction (equation 356) 14301. Chromrum acyl compounds also underwent reaction with alkynes (equation 357) I43 11. Tetraalkoxy olefins underwent a 2+2 cycloaddition to the side chain of alkynyl carbenes (equation 358) I4321 Photolysis of chromrum alkoxy carbenes with olefrns produced cyclobutanones (equatron 359) 14331 Photolysis of alkoxycarbenes with isoindoles gave dlmertc compounds (equation 360) 14341.
466
(Equation
3%)
0
o*“L&R*
=b
(C0)5Gr
/ * 33 R
( )“,O
(Equation
R’ = Me, PhCH2, Ph,m M’ = Li, MeaN+, k&l+
\
357)
46-l
(Equation
a
358 1
OR
f-JR1
PO
WI +
R%
x’
OR3
OR3
M
-
R30 R30
- I32
DMSO c
OR3 OR3
(Equation
R OR’
=c
(COk.Cr
+
x
359)
X
hv
R
high yields many examples
(Equation
360 1
468
Tungsten carbyne complexes were annulated with alkynes to produce naphthols (equation 361) 14351 Carbon-carbon bond formatlon by means of zlrconocene-derived carbene complexes has been reviewed ( 16 references) I4361 This chemistry permits the useful elaboration of the diene starting materials (equation 3621 14371 [438l (Equation
OH cs oc-w=_tot Oc’
1) H13F4 2) Fl’efl2 3) ox.
R’ = Me, H. Et, nPr, iPr
HBF,
R* = Me, Et, nPr, IPr, tBu OH
36 1)
469
(Equation
CPa
3
362 1
+ W(CO), -
1
0 1) Ph3PCH 3/
WC015
HO \ HO
““‘cH3
5 0
0
Alkylatlon of Metal Acyl Enolates 14 The two examples of use of this chemistry 4391 and equation 364 14401
are shown in equation
(Equation
co
Ph
CpppFhe 3
0 .Iq,, I;‘
+
2eq Br (4
0 71% SSWSSS
References
p 643
= 30:1
363
363 1
410
(Equation
co CpFe PPhs‘r( 0
1) BuLi
2)
OtBu
co
p
0
364)
CpFe L+
0 0
OtBu
\r
40.1
Br
B.
Coniuaate Addition Organocuprates remained the reagents of choice for conjugate addition reactions, and both new reagents and new apphcatlons continue to evolve. Cyclic ally1 cuprates could not be made from tm precursors but exchange with lithium gave ally1 cuprates whmh were efftcient nucleophrles (equation 365) I4411 Phosphorous-containing cuprates added 1,4- to enones (equation 366) 14421. Ally1 copper/trLmethyl silyl chloride was an efficient 1,4-alkylation reagent (equation 367) 14431 High 1,4-selectivity was achieved in copper-catalyzed addition of Grignards to enones In the presence of trimethylsllyl chlorrde (equation 368) [444l, (equation 369) (4451 Unsaturated lactams also underwent 1,4-addition of organocopper reagents (equation 370) 14461 (Equation
SnBuB
1) MeLi . 2) CuCNdiCI
Olher E+ also react
e.g. RX, RCOX,
365 1
471
(Equation
0
366
1
CtiCNZnBr
2) CuCN*WI
(Equation R ~ ~cu*-rMsct \
References p 643
+ w”
-
%ynA
367)
4.72
(Equation
+
.
BuMgBr
a
KI
CU(ll) -
TMSCI
co*Me
BU
(Equation
R’ R*
h -
R3MgCI
TMSCI
369 1
R’
3% Cucl *
C02Et
368)
R’ -k Rs
C02Et
good yields R’ = H, Me R* = Me, Pr, iPr, oh R3 = Ma, Bu, IPr, tBu, Ph, a\
(Equation
RuCuLi
tBOC
tBOc 62-84%
R = Ph, Me, Bu3Sn, PhMe2Si n = 1.2.3
370)
473
Vlnylcuprates were readily derived from vinyl zirconium 371) [4471, (equation 372) [4481. or aluminum reagents (equation and these reagents added cleanly in a 1,4-fashion to enones
(equation 373) [4491
(Equation
Cp&H)CI RCzCH
2) CuCN 3) MeLl
OTMS
References
p 643
37 1)
474
(Equation
-/\OSiR, -
-
372)
1) C@HcI ‘_7
0
2) 3MeLl 3) CuCN.LiCI
0
0 \
OSiR~
%
77%
0
‘ypn
&
_-
C,C02Et
_
_
I
R OBiR~
asm equation 371
TEBO
(Equation RCGCH
R’fjAl -w
R 7
CP2zrcf2
R’
‘1
12
2) tBuU 3) cux 4)
R
373)
Conjugate addition reactions were central to the synthesis of prostanoids (equation 374) 14501, (equation 375) 145 11, Polycyclic compounds (equation 376) 14521, (equation 377) 14531, precapnellene (equation 378) 14541, and steroids (equation 379) 14551. (Equation
e
+
BupSny
I
t)H 55% AND
-
I
/C02H
-
m 6H 76% (coriolk add)
374)
416
(Equation
375)
477
(Equation
376 1
(Equation
377)
0
0
IP I
JL
+ MeaGe
CuCNLi
I .. ‘Q,
&
GeMe, 9
65%
65%
418
(Equation
378 1
419
(Equation
379 1
--
Methods to control stereochemistry in the conjugate additions of cuprates warranted extensive studies. Several approaches were fruitful. Control of relative stereochemistry was achieved by constricting the enone into a rigid, hindered cychc system (equation 380) 14561 [4571 14581, (equation 381) 14591 or by the use of bulky ester groups (equation 382) [4601.
References
p. 643
180
BF30Et
(Equation
380)
(Equation
38 1)
0
R’ = Ph, Me, Et, Bu. H R* = Me, Pr, Bu, Cs, Ph, w
1) l@CULi 0
-
BF30Et
R = Me, Bu, tBu, Ph, PhCH,, I-naph,
0
481
(Equation
8044%
382 1
70 .30
R’s = H. Me
Asymmetric Induction was achteved by the use of chiral ligands (equation 383) 14611, (equation 384) 14621, (equation 385) I4631 More commonly, a choral auxiliary somewhere in the substrate was utrlized. This could be on the carbonyl group (equation 386) 14641, (equation 387) [465], (equation 388) I4661, Q- to the carbonyl group (equation 389) [467], Y - to the carbonyl group (equation 390) 14681, (equation 39 1) [4691. (equatron 392) 14701, (equatron 393) 14711, (equation 394) [4721. or i- to the carbonyl also induced group (equation 395) 14731. The use of chiral sulfoxides asymmetry (equatron 396) 14741 (Equation
Q+
0
0
RMgX
CuN' R3SiCI HMPA
R up to 78% ee
R = Bu, Me, Et, Ph, fi /
R = Ph, 1-napth
References
P 643
383)
482
(Equation
384)
upto9o?kyiekl upto8Q%ee L’=
Ho
(Equation
L”R@LI
+
&-tlR 92% yield 91% 88
Ph
385)
483
(Equation
386)
(Equation
387)
R = Ph, Me, Bu
Y = (CH&Ck
k NNyNrR’
15-N% : 10
(c&),l
90
Ph
+
“mcu
-
92-97% yield 97% de
(Equation
388 1
4.84
(Equation
389 1
/OMe
0
1
NOz
3
+ HN
82-849/o
4060% high ee
R = Me, nBu, Et, Ph. /-‘/
(Equation
m
yield 97% de R’ = H,Me ~~ = Me. iBu, PhGH2, Me
390)
485
(Equation
39 1)
(Equation
392 1
40-90% yield
R=
Pr, Me, Bu
-
tmns (R)(S)
6049% lrom70:301097 R = Me. Pr, Ph, PhCH2, 61
:sp
643
3
487
(Equation
395 1
tdS&ULl w
TMSCI or not
withTMBcl6l%yWd,39%es3(R) withoutTMBCI 43% yield, 93% ee (S)
(Equation
396 1
Cuprates underwent addition-elimination wth fi -tosyl sulfoxides (equation 397) 14751, but added to other substltuted enone systems (equation 398) [4761, (equation 399) 14771, (equation 400) 14781 (Equation Ph,, P TBoMN;s \ I OTs
-) RAlR2’?rbPd
R = Me, Et, nBu, IPr. Ph, &/
References P 643
Ph,, ?
R&ULl
TBod R
397)
488
(Equation
e
398)
0
0
X
l;,Ix +
R*CULI
ti
-
co
R
60-92%
X = CHO, COW, COPh, CO&fe, CN
(Equation
63-63%
399 1
67%
R = Me, Et, nBu, SBU, Ph
(Equation
400 1
R2CuCNLi2BF3 w COgAe
THF, -76”
R’. R2 = H, Me
R = Me,nBu, Ph, b+Ph.Si,
fi !
Ynones (equation 40 1) [479l, (equation 402) 14801, ynenones 403) [481], (equation 404) 14821, methylenecyclopropyl ketones
(equation (equation
489
405) 14831 and epoxyenones also underwent reagents (equation 406) [4843.
conjugate
addition
with copper
(Equation
40 1)
&uLi
1) MepcuLi
w ““XkO
2Me
2) H+ OBn 91%
-
fi OBn
0
0 73%
(Equation
‘o-o
1) BuU
I 2) CuCN
COPEt
3) H--GOpEt TM!m
77% overall 97% retention
BUT
4’ +
a2CuCNL12
6548% 29% retention!
402 1
(Equation
403)
R3 1) R*&ULi . cox
2) HX
R,J+&ox R* = Me, Bu, tBu R4 R3 = H,t& minor R4 = H,Me X = OEt
(Equation
20-m n=l RM = Me2CuCNU2, Ph@CNU2 R’M = M~+ICNL~~, MeLi. Ph, Me@, CUCNU2
O-37% n=2
404)
491
(Equation
0
R
4
405)
M4CUU_RI&+RL
(Equation
406 1
R = Me, Pr, Ph, PhCmCPhCmCC,61
Alkylmanganese compounds added 1,4-to conjugated aldehydes and esters (equation 407) [48Sl, (equation 408) [4861 14871 in the presence of Cyclohexenone was 1,4-alkylated by alkylmanganese copper chloride compounds (equation 409) [4881 but cyclopentenone, and p-methyl cyclohexenones failed
References
p 643
492
RMlClI5%
CUCI
(Equation
407)
(Equation
408 1
(Equation
409 I
CHO
R
R
R’ = H, Me --
R” = Ph. Me, Bu, -1
R’
R”MlCI R
COzEt
3% CUCI 1.2 eq TMSCI
R good yields
R = H,Me R’ = Me, Pr, IPr, Ph R” = Me, Bu, iPr, tBu, Ph
0 BFs*OEt2 +
“RMn” R moderate yields
NIClp v
RMn = BuMnCI, Bu2Mn.
BusMnLl
Fgls
6&749/o
493
Cuprates added to cyclohexenone with fair diastereoselectivrty In the presence of anions of chn-al secondary amines (equation 410) 14891. Methyl cobalt species added to enones In fan yield (equation 411) j49Oj The reaction of cyclohexenone with alkyl silver, palladium, ruthenium, iron and nickel was thoroughly studied 14911. NrckehII) catalyzed the conjugate addition of diethyl zinc to enones with fair enantioselectivity in the presence of chiral hgands (equation 412) 14921 Cobalt acetylacetonate catalyzed the Michael addition enones to acrylates with low (18%) enantiomeric excess In the presence of chiral diamines j4931. Rhodium(I) complexes catalyzed the conjugate alkylatron of enones by terminal alkynes (equation 413) j4941. Alumrnum chloride assisted the conjugate addition of ally1 tins to a,bunsaturated iron acyl compounds (equation 414) 14951 (Equation
4 10 1
(Equation
411)
uptoBO%de
R = Me.Bu
0
I
0
+
Me.&OLi~
-. v 0
64%
References
p 643
494
(Equation
412)
(Equation
4 13 1
(Equation
4 14)
L’ +
Et2Zn
Ni(acac)p
60-70% yield
Upto 74% ee
R = Ph, PMePh, pMeOPh R’ = Ph
R = Me.
--Cl
R’ = nPr, Ph, Bu, nCB
R3B”vR1
+
RsvFp
2.
R3!$---&;oFp R3
R’ H R”
20-m%
495
C.
Acvlation Reactions (Excludine Hvdroformvlation) Carbonylation of Alkenes and Arenes 1. The effect of iron( III) chloride and cobaM I) chloride on the regioselectivity of hydrocarboxylation of olefins by palladiu mf I I) blsphosphine complexes was examined 14961. as was the effect of temperature on rate and selectivity 14971. PalladiumfII) bisphosphine complexes catalyzed alkoxycarbonylation of allylbenzene [4981. The role of quaternary ammonium salt cocatalysts in the palladium catalyzed carbonylation of butadiene-methanol telomers was examined 14991. Terminal olefins were alkoxycarbonylated by palladium catalysts to give primarily branched products (equation 4 15) ISOOI. Unsaturated acids underwent carbonylative cyclization (equation 416) I50 1I. Palladium( II) catalyzed the carbonylative cyclization of a.a’-bisallyl ketones (equation 417) [5021. Terminal olefins were alkoxycarbonylated to acrylates and diesters in the presence of palladium(I1) catalysts (equation 418) I5031 oPalladated oxazolines of benzoic acids underwent carbonylative coupling (equation 4 19) I5041. 4 15 1
(Equation
PdC CuCl RCH=CH*
RwCo2R
-
R
CO R’OH
CO*R’
+
72-98%
R =
C-12, Cm
4-28%
-1
Ph-k
-1
(Equation
mCO2H
0
2OaIm +
bPd
+
CO -
+
ti
0
0
0
upto 17%
References
p 643
4 16 1
UPta38%
(Equation
417)
PdQ I CO MeOH TMOF
5040%
c4Me
“Ma”-
d-@ oo
co&48
(Equation
PdClz(PhCN), RCH=CH2
+
.
BUN&
OMe
Ph,P, CO, MeOH
t
418)
49-l
(Equation
419)
X = 0, M, P, Me, OMe, pCI, pN4
Intramolecular alkoxycarbonylations of hydroxyalkenes promoted by palladium(II) was reviewed (11 references) 15051. Crotyl alcohol was cyclocarbonylated with reasonable ee’s using palladium chloride in the presence of poly L-Leucine (equation 420) I5061. Isocoumarins were synthesized by the cycloacylation of o-vinyl esters (equation 421) I5071 Olefinic amines were cyclized to lactams using rhodium(I1) catalysts (equation 422) [SOS]. Rhodium(I) complexes catalyzed the carbonylative cychzation of 1,4-dienes (equation 423) [SOS]. (equation 424) 15 101 Ligand directed rhodium(I) catalyzed hydroformylation was used effectively in a complex synthesis (equation 425) I5 111 (Equation
co,
02
0
l
-0”
CuCi2, HCI PdC12,poly(L)Leudne
-4
0 75% yield 61% BB
420)
(Equation 42 1)
x t Ii,
pa,5-cI,3-Ms, 4-Me, !sofJk (Equation 422 I
70 : 30
R’=*,PhHt R2=H
a,
(x
80%
499
Y
?T I I
(Equation
423 1
(Equation
424)
Y
Ph(WCOWl,
Co&& I co 0
y = COd3 c&Me, C02H,Ct+OH,
)
CH#Me,
CH&lAc
$+$+A
4OBar CO 0
0
0
z
low yields
Y = OH, OMe, OAc, OTMS, H R = Me.Bu,H
(Equation
CO/& (CODRhOAck =Opsl
ReferenCeS
D 643
H -
425)
500
Allenic palladium complexes underwent double carbonylation (equation 426) [5 121. Nickel complexes catalyzed the hydrocarboxylation of allenes (equation 427) 15131 Cobalt carbonyl dtmerized and carboxylated acrylonrtrile (equation 4281 [5 141 Cyclopropenes were cyclotrrmerized wrth carbonylation by palladtum catalysts (equation 429) 15 151 Allylcopper species incorporated carbon monoxide and 1,4-acylated enones (equatron 430) [5161 (Equation
426 I
(Equation
427)
1.5 barC0
M = Pd, Pt
R R
NI(CN)2*4 H20 +
co
COpH
PhCHsICTAB 5N NaOH 90’ 1 atm
‘\
R = Me, Et, nPr, H, iBu, -(CH&-
(Equation CN Co2GOh~
2
@CN
+
‘OH
+
CollO”
PY
lOOBAD
w
NC
-4
good Yields
C4R
428 1
501
x -
L2Pdc12I PPh!J +
*
co
(Equation
429)
(Equation
430 1
4 0
R
1)
‘:
co
&.CuCNLI,
2, qf
0
R=
RxJ-( 0 4040%
H, 2-Me, Cl-Me
enone =$ ----&-yiJ Br
’
Arenes (equation 431) 15 171, cyclohexene (equation 432) [5181, furan and thiophene (equation 433) 15191, and cyclohexene (equation 434) 15201 were oxldatively carboxylated by palladium or ruthenium catalysts
References
P 643
502
(Equation
Pd(OAc)? I IBuOOH I ec’ ArH
+
43 1)
+ArH
CO
equal amounts
(Equation
0
I
co
432 1
0
Pd(OAc)2 ! CF&OOH rfx
C4H
3:1
(Equation
433 1
(Equation
434)
CO Pd(OAc)2 AcQH
WH
x=s,o
0I
Rh(ll) (EDTA-H)CO 120”
503
Vinyl phosphonates were aminoacylated by cobalt catalysts (equation 435) (5211, while ruthenium catalysts hydroiminoformylated olefins with isocyanides in low yield 15221. Iron-diene complexes underwent multiple carbonylations when treated with aluminum chloride (equation 436) 15231, (equation 437) 15241. (Equation
0
* AR’
0
Fi%ONH, I H2 I CO
H&-:/\ C?dCOh loo”c 200 KgCm2
H3C
CH&b--YH-C02H -!-
OR
NHCO# 70-80%
(Equation
References
p. 643
435 1
436)
504
(Equation
4371
CO/AU&
95% 4.1 exolendo
2 Carbonylation of Alkynes (Including the Pauson Khand Reaction) Alkynes were hydrocarboxylated by nickel cyanide under phase transfer conditions (equation 4381 15251 Cobalt carbonyl catalyzed the reaction of acid halides with alkynes to give butenolides (equation 439) 15261, while rhodium catalyzed the addition of benzoic acid to alkynes catalyzed the addition of (equation 4401 15271. Nickel(O) complexes aldehydes to alkynes (equation 44 1) 15281 (Equation NI(CN):, 4 Hfl RCECH
+
co (1 aW
CTAB
NaOH
PhCHs . 90”
R
C4H
good yields
--_()“---=
-
n = 4,5
438 1
505
(Equation
439)
x 0
R-R’ -
+
f R-c-Cl
-
@2Ga3
IT
1
o
R
i?
70-90% R=R’=Et R” = Me, Et, Pr, nC8, tBu. nwentyi,
Ph, PhCH2. CICH2CH&H2
When R + A’, mlxed regioisomers
(Equation
MeC=CH
+ PhCOPH
440)
OCOPh
W’W )
+ \;=/OCOPh
+,+,OCOPh
===t
(Equation
44 1)
RsP-Ni(0) + RCHO -
upto90% R = IPr, nPr, Ph
o-Iodoanilines (equation 442) [5291 and phenols (equation cyclocarbonylated alkynes m the presence of palladium catalysts. References
p 643
443) 14301 Propargyl
506
alcohols were converted to a-methylene+-lactones by rhodium hydrosilylation/carbonylation (equation 444) [53 11.
catalyzed
(Equation
442 1
(Equation
443 1
0
I,,
Wd
+ CO +PhCCCH
-
0
+
RCECH
=$120” PdCl&pf
R’ R 50-81%
R’ = Ph. pMeOPh, nC5,
(Equation
R&iiH
+ Rh4CO)w PhH 100’
R’ = H. hb. R2 = H, Me
(CH2)4
444)
Alkynes were converted to quinones by cobaltacyclopentenones (equatron 445) 15321. cyclocarbonylated allenes (equation 446) 15331
reaction with Iron carbonyl
(Equation
445 1
75%
(Equatron
74R
+ WWo
446 1
R’BR2 20”
20%
8oatm
R2 . I
co 50” R’ &f 70%
0 90%
R’ = Ph, MeOCH2 R2 = Ph, H
Methylene cyclopropanes underwent a [2+2+11 cycloaddition to cobalt alkyne complexes (equation 447) [5341. The Pauson-Khand reaction - the combmatron of an alkyne. an alkene and CO to give cyclopentenones - has References
P 643
508
been extensively studied this year. These were effective in both intermolecular (equation 448) 15351, (equation 449) 15361, (equation 4501 15371, and intramolecular (equation 451) 15381, (equation 452) [5391, (equation 453) 15401, (equation 454) 15411 versions.
JLI
(Equation
447)
(Equation
448 1
R2 co2w3),
+;-
I R’
R
4F
0
/
0 2?h CO&O)8 +
co +=
lOOBarCO 150" 16ht
60%
(Equation
449)
69% vs26%for free alkyne
3) KOHM20
AND
30 .70 90% yield vs 20% for free alkyne
(Equation
PhCECH
I Co&O)s
Glyphos
+C ’O
l
20-50% 4769% ee
450 I
510
H
~
b 1s. 2R
Ph
(Equation
452 1
7: 1 55%
o&+
ROdH
R=
c%(co)8
45 1)
oY&
o&+
“+”
(Equation
o&
5:l
20%
511
(Equation
453)
R3N-0
8 hr 25”
high yields R3N0 catalyzes reacttons
studied.
(Equation
o-87%
454)
o-52%
depends on conditions R = Me;
R’=
H.TMS,Et
Carbonylation of Halides 3. Transition metal catalyzed carbonylation of hahdes IS amongst the most useful of processes, and it continues to be utihzed.Aryl halides were hydrocarboxylated in aqueous solutlon in the presence of palladium catalysts to give benzoic acids 15421. Palladium on carbon catalyzed a References
P 643
512
Iron carbonyl carbonylated simrlar process (equation 455) [5431 dibromocyclopropanes to cyclopropane carboxylic esters (equatron 456) 15441. Palladium catalyzed the carbonylatron of alkyne rodonrum tosylates (equation 457) [545] Benzyl halides were converted to aryl ethanols by hydrogen/carbon monoxrde in the presence of dicobalt octacarbonyl 15461 Alkyl iodides and benzyl halrdes were carbonylated by n-on nltrosyl carbonyls (equatron 458) (5473 Carbonylatton of Z-halobenzorc acids with dlcobalt octacarbonyl In methanol gave half esters of phthalic acrd [548] Benzyl chloride was carbonylated to phenyl acetlc acrds by palladrum phosphine complexes under biphasrc condittons IS491 (Equation
455 1
CO I MeOH *
ArCl
ArC02Ms
AcONaIPdlC PhCH3 200”
5-280 turnovers
Ar = Ph, pCF3Ph. pHOPh, pMeOPh, pCIPh. mCIPh. t-naphth (K2Cr207 enhances)
(Equation
456 1
Br Br Ph
w
WC015
-d’
+
-d”
MeONa DMF O-35%
1040%
(Equatron Pd(OAc), R’C_=CI+Ph OTs-
*
R’C~C-c0$l2
base R20H I CO 80-80% R’ = Ph, Am, Bu R2 = Et, Me
457)
513
(Equatron
CO, K&03,
458 1
MeOH
RX
*
RCO$le
Fe(C0)3N0 (1 eq)
-80%
R = PhCH2, PhCH Me
Palladtum complexes catalyzed the acylation of droxene trn reagents by acid chlorides (equation 459) 15501, and the conversron of ethyl chloroformate Into drethyl malonate (equation 460) 15511. Palladium also catalyzed the carbonylative coupltng of aryl iodrdes and alkylmercurlc halides to grve substrtuted aryl alkyl ketones [552l, the carbonylative homo coupling of vinyl mercuric halides to give dwlnyl ketones [5531, and the carbonylative homo coupling of vinyl hahdes to give divinyl ketones [SS41. Mixed n-on carbonyl/cobalt carbonyl catalysts carbonylatively coupled aryl iodides to give draryl ketones (equation 461) ISSSI. (Equation
0
(A 0
R3COCl I PhH SnR3
&.Pd(PhCH,)(Cl) 0 82-95%
R = Me, iBu, Ph, pMeOPh, pNO3Ph,
References p 643
459 1
514
+
co
460 1
(Equation
46 1)
C02Et
EW CICOR
(Equation
-
(
Pd(OA@n (1 eq)
C02Et / from m
0
WCOk 1Co2(C% .
Art PTC
1 at CO
Ar
K
20-57%
Ar
+
AfC02H
15-60%
Ar = Ph, pMePh, pfdeOPh, pCIPh, mMePh, mCIPh, oMePh
Palladlum(I1) complexes catalyzed the carbonylatlve coupling of aryl lodides with diethyl malonate to give benzoyl malonates b561. Palladium also catalyzed the carbonylation (equation 462) 15571, (equation 463) 15581, and carbonylatlve coupling (equation 464) [559I of vinyl triflates (Equation
462)
515
,&4~
OTf
(Equation
463 1
(Equation
464)
Pd(OAc)2, L CO, DW Et3N. MeOH
Pdf32WW2
.
DMF, WI co 15opsi
o-Haloaniline enamlnes were carbonylatively cycllzed using palladium catalysts (equation 465) 1561. Coumarins were synthesized using similar chemistry (equation 466) 15611. as were quinolones (equation 467) 15621.
References
P 613
516
(Equation
465 1
(Equation
466 1
30-7.5% X = Br, I, Z = H, Cl, F Y = H, F,
R = Me, CH20hk,
COW?
0247%
R
600
psi co
Ei3N L2PdC12 I THF 100”
0 m-90%
COpEt
517
(Equation
467)
Carbonylation of Nitrogen Compounds 4. The synthesis of oxamates by double carbonylatlon (27 references) 15631 and organometallic carboxamidation (183 references) I5641 have been reviewed. Palladium complexes catalyzed the synthesis of dlphenyl urea from nitrobenzene, aniline, and carbon monoxide I5651. Substituted nitrobenzenes were reductively carbonylated to ureas by Fe(CO& or Ru3(CO)12 15661, and by ruthenium(II1) Schiffs base complexes [5671 Aromatlc primary amines were oxidatively carbonylated to acyclic and cyclic ureas using cobalt(II) salen complexes 15681. Palladium(O) complexes catalyzed carbonylatlon reactions to produce arylsulfonyl isocyanates (equation 468) 15691 and imtdes (equation 469) 15701. Cobalt carbonyl catalyzed the N-acylation of azobenzene (equation 470) 1571 I (Equation
[ ArB02NCI]
-
M+
-
co ArB02NC0 Pd (cat
)
Ar = Ph, pMePh, oCIPh, oBrPh, P-naphth
70-60%
468)
518
(Equation
0
PW’) Arx + 3THF*Mg&l~onNCo
469)
0
A$-_N_;-_k
-
H 14-28%
Ar = Ph, pMePh, pMeOPh
(Equation
COAX
y0bh3
I CHBl .
Ar-N=N-Ar’
470 1
PhH, Hfl, PhCH2NEt3+
ArYN-Ar COMe 2&50%
+
k
ArNHCOkk
+
Ar’NCCOMe
+
ArNHN \ COME
= Ar’ = Ph, pMePh, mMePh, pCIPh, pMeOPh, pHOPh, pmPh
Carbonylatron of Oxygen Compounds 5. Nickel cyanide catalyzed the carbonylation of ally1 alcohols to carboxylic acrds under phase-transfer conditions 15721, while rhodium(I) complexes catalyzed the conversion of ally1 alcohol to Y-butyrolactone [5731 The mechanrsm of hydrocarbonylatron of alcohols catalyzed by rutheniumiodide complexes was studied 15741. The full details of the conversion of 2butene- 1.4-diols to ferrllactone complexes have appeared (equation 47 1) Allenic carbonates were carbonylated to dienrc esters using I5751 palladium(O) catalysts (equation 472) 15761. Lipase selectively acylated one enantiomer of a chromium benzyl alcohol complex (equation 473) 15771 Cobalt carbonyl catalyzed the conversion of epoxy alcohols to butenolides (equation 474) I5781
519
(Equation
47 1)
(Equation
472 1
(Equation
473 I
Fe2W’h
HonOH
1))
R’
R2 WO)
=. R’
-
MBOH
Meo#20
R2 /
co d
c4Me 9148%
R’ = Ph. H. -++
OH
W333
kkO&-
go&
“pase ,a * &OH+ P
CrWh3
CGQ3
520
(Equation
4741
OH Ar
OH
CMCOkl +
co
+
Mel
____ec
CH3
COpH
TDA-1 1NNaOH
0
Miscellaneous Carbonylations 6 Iron-complexed cycloheptatriene was cleanly acylated by acid chlorides were synthestzed from aromatic (equation 475 1 15791 Benzocyclobutanones acyl sllanes with Group(VI1 metal carbonyl catalysts (equation 476) 15801 Aromatic and allphatic hydrocarbons were carbonylated by rhodium(I) Ally1 catalysts under photochemlcal conditions (equation 477) IS8 1 I cuprates incorporated carbon monoxide, then 1,4-acylated conjugated enones (equation 4781 15821 (Equation
WCQ3
R = Me, Ph. OMe, Bu, /\/
‘t
Cl-/
475 1
521
-
(Equation
476 1
(Equation
477)
WO)6
rfx PhCH3
SPh
R = nBu, Ph,
RhCI(CO)(PMe3)2 ArH
+
w
CO hv
ArCHO
+ ArCH20H
72
+ ArCOAr + ArAr + ArC02H
16
16
5
1
Ar = Ph. pMePh, pMeOPh, pCIPh. pNCPh
(Equation
478 1
0 1) CO, THF, 110”
/ “#,
-r,
1 0 73%
Decarbonylatlon Reacttons 7 Nickel(0) complexes decarbonylated amino acids (equation 479) 15831.
a-ammo
acid anhydrldes
to a-
522
(Equatron
479 1
0
Ifi
Ni(COD)L*
0
R2N
-
COpH RPN
THF H+
0
COpH
+
Fi*Nw
91% 11’1 L = bpPhP 1 28 L = PCy3 AND
0
47 0
B2N
BzN
1 +
R2N-COzH
CO,H
0
98%
>50 1
8 ReactIons of Carbon Dioxide Electrochemrcally generated nrckelf0) complexes catalyzed the additron of carbon dioxide to diynes (equation 480) [5841I5851 Nickel(O) complexes catalyzed the cyclocarboxylatron of drynes with carbon dioxide (equation 48 1) [5861 (review, 23 references) 15871. Palladium(O) catalyzed the conversion of aryl hahdes, propargyl alcohol and carbon dioxide to cyclobutenylidene carbonates (equatron 482) 15881
-C
(Equation
NI(II)I &I + co2
-
L = TMEDA, 99% L = Blpy. 65%
anode I e-
DMF
480 1
523
(Equation
,x-R
+ co2
Z
48 1)
zP& +zf-&
WOW,
\=-R R’
R 7040%
Fi = H, Et, TMS R’ = TMS z =
(CH2)3
(Equation
=-k
OH
+ Arx
PW’) +
co2 -
$
482 1
0
0
h0
Ar
968%
Ar = pMePh, pCIPh, pHOPh,
Ph-\
D Oliaomerization (Includina Cvclottimerization of Alkvnes and Metathesis Polymers). Ethylene was dimerized to a mixture of butenes by cobalt or nickel acetylacetonates in the presence of alkylaluminum halides IS891, and to lbutene by (hXgMe5)TafPMe3)(Hl(BrI(h2CHPMe21 IS901 and (CHz=CHCH=CH2)Cp(Etl (diphosRr I59 1I. Chiral zirconocene dihalides catalyzed the isotactic polymerization of propene 15921. Styrene was dimerized by palladium(II) salts in nitromethane (equation 483) 15951. 3,3,3Trifluoropropene was dimerized by stoichiometric amounts of low valent nickel catalysts 15941. Iron hydrides dimerized methacrylic esters (equation Nickel(O) complexes catalyzed the dimerization and 4841 IS951 trimerization of Cg-cyclic olefins IS961 I5971 I5981 Vinyl ketones were linearly dimerized to 1,5-diketones by rhodium(I) catalysts 15991 [600] 160 11
524
(Equatron
483 1
L2Pd(MeCN)2 Ph/\\ MeNO2
Ph
AND
linear polymer MW 6000 (head-to-head I head-to-tail)
(Equatron
484)
FeH NP (dmpe)2 &C02R *
ROpC
or FeH2 (dmpe)2/hv
high yield high conversion
The role of dinuclear nickel complexes in alkyne ohgomerization was the toprc of a dissertation I6021 Rhodrum complexes dimerized terminal complexes alkynes to enynes (equation 485) I6031 16041. Palladrum catalyzed the srlylatron of 1,4-brs trimethylsilylbutadiyne (equatron 486) [6051, while molybdenum complexes ollgomerlzed the monosilyl analog Alkoxyacetylene was drmerized by copper(I) (equatron 487) [6061 lodide/TMEDA (equation 488) I6071
525
(Equation
WW’)sR”CI 2
*
R _H
R _ -
\
R
+
485)
R
4040% conversion R = C3H7, CdHg,
60.30
Cd-43
(Equation
1) SQClxMe5xlPd TMS
=
1
486 1
cat. w
TMS 2) tvtwtx
“s)-.-.-(“s TMS
TMS 048%
+ TMS
TMS
ms-\\ t\ TMS
o-7%
(Equation
MoC13Et3SiH H=
=
TMS PhCH3
80%
n s-7056
rences P 643
487)
526
(Equatton
488 1
Cuk2WDA RO-H
w 4
RO
=
=
OR
acetone 85-95%
R = tBu, l-adamentyl, Clo, L-menthyi, o-
I
The cyclooligomerlzation of 13, st-phosphaalkynes in the coordination sphere of a transitron metal was reviewed (9 references) 16081 Rhodru m trrchloride / ahquat 336 catalysts cyclotrimerlzed alkynes to benzenes 16091 and cyclodi merize d phenyl alkynes to 2,3-dlsubstituted lphenylnaphthalenes [6 101. Palladium(O) complexes of bis rmines cocyclotrlmerized allenes wrth dimethylacetylene dicarboxylate (equation 489) 16 111 and cyclotrimerized alkynes to benzenes (equation 490) [6 121 (Equation
Me0 H
28%
=-‘I
OPh
489)
521
(Equation
R = Et, H, TMS, Ph. tWXH2,
490 1
CO@@
R’ = Et, Bu, TMS, PhMeOCH2, CO&
CO&H&CH
Cobalt-mediated [2+2+2l cycloadditrons to the pyrrole nucleus was the topic of a dissertation [6 131. Methyl propiolate was cyclotrimerized by Ru3(CO)l2 16 141. Cobalt alkyne complexes underwent cocyclotrimerrzation with alkynes upon heating (equation 49 1) 16 151. Diynes were cyclodimerrzed by CpCo(COl2 (equation 492) 16 161. Cobalt cyclobutadiene complexes underwent reaction with dinitriles to give pyridine analogs (equation 493) [6 171. (Equation
R3
+
References
p 643
R3eR3
-* d
Ph-N
R3
49 1)
528
(Equation
mwco)P
492)
*
(inter)
32%
6%
(Equation
493)
Nickel(O) medlated intramolecular cycllzatlon has been revlewed 16 181. The cobalt cluster catalyzed cocychzatlon of a, o -dlynes with nitrlles was studled by epr [6191. Nltriles were cyclized to pyrazines by reduced titanium catalysts (equation 494) [6201
529
(Equation
494)
R
1) liC141ZnITHF,rfx,6days 4 RCN 2) 10% aq. K&O3
R
3643%
R = Me, Et, Pr, Bu, iBu, nC5, nCs, Bn, pCIPhCH2, 34e,
4-h&O,
Ph -1
Propargyl alcohol was cyclotetramerized by nickel catalysts I62 11 [6221. Cumulenes were cyclooligomerized by nickel(O) catalysts (equation 495) I6231 I6243 Palladium(II1 catalyzed reactions of 1,6-enynes: remote binding effects on cycloisomerizations, [2+2+21 cycloadditions, and skeletal rearrangements was the title of a dissertation 16251.
References p 643
530
(Equation
495 1
-_
L2NWV2
di, tBu
end group =
\ m’/ 03
I
only cydobutane 54%
Palladiumf I I) complexes catalyzed the cooligomerization of vinyl halides with alkynes (equation 4961 16263 Rhodium(I) complexes catalyzed the cyclization of yne dienes and trienes (equation 4971 16271 Photolysis of tetraenes in the presence of copper(I) triflate gave a manifold of cyclic compounds (equation 4981 I6281 Nickel(O) complexes cocyclotrimerized an alkyne with carbon dioxide (equation 499) 16293.
531
Rb’
+
R’cIGH
(Equation
496)
(Equation
497)
‘-zPdH2 7
EtsN
R = Ph. WOPh, oMePh, PNaph, 34hienyl, nC6 R’ = TM, Ph, nPr, @II, C&OH
R’
R’
.B R2
bRhCl cat.
R2 -
THF M-98%
532
(Equation
498 1
36%
36%
(Equation
499)
Ni(COD)p EtOCEC-TMS
+ CO;!
dwb TMS OEt
Butadiene and N-acyl ally1 amlne codimerlzed In the presence of rhodium(III) chloride (equation 500) 16301. Aromatlc amine complexes of Nlckel(0 1 cobalt(I I) catalyzed the dlmerization of 1,3-dlenes 163 11 complexes catalyzed the linear dlmerlzatlon of 1,3-dlenes (equation 50 1) (6321 The Influence of metal hahdes on the cyclotrlmerizatlon of butadlene
533
to cyclododecatriene by benzene-titanium(II1 complexes was studied 16331. The mechanism of telomerization of 1,3-dienes with sulfinic acids catalyzed by palladium complexes was studied by infrared spectroscopy 16341. Water soluble ligands were developed for the biphasic palladium catalyzed Enantioselective telomerization of butadiene and isoprene I6351 telomerization of butadiene with formaldehyde, nitroalkanes and enamines using palladium catalysts with chiral diphosphine ligands was developed with ee’s up to 41% being obtained j6361. (Equation
500 1
RhC13/Na2C03 N
+
-NHCOR
. Ph,P
w
NHCOR 600x7
(Equation
2
N
50 1)
Ni(COD)*
90% ee
35%M
Living ring opening metathesis polymerization catalyzed by well characterized transition metal alkylidene complexes was the subject of a review (36 references) I6371 The metathesis polymerization of norbornene by tungsten-carbene complexes was developed I6381 Molybdenum complexes formed living polymers with norbornadienes (equation 502) Ruthenium(I1) chloride or osmium(III) chloride ROMPED I6391 functionalized norbornadienes (equation 503) j6401. Pyrrole was oxidatively polymerized by aluminum chloride/copper(I) chloride (equation 5041 I6411
References
p 643
534
(Equation
502)
(Equation
503)
E flUCi38ti20 -
(Equation
0I\
N H
02
I
__cI a13
CUCI
\
N H ??I-
n
504)
535
E
RearranQe
IWIltS
Metathesis 1. have appeared this Several reviews dealing with olefin metathesis year. These include one on reactions of acetylenes and alkenes induced by catalysts of olefin metathesis (26 references) (6421; the presence of drchlorotungsten carbenes in photocatalytic olefin metathesis reactions 16431; metathesis of imines with Fischer-type carbene tungsten complexes 16441; metathesis and isomerization of olefins with polystyrene-bonded cyclopentadienyltungsten tricarbonyl complexes has been developed I6451 A number of metathesis catalyst systems including [WBrg(CO)gdiene]/AIClgEt 16461; MoO$Si02 16471, Re207/A1203/CsN03 16481, Mo~0u(C~0~)~CH~0~1~- on g alumina 16491 and (Mo(N0)4(HS04)21(HS04)2/EtAlC12 I6501 have been developed Acetylenic hydrocarbons were metathesized by Mo@(acac)2 / AlEt / PhOH catalysts 165 11. Other new metathesis catalysts include Mo(CHTMS)(NAr)(OR)2 [6521, RefC-tBu)(CHtBu)(COCMe(CF3)212 I6531 and [Mo(NO)(H~NO)(X~)L~I~- / EtAIC12[6541 Allylsilanes cometathesized with lhexene (equation SOS) I6551 Metathesis was used in the synthesis of capnellene (equatron 5061 I6561 (Equation
SOS)
(Equation
506)
92%
+TMS
m
-+ 60%
co2tBu
References
p 643
23%
536
Olefin Isomerizations Stereoselective isomerization of acetylenic derivatives as a new methodology in organic synthesis was the subject of a review [6571, as was isomerization of olefins and diene complexes with iron tricarbonyl (132 references) I658l. Ziegler-Natta catalysts isomerized allylbenzene to trans b-methylstyrene and eugenol to isoeugenol 16591. Palladium chloride catalyzed the 2 to E isomerization of styrenes 16601. Iron carbonyls isomerized divinyl tetrahydropyrroles to pyrroles (equation SO71 I66 1I. Rhodium(II1 complexes catalyzed isomerization of substituted cyclopropenes (equation 508) I6621 Palladium acetate rearranged silylenol ethers to enones (equation 509) 16631 2
(Equation
-
-
phw
WW5
-kC
Phi”“
N
Ph
+
ph
-
;h
ph=?$-Ph
kh
bh
33%
57%
(Equation
Ph Rh*+
cat &Ph
-
+
;;flph
Ph
x X = H; 95%
Ph
x = OMe; 94%
Ph .
Ph
OEt
5071
508 1
531
(Equation
509 1
1 eq. Pd(OAc)*
TM0
BQ 0 ;
55%
Rearrangement of Allylic and Propargylic Systems 3. Palladium(II1 complexes catalyzed the allylic transposition of ally1 acetates (equation 510) [6643, (equation 5111 16651, ally1 sulflnates (equation 5 12) [6661, (equation 5 131 [6671, and o-allyloxycarbonyl-asulfenyloximes (equation 514) 16681 16693. The mechanism of the palladium(I1) catalyzed Cope rearrangement of 1,5-dienes was studied and reported in detail [6701. (Equation
Pd*+ cat )
R2hoAc
R’
References
p 643
R3
5 10 1
538
(Equation
6
r,
2) PdC12(MeCN),
Y -If
Y
r
0
0
Y = H, OMe, Cl, N3
-YSiR3-
Y
5 11)
“r( 0
0
70-90%
FS’” r 0
Y
0
(Equation
92%
49%ee
5 12)
539
(Equation
5 13 1
R
::
-R
RO-s-o
::
0
ir
Pd$fba3 * WOhP w 0 ./
A/
RoP 0
0
good yields
s’-0
P 0
0’ \\
0
(Equation
5 14)
0 R +
00
N
U’d STol
The mechanism of the rhodium(+)-Binap catalyzed rearrangement of ally1 amines to enamines was fully studled and reported 16711 and was used to synthesize optically active aldehydes (equation 515) 16721. Achiral catalysts were also useful for this type of rearrangement (equation 516) [6731, (equation 517) I6741
540
(Equation
5 15 1
Rh’BINAP NR2
H+
-
NR2
_) H
(Equation
NHBOC
R30H -
R2 R’
NHBOC + OR3 good yields
5 16 1
541
(Equation
5 17 1
Similar rhodium(I) catalysts rearranged ally1 alcohols to aldehydes (equation 518) I6751 [6761. Palladium(I1) salts catalyzed the rearrangement of propargyl acetates to a-acycloxyaldehydes (equation 5 19) 16773 and palladium(O) complexes catalyzed the 1,3-diene monoepoxides to enones (equation 520) 16781 and cyclopropyl ally1 alcohols to dienones (equation 521 I 16791. Chromium arene complexes catalyzed the rearrangement of ally1 siloxanes to silyloxydienes (equation 522) 16801. (Equation
HO
References
D 643
/\//\/OH
IbRhCOl+CIO,
5 18 1
542
(Equation
5 19)
4040% R. R' =
0X2)5,
(CHPk.
Wf2)11
!=I=
Et, R’ = Ce R = Ph; R’ = H R = Me; R’ = Co
(Equation
520 1
or
L = Ph2PCHCHPPh2
65%
L = PPh3
I I MeMe
(Equation
98% 88
1MO%
52 1)
543
(Equation
522 1
W-W333
R’ = H, nuu,me R2 = H, Me R3 = H, Me
Skeletal Rearrangements 4. Transition metal complexes catalyzed isomerization of highly strained systems was the subject of a review (26 references) 16811. Miscellaneous Rearrangements 5. Palladium(O) complexes catalyzed the rearrangement of unsaturated 1,4-epiperoxides [6821. Iron(O) complexes catalyzed the cycloisomerization shown in equation 523 i6831. (Equation
523)
0
I II. A. over References
Functional Group Preparations Halides Bromoaromatics were converted to iodoaromatics by halide exchange Ruthenium(II1 complexes catalyzed the KI/CuI/alumina 16841. P 643
544
trlfluorochloropropyfldenation of sllylenol ethers (equation 524) 16851. Improved conditions for the palladlum(1 I) catalyzed haloacyloxylatlon of cyclic conjugated dlenes have been developed [686l (equation 525) [6873 Platinum(0) complexes catalyzed the rearrangement shown in equation 526 [6881
TMS
‘0 R’
R x
L3RUCI,
+ CF3CC13 -
I H
(Equation
5241
(Equation
525)
:: RC-YH-CCl&F3
DMF
R’
Pd(OAc)&iCI R-R LiOAc BQ HOAc
*
R&
/
R OAc
!HTs 1) TsNHNa --WR-2) Pd4
R OAc
Ts
(Equation
526 1
545
B
Amides. Nitriles Nickel(O) complexes catalyzed the addition of isocyanates to olefins to give amides (equation 5271 16893, (equation 5281 16901. Cyclic amines were oxidized to amide N-oxides by hydrogen peroxide/sodium tungstate Ruthenium(II1 complexes catalyzed the condensation (equation 5291 169 11 of formamides with aryl amines (equation 5301 16921. Aryl sulfonamides were N-acylated by isocyanates in the presence of copper(I) salts (equation 53 11 I6931 Ruthenium chloride catalyzed the N-alkylation of amides and lactams by alcohols I6941 (Equation
+
5271
I(lP~h%Nt PhNCO
-
75% yield 10tumsoncat
(Equation
-
‘-
PhNCO LnNi(0)
NHPh
NHPh 0
References
p 643
528 1
546
(Equation
529 1
(Equation
530)
R = H, ‘I-Me, B-Me, &MO, 6MeOCNH, 6-CI, B-Br, B-M&O, 6-CN, 8-Me
L&Cl2
f: Arb$-C-H
+ Ar’NHR
- tfx mesitylene
5: ArYc-Yr’ R R 7693%
Ar’ = Ar = pCIPh, pMeOPh, pMePh, oMePh, o,o’b&Ph R = R’ = H
(Equation 0
NHR2 +
R2NC0
46-99%
R’ = H,Me R2 Et, Bu, tBu, Ph, /\/\r\/
53 1)
541
Nickel(II) complexes catalyzed the conversion of bromothiophene to cyanothlophenes (equation 532) 16951. o-Palladated aromatics were converted to nitriles by treatment with tetrabutylammonium cyanide to (equation 533) [6961. Platinum catalyzed the addition of phosphine acrylonitrile (equation 534) 16971. Copper salts catalyzed halide exchange Chiral titanium complexes wrth iodonucleosides (equation 535) I6981 catalyzed the asymmetric addition of TMSCN to aldehydes (equatron 536) 16991 Cobalt carbonyl catalyzed the ring opening of tetrahydrofuran by TMSCN (equation 537) I7001, while rhodium(I) complexes catalyzed the conversion of ketals to protected cyanohydrins (equation 538) 170 11.
cI
bBr
+ LzNICI(2-naph)
(Equatron
532 1
(Equation
533)
-
BP
2 diphos Bu4NCN
CN
(Equatmn
534 1
(Equation
535 1
I
OTMS
OTMS 60-80% X = CN, SCN, N3, NH21NH20H GH(C02Et)2, EC-
549
z
Ti’
RC-H
+
TMSCN
(Equation
536)
(Equation
537)
OTMS
cat
-
R
I
A l
CN
70-80% yield 60-910~ ee
R = Ph, MePh, pMeOPh, 0 cat. =
...I\0 \ ,~(o~Prk& 0
iPrO IPrO 3 0
I32 -i!G% R1
+TMSCN
-
CN
1500
+ R’ R’ = H, Me, OEt
CN
TM!30 R2 = H,Me,OMe
+ R2 82%
References
I) 643
550
(Equation
R’ = Ph. pMeOPh, Ph-j
Ph-
538 1
-’ /
R* = t-l, Ph
R3 = Me, Et
C.
Amines. Alcohols Combined palladium-copper complexes catalyzed the oxygenation of benzene to phenol or benzoquinone I7021 Benzene was hydroxylated by hydrogen/oxygen in the presence of palladium(IIViron(II1 complexes 17031. The complex IMo05*PyoDMPUI was advanced as a safer alternative to MoOPh for a-hydroxylation of enolates 17041. MoOPh was used to hydroxylate lithiated arenechromium tricarbonyl complexes (equation 539) 17051. Manganese 0x0 complexes catalyzed the reductive a-hydroxylation of conjugated esters (equation 5401 I7061 (Equation
539 1
551
(Equation
540 1
cat. hrh(dprn)& C02R4
PhBiH3
7694%
\
R’ = H, Me, nPr, COMe -
-1
R’ = H R3 = H, Me R4 = Bn, Me, Et
Mixed cuprates reduced epoxides to alcohols (equation 541) [7071, as did formic acid m the presence of palladium catalysts (equation 542) 17081. Cobalt(I1) catalyzed the ring opening of epoxides by thiols (equation 543) I7091 and amlnes (equation 544) 17101. Palladium(0) catalyzed similar were converted to processes (equation 545) 17 11 I. Vinyl oxetanes homoallylic alcohols by reactlon with organocopper complexes (equation 546) 17121. (Equation
0
6
OH +
(Rbl)(CuBr)(PBu,),
_
54 1 I
552
(Equation
4:l
90%
(Equation
OH
COG12 +
PhSH
-
R A/
or CO,(CO)~
co
SPh
0
R = Me, Et, Ph, CH,Cl, PhOCH*,
542)
also works.
543 1
553
R
w
R
CO@ + R2NH2
-
R
X
HO
0
(Equation
544)
(Equation
545)
R’ NHR2
w70%
R = Et, Ph. CH2CI, PhOCHp R’ = H. (CH& R2 = Ar
Nut
Pd(0)
NW = Et2NH, PhSH, NH4CI, NH4SCN NH40Bn, PhC02H
OH
&OH
hc 90%
from 1:2to 1.7
(Equation
546 1
554
Grignard reagents reduced aliphatic, aromatic, and a,B-unsaturated ketones to secondary alcohols in the presence of titanocene dichloride 17131 Ketones and aldehydes were reduced to alcohols by zinc in the presence of NiClzo 6H2O This reagent also reduced olefins, nitriles, and nitroaromatics I7 141 In 90 as solvent, deuterium was incorporated (equation 547) 17151 Aldehydes and ketones complexed to optically active rhenium complexes were reduced with high asymmetric induction (equation 548) 17161 I7171
(j
D201ZnINiC12_
(Equation
5471
(Equation
548 I
,-$
0
AND
OH
OH 81%
1) H
Re ON’
“PPh, I
_ 2)
91-96% de
555
Acetophenone was microbially oxidized to the cyclohexadienol which complexed to iron (equation 549) 17181. Ruthenium complexes catalyzed the a-hydroperoxidation of amides (equation 550) 17191 17201, and the varied oxidations of norborene epoxlde shown in equation 551 172 11 (Equation
549)
0
I= ;4
1) P putida
2)
1) HPFB 2) NaHC03
F92W)e
OH
WkJ%
(Equation
F-t2
R2 tBuOOH .
Referencerp 643
550)
556
(Equatron
55 1)
NaOCl
0
vfl
Ru cat.
50% 1 1 .
ox.
85% Hz02
or S20ezs No reacbon
mop
0
K-;OH+R 2
OXONE
’ 37%
48%
Drenes were converted into allylic alcohols by cobalt dmgH2 complexes (equatron 552) I7221 Olefrns were hydroborated and oxidized to optrcally active alcohols using chn-al rhodrum catalysts (equation 553) 17231. Intramolecular (equation 554) 17241, (equatron 555) 17251, and intermolecular (equation 556) I7261 hydrosrlylatrons/oxrdatrons were used to produce alcohols (Equation
552)
551
(Equation
-I-
66
References
P 643
BH
*
ox.
W) L’
L’ = (+)-DIOP (+)-BINAP (S)(R)-BPPFA (S)(S)-chiraphos
w
ROH 4040% yield o-74% ee
553)
558
(Equation
554)
Rh(l)DIOP . 0,
SiR,H
OH
O-SIR2
SllT4P
>99%
OH
syl
93%es AND
Mm0
OMOM
MOM0
OMOM
44
. + OSik&H
OH
OH
7o%ea
(Equation R
Y-\
pt, [lCH&H-SiMed,Ol,
H24 >
NmS2
TMS/N--S’. Me2
OH R + NH2 -50%
NH2
555)
559
(Equation
556 1
1) ElOH/EbN SiMBcl~ 2)
OH
402
n = 4, 5, 6
Asymmetric oxidation of olefins with osmium tetroxide has been reviewed (67 references) 17271. The highest ee’s in this process have been achieved using K3Fe(CN)6 as the oxidant in place of trimethylamine N-oxide [728]. By using polymer-bound chiral alkaloid ligands and this oxidant, the hydroxylation of stilbene went in 96% yield and 87% ee, and the alkaloid could be reused [7291. Allylic ethers were cis hydroxylated wrth high stereoselectivrty (equation 557) [7301, (equation 558) [7311 Olefins were CIS hydroxylated by Os04/Fe(CN)6-/DABCO (equation 559). 17321. (Equation Y R,Si + R’O
OR
anti 5s70% Y = H, 14O:l 8s ske of RSSl increased, 94 anti hnxeased
References
P 643
OH
syn
557)
560
(Equation
OH
APco2Et
558)
QH C02Et +
OTBS
&C02Et : TBS6
I dH
35:1
mSO~C02E’ 6TBS
0904
4
.
1
h4e3N0
Bnowco2Et
2.71
OTBS
99.1
(Equation
X
HO
559)
OH
m4
-
Fe(CN)s3-
New aspects of oxypalladation of alkenes have been reviewed (54 -eferences) 17331. Schlffs bases were reduced to amlnes by Ru3(CO)12 under
561
hydrogen and carbon monoxide 17341. Platinum complexes catalyzed the reduction of halonitroaromatics to haloamines I735l. Nitrobenzene and aromatic ketones were reduced to anilines and benzyl alcohols over palladium(II)/montmorillonite silylamine catalysts I7361. Palladium(O) complexes catalyzed the removal of allyloxycarbonyl Nprotecting groups in a very complex molecule (equation 5601 I7371. Allylic carbonates were aminated with high ee using chiral palladium catalysts (equation 56 1) 17381. Optically active amines were made from aldehydes and chiral ferrocenylamines (equation 562) I7391 Iron carbonyl hydrides catalyzed the reductive amination of aldehydes (equation 5631 I7401 I7411. while ruthenium complexes catalyzed the oxidative amination of dials (equation 564) I7421 (Equation
References
p 643
560)
562
(Equation
56 1)
&NH2
/-‘=\_
OCO*Et
-
y
PdlL*
+
wNR2
NR2
OC4Et 07%
97 :3
64%ee
OH
(Equation
H “-N&H
NH2 1) PhCHO v ‘Fe
H
b (racemlc)
Ct.43
Ph
l
__
2) GH3Li
H
v Fe
Jb 67:33de SRIRS
3 HOAc
CH3 -
PhYCH3 NH2
562)
563
(Equation
RNH,
+
,LJH
z
n RNHH&-CH
563 1
( )”
HFe(CO).+u
EtOH
40-w%
R = Ph, pMeOPh,oMeOPh, pMePh, pCIPh, o-
/
(Equation
564)
Ru cat. HO/\/OH
+ 180”
Molybdenum hexacarbonyl ring opened oxazolidines to aminoalcohols (equation 565) 17431. Cationic rhodium(I) complexes catalyzed the reaction of benzene with isonitriles to give tmines (equation 566) I7441 Ruthenium carbonyls catalyzed the reduction of oximes to imines (equation 567) I7451 while cobalt complexes catalyzed the formation of oximes from enones (equation 568) I7461 and palladium on carbon catalyzed the reduction of Palladium(O) complexes nitroolefins to oximes (equation 569) I7471. catalyzed the conversion of ally1 acetates to ally1 azides (equation 570) 17481
References
P 643
564
Y
/ \0 N
R
(Equation
565 1
(Equation
566 1
wcas
-7-c
-
RNH
OH
60-80%
hv +
R’NC (R3P)2Rh(CNR’)2+
2-7 hmowrs
565
(Equation
,OH R’
A
NH
m3wh2
+
‘;
co
-
R*
567 1
100° 4h
+ R’ A
cop
R*
70-90%
R’ = Ph, Bu, pClPh R* = Et, IPr, Ph. Me, nBu
(Equation
NOH 10% GoMow R’m~02R2
+
nBuON0
*
R, d.
PhSIH3 THF 7s96%
R1 = H, Me, nPr. IPr, C4Et R* = nBu, PhCH2, tBu, ptol. Et
eobe = EK)2C+w;$C02Et
C02R2
568)
566
(Equation
NO2
HC02Na I Pd I C *
NOH
R
MeOH I MF
R
569 1
R
(Equation
570 1
WNs
R-x
-
Pd(0) I THF
R-N3 good yields
I%-OAC
W-Cl
Ptl-oco2Et 6C02Et
TMsOJ=LxqEt
Ethers. Esters. Acids Copper bromide catalyzed the alkoxylation of bromothiophenes Palladium(O) catlayzed the o-allylation of sugars (equation 571 I 17493 (equation 572) I7501 while palladium(II1 catalyzed the methoxylation of norbornene (equation 573) I75 11. Rhodium(I1) catalyzed the rearrangement of a-diazo+-methoxy ketones to enol ethers (equation 5741 17521.
P
567
(Equation
57 1)
(Equation
572 1
(Equation
573 1
MeOH NMP
0
0 -7 0
HO
0
T 0
References
p 643
0 0
0
X
5-
OH -
0
568
(Equation
N2
574)
40-809/o
R = Ph, Bn, mBrPh,w/
Phw 0
Terminal olefins were oxidized to optically active acids using Wacker type conditions with chit-al catalysts (equation 5751 17531. Arenes were oxidized to acids by Ru04/periodate (equation 576) 17541, as were epoxy alcohols (equation 577) I7551 Iridium oxygen complexes oxidized alcohols to carboxyhc acids (equation 578) I7561 Amides were converted to a-amino acids via chromium
carbene
complexes
(equations
579 and 580) I7571 (Equation
4,
THF, L”, H20, GO
l
-w
RCH=CH2 PdC12, CuCI, HCI, 25’
RCH-C02H
I CH3
89% yield 83% ee
64% Bl%ee
575 1
569
RIO4 Am
(Equation
576 1
(Equation
577)
(Equation
578 1
I IO4-
RC&H
_
biphaslc
OAc
OAC Phd
-
HO&k
PhJ- -
HO&A
\\ co I
//
0
#4
R
CH20H
(triphos)kCI(CH,CH2)
References
p 643
0
RuClg,NalO, H20
I
MeCN
VA
R
C%H
1) 0,
_ 2) RCH20H
tfiPh31;<“>
HO
R
570
K&r(CO)5
+
(Equation
579)
(Equation
580)
(CO)&+
R
R
high yields
2) E+ CH3
3) hv, tBuOH
50-70% &7% de
An improved procedure for the palladium(II1 catalyzed chloroacetoxylation or diacetoxylation of cyclic 1,3-dienes has been developed [7581. Palladium(O) complexes catalyzed the syn 1,4-addition of acetic acid to cyclopentadiene monoepoxide (equation 58 11 17593. The palladium(1 I) catalyzed chloroacetoxylation of dienes was used to make ally1 amines, ultimately (equation 5821 17601. New procedures for the bis acetoxylation of dienes (equation 5831 17611, (equation 584) I7623 and the allylic acetoxylation of olefins (equation 5851 17631, (equation 586) 17641 were developed
571
(Equation
0\
0
CHj-OH L
+
Ho
/ 9
OAC
(Equation
Pd(OAc), I BQ N
4Pd
*
LiCI I LiOAc
58 1)
582)
~
Et2NH 91%
(Equation
583 1
OAC \ 0 /
HOAc + l/202 cat Pd(OAc), iAc hlgh yields cat. Co(saiophen)
0I References
P 643
R/\\
-
.K
f@J -
ooAc
512
(Equation
584)
(Equation
585 1
KOAc I HOAc
5% Pd(OAc)2
20%BQ 200%Mn02,
HOAc
60-90%
n = 1,2,3,4,6,8
573
(Equation
0
586)
5% Pd(OAc), 5% CU(OAC)~ I lO%HQ 1 at Oz HOAc 50” 22hr
bf,cy 0-l u t t
(y
Alkanes and arenes were trifluoroacetoxylated by palladiu mf I I) acetate in trrfluoroacetic acid [7651. Lipase selectivity acylated one enantiomer of a racemic mrxture of the chromium complexes of omethylbenxyl alcohol (equation 587) [7661 Chromium carbene complexes were converted to diesters by reduction followed by reaction with CO2 (equatron 588) [7671 Ruthenium complexes catalyzed the addition of carboxylrc acids to eneynes (equation 589) 17681. Chromium complexed phenol formed sugar acetals (equatron 5901 17691. (Equation
OH
WCOh
(1) x=Ma,oMe.TMs
References
p 643
97% w
587)
574
(Equation
OMB
OMB
Bll3P(C0)4Cr
588 1
2-
(C0)4Cr=(
[
Ph
1)
COP
2)
CH2Nz
*
Ph
1
yxz:
02%
(Equation
R
~~c~dpMeS)(pcyme~)
? HCsC-C=W
+
RC4H
R’ = H, Me R = Ph, tBu, \//
AND
R tBOCN H
+
HCEC&CH,
7
tEQCN++
589)
575
(Equation
Cr(CO),
OAO
OAO
590)
R=Me,35%vs1o%lree OMe,21%vso%free
E.
Heterocvcles Metal-catalyzed epoxidations continue to be very actively explored, wrth many references each year. Molybdenum catalyzed epoxidations of 3chloro- l-butene I7701 and cyclohexene [7711 1772.1 with tOlefins were efficiently epoxidized butylhydroperoxide have been reported. by hydrogen peroxide/sodium tungstate 17731, by oxygen vanadate Systems (equation 591) [7741 and by oxygen/nickel systems (equation 592) [7751. (Equation
66 I +
VOL, 02
-
dv 0
1240% 0-49%w
0 L=
References
p 643
0
KT
oonvefsion
59 1)
576
(Equation
592 1
02 I cat Ni(dmp)* ROH MOI. sieve 4A
” 65%
H
lH
Iodosyl benzene epoxidized olefins in the presence of transition-metal phthalocyanines 17761 and manganese (sale&amino acid complexes 17771 Homogeneous catalysis of epoxidation of olefins by mono- and binuclear Schiff base complexes has been reviewed (28 references) 17781. Molybdenum 17791 and manganese porphyrins 17801 17811 were effective olefin epoxidation catalysts Manganese “picnic basket” porphyrins catalyzed the shape-selective epoxidation of olefins (equation 5931 I7821
(Equation
““7
Q
+
593)
PhlO
RhR
-
FIPR’
Ml
“picnic basket porphyrin” by varymg R” can select between
-0 -
0
>lOoo .I
0
0
’ ‘or>/ “Ooo”
The origin of enantioselectivity in the Katsuki-Sharpless epoxidation procedure has been considered I7831. Sharpless epoxrdation of 1, ldimethoxy-3-hexen-5-01s and l,l-dimethoxy-4-hexen-3-01s went with high enantio- and diastereoselectivity I7841 This process was used extensively in total synthesis (equation 594) 17851, (equation 595) [7861, (equation 596) 17871, (equatron 597) [7881, (equation 598) [7891. A relatively simple manganese compound was an efficient catalyst for the asymmetrrc epoxidation of olefins by iodosyl benzene (equation 599) 17901.
References
p 643
578
-
(Equatib
594)
(Equation
595)
TBSO
(2zoTHps iGoTHp OH
OH
(3
+
Chvleee reeolution)
ICOTHP 6H
519
(Equation
/&/OH~/+
596)
--
tsuooH
(Equation
Rss’o~O”
s
Rs=%+
D (-)_DET
92%
---~~ 0
99%
References
P
643
EbN, Diox.
597)
580
(Equation
5
\OmOH
598 1
-
\o&OH
tBuOOH
-
YHBOC
7’ F:
-
HNyN+COzH =
NH
(Equation
= . \
/
‘O
+S,S-1
\ 0 59%ee
50%
93% ee 52%
R=Ph,R’=H;X=H R=H,R’=Ph;X=H R=H,R’=Ph;X=tBu
p’,bph
Ph67% ee 72%
30% ee 63%
3O%ee 36%
78% ee 72%
84% ee 73%
599)
581
Peroxytungstate catalyzed the epoxidation of alkynes (equation 600) [79 1I Chromrum complexed benzaldehydes to epoxides by treatment with alkyl chlorides/peroxide 17921.
to epoxyketones were converted (equation 601)
(Equation
600 1
peroxytungstate
-
A
+ Hz4 62%
--
m
PhePh
Phe-R
PheH
(Equation
60 1)
R
R 1) IBuO-RBuOH CHO
+
R’
R’CH2CI 2)
‘W2
WCQ3
4597% de 6545% yield R=Ms,OMe,CI R’ = CN, C&tBu, COPh (+I- or (-)-single enantiomer
Transition-metal mediated approaches to a-amino acids, fi-lactams and mitomycrn 17931 and B-lactams from cycloaddition of nitrones with copper acetylides 17941 were topics of dissertations. Bicyclic B-lactams were synthesized by the rhodium(I1) catalyzed decomposition of drazoketones (equation 602) [7951. B-Lactams were prepared by the reaction of copperReferences
I) 643
582
derived ester enolates with imines (equation 6031 17961. Manganese(III1 acetate produced a @-lactam from a chloroacetamide (equation 604) 17971. A wide range of optically active I3-lactams were made by photolysis of optically active aminocarbene chromium complexes in the presence of imines (equation 605) [798J. A relay to (+I-thienamycin was prepared by palladium assisted alkylation of an optically active ene carbamate, itself produced from a chromium carbene complex (equation 606) [7991. Diazirines were carbonylated to diazetidinones by palladium and cobalt catalysts (equation 607) l8001.
/%/GMe
+ (PhMe2SI)&uCNL12 -
(Equation
602 1
(Equation
603 1
583
70-90% aQ7% da
References
p 643
(Equation
604)
(Equation
605)
584
(Equation
Ph ‘s.
606 1
Ph 3
H N-0,
mcr =(
:Iph
CH3
* OBn
3) CO, MeOH
TBSO Okk
--
26% overall
0 297% de 6Q%
(Equation
R=
nC-r,Me,(CH&
R’ =
H
‘r
607)
/
R” = Me R’” = Me, Ph, C, ,, I&,
Bu e /
ML,, = Pd(dba)p, Co&O),,
Pyrroles iron (equation
were made by the molybdenum (equation 608) [8011 and 609) (8021 catalyzed ring contraction/extrusion reaction of
585
six-membered heterocycles. diazadlene complexes (equation
Iron azadiene (equation 6 11) I8041 were converted
610) I8031 and to pyrroles (Equation
608)
(Equation
609 1
R’ = Ph, Et02C
R’s
R3
=
(CH2)4s
(CHP)B,
W2)5,
Et, Me, H, Ph
R4 Mo(CO)E WN A H 4&70% R’ = H, Me (CHP)Bs
R2 = H, Me R4 = Ph, C02Ma
References
P 643
(CH2)4
586
(Equation
-
F%W%
6 10)
1) Meu
Ph
w 2) tBuBr
(CO)&
Ph
Ph
(Equation
iPr’
// N.Fe’ NYPr
+
2 EtOzC-aE~-C&Et
-
-
6 11)
WV)
OC’;&CNtBu
Pyrroles were synthesized from alkynes and chromium iminocarbene complexes (equation 612) 18051 18061, (equation 613) 18071, from ynamlnes and imidato carbenes (equation 614) 18081, and from w-acetylenic aminocarbene complexes (equation 6 15) I8091
587
(Equation
6 12 1
Ph
4040% PhCN %/
\ M = W,Cr Ph R’ = Me, Ph, tBu R
1
‘la,
Ph 05%
R3 = nPr, OEt, Et R4 = H. nPr, COCH3, Et
(Equation
6 13 1
R2=Me.H,Ph
~2~~3 *
A
R3 = NEt2, Me. Ph, CH@ble
Ph H 2648%
References
p 643
588
(Equation
6 14)
80” (CO),&
Ph
+
Et2Ne
-
Ph 88%
(Equation
OMB
+
HCI*H,NJR
NH (CO)&r=(
6 15 1
-
PhCH3 t 1100
Ar 8530% 50%
R = Me. Et, TM.!3
Pyrrolidlnes were prepared by palladrum-catalyzed acetoxylation of dienes (equation 616) [8101, and palladium-catalyzed Insertion of dienes into a-lodo-N-tosylanllines (equation 6 17) 18 111 Indoles were prepared by palladium (equation 6 18) 18 121 and ruthenium catalyzed processes (equatron 6 19) I8 131 Pyrrohdrnones were made by Insertron of lsocyanates Into o-manganated arenes (equation 620) [8141 and from palladium catalyzed olefin Insertron reacttons (equation 62 1) IS 151.
589
+
(Equation
6 16 1
(Equation
6 17)
HOAc
also works.
R 50-90% X = NHTs, OH diene =
0\ ’
R = COMS, CHO
References
I) 643
590
(Equation
a ‘=
X
NH2
R2
R2
Pd(ll) cat, LICI BQ
H
Pd(OAc):!
6 18)
)
EhN I DMF 120’
0
35-71%
R’ = H, Me, CH2CQEt. CO#Ae, C02Et, Ph R2 = Me, OEt, Ph, OMB
(Equation
OH
R = H, 4-M& 5-OMe. &Cl, 44X6-Br
6 19 1
591
(Equation
620)
R’ +
ptolyiNC0
2
R’ = H, F, Cl. MO, CF3 R* = H, F, Cl, Me0
WO) DMF
(HCQNa) = Y = H (NaBPh4) = Y = Ph
Organopalladium approaches to oxygen heterocycles 18161, and a palladium catalyzed synthesis of 4-methylenetetrahydrofurans I8 171 were Palladium catalyzed the I3+21 cycloaddition of topics of dissertations. trimethylenemethane complexes to aldehydes (equation 6221 18 181 aOlefinic alcohols cyclized to tetrahydrofurans in the presence of palladium catalysts (equation 6231 18191, (equation 6241 I8201, (equation 6251 18211. Cobaltf II) catalyzed an oxidative cyclization of this class of compounds (equation 626) 18221. Palladium(O) complexes catalyzed the formation of cyclic acetals form allylzincs and ketones (equation 627) 18231. Furans were synthesized from allenic ketones with rhodium(I) catalysts (equation 628) References
p 643
592
[8241 and from alkynes 629) [8251
and ketones
using low-valent
tantalum
(equation
(Equation
,l,
+
622)
R
+
pd(oAc)2.
I-MS
L
R
R
A 0
+ R 0 (full details) R R’ = Me. Ph, 6
+
I
(Equation
R2y R’ AOti
PdX2
1
/ R2=CH20H
-
)
b. R’
0
R’=Me,Ph R2 = C02f48, CH20H
7o-a0% 6040% de
623 1
593
(Equation
6241
(Equation
625 1
1 eq. Pd&(PhCNh
4046%
R’ +
\o
0
)=?I
Fe
‘/
/
0
1
42-50%
13’=
H, Cl
R2 = H. Me, Cl, Br
L4Pd *
References
p 643
594
(Equation
626 1
(Equation
627)
R = Ph, pMeOPh, pCIPh, PhCH2, Me, tBu,
R’
+,w,.==.L
R
4
ala
OR"
R-0
R’ = H, CH3, R” = Me, Et
(CH2hj
OR”
OR"
OR”
4Pd
OZIlBr -
595
R2=
(Equation
628 1
(Equation
629)
nPr, H
R3= H,M3
major
R2
H. Csm Ce,
minor
C7,
R3 = nPr. C5, C8
CIO,
Ph
596
y-Butyrolactones were synthesized by the palladium catalyzed reaction of vinyl halides with butene diols (equation 6301 18261, u-on acyl enolates with epoxides (equation 63 1) 18271, aromatic dialdehydes with rhodium(I) catalysis (equation 6321 [SZSI. reduction of 1,4-diketones with ruthenium binap catalysts (equation 6331 18291, the iron(II1) catalyzed reaction of alkenes with malonates (equation 6341 18301, the reaction of manganese acetylides with epoxides (equation 6351 18311, and transition metal catalyzed chloroacylation of olefins (equation 636) 18321 Butenolides were formed in the reaction of chromium acylate complexes with alkynes (equation 637) I8331 o-Iodophenol, phenylacetylene and carbon monoxide co-cyclized in the presence of palladium catalyst (equation 638) 18341. (Equation
R
HOflOH
PW’) +
RX
-
h0
RX = Phi, IV-‘--’
OH
ox .
6301
597
(Equation
63 1)
co
Ph3P. I
Fe. cp
+
OLi W)
(S)
I
56% (S)(R)
(W(S) (R)
(Equation
H
0 Rh(diWWz)+ -600
6321
598
(Equation
633 1
0
OEt
“2
w
“+
-
Rn-BINAP
0 3 R
0
R = Me, Et, nC8
T_%
(Equation
CO*R
/ RCH \ C&R’
R2
Fe(ClO&
+
R* R3 M-90%
R = Et, PhCHp, Me Rl = Me, pCIPh, H, nBu, PhCHs.Ph-1 R* = H, Me, Ph R3 = Ph. pWPh.
\
pCIPh. t8uv dss Y
634)
599
(Equation
54%
89%
(Equation
Cl
Jf
TM
Cl
cat. -
635 1
O
636 1
Cl
0
upto 95%withCUCI
(Equation
637)
(Equation
638 1
0
O i+ R
R
I
Ph Pd cat. +
PhC33-l
+
CO
-
Stereocontrolled syntheses of N-methyl- 1,2,3,4-tetrahydroisoquinohne derivatives via Cr(C013 methodologies was reviewed [8351. Palladium catalyzed the formation of quinolines from alkynes and iodoaromatic amines (equation 639) [8361. Chromium aminocarbenes were used to produce a number of nrtrogen heterocycles fequatton 6401 18371, (equation 641) 18381, (equation 642) I8391
m5cr’(
NH2
+
PhC-Cl
Ph
-
(CO)& Et3N
639)
(Equation
640 1
Y +N/APh
TIC14
t
(Equation
Y Ph
R_.E.-_R’
A
1240% R = H. Me, Ph R’ = Ph, PW nBu. TMB, CHzOMe, NEt2, CO&b
1O-56%
601
(Equation
64 1)
(Equation
642)
PhH +
Ph-a=*-Ph
-
41%
Palladium complexes catalyzed the formation of several six membered nitrogen heterocycles (equation 643) 18401, (equation 644) 18411, (equation Nickel(O) complexes cycloollgomerlzed isoprene and 645 1 (8421. phenylisocyanate to produce piperidinones (equation 646) 18431. Bridging carbene complexes of iron reacted with phosphinimtnes and alkynes to produce pyridines (equation 647) 18441.
602
(Equation
643 1
(Equation
644)
(Equation
645 1
1 eq. Pd(OAc),
Y”
X = H, 23%; &MeO, 21%; &MJO, 23%; 5 or 7-W,
04%
6040% R =
Me,
Et; Ft’
X
RzMe0.H
= H. OMe; R” = OMe, H
603
(Equation
646 1
(Equatron
647)
LnNI(0) + PhNCO 3P 5tums
,co)4Ft3~(co) 4
+
R’N=PR3
-
hv
4
(CO)aFe k\ N
FUJI
.
R2aR3
6oopeico -
PPNCI 60” 50-6o?h overall
R’ = Ph. tBu, H R’ = tBu, Ph, Et, TMB R3 = H, D, Ph
Palladium catalyzed a number of cyclizations to the pyran or coumarin ring systems (equation 648) [8451, (equation 649) 18461, (equation 650) [847], (equation 65 1) 18481. GroupWII Cp nrtrosyl carbonyl compounds effected the coupling of olefins and methyl propriolate to give oxygen heterocycles (equation 652) [8491. Vanadium complexes catalyzed the cyclization of aldehydes with alkoxy silyloxy dienes (equation 653) [SSOI
References
P 643
604
Palladium-bismuth systems catalyzed poor olefins and propane diol (equation
the formatlon 654) IS511
of ketals
of electron
(Equation
648 1
(Equation
649 1
cat PdClp I CuCl
18-30%
R = 4-M@
4,5-(MeO)2, 5-OH, 4.5 coo-
R
605
(Equation
650)
(Equation
65 1)
1) Bu,NF 2)
bf’d +
R = H.TBPS
OBn
90%
OMe
z-99.1
OBn
OMe
NaOAc I DMA 13CP12 hr
0 79%
R = H,kk
P 643
R
1) I-
‘I
* 2)
12
(Equation
652)
(Equation
653)
O
xi-
+
1) ‘V
R’CHO p 2) TFA /CCL,
R5
4045% ee
(Equation PdC12(MeCN)2 . BiCIBI LiCI
X =
PhCO,MCO,
Me02C, Ph. CN
X
654)
607
Rhodium acetate catalyzed anilines (equation 655) 18521.
the carbonylative
cyclization
of o-ally1
(Equation
655)
R’ = H,S-Cl, 4-Me R2 = H, Me, Ph. ptol
Nickel(O) complexes co-cyclotrimerized butadiene and 2,3-diazadiene (equatron 656) 18531. Macrocyclic tetraazo compounds were prepared by cobalt catalyzed carbonylative coupling of bis benzyl halides (equation 657) Palladium complexes catalyzed the formation of tin-silicon 18541. heterocycles (equation 658) I8551 and germanocycles (equation 659) [8561 from alkynes Low valent zirconium species formed sulfur/silicon heterocycles from acetylenic silanes (equation 660) 18571. Titanlo cyclobutenes were used to form arsenic and phosphorus heterocycles (equation 661) I8591 while titanium oxygen heterocycles were formed from olefinic ketones (equation 662) [8601.
References P
643
(Equation
656 1
Ph
Ni(0) N
+
Ph’--+NONb-Ph
Ph
7
upto 59%ee
(Equation
4) ox
18%
657)
609
(Equation
bpd R2-
R3
+
R’3SnSihk+ib&
FV3Sn
X
PhCH3
R2 -
658)
SIMe2siMe3
R3
40-80%
Ph
H
bf’d PhClCH
82-100%
R’ = Me, Bu R2 = Ph, R02C R3 = H.hleO&
(Equation
GeAr2 Ar2Ge/--\GeAr2
L2PdC12 +
HCICH -
Q 72
2
28
659)
610
TMS
(Equation
660 1
(Equation
66 1)
TMS
TM'S TMS
f’h
+
PhMCi2
Ph
Ph
Ph
>75% M = As,P
(Equation
A-
CP2W~d2 \
-
-0 5
$0,
:
TiCPP
CJJ 53%
662)
611
Heterocycles containrng two heteroatoms were prepared by palladium catalysis (equation 663) 18601. (equatron 664) 18611 and were alkylated by palladium(O) chemistry (equation 665) 18621. 1,3-Oxaphospholes were prepared from chromrum carbene complexes (equatron 666) [8631, while chromium complexed benzaldehyde nrtrones underwent cycloaddition to olefins (equation 667) I8641. Oxazolidrnones were synthesized by intramolecular addition of carbamates to alkynes catalyzed by copper (equatron 668) 18651. (Equation
Yr-7,
+RNFZ
/ J L4Pdp ,,j 33-74%
Y = oco&ls R = Bn,Ts Z = NW
NH, NBn, TsN, 0
RNH’()“NHR
-
n = 3.4
References
D 613
663)
612
(Equation
664)
0
70-80%
Ph-0
OEt
Ao
+
PEC
(Equation
665)
(Equation
666 1
613
-
(Equation
667)
(Equatron
668)
+/
O-N
Cr(C0)3
70-9596 -8% c/s
R=H,TMS x = Ph, OEt, OAc, TMS
R-q-R2 0
NHR’
CuCl I Et3N
)
THF, mC
K 0
Rqy
/
0
R2
NR’ K 0
71-93%
R’ = pTs, PhCO. M&O, Ph, pMeOPh -
1
R2I R3, R4 = H
wyl 0
R’ = Ts; R4 = Me, Et; R3 = Me; R3, R4 = (CH2)5
Rhodium(II) catalyzed decomposition of a-diazoketones was used to synthesize sulfur heterocycles (equatron 669) 18661, (equation 670) 18671 Nickel(O) catalyzed the addrtron of thioacetamide to o-iodobenzamide (equation 671) 18681, and nickel oxide oxidized triazene (equation 672) 18691. Optically active oxazolines were prepared by the gold-catalyzed condensation of aldehydes with isocyanoacetic ester (equation 673) 18701 (8711.
References
P 643
614
Z=
C&Et,
n=
1,2
COW
5I
0X s
Ar Rh20Ac4 +
cs2
-
N2
H
K
0 a-70% Ar = Ph, plbWPh,
669 1
(Equation
670 1
pfO)(OEt),
0 Ar
(Equation
pCIPh, pNO2Ph
615
(Equation
67 1)
(Equation
672 1
,,w,H
+
2
0 40-70%
R’
R2
R’
Ii t
N
// ‘N
NiO, I PhH -
lfx
t
P
/‘N + N 50-7436
R’ = oCIPh, 2,4-C12Ph,2,6-C12Ph R2 = pMPh,
References
P 643
3+C$Ph,
pCIPh, Ph. mCIPh, pFPh, pCFsPh, pBrPh
(Equation
RCHO
+
CNCH&02Et
673)
-
Wee 89:ll
R = Ph
I
L’ =
N-P\ I Fe and PPh2 (W(S)
A transannular cyclization occurred when the cobalt heterocycle complex In equation 674 was oxidized by MnOz, and a rearrangement occurred when the metal was removed with copper(I) chloride I8721 Palladium(O) catalyzed the cyclization shown In equation 675 18731.
617
(Equation
674)
(Equation
675 I
X = 0, NBn,N-
OH
F.
Alkenes. Alkanes Palladium(O) complexes catalyzed the elimlnatlon of ally1 acetates to dienes (equation 676) 18741, (equation 677) I8751 Palladium acetates was used to oxidize enolates to enones (equation 678) [8761 Vanadium oxychlotldes oxidized cychc enones to aromatlc oxygen compounds (equation 679) 18771.
References
p 643
618
(Equation
OAc
phAcF3
4Pd
Ph-AAfF 42%
OAc pt/+
-
P-‘-f CF3
CF3
57% and
C6 C6 45%
F
676 1
619
rho-0
(Equation
677)
(Equation
678 1
MEO-0 Pd20Ac4 . ““OAc 95%
References
P 643
620
(Equation
0
679 1
OR
b I
VO(OR)Cl~
-
ROH 70-90%
Allyk alcohols were deoxygenated to olefms by cobalt(I1) chloride In the presence of cyclodextrm (equation 680) 18781, and by WClz(PMPh214 (equation 68 1) 18793. a-Hydroxyacids were converted to olefins by WOC14 (equation 682) 18801 (Equation
Hz I Co&
I KCN I KCI .
R
04NKOH B_cyclodextrin
R = Bu, R’ = H R = Ph, R’ = H, no reaction
R&R’ 40-90%
680)
621
(Equation
68 1)
(Equation
682)
< 1 min
-OH
-A
< 1 min
-
OH
-w
c 1 min OH 1 day
good ykrlds
R’s = cycl’-JhW’i.Bu, Ph. iPr, Me,
A
Benzyl chlorrdes and chlorobenzene were reduced to the correspondrng hydrocarbon by CpgZrH2 and Cp$rHCl 188 1I. Palladium catalyzed the reduction of vrnylphosphonates (equation 683) 18821, aryl sulfonates (equation 684) 18831 and aryl t&fates (equation 685) 18841 to hydrocarbons. Alkoxy groups on chromium-complexed arenes could be replaced by hydrogen or by hydrides (equation 686) [88Sl
References
P 643
622
DIBAH MesA’
(Equation
683 1
(Equation
6841
(Equation
685 1
5364%
ElsNH+HC02)
NS02R Pd(OAc), cat. DMF
ArH high yields
Ar = l-mph, QNCPh, CAcPh
H
OTf Me0
LpPdcl2 RCOOH, Bu3N X
Ph2PvPPh2
X
623
(Equation
686 1
The hexamer (LCuHls reduced conjugated enones in a 1,4-manner without reducing other functional groups (equation 6871 I8861, and reduced alkynes to cis alkenes (equation 6881 18871. Alkynes were reduced to alkenes by hydrozirconation/protonation (equation 689) (8881. The rhodium(I) catalyzed hydroboration of olefins was shown to involve both reversible complexation and olefin insertion steps [8891. Catechol borane efficiently reduced enones in a 1,4-manner in the presence of rhodium(I) catalysts (equation 690) I8901. (Equation
OAc
OAc 94%
91%
References
I) 643
x = I,Br,OTs
9&95%
687)
624
(Equation
R R--R’
+
0.5eq [PPh3CuHle w
5eq Hz0
688)
R
X-
H
l-l
6030%
--
--0”
/\
PhePh
&/OH
ph< ph<
PhbOAO,/
/“”
“‘\ =
(Equation
1) Cpni3W4
Re *
VbH
2) H+ 7040%
R = PhThN-’
HO-/
f+ OTMS 0
Phs-’
pBrPhAOA-
Ph
689)
625
(Equation
690 1
G
Ketones, Aldehvdes MoOPh oxidized 4-hydroxy-n-cyclophane into the a-hydroxy cyclohexadienone (equation 69 1) I89 11 Zirconium complexes catalyzed the by talcohols to aldehydes or ketones oxidation of benzyl butylhydroperoxide 18921, as did cobah chloride in the presence of Cyclopentene was oxidized to cyclopentanone using oxygen I8931 PdClZ/CuC12 catalysts and 02 I8943 or PdCl2 and t-butylhydroperoxide I8951 (Equation
References
p 643
69 1)
626
Palladium(II1 catalyzed the oxidation of alkynes to a-acetoxy enones (equation 692) 18961 while chromium hexacarbonyl oxidized cyclohexenes to cyclohexenones in the presence of t-butylhydroperoxide (equation 693) 18971. Ruthenium dtoxide oxidatively cleaved olefins to carbonyl compounds (equation 694) I8981 Palladium(O) complexes catalyzed the ring opening of endo peroxides (equation 6951 18991 Platinum(II1 salts catalyzed the hydrolysis of alkynes to ketones (equation 696) 19001. (Equation
692)
(Equation
6931
Oz I Pd(ll) _)
OAc
9035% 0
Base
8590%
621
Ru02 t CH&HO
YH
w
R
40”
YH
0
(Equation
694)
(Equation
695)
+RC02H
CHz R =
c&75%; q&90%.;
Q
0
I76 I
bid
%CO*H
-
)
91%
b +5 +6 HO 4060%
and
Ho 1a-29%
2&27%
628
(Equatron
Pt(ll) R--R’ -
0
cat.
-
H20, THF
696 1
R
R’
R = n6u, R’ = H, R = nPr, R’ = H R = nPr, R’ = Me, R, R’ = nPr, R = tSu, R’ = & R = R’ = Ph; R = Ph. R’ = H
cat =/
\pd-C’. Cl’
’ / 2
r C u ds BIS isorutrile complexes of platinum, nmkel and palladium catalyzed the hydrosrlylatron of a-methylstyrene and ketones [90 11. (Bispyridme) methanol having an optically active alkoxy group a- to one nrtrogen catalyzed the hydrosilylatron of ketones, but with low ee 19021. Rhodrum complexes catalyzed the 1,4-hydrosilylation of ally1 esters of acrylates (equation 697) 19031.
/
(Equation
Et&H OM
L3RhCI
-
A
f--
\
W-k&H-C02siEt3
6971
629
Trimethylsilyl acetylene was alkylated by aryl halides using palladium/copper catalysts (equation 698) 19041 Terminal alkynes were silylated using copper chloride catalysts (equation 6991 I9051 Propargyl alcohols were hydrosilylated to vinyl silanes over platinum catalysts (equation 700) 19061. Disilanes added to olefins to give disilyl alkanes using platinum catalysts (equation 70 1) 19071. Ally1 silanes were prepared by the trimethylsilylmethylatlon of vinyl halides (equation 7021 19081. Aryl chlorides were converted to aryl silanes using palladium(II1 catalysts (equation 7031 19091 (Equation
698)
(Equation
699 1
L,+PdI Cul RSr
+ TMS-
piperidine
R = pFPh, oCIPh, 1-Naph, Mhieng, 24~~4
RSIHB +R%.CH
-
EW CUCI
H RSIeR H 70%
References
P 643
630
(Equation
Pi +
R&IH
700 1
oat.
R*
+
major 7Mo%
OH
R’ = H, Me, CS Fl* = H, Me. I&,
SiRa Cg, CH20Bn. C&Me, CH&%OH
(Equation
LnPl XIL+SISI~X
+
CH2_CH2 -
Xh+SCH&H~Me2X
X = F, 95%; MeO, 52%; Cl, 48%;, Me, 18%, pCF3Ph, 18%; Ph, 4.3%; ptoly, 3.8% also
70 1)
631
(Equation
702 1
(Equation
703)
RX c Pd(O), OH
R = Ph, pl’&OPh, A
RC~TMS 70-Qo?G
-
L,PdCb AIcOcl
+
cIrule2s-siMe2cI
-
PhN02 1250
ArsIMeg 90%
Rhodium(II) perfluorobutyrate catalyzed the silylation of alcohols with an order of reactivity of 1” > 2” >) 3” (equation 704) I9101. With this catalyst Benzyl and ally1 the primary OH of dials cold be selectively protected. acetates were carbonylated/reduced/silylated by cobalt carbonyl (equation 705) 19 111. Nitriles were reductively silylated by the same catalysis (equation 706) 19121.
References
P 643
632
(Equation
704)
Rhdpfbh R’OH
+
R&i
-
R’OSiR3 cat M-99%
R = phCH2,n& cholesterol,glycidol,(0)menthol, (Womeol, phenol, WJOPOL 1” > 2” >> 3”
(Equation
705)
Me,.SiHI CO Ar-OAc
_
00&0),3, PhH
ArW
OTMS
50-75%
Ar = PwPhu owPh, fermcenyl
PmPh, oMePh, Ph. pCIPh, l-neph, 2-fuw, 3-f~@,
Bmiophenyl
(Equation
706)
Co2cwa
AICN
+
Me3SIH
-
ArCH2NTM& co 5040%
Ar = Ph, oMePh, mMePh, pMePh, pNCPh. pMeOPh, pMepNPh, pCIPh, mCIPh, pMe02CPh 2-naph also /\/\CN
yCN
vCN
QCN
“x”
633
Ally1 acetates were converted to ally1 selenium complexes using palladium chloride/samarium(II) iodide (equation 707) [9 131. Palladium(O) complexes catalyzed the hydrostannylation of alkynes (equation 708) 19141 19 151, the stannylation/germanylation of allenes (equation 7091 I9 161, and the cyanogermannylation of alkynes (equation 7101 I9 171. (Equation
7071
Smlp
R-
OAc
+
PhSeSePh
-
PdC12 L
R_
SePh 60-80?/0
(Equation
RVR
THF +
R”$nH
Pd0
H
SnR”, 44-70%
R Or R’ = H, Me, Et, Ph. CO&k, COMe R” = Me, Ph
References
P 643
R
StW3
708 I
634
(Equation
709 1
(Equation
7 10 1
Wd RCH=C=CHp
+
Me&SnBus
-
+
A-/R
BuBSn
GeMe3
R = MeO, EtOCCH2, Ph, Cs, tBu
PdCi2 RGlCH
+
Me3GeGN PhCH7
R t\ CN
GeMe3
SO-90%
R = Ph, pFPh, pCIPh, mMeOPh, oMeOPh, NC/*\/\ P-neph, I-naph, nC6,ACOCH&H2.
/
Miscellaneous Palladium(O) complexes catalyzed the reaction of vinyl triflates with triphenyl phosphine to give vtnylphosphonium salts (equation 71 1) [9 191. Trimethylphosphite reacted with chromium complexed chlorobenzene in low yield (equation 712) [9201 Rhodium(I1) acetate coupled diazomalonates to diazadienes (equation 7 13) 192 11 Cuprates desulfurized ketene thioacetals (equation 714) I9221 Platinum carbonyl complexes deoxygenated sulfoxides with CO (9231 The preparation, characterization and purification of the water soluble rhodium complex [(O-$PhI3PlSRhCl*H20 was reported [9241 The use of allyl- and allyloxycarbonyl protecting groups which could be removed by Pdg(dba)g/HCOOH has been developed 19251. Optically active alkaloids promoted high asymmetric induction in the osmium tetroxide I.
635
were conversion of oleflns to dlols (equation 715) [9261. Leukotrlenes labelled with metal carbonyl clusters for ir markers for In vitro analysis 19271. Cobalt and molybdenum carbonyl clusters were used m imunology 19281 (Equation
7 11)
(Equation
712)
OTf
OTf I(
+ OTf
bPd
cat.
R;pph3 .
OTf-
/L OTf
x
PdClp x
+
P(Ofvle&
-
R 120”
Cr(W3
WCQ3 low yelds
References
p 643
636
(Equation
713)
MO& WO&
K
Rh(ll) acetate
co&l6
CO~Me
t -N,
p
~eofi
N4
N2
co2Me 5040%
R
x
G4Ms
Me&uCNLi
I
Mes
x Mes
Sk48
(Equation
7 15)
I
QO 10 R = Et, Ph, w/
714)
co&le
R
.
(Equation
Ii E.2
9597%
R = H, 55%
+
w
OS04 e
WWW6 NM0
87%ee
dlol
631
Reviews IV “Transition metals in organic synthesis; annual survey covering the year 1988”. (907 references) ]9291 “Transition metals in organic synthesis; annual survey covering the year 1989”. (992 references) ]930] “Organometalhcs in synthesis”, (295 references) (93 11 “The use of transition metal clusters in organic synthesis”, (425 references) ]9321 “Organomolybdenum complexes in organic synthesis: construction of quaternary carbon centers”, ]933] “Organometallic compounds in synthesis and catalysis”, (106 references) ]9341 “Transition metals in total synthesis”, I9351 2. Aspects of a modern “Organometallics in organic synthesis interdisciplinary field”, I9361 “Transition metal organometalhcs in the synthesis of biologically active molecules: alkylidene indanones and quinones”, (9371 “Organometallic compounds in the synthesis of pharmaceuticals”, (3 references) ]9381 “Organic reactions of selected x -complexes. Annual survey covering the year 1988” (335 references) ]9391 “Highly selective synthetic processes utilizing the specific properties of metals”, (11 references) I9401 “Heterogeneous catalysis and fine chemistry”, (28 references) [941] “Synthetic organic reactions by means of organometallic reagents”, (2 references) 19421 “New organic synthesis using Group(VII1) metal complexes”, (64 references) (9431 “Organochromium(II1) chemistry A neglected oxidation state”, (43 references) I9441 “Synthetic applications of metallate rearrangements”, I9451 “Sequential cross-coupling reactions as a versatile synthetic tool”, (2 1 references) I9461 “Tetracarbonylhydridoferrates, MHFe(C0)4. Versatile tools in organic synthesis and catalysis”, (170 references) (9471 “Multiple stereocontrol us.ng organometallic complexes. Applications in organic synthesis and consideration of future prospects”, (46 references) ]9481 “Metallo-immes useful reagents in organic synthesis”, ( 14 references) [949] References
p 643
638
“Aspects of aromatrc n-on sandwiches. application to organic and organometallic syntheses”, ( 12 references) [9501 Syntheses and carbon-carbon bond forming reactions of rhenrum enolates”, [9511 “Palladium-catalyzed hydrostannolytic and hydrostannatron reactions and their apphcation m organic synthesis”, (17 references) [9521 “Aspects of cross-coupling reactions catalyzed by palladium and nickel complexes”, [9531 “Some palladrum-catalyzed carbon-carbon bond formatron reactions”, (43 references) I9541 ‘Cyclopalladated compounds as organrc synthesis reagents”, (34 references) I9SSl “New appbcations of organopalladium compounds In organrc syntheses”, (26 references) I9561 “Stereoselectrve annulations vra palladrum catalyzed reactions”, (22 references) [9571 “An advantageous use of palladium compounds In organic synthesis”, ( 10 references) [9581 “Reactron of a-amtno acrds in the presence of palladrum compounds”, [959] “Organopalladrum chemistry - palladrum-assisted arylatron”, (14 references) 19601 “Palladrum complexes in organrc synthesis”, (3 1 references) I96 1I “Some applicatrons of palladrum complexes in organic syntheses”, (41 references) 19621 “Asymmetrrc synthesis wtth transition metals”, 19631 “Right or left - this is the questron (enantloselectlve catalysrs wrth transition metal compounds)“, (24 references) 19641 “Multiple stereocontrol using organometallic complexes. Applrcatrons m organrc syntheses and consrderation of future prospects”, (46 references) I9661 “Enantioselectrve syntheses wrth optically active transrtron metal catalysts”, (285 references) 19671 “Asymmetrrc carbon-carbon bond formatron with titanrum carbohydrate complexes”, [9671 “Asymmetrrc synthesis catalyzed by chu-al phosphine-metal complexes”, (25 references) [9681 “Asymmetrrc syntheses usrng transItron metal complex catalysts”, ( 19 references) [9691
639
“Enantioselective catalysis with metal complexes An overview*‘, (253 references) 19701 “Application of chiral ferrocenylphosphines in catalytic asymmetric synthesis”, (32 references) I97 11 “Recent advances in catalytic asymmetric reactions promoted by transition metal complexes”, (148 references) I9721 “Chiral acetals in asymmetric synthesis”, (170 references) 19733 “BINAP An efficient chit-al element for asymmetric catalysis”, (50 references) I9741 “Reactions of cyclohexadienyliron tricarbonyl complexes, their synthetic applications, and the controlling factors of their regioselectivity”, (8 references) 19751 “Acyclic butadiene-iron tricarbonyl complexes in organic synthesis”, ( 109 references) 19763 “Reactions de type Friedel-Crafts de complexes dieniques de Fertricarbonyle Doubles acylations d’line meme unite dienique et acylations de complexes de dienes a fonction ester”, (24 references) 19773 “A novel stereospecific method of synthesis of symmetric functionahzed 1,3dienes” I9781 “Transition-metal pentadienyl chemistry”, (31 references) 19791 “Stereocontrolled functionahzation of cycloheptadienes using organometallic chemistry: synthesis of macrohde subunits”, I9801 “Cyclohexadiene iron complexes in lycorine asymmetric synthesis” 198 11 “Hydrozirconation (IV). Hydrozirconation of aromatic nitriles and its application in organic synthesis” 19821 “Cationic Zr catalysts for C-C bond-forming chemistry”, (43 references) 198311 “Cyclization, coupling, and rearrangement reactions of organozirconium and related compounds”, (49 references) [9841 “Organozirconium chemistry revisited on the surface things don’t look quite the same”, (22 references) 19893 “Functionalization of alkynes, enynes and arynes using organozirconium reagents”, (20 references) 19863 “Zirconocene complexes of unsaturated organic molecules”, (18 references) 19873 “Preparation and reactivity of a-zirconocenyl thioethers: new carbon-carbon bond forming reactions via a transition metal hydroxymethyl or metalloxirane analog”, 19881 References
P 643
640
“C-glycoside synthesis by palladium-mediated glycal-aglycon coupling reactions”, (57 references) 19891 “Organometallic methodologies for nucleic acid synthesis”, (15 references) I9901 “Synthesis of nucleic acids based on organometallic chemistry”, (21 references1 199 11 “Stereoselective reactions on molybdenum ally1 complexes”, 19921 “Transition metal-stabilized vinylketenes”, (24 references) 19931 “Carbon-hydrogen bond activation and the hydride-mediated ring cleavage of methylenecyclopropane by rhodium(I)“. 19941 “Mechanisms of intramolecular activation of carbon-hydrogen bonds in transition-metal complexes”, (127 references) 19951 “Carbon-carbon and carbon-hydrogen bond activation at ditungsten centers supported by alkoxide ligands”, (26 references) 19961 “Mechanisms of intramolecular activation of CH bonds in transition metal complexes”, ( 127 references) 19971 Photocatalytic carbon-hydrogen activation by RhCl(CO)(PMe312”, (14 references) 19981 “Carbon-hydrogen bond activation of aldimines by rhodium(I) new synthesis of pl Y -unsaturated ketones from aldehydes through iminoacylrhodium(III)-h3-ally1 complexes” 19991 “Synthesis, reactivity, and structures of organometallic complexes containing multiple transition-metal carbene fragments of chromium and tungsten”, [ 10001 “Carbenes, carbides, and carbon Ten years of transition metal-acetylene chemistry”, (25 references) 1100 11 “Carbene methods for the introduction of acyl and acylmethyl groups into organic molecules”, ( 120 references) [ 10021 “Carbonylcarbenes in specific synthesis of natural products”, ( 134 references) 110031 “Synthesis and reactivity of asp-unsaturated carbene complexes of chromium and tungsten”, I10041 “Carbyne complexes of tungsten” 110051 “Transition metal-activated organic compounds. Part 28 Easily accessible methylene complexes of molybdenum and tungsten: structure and application in organic synthesis”, (30 references) 110061 “Directed orthometallation tertiary amide and o-carbamate directions in synthetic strategies for polysubstituted aromatics”, (2 14 references) I10071
641
“The directed ortho metalation reaction. Methodology, applications, synthetic links and a non-aromatic ramification”, (17 references) I10081 “Regioselective synthetic processes based on the aromatic directed metalation strategy”, ( 16 references) [ 10091 “Transition metal-catalyzed cyclization reactions and stereoselective synthesis of exocyclic alkenes”, [ 10 101 “Metal-catalyzed alkene addition reactions in organic synthesis”, [ 10 1 1I “Selective molecular transformation by carbon-carbon bond activation”, ( 17 references) I10 121 “Metal complex and regioselectivity in carbon-carbon coupling reactions”, (17 references) I10131 “Organometallic oxidation catalysts”, (44 1 references) [ 10 141 “Carbon-carbon, carbon-nitrogen and carbon-oxygen bond formation reactions of organoruthenium and organorhodium complexes”, I10 151 “Ruthenium and osmium 0x0 complexes as organic oxidants”, (3 1 references) 110161 “Transition metal dioxygen complexes as intermediates in homogeneous catalytic oxidations”, ( 128 references) I1 0 171 “Homogeneous catalysis of organic reactions by transition metal complexes”, (321 references) [10181 “Application of homogeneous rhodium catalyst in organic synthesis”, (19 references) I10 191 “Carbonyl complexes as homogeneous and supported catalysts”, (28 references) I10201 “Comments on the chemistry of low-valent alkylidyne complexes of the Group( VI) transition metals”, (94 references) I1 02 11 “Heterometallic clusters in catalysts”, (320 references) I10221 “Reactions of the h5-pyrrolyl ligand: a new challenge in the chemistry of pyrroles”, (36 references) I10231 “Metalation and metal-assisted bond formation in I -electron deficient heterocycles”, (86 references) 110241 “A new approach to the construction of novel r-electron systems using nickel complexes”, (47 references) [ 10251 “Stereochemical aspects of organometallic clusters A view of the polyhedral skeletal electron pair theory”, ( 109 references) [ 10261 “Diene substituent effects on the retro Diels-Alder reaction, and dimeric cobalt(II1) complex promoted phosphate ester hydrolysis”. (10271 “Intermediates and reaction mechanisms in the interaction of nickel(O) complexes with organic substrates”, (93 references) [ 10281 References
p 643
642
“Preparation of organometallic compounds from highly reactive metal powders”, (34 references) (10291 “Homogeneous catalysis by ruthenium carbonyl clusters”, (125 references) 110301 “Organometallic chemistry The transition elements”, (73 references) 1103 11 “Metal coordination compound-assisted coupling reactions of norbornadiene”, ( 16 references) [ 10321 “Organo-element transformations of semiquinoid compounds”, (60 references) I10331 “Organometallic derivatives of a, p-unsaturated enones”, ( 176 references) 110341 “Supported metals and supported organometallics”, (58 references) I10351 “5-Cyclopentyl and S-cyclopentyloxy derivatives of 4-oxa- 1-pentyne and their catalytic transformations”, 110361 “The role of transition metal centered radicals in inorganic and organometallic chemistry”, (102 references) 110371 “The stabilization and reactivity of strained cyclic alkynes on transition metal centers”, (27 references) I1 0381 “Methods for the synthesis of allylsilanes, Part 1”. (94 references) 110391 “Rh phosphine complexes as acetalization catalysts”, (9 references) [ 10401 “The directed synthesis of biaryl compounds modern concepts and strategies”, ( 157 references) 1104 11 “Expanding industrial applications of palladium catalysts”, (89 references) 110421 “Nickel. an element with wide application in industrial homogeneous catalysis”, (84 references) 110431 “On the conformation and structure of organometal complexes in the solid state, two studies relevant to chemical synthesis”, (97 references) [ 10441 “Highly reactive intermediates from the cocondensation reaction of iron, cobalt, and nickel vapors with arenes”, (89 references) 110451 “Transition-metal mediated C-S bond cleavage reactions”, ( 139 references) 110461 “Synthesis of potential hybrid catalysts upon coordination of bare palladium(II1 with crosslinked macromolecular nitriles. Catalytic drmerization of methyl acrylate”, 110471 “Synthesis of allylic and homoallylic alcohols via organometallic ringopening of vinylic epoxides and oxetanes”, 110481
643 References
1
2. 3
4 5 6 7.
Lebedev, S.A.; Sorokina, R.S.; Petrov, ES Zh Org. Khim. 1989, 25, 2026. Ah, H.M ,Brubaker, C.H J Mol. Catal. 1990, 60, 331 Kottirsch, G ; Szeimies, G Chem. Ber. 1990. 123, 1495. Bochmann, M ; Creaser, CS., Wallace, L. J. Mol Catal 1990, 60, 343 Ikoma, Y.; Tayam, F.; Ozaki, E-i.; Higuchi, S , Naoi, Y , Fuji-I, K. Synthesis 1990, 147. Tzeng, Y-L ; Luh, T-Y, Fang, J-M. _l. Chem Sot Chem Comm 1990, 399 Bumagin, N A., Andryukhova, N.P.; Beletskaya, I.P. Metalloorg. Khim 1989.
8
Bumagm, N A ; Andryukhova, 1989,
9. 10. 11
2, 893.
N P ; Beletskaya,
I P Metalloorg.
Khim.
2. 605.
Gaudm, J-M, Morel, C. Tet. Lett 1990, 31, 5749 Inami, K ; Teshima, T.; Emura, J, Shiba. T Tet. Lett Andringer, H., Hanekamp, J; Brandsma, L Synth
1990, 31, 4033. Comm.
1990,
20,
2349
12. 13.
14. 15.
Kasatkin, A.N.; Romanova, T Yu , Tsypyshev, OYu , Tolstikov, G.A., Lomakina, S.1 Izv. Akad. Nauk SSSR, Ser Khim 1989, 2623. Lipshutz, B.H. Synlett 1990, 119 Roush, W R Chemtracts- Org. Chem 1988, 1, 243. Lipshutz, B H; Crow, R.; Dimock, SH ; Smith, R.A J; Behling, J.R J Am. Chem
16. 17 18 19 20 21. 22. 23.
Sot
1990,
Chim. Fr. 1989,
24. 25 26. 27
112, 4063.
Lipshutz, B.H ; Sharma, S ; Reuter, DC. Tet Lett 1990, 31, 7253. Knochel, P. J Am. Chem. Sot 1990, 112, 743 1. Berk, SC.; Chang, M, Yeh, P, Jeong, N.; Knochel, P Organomet. 1990, 9, 3053 Chen, H.G; Gage, J.L; Barrett, SD; Knochel, P. Tet. Lett. 1990, 31, 1829 Majid, T.N.; Knochel, P Tet Lett. 1990, 31, 4413. Raq, S.A., Tucker, CE, Knochel, P Tet Lett 1990, 31, 7575 Sorensen, H.; Greene, A.E. Tet. Lett. 1990, 31, 7597 El Marini, A , Roumestant, M.L., Pappalardo, L , Viallefont, P. Bull Sot 554.
Lipshutz, BH, Elworthy, T R j Urg Chem. 1990,55, 1695. Petit, Y.; Sanner, C.; Larcheveque, M Tet. Lett 1990, 31, 2149. Kant, J, Sapino Jr, C.; Bader, S.R. Tet. Lett 1990, 31, 3389. Philhps, D, O’Neill, B.T Tet Lett 1990, 31, 329 1
644
28. 29. 30 31. 32 33 34. 35. 36 37 38 39. 40
Tsushima, K ,Murai, A Chem. Lett. 1990, 761 Skrinjar, M., Wistrand, L-G. Tet. Left. 1990, 31, 1775 Ludwig, C., Wistrand, L-G. Acta Chem. Stand. 1990, 44, 707 Kurth, M, Abreo, M.A. Tetrahedron 1990, 46, 5085. Takahashi, 0; Furuhashi, K; Fukumasa, M., Hiram, T. Tet. Lett 1990, 31, 7031 Tanner, D., Burgersson, C, Dhaliwal, H.D. Tet. Lett 1990, .?I, 1903 Shonecker, B ; Walther, D ; Fischer, R ; Nestler, B.; Braunhch, G ,Eibisch, H , Droescher, P. Te’et.Lett. 1990, 31, 1257 Braunlich, G, Fischer, R, Nestler, B , Walther, D. 2. Chem. 1989, 29, 416 Bumagin. N A ; Andryukhova. HN.P.; Beletskaya, I.P. Dokl. Akad. Nauk SSSR 1989. 307, 375. Luo, F-T, Wang, R-T Heterocycles 1990, 31, 1543. Negishi, E-i, Swanson, D.R,Rousset, C J J Urg Chem. 1990, 55, 5406. Ennis, D.S.. Gilchrist, T.L. Tetrahedron 1990, 46, 2623. Amatore, C, Jutand, A ; Negri, S , Fauvarque, J-F J. Organomet. Chem 1990,
41 42. 43 44. 45 46. 47 48
390,
389
Ramiandrasoa, F.; Tellier. F Synth. Comm. 1990, 20, 333, 371. Telher. F, Descans, C. Tet. Lett. 1990, 31, 2295 Arcadi, A, Burini, A., Cacchi. S.; Delmastro, M., Marmelli, F.; Pietroni, B Syn Left 1990, 47 Sengupta, S ; Snieckus, V. J Org Chem. 1990, 55, 568 1 Sweet, MP DISS Abstr Int B 1990, 50, 4565. Parrain, J-L., Duchene, A.; Quintard, J-P. Tet. Left 1990. 31, 1857 Kwon, H B., McKee, B H.; Stille, JK J Org. Chem. 1990, 55, 3 114. Rubin, Y.; Knobler, C.B , Diederich, F J Am. Chem Sot. 1990, 112, 1607
49. 50 51. 52 53. 54 55 56 57.
Liebeskmd, L.S., Wang, J Tet. Lett 1990, 31, 4293. Liebeskmd, L S, Fengl R W. J. Org Chem. 1990, -55, 5359. MacLeod, D; Moorcroft, D., Quayle, P., Dorrity, M.R.J, Malone, J.F Tet Left. 1990, 31, 6077 Friesen, R.W., Sturmo, C F J Org. Chem 1990, 55, 2572 Friesen, R.W.; Sturino, C.F. J Urg. Chem. 1990, -53, 5808. Dubois, E; Beau, J-M J Chem Sot Chem Comm. 1990, 119 1 Dubois, E, Beau, J-M. Tet. Lett 1990, 31, 5165. Moriarty, R.M.; Epa, W R, Avasthi, A.K Tet Lett 1990, 31, 5877 Yokoyama, Y, Ikeda, M, Saito, M, Yoda, T., Suzuki, H, Murakami, Y Heterocycles 1990, 31, 1505
645
58. 59.
Forsythe, C.J.; Clardy, J. J Am. Chem. Sot. 1990, 112, 3497. Porco, J.A.; Schweneu, F.J.; Stout, T.J.; Clardy, J., Schreiber, S.L. J Am. Chem. Sot. 1990,
60
61 62
Fujiwara, K.; Kurisaki, A.; Hirama, M. Tet. Lett. 1990, 31, 4329. Stork, G; Isaacs, R.C.A. J. Am. Chem. Sot. 1990, 112, 7399. Farina, V.; Baker, S.R.; Benigni, DA.: Hauck, S.I.; Sapino Jr C. J Org. Chem. 1990.55,
63. 64. 65 66 67 68 69. 70. 71. 72 73
112, 7410.
5833.
Baker, S.R.; Roth, G.P. Sapmo, C. Syn. Comm. 1990, 20, 2185. Rano, T.A; Greenlee, M.L.; Ninno, FP.D. Tet. Lett. 1990, 31. 2853. Stille, J K.; Sweet, M.P. Organometaflics 1990, 9, 3 189. Ciattini, P.G, Morera, E; Ortar, G. Tet. Lett. 1990, 31, 1889. Crisp. G.T.; FLynn, B L Tet. Lett. 1990, 31, 1347. Laborde, E.; Lesheskl, L.E., Klely, J.S. Te’et.Lett. 1990, 31, 1837. Tamayo, N, Echavarren, A.M ; Pairedes, M.C.; Farina, F., Nokeda, P Tet. Left. 1990, 31, 5189. Robl, J.A. Tet. Lett 1990, 31, 3421 Martorell, G.; Garcia-Raso, A, SaP, J.M. Tet Lett 1990, 31, 2357. Fu, J.M.; Snieckus, V Te’et.Lett 1990, 31, 1665 Catellani, M.; Chiusoli, GP., Fornasan, V. Cat.? Chim. Ital. 1990, 120, 779.
74. 75. 76. 77 78
Soderquist, J.A.; Santiago, B. Tet. Lett. 1990, 31, 5541. Crisp, G T.; Macolino, V. Syn. Comm. 1990, 20, 413 Gronowltz. S , Peters, D. Heferocycles 1990, 30, 645 Suri, S.C.; Nair, V. Synthesis 1990, 695. Kobayashi, Y.; Shimazaki, T.; Takeguchi, H.;‘Sato, F. J Org. Chem. 1990. -55, 5325.
79. 80 81. 82 83 84. 85 86. 87.
Roush, W.R.; Moriarlty, K.J.; Brown, B.B. Tet. Lett 1990, 31, 6509. Hatanaka, Y.; Hiyama, T. Yuki Gosei Kagaku Kyokaishi 1990, 48, 834 Hatanaka, Y.; Fukushima, S.; Hiyama, T. Heterocycfes 1990, 30. 303. Hatanaka, Y.; Hiyama, T. J Am Chem. Sot. 1990, 112, 7793. Hatanaka, Y.; Hiyama, T. Tet. Lett 1990, 31, 2719. Ikenaga, K, Matsumoto, S., Klkukawa, K., Matsuda, T. Chem Lett. 1990, 185. De la Rosa, M.A ; Verlarde, E.; Guzman, A. Synth. Comm. 1990, 20, 2059. Loffler, A.; Humbert, G. Synthesis 1990, 125. Saito, I.; Yamaguchi, K., Nagata, R.; Murahashi. E. Tet. Left. 1990, 31, 7469.
646
88.
89 90 91 92. 93. 94. 95 96. 97 98 99. 100. 101. 102 103 104. 105
106 107 108 109. 110. 111 112 113.
Myers, A.G.; Harrington, P.M.; Kuo, E.Y. J. Am. Chem. Sot. 1991, 113, 694. Eddarir, S.. Francesch, C.; Mestdagh, H.; Rolando, C. Tet. Lett. 1990, 31, 4449. Yang, Z-Y; Burton, D J Tet Lett. 1990, 31, 1369 Robbins, M J, Vinayak, RS.; Wood, S.G. Tet. Lett 1990, 31, 373 1. Robbins, J.M. Manfredini, S Tet Lett 1990, 31, 5633. Brandsina, L ; Verkruijsse. H.D. Synth. Comm 1990, 20, 2275 Smith, CA. Diss. Abstr. Int. B. 1989. 50, 1421 Nakatani, K.; Arai, K., Hirayama, N.; Matsuda, F., Terashima, S. Tet Lett 1990, 31, 2323. Wender, P.A , McKinney, J A.; Mukai, C J Am Chem. Sot. 1990, Il.?. 5369 Krebs, A., Wehlage, T, Kramer, C-P. Tet. Lett 1990, 31, 3533 Wehlage. T; Krebs, A.; Link, T Tet. Lett. 1990, 31, 6625 Nicolaou, KC ; Skokotas, G ; Furuya, S ; Suemune, H ,Collette, D. Angew. Chem. Int Ed. Engl. 1990, 29, 1064 Suffert, J Tet Lett. 1990, 3f, 7437 Nicolaou, K.C.; Hwang, C-K., Smith, A.L , Wendeborn, S.V. J Am Chem. Sot 1990, 112, 7416 Magnus, P., Annoura, H., Harling, J J Org. Chem. 1990, -55, 1709 Al-Hassan, M I J Organomet. Chem. 1990, 395, 227 Ito, Y; Inouye, M., Yokota, H ; Murakami, M j Org Chem. 1990, 55, 2567 Mignani, G., Chevalier, C., Grass, F, Allmang, G; Morel, P Tet. Lett. 1990, _?I, 5161 Zavodnov. VS., Kul’nevich, V G., Zniov’ev, V.D Khim Geterotsikl Soedin 1990 453 Sakakihara, T , Kume. T.; Shimohara, K, Fulishima, H.; Hara. S.; Shineda, T. Heterocycles 1990, 31, 459. Sakamoto, T., Katoh, E , Kondo, Y., Yamanaka, H Chem Pharm. Bull. 1990, 38, 15 13. Cervillo, J , Marquet, J,, Moreno-Manas, M Tetrahedron 1990, 46, 2035 Ogawa, T., Hayami, K, Iyama, H, Suzuki, H Chem. Lett 1990, 937 Crisp, G T ,Bubner, T P Synth Commun. 1990, 20, 1665 Native, C., Rmci, A ; Taddei, M Tet. Lett 1990, 31. 2637 Linderman, R J, Graves, D M ; Kwochka, W R, Ghannam, A.F., Ankelhar, T.V J .4m Chem. Sot 1990, 112, 7438.
641
114. 115. 116. 117 118. 119 120. 121. 122. 123. 124. 125. 126 127. 128 129 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141
Kauffmann, T.; Laarmann, B.; Menges, D.; Voss, K-U.; Wingbermuhl, D Tet. Lett. 1990, 31, 507. Cahiez, G.; Laboue, B. Tet. Lett. 1989, 30, 7369. Petasis, N.A.; Bzowej, E I J Am Chem. Sot. 1990, 112, 6393. Kamigata, N; Fukushima, T., Yoshida, M. Chem. Lett. 1990, 649. Merlic, CA.; Semmelhack, M.F J Organomet. Chem. 1990, 391, C23 Casalnuovo, A.L.; Calabrese, J.C J Am. Chem Sot. 1990. 112, 4324 Bumagin, N.A.; Andryukhova, N P., Beletskaya, I P Metalloorg. Khfm. 1989, 2, 911. Dai, X ; Zhang, J; Ma, J. EIouji Huaxoe, 1989, 9, 361. Choudary, B.M ; Ravichaudra Sarma, M; Rao, K.K. Tet. Lett. 1990, 31, 5781. Tao, W ; Nesbitt. S , Heck, R.F. j. Org. Chem. 1990, 55, 63. Bumagin, N.A., Andryukhova, N P, Beletskaya, I.P. Dokl Akad. Nauk SSSR 1990,313, 107 Davies, S.G.: Pyatt, D., Thomson, C J Organomet. Chem 1990, 387, 381. Yokoyama, Y; Takahashi, M.; Kataoka, K.; Fulikawa, Y , Murakami, Y. Heterocycles 1990, 31, 803. Arcade, A., Cacchi, S.; Marinelli, F., Morena, E.; Ortar, G. Tetrahedron 1990, 46, 7151. Andersson, C-M; Larsson, J ; Hallberg, A. J. Org Chem 1990, -5.5, 5757 Paquette, L A; Ra, C.S.; Edmonson, S.D. J Org. Chem. 1990. 55, 2443 Carbri, W.; Candiani, I.; Bedischi, A. J Org. Chem. 1990, 55, 3654. Choudary, B.M.; Sarma, M.R. Tet. Left. 1990, 31, 1495. Larock, R.C.; Gong, W.H. j Org. Chem. 1990, 55, 407 Fart-, RN.; Outten, R A.; Cheng, J C-Y, Daves Jr, G.D. Organometallics 1990,9,3151 Bellosta, V , Czernechi, S.; Avenel, D ,El Bahil, S , Gillier-Pandrand, H. Can. J Chem 1990, 68, 1364 Jeffrey, T. Tet. Lett. 1990, 31, 6641 Larock, R.C, Leung, W-Y. J. Org. Chem. 1990, S-5, 6244 Nilsson, K.; Hallberg, A. J. Urg. Chem. 1990, -55, 2464 Arcadi, A.; Benocchi, E.; Cacchi, S, Caglioti. L, Marinelh, F Tet Lett 1990, 31. 2463. Nilsson, K.; Hallberg, A Acta Chem. Scan. 1990, 44, 288 Yamashita, H ,Roan, B.L., Tanaka, M. Chem. Lett. 1990, 2175 Cheng, J.W.; Luo, F.T. Bull Inst. Chem., Acad. Sin. 1989, 36, 9.
648
142. 143 144 145 146. 147. 148. 149 150. 151. 152 153. 154. 155. 156. 157. 158 159 160 161 162. 163 164. 165 166. 167 168 169
Sato, Y., Sodeoka, M., Shibasaki, M. Chem. Left. 1990, 1953. Abelman, M.A.; Overman, L.E.; Tran, VD. J. Am Chem. Sot. 1990, 112, 6959. Sundberg, R.J; Cherney, R J. J. Org Chem. 1990.5.5, 6028. Larock, R.C.; Fried, C.A. J. Am. Chem. Sot. 1990, 112, 58&X2. Torii, S.; Okumoto, H.; Ozaki. H.; Nakayasa, S.; Kotani, T. Tet. Left 1990,31, 5319 Curran, D.P, Chang, C-T Tef. Left. 1990, 31, 933. Kende, AS, DeVita, R.J Tet. Left 1990, 31, 307. Somei, M ; Kawasaki, T Chem. Pharm. Bull. 1990, 37, 3426. Len&, N.L.; Peet, N.P. Tet. Left. 1990, .?f, 81 1. Larock, RC.; Stinn, DE.; Kuo, M-Y Tef. Left. 1990, 31, 17. Morris, I.K., Snow, KM.; Smith, NW.; Smith, K.M. J Org. Chem. 1990, 55. 1231 Kamigata, N ,Satoh, M. Suffur Left. 1989, 9, 233 Kamigata, N., Satoh, M.; Kukushima, T. Buff. Chem Sot. Jpn. 1990, 63, 2118. Kamigata, N., Kukushima, T.; Satoh, A., Kameyama, M. J Chem. Sot. PerkIn Il990, 549. Miura, M; Hashimoto, H, Itoh, K.; Nomura, M j. Chem. Sot., Pet-kin Trans I 1990, 2207. Cacchi, S. Pure Appl. Chem. 1990, 62. 713. Montgomery, J, Wieber, GM.; Hegedus, L S. J Am. Chem. Sot. 1990, 112, 6255. Uno, M.; Takahashi, T.; Takahashi, S. j. Chem Sot., Perkin Trans I 1990, 647. Fournet, G., Balme, G ; Gore, J. Tetrahedron 1990, 46, 7763. Cambie, R.C., Metzler, M.R., Rutledge, PS , Woodgate, P.D. j. Organomet. Chem. 1990, 381, C26. White, JD, Somers, T.C., Yager, K.M. Tet Left. 1990, 31, 59. Davis, R.; Durrant, J.L A, Khazal, N M.S ; Bitterwolf, T.E. j. Organomet Chem. 1990, 386, 229. Lee, G.M.; Weinreb, S.V. j. Org Chem. 1990, 55, 1281 Ishibashi. H.. Nakatani, H, Iwami, S.; Sato, T.; Nakamura, N.; Ikeda, M J Chem. Sot. Chem. Comm. 1989, 1767. Yang, ZY., Burton, D J. J. Flourme Chem. 1989, 45, 435 Chen, G.J.; Tamborski, C J Fluorine Chem. 1990, 46, 137. Tucker, C.E.; Rao, S.A , Knochel, P. J. Org. Chem. 1990, 55, 5446. Isaka, M; Nakamura, E J Am. Chem. Sot. 1990, 112. 7428.
649
170 171. 172 173. 174. 175. 176. 177. 178. 179. 180. 181. 182. 183.
184. 185 186. 187. 188. 189. 190. 191. 192.
Lautens, M.; Smith, A.C.; Abd-Elaziz, A.S ; Huboux, A.H Ter. Lerr 1990, 31, 3253. Valverde, 5.; Bernabe, M.; Ochos, S G.; Gomez, A.M. J Org. Chem. 1990, SS, 2294. Donnelly, K.D. Diss. Abstr. Znt. B 1990, 50, 3993. Baldwin, J.E.; Moloney, M.G.; Parsons, A.F. Tetrahedron 1990, 46, 7263 Iqbal, J.; Srivastava, R.R.; Khan, M.A. Ter. Lerr. 1990, 31, 1485 Jordan, R.F.; Taylor, D.F. Prepr. - Am. Chem. Sot., Div Per. Chem. 1989, 34, 577. Rigollier, P ; Young, J.R ; Fowley, L A., Stille, JR. J Am. Chem. Sot. 1990, 112, 9441. Young, J.R; Stille, J.R Urganomeraflics 1990, 9, 3022. Mori, M, Uesaka, N.; Shibasaki, M J Chem. Sot., Chem Comm. 1990, 1222. Kihara, N.; Tashiro, M. Chem. Express 1990, 5, 641. Salas, M.; Joule, J.A. j Chem. Res (S), 1990, 98. Ducoux, J.P.; LeMenez, P.; Kunesch, N.; Kunesch, G.; Wenkert, E. Ter. Lerr. 1990, 31, 2595. Newsome, P.W. Diss. Absrr. B. 1990, 50, 5074 Dzhemilev, U.M.; Dokichev, V.A.; Sultanov, S.Z.; Khusnutdinov, R I.; Tomilov, Yu.V., Nefedov, O.M.; Tolstikov, G.A. Zzv. Akad. Nauk SSSR, Ser. Khim. 1989, 1861. Tomilov, Yu V.; Kostitsyn, A.B.; Shulishov, E.V ; Khusid, A.Kh ; Nefedov, 0 M. I.zv Akad. Nauk SSSR, Ser. Khim. 1989, 2746. Tomilov, Yu.V., Kostitsyn, A.B.; Dokichev, V.A.; Dzhemilev, LJM.; Nefedov, O.M. I.% Akad. Naok SSSR, Ser Khim. 1989, 2752. Tomilov, Yu V ; Kostitsyn, A.B., Snudshov, E.V., Nefedov, 0 M. Synthesis 1990, 246. O’Bannon, P.E.; Dauley, W.P. j. Org. Chem. 1990, 55, 3531. Kunz, T.; Janowitz, A.; Reissig, H-U. Synthesis 1990, 43. Doyle, M.P.; Bagheri, U.; Wandless, T.J.; Harn, N.K., Brinker. D.A, Eagle, C.T.; Loh, K-L. J. Am. Chem. Sot. 1990, 1 I2, 1906. Demonceau, A.; Noel% A F.; Hubert, A.J Tetrahedron 1990, 46, 3889. Wenkert, E.; Guo, M.; Lavilla. R ; Porter, B.; Ramachandran, K.; Shew, JH. J. Org. Chem. 1990, 55. 6203. Doyle, M.P.; Bagheri, V.; Claxton, EE. j. Chem. Sot, Chem. Comm. 1990, 46.
650
193.
194. 195. 196 197. 198 199. 200 201 202 203. 204.
Dauben, W.G.; Hendricks, R.T.; Luzzio, M.J.; Ng, H.P. Tet Lett. 1990, 31, 6969. Demonceau, A ; Noels, A.F., Costa, J.L. J Mol. Catal. 1990, 58, 21 Evans, D.A., Woerpel, K.A ; Hinman, M M., Faul. M M. J Am. Chem. Sot 1991, 113, 726. Lowenthal, R.E.; Abiko, A.; Masamune, S. Tet. Lett. 1990, 31, 6005 Pfaltz, A. Bull. Sot. Chum Belg. 1990, 99, 729 Doyle, M.P., Branders, B D; Kazala, A.P., Pieters, R.J.; Jarstfer, M.B ; Watkins, L M.; Eagle, C.T Tet. Lett. 1990, 31, 66 13. Dolbier Jr., W.R., Burkholden, CR. J. Org. Chem. 1990, 55. 589. Collins, J C ; Dilworth, B.M.; Garvey, N.T.; Kennedy, M.; McKervey, M A.; O’Sullivan, MB J C S. Chem Comm 1990, 362. Ceciherelli, P., Curuu, M , Marcotulho, M.; Rosati, G ; Wenkert, E J Org. Chem 1990,55, 3 11 Etkin, N.; Babu, SD.; Fooks, C J., Durst, T. J Org. Chem 1990, 55, 1093 Hashimoto, S-i; Watanabe, N., Ikegani, S. Tet. Lett 1990, 31, 5173 Wolf, J., Brandt, L.; Fries, A.; Werner, H Angew. Chem. Int Ed Engl. 1990,29,
205 206 207. 208.
Hon, Y.S., Chang, R-C., Chau, TY. Heterocycles 1990, 31, 1745 Lee, E; Jung, K W, Kim, Y.S. Tet. Lett. 1990, 31, 1023. Doyle, M P.; Pieters. R.J ; Taunton, J.; Pho, H Q, Padwa, A ; Hertzog, D.L ; Preiedo, L J Org Chem 1991, 56, 821 Kennedy, M., McKervey, M A ; Maguire, A.R.; Roos, G H P. J. C. S. Chem Comm
209 210
510
1990,
361
Saba, A Tet Lett. 1990, 31, 4657 Davies, H M L ; Saikali, E.; Clark, T J ; Chee, E H. Tet. Lett
1990,
31,
6299
211 212. 213. 214 2 15. 216 217
Padwa, A, Zhi, L J Am Chem Sot 1990, 11.2, 2037 Padwa, A, Dean, D.C.J Org. Chem 1990, 55, 405. Padwa, A ; Gryxell, G.E; Zhi, L. J. Am. Chem Sot 1990, Kinder, FR , Padwa, A Tet Lett 1990, 31, 6835 Padwa, A, Chiacchio, U., Garreau, Y, Kassir, J M Schoffstall, A.M J Org. Chem. 1990, 55, 415 Padwa, A.; Kulkarni, Y.S., Zhang, 2 J Org Chem. 1990, Wienand, A.; Buchert, M.; Hofmann, B , Reissig, H U. Ser. C
218. 219
1989.
269,
112, 3100 ; Krumpe,
K.E.,
55, 4144. NATO ,451 Ser.,
271
Wienand, A, Reissig, H.U Organometalhcs 1990, 9, 3133. Wienand, A., Reissig, H U Angew. Chem. Znt. Ed Engf 1990,
29,
1129
651
220.
Murray,
C.K.; Yang, D.C.; Wulff, W D J. Am. Chem.
Sot. 1990,
112,
5660.
225 226. 227.
Harvey, D.F.; Brown, M.F Tet Lett 1990, 31, 2529. Soderberg, B.C ; Hegedus, L.S. Organometallics 1990. 9, 3 113 Fischer, H.; Bidell, W.; Hofmann. J. J C. S. Chem Comm. 1990, 858 Aumann, R.; Heinen. H.; Krueger, C.; Betz, P Chem. Ber. 1990, 123, 605. Harvey, D F ; Brown, M.F. J. Am Chem. Sot 1990, 112, 7806. Hoye, T.R., Rehberg, G. Organometallics 1990, 9, 30 14 Hoye. T.R , Dinsmore, C.J ; Johnson, D S ; Korkowski, P.F. J Org. Chem
228 229 230 231
Mathur, NC.; Schechter, H Tet Lett. 1990, 31, 6965. Liao, Y, Huang, Y-Z. Tet. Left 1990, 31, 5897 Trost, B M. Ace. Chem Res. 1990. 23, 34 Trost, B.M.; Lautens, M; Chan, C.; Jebarstnam, D.J; Mueller, T. j. Am.
22 1. 222. 223. 224.
1990,5X
Chem.
232 233 234. 235. 236.
45 18
Sot. 1990,
113, 636
Wender, PA.; McDonald, F.E. J. .4m Chem. Sot Trost, B M ,Shi, Y.J. Am. Chem Sot 1991, Il.?, Dennehy, R.D, Whitby, R J. J C S Chem Comm. Takacs. J.M., Chandramouli, S. Organometallics Zhang, Y ,Wu, G Z; Agnel, G., Negishr, E-I J Am
1990,
112, 4957.
701. 1990, 1990,
1060. 9. 2877.
Chem. Sot. 1990,
112,
8591.
241 242. 243. 244
Oppolzer, W. Pure Appl. Chem 1990, 62, 1941. Takacs, JM, Zhu, J. Tet. Lett. 199031, 117 Takacs, BE.; Takacs, J M Tet. Lett 1990, 31, 2865. Wulff, W D.; Bauta, WE.; Kaesler, R.W.; Lankford, P J.; Miller, R.A.; Murray, CK ,Yang, DC J Am Chem. Sot. 1990, 112, 3642. Wang, SLB, Wulff, W.D J. Am Chem Sot. 1990, 112, 4551 Rrgby, J.H., Ateeq, H.S. J Am. Chem. Sot. 1990, 112, 6442. Rigby, J.H., Ogbu, CO. Tet Lett. 1990, 31, 3385 Goldschmidt, Z, Gottlieb. HE.; Almadhown, A Tet. Lett 1990, 31,
245.
Lautens,
237 238 239. 240
6711.
M A., Lautens,
J C.; Smith, A.C j. Am
Chem
Sot. 1990,
112,
5627.
246
Barrett, 1990,
247.
A G., Carpenter,
Corriu, R J.P; Moreau, 2878
N.E.; Mortrer, J., Sabata, M. Organometallics
9, 131.
J.J E; Patand-Sat,
M. J Org Chem. 1990,
55,
652
248 249
250 251 252. 253
Fischer,
255 256
Ber. 1990,
Gerbing, U ,Treier, K., Hofmann, J. &em
f 23,
725 Butenschon, H. Angew Chem ht. Ed. Engl. 1990, 29, 1056. Mongrain, C, Gaudreault, R C Syn &rum. 1990, 20, 249 1 Cheng, M ; Hulce, M. J Org Chem. 1990, -5-5, 964 Oehlschlager, A.C; Hutzinger, M.W.; Aksela, R., Sharma, S., Singh, S M Tet Lett 1990, 31, 165. Grigg, R., Loganathan, V ; Sukirthalingam, S., Sridharan, V Tet Lett 1990,
254.
H;
31, 6573.
Wang, R-T., Chow, F-L, Luo, F-T J. Org Chem. 1990, 55, 4846 Negishi, E-I., Noda, Y, Lamaty, F, Vawter, E.J Tet Lett. 1990. 4393 Fournet, G , Balme, G.; VanHeimelryck, B , Gore, J. Tet Lett 1990,
31, 31,
5147
257. 258 259 260 261 262
Al-Hassan, M.I. J. Organomet. Chem 1990, 386, 395 Trost, B M ,Edstrom, ED Angew Chem Znt. Ed Engl 1990, 29, 520 Ma, S, Lu, X J C S Chem Comm 1990 733 Lautens, M ,Huboux, A.H Tet Lett. 1990 31, 3105. Hsu, DP.; Lucas, E.A., Buchwald, SL Tet Lett 1990, 31, 5563. Buchwald, S L., Fisher, R.A., Foxman, B M. Angew Chem Int. Ed. Engl. 1990,
263
29, 771
Kusumoto,
T, Nishide, K; Hiyama, T Bull
264 265.
; Metzler, M 398,
Rutledge, P S.. Woodgate, P D
Organomet
Chem
1990,
Trost,
B M , Dyker, G , Kulawlec, R J J Am. Chem Sot 1990, 1 I.?,
C22.
7809.
266
Tokunaga,
Y, Sakakura,
T.; Tanaka,
Masato J. Mol
Catal
1989,
56,
305
267 268. 269 270 271.
Brzezowski, CM DISS. Abstr Int B. 1990, 50, 4534 Stolle, A; Salaun, J.; deMeilere, A Tet. Lett. 1990, 31, 4593 Ikeda, I , Gu, X-P.; Okuhara, T ,Okahara, M Synthesis 1990, 32 Chen, J ; Chen, Q. Acta Chum Sin (Engl Ed 1 1989, 558. Moreno-Maiias, M, Pleixates, R, Villarroya, M J Org Chem. 1990, -55, 4925
272
Thompson, 1990.31,
273. 274
W J, Tucker,
T J; Schwering,
JE.; Barnes, JL
68 19
O’Donnell, M J.. Yang, X., LI, M. Tet Lett 1990, 31, 5135 Miller, A, Procter, G Tet Lett 1990. 31, 1043
Tet
Lett
653
275
Baba, T.; Nakano, K.; Nlshiyama,
276 277 278.
Yan, C, Nan Sheng, L.; Min Zh, D. Tet. Lett 1990, 31, 2405. Legros, JY; Fiaud, J.C. Tet. Lett. 1990, 31, 7453. Paquette, L.; Rayner, CM ; Doherty, A.M. j Am. Chem. Sot 1990,
Comm.
1990,
S.; Tsurya. S; Masai, M. J C S. Chem
348.
112,
4078
279 280 281 282
DelValle, L.; Stille, J.K ; Hegedus, L.S. J. Org. Chem. 1990, 55, 30 19 Basson, M.M., Holzapfel. C W.; Verdoorn, G.H Heterocycfes 1990, 29, 226 1 Fotiadu, F.; Cros, P, Baure, B.; Buono, G. Tet. Lett. 1990, 31, 77. Okada, Y., Mmami, T ,Sasaki, Y.; Umezu, Y, Yamaguchi, M Tet Lett 1990,
31, 3905.
283. 284. 285
Hiroi, K; Abe, J Tet. Lett 1990, 31, 3623 Fiaud, J C., Legros, J.Y. J Org Chem. 1990, 55, 4840. Yamaguchi, M.; Shima. T ; Yamagashi, T.; Hida, M Tet. Lett
286
Ohe. K; Ishihara.
1990,
31,
5049.
T., Chatani, N, Mural, S. J. Am
Chem.
Sot. 1990,
112, 9646
287 288 289 290 291
Trost, B M , Vrake, H Tet Lett 1990, 31, 6 15. Hanzawa, Y , Ishizawa, S., Ito, H ; Kobayashi. Taguchi. T. J Chem Chem.
Comm
1990,
Trost,
B.M.; Tasker,
1991,
113.
Sot,
394.
AS., Ruther,
G; Brandes,
A J Am.
Chem.
Sot
1990,
31,
1990,
31,
670.
Ma, S ; Lu, X J Chem. Sot Chem. Comm 1990, 733 Oppolzer, W.; Birkinshaw, T N, Bernandelh. G Tet
Lett
6995
292
Oppolzer, W ; Keller, T.H,Kuo, D L., Pachinger,
W Tet Lett
1265
293. 294 295. 296. 297 298 299 300 301
Yoo, SE, Lee, S.H.; Yi, KY, Jeong, N Tet Lett.
1990,
31, 6877
Trost, B M.; Merhc, C.A J Am. Chem Sot 1990, 112, 9590 Trost, B M , Merhc. C.A J. Urg Chem 1990, 5.5, 1 127. Backvall, J E; Sellen, M ,Grant, B J Am Chem Sot 1990, 112, 6615 Underiner, T L.: Goering, H L. J Org Chem. 1990, 55, 2757 Denmark, S E, Marble, L K J. Org. Chem 1990, 5.5, 1984 Gazes, B Pure Appl Chem. 1990, 62, 1867. Trost, B M.; Kottirsch, G J. Am Chem Sot 1990, f12, 2816. Barbers, A.; Cuachado, P.; Fleming, I ; Gonzalez, A M ; Rulido, F.J J. Chem Sot Chem Comm 1990, 1030
654
302
Normant, J.F, Quirion, J-Ch.; Masuda, Y., Alexakis, A Tet. Lett
1990.
31, 2879. 303.
Alexakis, 1990,
A., Marek, I ; Mangeney,
P; Normant, J.F. J. Am
Chem
Sot
112, 8042.
311
Burton, D J., Hartgraves, GA, Hsu, J. Tet. Lett. 1990, 31, 3699 Hung, M.H. Tet Lett. 1990, 31, 3703. Mandai, T.; Nakata, T.; Murayama, H.; Yamaoki, H.; Ogawa, M ; Kawada, M, TSUJI.J. Tet. Lett. 1990, 31, 7179 Klimas, MT DISS. Abstr Int B. 1990, -51. 752 Nakagawa, M , Ma, J , Hino, T. Heterocycfes 1990, 30, 451. Tester, R ; Varghese, V , Montana, A M., Khan, M ; Nicholas, K.M. J. Org. Chem 1990,5-5,186 Grove, D.D, Miskevich, F.; Smith, CC ,Corte, JR Tet Lett 1990, 31, 6277 Kasatkin, A.N.; Tsypyshev, O.Yu.; Romanova, T.Yu, Tolstikov, GA.
312
Negrel, J.C., Zoellner, R W ; Chanon, M.; Chanon, F NATO ASZ Ser., Ser C
313 314
Soulen. R.L. Griffith, JR j. Flourrne Chem 1989, 44, 195. Ginah, F 0, Donovan, T.A., Suchas, S D ; Pfennig. D.R,Ebert, G W. J Org. Chem 1990, 55, 585 Kageyama, H.; Furusawa, 0, Kimura, Y. Chem Express 1990, 5, 645. Iyoda, M , Otsuka, H ,Sato, K, Nisato, N, Oda, M Bull Chem Sac Jpn 1990, 63, 80 Conan. A, Sibille, S , d’Incau, E; Perichon, J J Org Chem. 1990. 55, 48 Wey, H G, Butenschon, H Chem. Ber. 1990, 123,93 Kelly, T R, LI, Q, Bhushan, V Tet Lett 1990, 31, 161. Miura, M.; Hashimoto. H.; Itoh, K; Nomura, M. Chem Lett. 1990, 459. Yanglong, Q , Guisheng, L ; Huang, Y-Z. J Organomet Chem 1990, 381,
304 305 306. 307 308 309 310
Met&loot-g. 1989,
315. 316 317 318 319 320 321
Khlm
1989,
2, 830.
257
29
322 323 324. 325
Marchand. A.P.; Reddy, G M ,Deshpande, M.N; Watson, W.H ; Nagl, A., Lee, OS, Osawa, E J. Am Chem. Sot. 1990, 112, 3521. Agranat, I ; Cohen, S.; Isarasson, R, Sandstrom, J., Suissa, M.R. j. Org. Chem 1990,_5_5, 4943. Dauben, W.G; Wang, TZ; Stephens, R.W Tet Lett. 1990, 31, 2393. McMurry, JE; Dushin, R.G J Am Chem. Sot 1990. 112, 6942
.
655
332 333
Clive, D.L.J., Keshavamurthy, K.S.; Wee, A.G.H.; Siva Prasad, J.. da Silva, G.V.D.; Majewski, M; Anderson, P.C., Evans, C.F.; Haugen, R.D.; Heerze, L.D.; Barrie, JR. J Am Chem. Sot 1990, 112, 3018. Clive, D.L.J.; Keshavamurthy, KS.; Zhang, C.; Hayward, W.D.; Daigneault, S. J. Chem. Sot. Chem. Corn. 1990, 509. Rau, A.S.; Pedersen, S.F. J. Org. Chem. 1991, 56, 830. Yeung, L.L.; Yie. Y.C.; Luh, I-Y. J. Org. Chem. 1990, 5.5, 1874. Feldman, K.S.; Grega, K.C. j Organomet Chem. 1990, 381. 251. Bassoli, A ; Di Gregorio, G., Rindone, B.; Tollan, S ; Chioccara, F. J Mol Catal. 1989, 53, 173. Stocks, M, Kocienski, P.; Donald, D.K. Tet. Lett 1990, 31, 1637 Flid, V P , Vasyukov, V S ; Velov, A.P Tear. Eksp. Khim 1990, 26,
334.
Keim, W., Becker, J.; Kraneburg,
P.; Greven, R. J Mol. Catal 1989,
54,
335 336
Donaldson, W A ; Wang, J j Urganomet. Chem. 1990. 395, 113. Donaldson, W.A , Stepuszek, D.J; Gruetzmacher, J.A Tet. 1990,
46,
337.
Genet, JP.; Kopola, N.; Jupe, S ; Ruiz-Monte% J., Antunes. 0.A C.; Tanier, S. Tet Lett 1990, 31, 3133. Akermark, B.; Hansson, S ; Vitaghano, A J. Am Chem. Sot. 1990, 112,
326.
327.
328. 329 330 331.
371 37
2273.
338.
4587.
339. 340. 341. 342. 343 344 345. 346
Kurosawa. H ; Ogoshi, S.; Kawasaki, Y.; Murai, S.; Miyoshi, M-a.; Ikeda. I. J Am. Chem. Sot 1990, 112, 28 13 Rosenblum, M.; Watkins, J.C. J Am. Chem. Sot. 1990, f 12, 6316. Casey, CP ,Yi, C.S. Organomet. 1990, 9, 2413. Tjaden, E.B., Stryker, J.M. J Am Chem. Sot. 1990, 112, 6420. Failer, J W ; Lambert, C.; Mazzieri, M.R J Urganomet. Chem, 1990, 383, 16 1. Failer, J.W ; Linebarrier, D L. Organomet. 1990, 9, 3 182. Berryhill, S R.; Breitenbucher, J G. Tet Lett. 1990, 31, 167 1 Lin, S.H, Vong, W.J.; Cheng, C.Y; Wang, S.L; Liu. R.S. Tet. Lett 1990, 31, 7645.
347
Uong, W J.; Lin, S-H., Liu, R-S., Lee, G-H ; Peng, S-M J Chem.
348 349 350.
Knochel, P.; Rao, S.A. J. Am. Chem. Sot 1990. 112, 6 146. Chow, T S.; Knochel, P J Org. Chem 1990,55, 479 1 Lautens, M.; Abd-El-Aziz, A.S, Lough, A. J Org. Chem.
Chem.
5305
Comm
1990,
Sot.
1285
1990.
55,
656
351 352 353. 354 355 356 357 358 359. 360. 3.6 1. 362 363 364 365 366 367 368 369 370 371 372 373 3.7 4 37 5
376. 377 378 379
Clavez, G.; Chavant, PY Tet Lett 1989, 30, 7373 Wender, P.A.; Grissom, JW, Hoffman, U.; Mah, R Tet. Lett 1990, 31, 6605 Fulimura, 0, Takai, K., Utimoto. K J Org Chem 1990, 55, 1705 Takai, K., Kataoka, Y, Utimoto, K J Org. Chem. 1990, 54, 1707. Takai, K.; Miyai, J , Kataoka, Y.; Utimoto, K. Organomet 1990, 9. 3030 Kataoka, Y.; Miyai, J, Tezuka. M ; Takai, K Tet. Lett. 1990, 31, 369 Erker, G, Ah van der Zeilden, A Angew. Chem Int Ed Engl. 1990, 29,512 Khanous, A, Gorgues, A, Jubault, M Tet Lett 1990, .?I, 731 1 Mukai, C, Suzuki, K, Hanaoka, M Chem. Pharm Bull. 1990, 38, 567 Rousch, W R , Park, JC J Urg Chem 1990, -55, 1143 N.1,.ZJ... Yang. P F ,. Ng.. DKP ,. Tzeng. Y I_%,.l_Jlh_.T .Y ,r am f&m. sac 1990, 112, 9356 Shi, X, Luh, T Y Organomet 1990, 9, 30 19 Kang, H J, Paquette, L.A J Am Chem Sot 1990, 112, 3252 Abe, F, Hayashi, T.; Tanaka, M. Chem. Lett 1990, 765 Matsuda, I, Takahashi, K., Sato, S Tet Lett 1990, 31, 5331 Wang, D Hoaxue Shllr 1990, 12, 98 Sodeoka, M Kagaku to Kogyo (Tokyo) 1990, 43, 2 16 Song, Xiaoping Huaxue Shqf 1989, 11, 144 Hong, Y H DISS Abstr Int B 1989, 50. 963 Balas, L , Jhurry, D., Latxague, L , Grehev, S , Morel, Y, Hamdani, M , Ardoin, N , Astruc, D Bull Sot Chum Fr 1990, 40 1 Rose-Munch, F , Aniss, K, Rose, E J Organomet Chem 1990, 38.5, Cl Rose-Munch, F, Aniss, K Tet Lett 1990, 31. 635 1 Camps, F, Cole, J, Moretb, JM, Pages, L, Roget, J J Chem Res 1990, 236 Kundig,. E P ,. c,unuh&a~~_ JII ,_ b F ,_ Pa_@_q. P ._ S~_m_m_an_s.. B P I_ Bernardelh. G Helv. Chum Acta 1990, 7.?, 386 BLagg. J.:. bwP,s.
S G ,. c;nslrifP,l~_QW,. c I, ,. sll.t_tm~. K_H_J Cllem
sac Perk
Trans 1 1990, 1133 Dickens, P , Gilday, J P , Negro, J T , Widdowson, D A Pure Aypl 1990, 62, 575 Mathews, N, Widdowson, DA Synfett 1990, 467 Clough, J M ,Mann, IS, Widdowson, DA Synlett 1990, 469 Heppert, J A , Aube, J: Thomas-Miller, ME; Milligan, Takusagawa, F Organomet 1990, 9, 727
Chem
ML ,
388
Coote, S.J ; Davies, S G ; Goodfellow, C.L.; Sutton, K H.; Middlemiss. D.; Naylor, A. Tet. Asymm 1990, 1, 817 Kundig, EP.; Perret, C., Rudolf, B Helv Chim. Acta 1990, 73, 1970 Kalinin, V N., Moiseev. S.K ; Bakhmutov, V.I., Cherepanov, I A J. Organomet. Chem. 1990, 383, 85. Mukai, C , Cho, W J.; Hanaoka. M Tet Lett 1989, 30, 7435 Davies, S G; Goodfellow, CL. J Chem Sot Perkln I 1990. 393 Colonna, S.; Manfredi, A.; Solladie-Cavallo, A.; Quazzotti, S Tet Lett 1990, 31, 6185 Uemura, M ; Nishimura, H; Hayashi, Y Tet Left. 1990, 31, 2319 Lebibi, J, Pehnski, L, Maciewjewski, L., Brocard, J. Tet 1990, 46, 6011 Kahnin, V.N.; Moiseev, S K; Bakhmutov, V T , Cherepinov, 1.A J
389.
Coote, S.J., Davies, S G., Middlemiss.
390.
Kundig, E P , Bernadinelli,
380. 381 382
383. 384 385 386. 387
Organomet.
Chem
1990,
383, 85
D; Naylor, A. Tel. Asylum.
1990,
I, 33 Int
39 1. 392 393 394. 395.
Ed Engl. 1990,
G.; Leresche,
J , Romanens,
Angew.
Chem
29, 406.
Rieke, RD., Schulte. L D., Dawson. B.T ; Yang, S S. J 1990, 112, 8388 Sutherland, R.G., Zhang, C, Piorko, A Tet. Lett 1990, Mandon, D ,Astruc, D. Organomet 1990, 9, 34 1 Pearson, A J., Roden, B.A. J. Chem. Sot. Perkin I 1990, Owen, DA.; Stephenson, G R., Finch, H, Swanson, S.
Am.
Chem
Sot.
31, 683 1 723 Tet
Lett
1990,
31, 3401
396. 397. 398. 399 400.
Knolker, H.J.; Bauermeister, M J Chem Sot Chem. Comm 1990, 664. Polter, G.A ,McCague, R. J Chem Sac Chem Comm. 1990, 1172. Stephenson, G.R., Voyle, M, Williams, S Tet. Lett. 1990, 31, 3979 Pearson, A.J., Malhk. S.; Mortezaei, R.; Perry, M W.D.; Shively Jr, R J.; Youngs, W J. J Am Chem Sot 1990, 112, 8034 Hansson, S , Miller, J F, Liebeskind, L.S J Am Chem Sot. 1990, 112, 9660.
401 402
Donaldson, W.A. J Organomet Chem. 1990, 395 187. Bleeke, JR., Wittenbrink, R J, Clayton Jr., T W.; Chiang, MY J Am. Chem
403
Sot. 1990,
112. 6539
McDaniel, KF; Kracker
II, L.R; Thambural,
PK
Tet. Left.
1990,
31,
2373
404.
Pinsard, 1137.
P., Lellouche, J.P; Beaucourt,
J.P.; Gree. R Tet. Lett.
1990, 31,
658
405
411
Pinsard, P.; Lellouche, J.P.; Beaucourt, J.P.; Gree, R. Te’et.Lett. 1990, 31, 1141. Benvegnu, T , Martelli, J ; Gree, R ; Toupet, L. Tet. Lett. 1990, 31, 3145. Roush. W.R., Park, JC. Tet. Lett. 1990, 31, 4707. Jolly, P W., Kobel, N. Synthesis 1990, 771. Uno, M.; Takahashi, T; Takahashi. S. J Cheru Sot. Perkln I 1990, 647. Alcock, N.W, Pike, G.A., Richards, C.J.; Thomas, E.E. Tet. Asym. 1990, I, 531. Hill, L, Richards, C J., Thomas, S.E. J Chem Sot. Chem. Comm. 1990
412. 413 414 415. 416 417
Moiseev, I I Russ. Chem Rev. 1989, 58, 682 Antonova, A B; Ioganson, A.A Russ. Chem. Rev 1989,58, 693. Nozaki, H. Synlett 1990, 44 1 Dotz, K H New J Chem. 1990, 14, 433. Dotz, K.H Nachr Chem , Tech Lab 1990, 38, 872. O’Connor, J.M , Pu, L.; Johnson, J.A.; Uhrhammer, R NATO ASI Ser, Ser
406.
407 408. 409. 410.
1085
C 1989, 269, 43.
418. 419. 420. 421.
Hegedus, L.S Pure Appl Chem. 1990, 62, 691 Rudler, H., Pat-her, A , Denise, B ; Yefsah, R.; Alvarez, C.; Daran, J C , Vassermann, J.; Knobler, C. NATO ASI Ser., Ser. C. 1989, 269, 279 Pombeiro, A JL. NATO ASI Ser, Ser C. 1989, 269, 79 Le Bozec. H , Devanne, D.; Dixneuf. P.H NATO ASI Ser, Ser. C. 1989, 269, 107.
422. 423 424
Schwindt, M A, Lelon, T., Hegedus, L.S. Organomet. 1990, 9, 2814. Aumann, R, Schroeder, J, Heinen, H Chem i?er. 1990. 123, 1369. Brandovold, T A ; Wulff, W D, Rhengold, A. J Am Chem. Sot 1990,
425 426 427 428. 429 430 431 432
Boger, D L ; Jacobson, I C J Org. Chem 1990.55, 19 19 King, J ; Quayle, P ; Malone, J.F Tet. Lett 1990, 31, 522 1 Semmelhack, M F; Jeong, N Tet. Lett. 1990, 31, 605. Semmelhack, M.F, Jeong, N, Lee, GR. Tef Lett 1990, 31, 609. Anderson, B A, Wulff, W D J. Am Chem. Sot 1990. 112, 86 15 Herndon, J.W , Matasi, J J J Urg Chem 1990, 55, 786 Hoye, T R; Rehberg, G.M J Am. Chem Sot 1990, 112, 284 1 Camps, F, Llebaria, A ; Moreto, J M , Ricart, S ; Viiias, J M. Tet. Lett
433
Soderberg,
112,
1990,
1645.
31, 2479
112, 4364
B.C, Hegedus,
LS; Sierra,
M.A. J Am. Chem.
Sot
1990,
659
434. 435 436. 437. 438. 439. 440. 441 442 443 444. 445. 446 447 448 449 450. 45 1. 452. 453 454 45s 456 457 459. 460 461 462
Giordani, G.; Licandro, E ; Maiorana, S.; Papagni, A.; Swain, A.M ; Williams, D.J. J Organomet. Chem. 1990, 393, 227. Erker, G.; Aulbach, M.; Mena, M., Pfaff, R.; Sosna, F. Chem. Ser. 1989, 29, 451. Garrett, K.E.; Feng, W C.; Matsuzaka. H.; Geoffroy, G L.; Rheingold, A.L J. Organomet. Chem. 1990, 394, 251 Erker, G.; Sosna, F.; Betz, P; Werner, S., Kruger, C. J Am. Chem Sot. 1991, 113, 564. Erker, G; Sosna. F. Organomet 1990, 9, 1949. Davies, S.G.; Middlemiss, D ; Naylor, A; Wills. M J Chem. Sot. Chem Comm 1990, 797. Collingwood, S P.; Davies, S G.; Preston, SC. Tet Lett. 1990, 31, 4067. Llpshutz, B.H.; Ung, C., Elworthy, T.R; Reuter. D.C. Tet Lett 1990, 31, 4539 Retherford, C , Chow, T-S ; Schelkun. R M.; Knochel, P. Tet. Lett 1990, 31. 1833 Lipschutz, B.H ; Ellsworth, EL.; Dimock, S.H ; Smith, R A J J. Am. Chem sot 1990,112. 4404. Sakata, H, Aoki, Y.; Kuwajima, I Tet Lett 1990, 31, 1161. Cahiez, G.; Alami, M Tet Lett. 1990, 31, 7245. Hagen. T J. Syn. Lef. 1990, 63 Bablak, K.A ; Behhng, J.R; Dygos, JH.; McLaughlin, K.T.; Ng, T.S.; Kabsh, V.J.; Kramer, S.W.; Shone, R.L J. Am. Chem. Sot. 1990, 112, 7442. Lipshutz, B H.; Ellsworth, EL. j Am. Chem. Sot 1990, f 12, 7440. Ireland, R E.; Wipf, P J C&g.Chem 1990, 55. 1425 Stllle, J K ,Sweet, M.P Organometaffics 1990, 9, 3 189 Tsullyama, H , Ono, N, Yoshihara, T.; Okamoto, S, Sato. F. Tet. Lett. 1990, 31, 4481 Asaoka, M; Sakurai. M., Takei. H. Tet. Lett. 1990, 31, 4759. Piers, E , Marais, PC. J Org. Chem. 1990, 55, 3454. Petasis, N A.; Patane, M A. Tet. Lett. 1990, 31, 6799 Doi, T., Shim&u, K ; Takahashl, T , Tsuji, J ; Yamamoto. K Tet. Lett. 1990, 31, 33 13 Amberg, W ; Seebach. D. Chem Ber. 1990, 123, 2413 Amberg, W., Seebach, D Chem. Ber. 1990, 123, 2439 Boquel, P.; Chapleur, Y Tet. Lett. 1990, 31, 1869. Aoki, Y; Kuwajima, I Tet Lett 1990. 31, 7457. Ahn, KH.; Klassen, R.B. Lippard, S.J. Organomet. 1990, 9, 3178 Tanaka, K; Ushlo, H, Suzuki, H J Chem. Sot. Chem. Comm. 1990, 795.
660
463 464 465
Rossiter, B.E, Eguchi, M Tet. Lett 1990, 31, 965. Fang, C; Suemune. H., Sakai, K. Tet. Lett. 1990, 31. 4751. Pourcelot, G , Melnyk, 0, Besace, Y , Stephan, E , Cressor, Organomet
466.
Bergdahl,
Chem
1990,
P J
388, CS
M ; Nilsson, M.; Olsson, T J Organomet
Chem
1990,
391.
Cl9 467
Tamura, R, Watake, K-i, Katayama, H ,Suzuki, H ,Yamamoto, Y J Org Chem
468 469
1990,
-55, 408
Ibuka, T., Habashita, H, Funakoshi. S; Fujii, N; Oguchi, Y, Uzehara, T.. Yamamoto, Y Angew. Chem Int. Ed Engl 1990, 29, 801 Yoda, H , Naito, S , Takake, K, Tanaka, N., Hosoya, K Tet. Lett. 1990, 31, 7623
470 471 472 473. 474. 475 476 477 478 479 480 481 482 483 484.
Jako, I, Uiker. P, Mann, A, Taddei, M., Wermuth, CG Tet Lett 1990, 31, 1011 Rehnberg, N, Sundin, A., Magnusson, G. J Urg. Chem. 1990, 55, 5477 Jung, M E, Lew, W Tet. Lett 1990, 31, 623 Alexakis, A, Sedvani, R, Mangeney, P Tet Lett 1990, 31, 345. Bulman Page, PC ,Prodger, J C, Hursthouse, M B , Mazid, M J Chem Sot Perkrn Trans I 1990, 1, 167 Paley, R S, Snow, S R Tet Lett. 1990, 31, 5853 Saengchantars, S T ,Wallace, T W. Tetrahedron 1990, 46, 3029 Charonnat, J A ; Mitchell, A L , Keogh, B P Tet Lett. 1990, 31. 3 15 Gerard, C, Remain, I, Ahmar, M.; Block, R Tet Lett. 1989, 30, 7399 Takano, S , Shimazaki, Y., Ogasawara, K Tet Lett 1990, 31, 3325 Linderman, R J., Griedel, B.D J Q-g. Chem 1990, S5, 5428 Krause, N Chem Ber 1990, 123. 2 173 Lee, S H.; Hulce, M Tet Lett 1990, .?l, 311 Thomas, E W, Szmurszkerrcz, JR J Org Chem 1990, -5.5, 6054 Kasatkin, A N, Kulak, A N, Biktimrov, R Kh., Tolstikov, G.A. Tet Lett 1990,
485 486 487 488 489 490
31, 4915
Cahiez, G, Alamo, M. Tet Lett. 1989, 30, 7365. Cahiez, G., Alami, M Tet. Lett 1990, 31, 7423 Kasatkin, A N , Tsypyshev, 0 Yu , Romanova, T Yu , Tolstikov, G A Izv Akad Nauk SSSR, Ser Khim 1990, 1154 Cahiez, G ,Alamo, M. J. Organomet Chem 1990, 397, 29 1. Dieter, RK., Lagu, B, Deo, N., Dieter, J W Tet Lett 1990, 31, 4105 Kauffmann, T ,Hopp, G ; Laarmann, B , Stegemann, D ; Wingbermuhle, D Tet Lett. 1990, 31, 511
661
49 1.
492. 493. 494 495. 496 497. 498. 499 500. 501 502 503 504. 505. 506. 507 508 509 510 511. 5 12. 513. 514 515 516
Kauffman, T.; Hulsdinker. A ; Menges, D ; Nienaber, H.; Rethmeir, L ; Roffe, S., Scheiler, D.; Schrickel, J; Wingbermule, D. Tet Lett. 1990, 31, 1553. Balm, C.; Ewald, M Tet. Lett. 1990, 31, 501 1. Brunner, H.; Kraus, J J Mol. Catal. 1989, 49, 133 Nikishin, G I; Kovaleu, 1.P Tet Lett. 1990, 31, 7063. Herndon, J.W.; Wu, C; Harp, J.J. Urganomet. 1990. 9, 3157. Noskov, Yu G.; Terekhova. M.I., Petrov, E.S Zfz. Obshch. Khlm. 1990, 60, 1336. Noskov, Yu G., Terekhova, M I.; Petrov, ES Kinet. K&al. 1989, 30, 234. Cipres. I., Jenick, J, Kalck, P. j. Mol. Cataf 1990, 58, 387. Bonnet, MC , Coombes, J., Manzano, B.; Neibecker, D.; Tkatchenko, I J Mel Catal 1989, 52, 263 Inomata, K., Toda, S ; Kinoshita, H. Chem Lett. 1990, 1567. Osahada, K.: Doh, M-K, Ozawa, F.; Yamamoto, A. Organometallics 1990, 9. 2197. Yadav, JS, Rao, ES ; Rao, V.S, Choudary, B.M. Tet Lett. 1990, 31, 2491. Brechot, P ; Chauvin, Y , Commereuc. D ,Saussme, L Urganomet 1990, 9, 26 Balavoine, G ; Clinet, JC , Zerbib, P; Boubekeur, K J Organomet. Chem. 1990, 389, 259 Semmelhack, M F.; Kim, C.; Zhang, N.; Boduro, C, Sanner, M.; Dobler, W., Meiro, M. Pure Appl. Chem. 1990. 62, 2035. Alper, H., Hamel. N J. Chem Sot. Chem. Comm 1990, 135. Izumi, T, Nishimoto, Y, Kohei, K., Kasahara, A. J Heterocycl Chem 1990, 27. 1419 Anastasiou, D, Jackson, W R Tet. Lett. 1990 31. 4795 Eilbracht, P.; Huttmann, G.E Chem Ber 1990. 123, 1053. Eilbracht, P; Hutmann, GE.; Deussen, R Chem. Ber. 1990, 123, 1063 Burke, S.D; Cobb, J E.; Takeuchi, K j. Org Chem. 1990, 55, 2138 Wouters, J M A, AVIS, M W.; Elsevier, C J, Kyriakidis, C.E; Stam, C.H Organomet 1990, 9, 2203. Satyanarayana, N., Alper, H.; Amer, I Organomet 1990, 9, 284. Sisak, A.; Ungvary, F, Marko, L J Org. Chem 1990, 55, 2508 Grobovenko, S Ya; Zlobina, V.A ; Surmina, L S ; Bolesov. I G ; Lapidus, A L , Beletskaya, I P. Metalloorg Khim. 1990, 3, 697 Lipshutz, B H., Elworthy, TR.Tet. Lett 1990, 31, 477.
662
5 17. 5 18. 519 520. 521 522 523 524 525 526 527. 5.28 529 530.
Jintoku, T, Fujiwara, Y., Kawata, I, Kawawchi, T.; Taniguchi, H. J. Organomet Chem. 1990, 385, 297. Fuliwara, Y.; Kintoku, T.; Uchida, Y New J. Chem 1989, 13, 649 Ugo, R.; Chiesa, A , Nardi, P.; Psaro, R. J Mol Catal. 1990, 39, 23 Khan, M M.T.; Halhgudi, S.B.; Abdi, S.H.R.; Shukla, S j Mol. Cataf 1990, 60, 275. Takigawa, S ; Shinke, S., Tanaka, M Chem. Left. 1990, 14 15 Tanaka, M.; Hayashi, T. J Mol. Catal. 1990, 60, L5. Eilbracht, P.; Hittinger, C.; Kufferath, K Chem Ber 1990, 123, 1071 Eilbracht, P.; Hittinger, C; Kufferath, K; Henkel, G Chem. Ber. 1990, 1.23, 1079 Amer. I.; Alper, H J Organomet. Chem. 1990. 383, 573. Krafft, M.E.; Pankowski, J, Tet. Left. 1990, 31, 5139. Bianchini, C , Meh, A ; Peruzzini, M ,Zanobini, F.; Bruneau, C, Dixneuf, P Organomet 1990. 9, 1155 Tada, T.; Kiyoi. T.; Saegusa, T J. Or-g Chem. 1990, 55, 2554 An, Z-W ; Catellani, M ; Chiusoli, G P. J. Organomet Chem. 1990, 397, c31 Kahnin. V.N; Shostakovsky, M V , Ponomaryou, A.B Tet Left 1990, 31, 4073.
531 532
Matsuda, I , Oglso, A ; Sato, S J. Am Chem. Sot 1990, 112, 6120 Liebeskind, L S, Chidambaram, R; Nimkar, S , Liotta, D Tet. Left
533.
Aumann. R ; Melchers, H.D.; Weidenhaupt, H J. Chem. Ber. 1990, f2.3, 351 Kireev, S L , Smit, V A ; Nefedov, 0 M Izv Akad Nauk SSSR, Ser. Khlrn 1989, 2061 Rautenstrauch, V , Megard, P., Conesa, J., Kuster, W Angew. Chem. Int Ed. Engl. 1990, 29, 1413. Schore, N.E.; Najdi, SD. J Amer. Chem. Sot. 1990, 112, 441 Brunner, H.; Niedernhuber. A. Asymm 1990, I, 711. Poch, M ; Valenti, E.; Moyano, A.; Pericas, M.A., Castro, J., DeNicola, A, Greene, A.E. Tet Left. 1990, 31, 7505. Castro, J, Sorensen, H ; Riera, A, Morin, C., Moyano, A.; Pericas, M A ; Greene, A.E j Am Chem Sot. 1990, 112, 9388. Shambayati, S.; Crowe, WE.; Schreiker, S.L. Tet. Left. 1990, 31, 5289 Brown, S W ; Pauson, P.L J Chem. Sot. Perkin I 1990, 1205. Bumagin. N.A , Nikitin, K.V ; Beletskaya, 1.P Dokl Akad. Nauk SSSR 1990, 312, 1129
1990,
534. 535 536. 537. 538. 539. 540 541. 542
31. 3723
663
543. 544 54s. 546. 547. 548. 549. 550.
551 552 553. 554 555. 556. 557 558. 559 560. 561 562. 563. 564. 565 566 567. 568
DuFaud, V., Thivolle-Cazat, J.. Basset, J.M. J Chem Sot Chem. Comm. 1990, 426. Reyne, F.; Brun, P.; Waegell, B. Tet. Lett. 1990, 31, 4597. Kitamura, T., Mihata, I.; Taniguchi, H., Stang, P. J Chem Sot Chem. Comm. 1990, 614. Ishino, M.; Deguchi, T. J. Mel Catal. 1989. 52. L17 Davies, S.G.; Smallridge, A.J., Ibbotson, A. J Urganomet Chem. 1990, 386, 195. Miura, M ,Okuro, K.; Itoh. K.; Nomura, M J Mol. Catal 1990, 39, 11 Okano. T ; Uchida, I ; Nakagaki, T.; Konishi, H.; Kiji, J J Mel Catal 189, 54, 65 Blanchart, V.; Fetizon, M.; Hanna, I. Synthesis 1990, 755. Barton, D.H.R.; Longlois, P.; Okano, T, Ozbalik. N Tet. Lett 1990, 31, 325. Bumagin. N.A.; More, P.G.; Beletskaya, I.P. Metalloorg. Khlm 1989, 2, 530 Khim. J I., Lee, K H Taehan Hwahakhoe Chl 1989, 33, 657. Kim, J I ; Lee, KH ; Im, S.J. Taehan Hwahakhoe Chi 1989, 33, 522 Brunet, J J., Taillefer, M J. Organomet. Chem. 1990, 384, 193. Kim, J.I.; Lee, K.H ; Yoon, T S Taehan Hwahakhoe Chi 1989, 33, 530 Tius, M A.; Kamah Kannangara, G.S. J Org. Chem 1990, 35. 571 1 Thompson, SK.; Heathcock, C.H. _/ Org. Chem 1990, S_T,3004 Gyorkos. A.C , Stille, J K.; Hegedus. L S J. Am. Chem Sot 1990, 112, 8465 Torn S.; Okumoto, H.; Xu, L.H Tet Lett 1990, 31. 7175 Shimoyama, I., Zhang, Y; Wu, G, Negishi. E-i. Tet Lett 1990, 31, 2841 An, Z-W.; Catellani, M ; Chusoli. G.P. Gaze. Chim. Ital. 1990, I2U, 383 Murahashi, S ; Washizuka, K ; Imada, Y. Senryo to Yakuhim 1989,34, 148 Screttas, C.G.; Steele, B.R Org. Prep. Proced Int 1990, 22. 269 Lee, JS; Lee, C.W.; Lee, SM.; Park, K.H J Mof Catal. 1990, 61, L15. Bassoh, A, Rindone, B; Tollari, S., Cenini, S, Crotti, C J. Mol. Cataf. 1990, 60, 155. Khan, M.M.T.; Halligudi, S.B.; Shukla, S.; Shaikh, Z.A. J Mol. Cataf 1990, -57, 301. Bassoli, A.; Rindone, B; Tollari, S.; Chioccara, F. J Mol. Cataf. 1990, 60, 41.
664
569 570 571. 572 573.
574 575 576 577. 578. 579 580. 58 1. 582. 583 584 585 586. 587 588. 589 590 591 592.
Bensenyei, G., Nimeth, S , Simandi, L.I. Angew. Chem. Int. Ed Engl 1990, 29, 1147 Mart, M ; Uozumi, Y., Shibasaki, M. J Organomet Chem. 1990, 39-5, 255 Roberto, D., Alper, H. Organamet. 1990, 9, 1245 Alper. H., Amer, I J. il4of Catal. 1989, -54, L33. Korneeva, G.A.; Potarin, M.M.; Elyashberg, M.E., Elagin, A.L , Tikhomirov, S V , Yampol’skii, Yu.Yu , Botnikov, M Ya , Slivinskii, E V , Loktev, S M Neftekhimiya 1990, 30, 58 Jenner, G ; Andrianary, P j. Mel Cataf. 1990. 58, 307. Bates, R W, Diez-Martin, D, Kerr, W.J, Knight, J G , Ley, S.V., Sahellaridis, A Tet. 1990, 46, 4063. Nokami, J.; Maihara, A ; TSUJI,T. Tet Lett. 1990, 31, 5679 Yamazaki, Y, Hosone, H. Tet Lett 1990, 27, 3895 Alper, H.; Eisenstat, A, Satyanarayana, N. J Am Chem. Sot. 1990, 112, 7061 Williams, G M , Rudisell, D.E, Barnum, B.A.; Hardcastle, K; Heyn. R.H, Kozak, C.J.; McMillan. J W J Am. Chem Sot 1990. 1 f.7, 205 Kang, J.; Chow,Y.Ro.; Kim, B.J., Jeong, J.U, Lee, S, Lee, J H., Pyun, C Tet Lett 1990, 31, 2713. Sakakura, T, Sodeyama, T.; Sasaki. K, Wada. K; Tanaka, M. J. _4m. Chem. Sot. 1990, 112, 722 1 Lipshutz, B.H, Elworthy, TR Tet. Lett. 1990, 31, 477 Castano, A M , Echavarren, A M Tet Lett. 1990, 3 1, 4783. Derien, S ; Dunach, E; Perichon, J J Organomet Chem 1990, 385, c43 Dunach, E; Perichon, J. Synfett 1990, 143 Tsuda, T ,Morikawa, 5 ; Hasegawa, N, Saegusa, T. J Org Chem. 1990, 55, 2978. Tsuda, T , Kiyoi, T ; Hasegawa, N; Saegusa, T Yukr Case1 Kagaku Kyokalshi 1990, 48, 362. Inoue. Y. Itoh, Y; Yen, IF., Imaizumi, S. J Mel Catal 1990, 60, Ll Pillai, S M ; Tembe, G L , Ravindranathan, M J Mof Catal 1990, 58. 171 Gibson, V C , Kee, T.P , Poole, A.D j Chem. Sot. Chem Comm 1990, 1720. Wielstra, Y.; Gambarottes, S , Spek, A. Organomet 1990. 9, 572. Roll, W ; Brintzinger, H-H, Rieger, B, Zolk, R. Angew. Chem Int. Ed. Engl 1990, 29, 279.
665
593. 594. 595
bang. 2, Sen, A.J. Am. Chem. Sot 1990, 112, 9655. Keim. W., Raffeis, G H ; Kurth, D. J Ffuorine Chem. 1990, 48, 229 Komiya, S.; Oyasato, N., Furukawa. T Bull. Chem. Sot Jpn. 1990,
596.
Furman, D B , Rudashevskaya, T.Yu.; Kudryashev, A V., Ivanov, A.O.; Isaeva, L S., Morozova, L N.; Peganova, T.A,Bogdanov, V.S.; Kravtsov, D.N; Bragm, O.V. I.zv Akad Nauk SSSR, Ser Khim 1990, 345. Furman, D.B.; Ivanov, A.O., Morozova, L.N ; Kustov, L M.; Elev, 1.V
62,
4078
597.
Metalloorg 598
599
600
Akad
601. 602 603
604
606 607.
1990,
3, 264.
Nauk SSSR, Ser
Khim
1989,
12 15.
Kovalev. I P.; Kolmogorov, Yu.N., Ignatenko. A.V.; Vinogradov, M.G , Nikishin. G I. Izv Akad. Nauk SSSR, Ser Khim 1989, 1098 Lawrie, C J.C. Diss Abstr Int B 1989. 50, 953. Kovalev, I.P., Yevdakov, K V., Stvelenko. Yu A, Vinograd, M.G ; Nikishin, G I _I. Urganomet. Chem 1990, 386, 139 Ohghita, J; Furumori, K, Matsuguchi, A, Ishikawa, M _j. Org Chem. 1990,
605.
Khim
Furman, DB; Ivanov, A.0, Kudryashev, A V.; Morozova. L N, Peganova, T A, Petrovsku, P.V.; Isaeva, L.S ; Kravtsov, D N , Bragin, 0 V Izv. Akad. Nauk SSSR. Ser. Khrm. 1989, 990. Kovalev, I P., Kolmogorov, Yu.N.; Vinogradov, M.G , Nikishin, G I ; Kolesnikov, S.P. Zzv. Akad. Naok SSSR, Ser. Khim 1990, 1189. Kovalev, 1.P ; Kolmogorov, Yu N ; Vinogradov, M.G, Nikishin, G I. Izv
55, 3277
Kusumoto, T.; Hiyama, T. Bull Chem Sot Jpn. 1990, 63, 3103. Yamaguchi, M ; Torisu, K.; Hiraki, K-i.; Minami, T Chem Lett. 1990. 222 1 Valenti. E ; Pericas, M.A , Serratosa, F. J Am. Chem. Sot. 1990, 112 7405
608
Binger, P., Biedenbach, Phosphorus,
609
Amer, Catal
610 61 1.
Sulfur
AT.; Milczarek, R.; Schneider,
Silicon Relat. Elem. 1990,
I.; Bernstein, 1990,
B.; Herrmann.
R.
49. 337
T.; Eisen, M, Blum, J; Vollhardt,
K.P.C. J. Mof
60, 313.
Amer, I , Blume, J, Vollhardt, K.PC j. Mol. Catai 1990. 60, 323 Munz, C; Stephan, C., Tom Dieck, H. J. Organomet. Chem 1990,
395,
C42 6 12.
Tom Dieck, H ; Munz, C, Mullet-, C J Organomet 243.
613
Sheppard,
G.S. DISS Abstr
Int. B 1990,
50, 2936.
Chem.
1990,
384.
666
614 615. 616. 617. 618 619 620 621 622 623 624 625. 626. 627 628 629 630 631 632. 633 634 635.
Ren, C Y., Cheng, W.C , Chan, WC , Yeung, C H., Lau, C P J. Mol Catal. 1990,59, Ll Ito, Y.; Inouye, M, Murakaml, M., Shiro, M J. Organomet. Cfzem 1990, 385, 399. Gleiter, R, Kratz, D.; Ziegler, M.L.; Nuker, B. Tet. Lett. 1990, 31, 6175 Gleiter, R.; Kratz, D. Angew. Chem. 1990, 102, 304. Tamao, K ,Kobayashl, K , Ito, Y Yuki Gosei Kagaku Kyokalshi 1990, 48, 38 1 Colhgiani, A, Vltulli. G , Kraus, J; Blagi, S., Salvadori, P., Settambolo, R.; Pasero, M j. Mol. Catal 1989, 56, 133. Chen, W-X., Zhang, J-h ; Hu, M-y ; Wang, X-c. Synthesis 1990 70 1. Walther, D; Braun. D, Schulz, W, Rosenthal, U. 2 Chem. 1989, 29, 293 Walther, D.; Braun, D.; Schulz, W.; Rosenthal, U 2 Anorg Aflg Chem. 1989,577, 270. Iyoda, M ,Kuwatanl, Y., Oda, M., Kai, Y, Kaneshisa, N; Kasai, N. Angew. Chem Int Ed. Engl 1990, 29, 1062. Iyoda, M ; Oda. M ; Kal, Y., Kaneshisa, N.; Kasal, N. Chem. Lett. 1990, 2149 Tanoury, G.J. Diss Abstr lnt B 1990, 50, 2413 Lee, GC M ,Toblas. B., Holmes, J M.; Harcourt, D.A, Garst, ME. J Am Chem Sot 1990, 112, 9330 Jolly, R S , Luedtke, G , Sheehan, D., LivInghouse, T. J Am Chem. Sot 1990, 112, 4965 Hertel, R, Mattay, J; Runsink, J j. Am Chem Sot. 1991, 113, 657 Tsuda, T ,Hasegawa, N, Saegusa, T. J Chem Sot, Chem. Comm 1990, 945 Chlusoli, G P , Costa, M., Flare, A. J Chem Sot., Chem Comm 1990, 1303 Vardanyan, M.A , Freidlm, L.Kh Neftekhrmiya 1989, 29, 502 Dentse, P, Jean, A ; Crolyz, J F , Mortreux, A , Petit, F. J Am. Chem. Sot 1990, 112, 1292 Polacek, J.; Petrusova, L.; Antroplusova, H , Mach, K. Coifect. Czech. Chem. Commun. 1989, -54, 1839 Dzhemilev, U M ; Kunakova, R V ; Gaisln, R L , Valyamova, FG , Tolstikov, G A. Izv Akad Nauk SSSR, Ser. Khim. 1990, 1146. Peiffer, G, Chhan, S.; Bendayan, A, Waegell, B; Zahra, J.P J. Mol Catal. 1990, 59, 1
667
641. 642. 643. 644. 645. 646.
Keim, W.; Koehnes, A; Roethel, T.; Enders, D. J. Organomet. Chem. 1990,382, 295. Schrock, R.R. Accts. Chem Res. 1990, 23. 158. Ivin, K.J.; Kress, J., Osborn, JA.; Rooney, J.J. NATO ASZ Ser, Ser. C. 1989, 269, 313. Bazan, G C , Khosravi, E.; Schrock, R.R ; Feast, W J.; Gibson, V.C.; O’Regen, M.B ; Thomas, J.K., Davis, W.M. J Am Chem. Sot. 1990, 112, 8378 Hamilton, JG ; Marques, D.G., ONeill, T.J.; Rooney. J.J. J Chem. Sac. Chem Comm. 1990, 119. Toshima. N.; Tayanagi. J-i. Chem. Left. 1990, 1369. Katz, T.J. NATO ASI Ser, Ser. C. 1989, 269, 293. Karan, B ; Imamoglu, Y. NATO ASI Ser., Ser. C 1989, 269, 347. Weiss, K., Hoffmann, K. NATO ASZ Ser, Ser. C. 1989, 269, 351. Heveling, J. J. Mol. Cataf. 1990, 58, 1. Davidson, J.L.; Vasapollo, G., Nobile, CF.; Sacco. A J. Organomet. Chem.
647
Suzuki,
636. 637. 638 639 640
1989,
648 649. 650 651 652 653. 654. 655.
Nauk SSSR, Ser
Khim. 1989,
1358.
Stille, J.R.; Santarsiero, B.D; Grubbs, RH. J 0-g. Chem. 1990, 55, 843. Lu, X.; Ma, S. Pure Appl. Chem. 1990, 62, 723. Rodriguez, J; Brun, P.; Waegell, B. Buff Sot. Chim Fr. 1989, 799 Ryabichev, A G., Trukhacheva, N.P. IN Akad Nauk Kaz SSR, Ser. Khim.
660 66 1. 662
297.
T.; Hiram, T, Hayashi, S., Tanaka, K., Toyoshima, I. Chem Express 1989, 4, 4 17. Kawai, T.; Maruoka, N.; Ishikawa, T j. Mol. Cataf. 1990, 60, 209. Klimov. 0 V.; Krivoshchekova, E.A ; Startsev, A.N. React. Kinet. Catal Left. 1990, 42, 95. Keller, A. J. Mol. Catal, 1990, 59, 75. Bages, S ; Petit, M.; Mortreux, A., Petit, F. j Mol. Cataf. 1990, -59, L25. Schrock, R.R.; Murdzek, J S, Bazan, G.C.; Robbins, J; Mare, M.D; Regan, M.O. J. Am Chem Sot. 1990, 112, 3875 Toreki, R, Schrock, R.R. J. Am Chem. Sot 1990, 112, 2448. Keller, A J. Organomet Chem. 1990, 393, 389 Finkel’stein, E Sh ; Portnykh, E.B.; Antipova, I V.; Vdovin, V M Izv. Akad
656 657. 658. 659
371,
1989,
40
Giles, R.G.F.; Son, V RL , Sargent, M V. Aust. J. Chem 1990, 43, 777 Lassalle, G.; Gree, R Tet. Left. 1990, 31, 655. Mullet-, P.; Pautex, N.; Doyle, M P.; Baghen, V. Hefv. Chum Acta 1990, 73, 1233
668
663.
664 665. 666
Krm, M ; Applegate, L A., Park, O-S ; Vasudevan, S , Watt, D.S Syn Comm. 1990, 20, 989 Stone, G B ; Liebeskind, L.S. J. Org. Chem. 1990, 55, 46 15. Panek, JS ; Spark, M A J. Org. Chem. 1990, 5’5, 5564 Hnoi, K, Yamamoto, M , Kurihara, Y, Yonezawa, H Tet Lett. 1990, 31, 2619.
667 668 669
Tamaru, Y.; Nagao, K., Bando, T.; Yoshida, Z-i j. Org. Chem 1990, 55, 1823 Hirer, K ,Koyama, T ,Anzar, K Chem. Lett 1990, 235 Matsuyama, N, Goto, M; Hiroi, K Annu. Rep Tohoko Co11 Pharm.
670 671.
Overman, L E, Renaldo. A F. J Am Chem. Sot. 1990, 112, 3945 Inoue, S-I, Takaya, H ,Tanr, K ,Otsuka, S., Sato, T., Noyorr, R. J Am
672. 673
Schmid, R; Hansen, H-J Hefv Chim Acta 1990, 73, 1258. Nemoto, H., Jimenez, H N.; Yamamoto, Y J Chem Sot Chem. Comm 1990, 1305. Salas, M.: Joule, J A J Chem. Res., Synop. 1990, 98. Chrn, C S.; Lee, B.; Hong, K. Bull, Korean Chem. Sot. 1990, 11, 162 Chin, CS., Park, J, Kim C. Buff. Korean Chem Sot 1989, IO, 360. Kataoka, H ,Watanabe, K ,Goto, K Tet Lett 1990, 31, 418 1 Vmentm, G , Piccolo. 0, Conslgho, G J Mol Catal 1990, 6 f, Ll. Olrvier, J , Legros, J-y, Fraud, J-C, de Menere, A, Salaun. J. Tet. Lett
1988,
119
Chem. Sot. 1990,
674 675 676 677 678 679.
1990,31,
680
112, 4897
413s
Sodeoka,
M ,Yamada, H., Shrbasakr, M J Am
Chem
Sot
1990.
112,
4906
68 1. 682
Ohno, T Kagaku to Kogyo (Osaka) 1989, 63, 3 14 Suzukr, M, Oda, Y.. Hamanaka, N, Noyori, R Heterocycfes
1990,
30,
5 17.
683
Takacs, J M , Newsome, 1990,
P W , Kuehn, C, Takusagawa,
F. Tetrahedron
46, 5507.
554
685 686 687 688.
Okano, T., Uekawa, T ,Sawakr, H ,Eguchr, S Synfett. 1990, 403. Backvall, J E., Granberg, K L , Hopktns R B Acta Chem. Stand 1990, 44, 492 Backvall, J.E ; Schmk, H.E, Renko, Z P J Org Chem 1990, 55, 826 Gavrrlova, G A, Nrkanorov, V A, Rozenberg, V I , Reutov, O.A. Metalborg. Khrm 1990, 3, 330
669
689. 690 691 692. 693. 694. 695. 696 697 698 699 700. 701 702 703 704. 705. 706. 707. 708. 709. 710. 711. 712 713 714 715.
Hoberg, H.; Guhl, D.; Betz, P. J. Urganomet Chem. 1990, 387, 223 Hoberg, H.; Guhl, D. j. Organomet. Chem. 1990, 384, C43. Murahashi, S-i.; Oda, T; Sugahara, T.; Masui, Y. J. Org Chem. 1990, 55, 1744. Kotachi, S.; Tsuji, Y; Kondo, T.; Watanabe, Y. J. Chem. Sot. Chem Comm 1990, 549. Cervello, J.; Sastri, T. Synthesis 1990, 221 Jenner, G. J. Mol. Catal. 1989, 55. 241 van Soolingen, J.; Verkruijsse, H.D; Keegstra. M.A.; Brandsma, L. Synth. Comm. 1990, 20, 3 153. Affotler, S.; Pregosin, P.S. J. Organomet. Chem 1990, 398, 197. Pringle, P.G.; Smith, M.B. J Chem. Sot. Chem Comm. 1990, 1701. Nan, V.; Sells, T.B. Tet Left 1990, 31, 807. Hayashi, M.; Matsuda, T.; Ogumi, N j Chem Sot Chem. Comm 1990, 1364. Okuda, F, Watanabe, Y Bull Chem. Sot Jpn. 1990, 63, 1201. Saga, T.; Takenoshita, H.; Yamada, M.; Mukaiyama. T. Bull. Chem Sot. Jpn. 1990, 63, 3122. Kunai, A.; Wani, T, Uehara, Y.; Iwasaki, F.; Kuroda, Y.; Ito, S.; Sasaki, K BUN Chem Sot. Jpn 1989, 62, 26 13. Tamagaki, S., Ueno, K., Tagaki, W. Chem. Express 1989, 4, 617 Anderson, J C ; Smith, S C Synlett. 1990, 107. Cambie, RC; Higgs, P.I.; Rutledge, PS.; Woodgate, P.D. J. Organomet. Chem. 1990, 384, C6. Inoki, S.; Kato, K, Isayama, S.; Mukaiyama, T Chem. Lett. 1990, 1869 Mitani, M, Matsumoto, H, Gouda, N.; Koyama, K. J Am. Chem. Sot 1990, 112, 1286 Shimazu, I.; Yamazaki, H. Chem. Lett. 1990, 778. Iqbal, J.; Pandey, A, Shukla, A ; Ranlam Srivastava, R. Tetrahedron 1990, 46, 6423 Iqbal, J; Pandey, A Tet. Lett. 1990, 31, 575. Chowdary, B M, Rani, S.S; Kantain, M.L. Synth. Comm. 1990, 20, 2313 Larock, R C , Stolz-Dunn, S K. Synfett 1990, 341. Zhang, Y.; Hu, Z Youji Huaxoe 1989. 9, 426. Nose, A, Kudo, T. Chem Pharm. Boll 1990, 38, 2097. Petrier, C.; Lavaitte, S.; Morat, C. j. Org Chem 1990, T-5, 1664.
670
716
717. 718. 719 720. 72 1. 722. 723
724.
Garner, CM ; Quiros-Mendez, N.; Kowalczyk, J J.; Fernandez. JM , Emerson, K.; Larsen, R.D.; Gladszy, J.A. J. Am. Chem. Sot. 1990, 112, 5146. Dalton, D.M , Fernandez, J.M.; Emerson, K , Larsen, R D ; Arif, A M , Gladys& J.A. j Am. Chem Sot. 1990, 112, 9199. Howard, P.W.; Stephenson, GR; Taylor, S.C J Chem. Sot. Chem Comm. 1990, 1183 Murahashl, S-I., Naota, T.; Kuwabara, T.; Salto. T , Kumbayashi, H , Akutagawa, S. J. Am. Chem. Sot. 1990, 112, 782 1. Naota, T.; Nakato, T.; Murahashl, S-i. Tet. Lett. 1990, 31, 7475 Tenaglia, A.; Terranova, E , Waegell, B. Tet Lett. 1990, 31, 1157. Howell, A.R.; Pattendm, G J Chem. Sot, Chem. Comm 1990, 103. Sato, M.; Miyaura, W.; Suzuki, A. Tet. Lett. 1990, 31, 231. Tamao, K.; Tohma, T., Inui, N.; Nakayama, 0.. Ito, Y Tet. Lett 1990, 31, 7333
725. 726. 727 728
Tamao, K; Nakagawa, Y, Ito, Y J Org. Chem 1990, 55, 3438. Hayashl, T.; Hengrasmee, S ; Matsumoto, Y Chem. Lett. 1990, 1377. Nakahjima, M , Tomioka, K; Koga, K. Yuki Gosei Kagaku Kyokalshi 1989, 47, 878. Kwong, H-L, Sorato, C., Ogino, Y.; Chen, H, Sharpless, K B Tet Lett. 1990,
729 730. 731 732 733. 734 735.
Moon Kim, B; Sharpless, K.B. Tet. Lett. 1990, 31, 3003. Panek, J S.; Cirillo, P.F j Am. Chem Sot 1990, 112, 4873 0 S , Morikowa, Y.; Moriwake. T J Org Chem. 1990, 55, 5424. Mmato, M, Yamamoto, K., TSUJI,J J Org. Chem. 1990, 55, 766. Hosokawa, T ,Murahashi, S-i Act Chem Res. 1990, 23, 49 Hayashl, T, Abe, F; Sakakura, T.; Tanaka, M. J Mol. Catal. 1990, 58, 165 Anderson, J.B.F., Griffin, K.G.; Richards, R E Chem.-Tech (Heidelberg) 1989,
736. 737
.?l, 2999.
48
Rao, Y V S , Mukkanti, K ,Choudary, B.M. J Mol. Catal. 1989, 49, L47. Paquette, L.A.; MacDonald, D.; Anderson, LG J Am Chem Sot. 1990, 112, 9292
738. 739.
Hayashi, T, Klshl, K, Yamamoto, A; Ito, Y Tet. Lett. 1990, 31. 1743. David, D M; Kane-Maguire. L.A.P.; Pyne. S.G J Organomet. Chem. 1990,
740.
390,
C6.
Shim, SC, Kwon, Y.G.; Doh, C.H., Kim, H S.; Kim T J. Tet Left. 1990, 105
31.
671
741. 742. 743. 744 745. 746. 747.
Shim, S C.; Kwon. Y G; Doh, CH.; Woo, B.W.; Baeg, J.O.; Kim, H.S., Kim, T J ; Lee, D.H ; Kwak, Y.W. Bull. Korean Chem. Sot. 1990, 1 I, 140. Huh, K.T.; Shim, SC.; Doh, C.H. Bull. Korean Chem. Sot 1990, 1 I, 45. Cicchi, S.; Goti, A, Brandi, A.; Guarna, A.; DeSarlo, F. Tet Lett. 1990, 31, 3351. Jones, W.D.; Hessell. E.T. Urganomet. 1990. 9. 719. Akaome, M.; Tsuji, Y.; Watanabe, Y. Chem. Lett. 1990, 635. Kato, K.; Mukaiyama, T. Chem. Left. 1990, 19 17 Kabalka, G.W; Place, R.D.; Wadgaonbar, P.P. Synth. Comm. 1990, 20, 2453.
748 749. 750.
Safi, M.; Fahrang, R., Sinou, D. Tet. Left. 1990, 31, 527. Keegstra, M.A.; Peters, T.H A., Brandsma, L. Synth. Comm. 1990, 20, 2 13. Lakhmiri, R; Lhoste, P.; Boullanger, P.; Sinow. D. J. Chem. Res (S)
751
Roberto,
752 753 754 755. 756.
Hudhcky. T.; Olive, H.F, Natchus, M.G. J. Org. Chem. 1990, -55, 4767. Alper, H.; Hamel, N. J Am. Chem. Sot 1990, f fZ, 2803. Nunez, M.T; Martin, V.S. J. Org. Chem. 1990, 55, 1928. Pons, D.; Savignac, M., Genet, J-P. Tet. Lett 1990, 31, 5023. Bianchmi, C., Meli, A.; Peruzzini, M.; Vizza, F J. Am. Chem. Sot. 1990,
757
Hegedus, L.S.; Schwindt, M.A.; DeLombaert,
758.
Backvall,
1990,
342.
1990,
Il.?,
D.; Catellani, 120,
M ; Chiusoli, G P.; Mann, B E. Gaze. Chim.
Ztaf
251.
6726.
Chem. Sot. 1990,
S; Imwinkelreid,
R. J Am.
I 12, 2264.
J.E, Granberg,
K.L.; Hopkins, R.B. Acta Chim.
Stand.
1990,
44, 492
759. 760. 761 762.
Deardorff, D.R; Myles, D.C. Org. Synth. 1989, 67, 114. Nystroem, J.E, Rem, T.; Backvall, J.E. Org. Synth. 1989, 67, 105. Backvall, J.E.; Hopkins, R.B.; Grennberg, H.; Mader, M.M.; Awaatt, A.K J. Am. Chem. Sot. 1990, 112, 5160. Soderberg, B.C.; Akermark, B.; Chen, Y-H.; Hall, S.S. J Org Chem. 1990, STS, 1344.
763
Hansson, S.; Heumann,
A.; Rein, T.; Akermark,
B J Org. Chem. 1990,
55, 975.
764
Bystrom,
765
Sen, A.; Gretz. E.; Oliver, T.F.; Jiang, 2. New. J Chem. 1989,
S.E., Larson,
E.M., Akermark,
B. J. Or-g Chem. 1990,
5674. 13, 755.
55,
672
766 767 768 769 770. 771. 772 773. 774. 775 776. 777. 778 779. 780 781 782. 783 784 785 786 787 788 789 790. 791 792.
Nakamuro, K., Ishihara, I, Ohno. A.; Uemura, M ; Nishimura, H , Hayashi. Y Tet Lett. 1990, 31, 3603 Lee, S; Cooper, N.J J. Am Chem. Sot 1990, 112, 9419. Philippot, K.; Devanne, D, Dixneuf, P.H J Chem. Sot., Chem Comm 1990, 1199. Badman, G.T., Green, D.V.S, Voyle, M J. Organomet. Chem. 1990, 388, 117 Milkert, E Neftekhimtya 1989, 29, 693. Goto, M.; Goto, S J Mof Card. 1990, 57, 361. Lu, Z., Yin, Y., Jm, D. Fenzl Cuihoa 1989, 3, 276 Quenard, M , Bonmarin, V.; Gelbard, G, Krumenacker, L. New J. Chem 1989, 13, 183 Takai, T ,Yamada, T ,Mukayama. T. Chem Lett 1990, 1657. Mukaiyama, T.; Takai, T.; Yamada, T; Rhode, 0 Chem. Lett. 1990, 1661. Larsen, E., Joergensen, K.A Acta Chem Stand. 1989, 43, 259. Joergensen, K.A , Schioett, B , Larsen, E J. Chem Res., Synop. 1989, 2 14. Bhattacharya, P.K Proc-Indtan Acad. Sci, Chem Sci. 1990, 102, 247. Matsuda, Y., Nakamura, K; Murakami, Y.; Kenkyu Hokoku - Asaht Garasu Kogyo Gttutsu Shoreelkat 1989, 55, 15 1 Haber, J.; Mlodnicka, T ,Poltowicz, J. Bull Pol. Acad Set., Chem. 1988, 36, lS9 Querci, C, Ricci, M. j Chem. Sot, Chem. Commun. 1989, 889. Collman, J P , Zhang, X.; Hembre, R T.; Brauman, J.1 J Am Chem. Sot 1990, 112, 5356. Corey, E J J Urg Chem 1990 55. 1693 Raifel’d, Yu E, Arshava, B M, Zil’berg, L L, Makin, S.M Zh. Org. Khim 1990, 26, 527. Marshall, JA; Blough, B.E. j. Org. Chem. 1990, 55, 1540. Yadav, JS, Radhakrishna, P. Tet. 1990, 46, 5825. Shimizu, I, Hayashi, K., Oshima, M. Tet. Lett. 1990, 31, 4757. Shimizu, I ; Yamazaki, H. Chem Lett. 1990, 777 Schmidt, U.; Mundinger, K, Mangold, R , Liebesknecht, A j Chem Sot., Chem. Comm 1990, 1216. Zhang, W., Loebach, J L , Wilson, S R; Jacobsen, E.N j. Am. Chem. Sot. 1990, 1 f2, 280 1 Ishii, Y.; Sakata, Y. j. Urg Chem. 1990, 55, 5545. Baldoh, C, DelButtero, P, Maiorana, S Tet 1990, 46, 7823
673
793. 794 79s. 796.
D’Andrea, S V. DISS. Abstr. Int. B. 1989, 50, 962 Smith, JR Diss. Abstr Int. B. 1990, 50, 5637. Williams, M.A ; Miller, M.J Tet. Lett. 1990, 31, 1807. Palomo, C.; Azpurua, J M., Urchegui, R. J Chem. Sot, Chem. 1990,
797 798 799
Comm
1390.
Bremner, J.B , Jaturonrusmee, W Aust J. Chem. 1990, 43, 146 1 Hegedus, L.S., I mwinkelried, R , Alarid-Sargent, M.; Dvorak, D, Satoh. Y J Am Chem Sot. 1990, 112, 1109. Montgomery, J.; Wieber, G.M; Hegedus, L.S. J Am Chem Sot 1990, 112, 6255.
800. 80 1. 802.
Alper, H.; Delledonne, D.; Kamejima, M; Roberto, D. Organomet 1990, 9, 763 Hippeh, C., Zimmer. R., Reissig, H.U. Liebigs Ann. Chem. 1990, 469 Nakanishi, S.; Otsuli, Y.; Hayashi, N. Bull. Chem Sot Jpn. 1990, 63, 359s
803 804
Danks, TN; Thomas, SE j Chem. Sot., Chem delange, P M.; Fruhauf, H-W, vanwijnkoop,
805. 806
810. 811
Dragisich, V., Wulff, W.D, Hoogsteen, K. Organomet 1990, 9, 2867. Dragisch, V.; Murray, C.K,Warner, B.P, Wulff, W.D.. Yang, DC j Am Chem Sot 1990, 11.2, 1251. Aumann, R.; Heinan, H J Organomet. Chem. 1990, 391, C7 Aumann, R , Heinen, H., Kruger, C ; Bet& P. Chem Ber 1990, 123, 599 Dotz, K H ; Schafer, T ; Harms, K Angew Chem Int. Ed. Engl 1990, 29, 176 Backvall, J E; Andersson, PG. j Am. Chem. Sot 1990, f 12, 3683 Larock, R.C; Berrios-PeAa, N, Nadayanam, K J. Org Chem. 1990.55,
812
Sakamoto,
813.
TSUJI, Y., Kotachi, S., Huh, K-T ; Watanabe,
814
Liebeskind,
1990,
807. 808. 809.
Comm.
1990
761
M ; Vriez, K. Organomet
9, 1691
3447
T.; Nagano, T.; Kondo, Y; Yamanaka,
H. Synthesis
1990,
215
Y J Org. Chem. 1990,
S5,
580
L S.; Johnson,
S A.; McCallum, J S Tet. Lett
1990.
31,
4397
8 15.
Grigg, R.; Dorrity, Tet. Lett.
816. 817 818
1990,
M.; Malone, J.F, Sridhavan, 31,
V ; Sukithalingham,
1343.
Stinn, D.E Diss. Abstr Int. B 1989, 50, 2413. King, SA Diss Abstr Int. B. 1989, 49, 5309. Trost, B.M, King, S A. J Am Chem Sot. 1990,
11.2, 408.
S.
614
819 820
Kosokawa, T.; Nakajima, F.; Iwasa, S.; Murahashi, S-i. Chem Lett. 1990, 1387 Jagdish Kumar, R.; Krupadanam, GL.D.; Srimannarayana, G. Synth 1990, 53.5.
82 1. 822 823 824. 83s 826. 827 828. 829 830. 831 832. 833. 834. 835 836 837 838.
839. 840. 841. 842 843 844. 84.5. 846.
Hiroc, K.; Abe, J Her 1990, 30. 283 Inoki, S , Mukaiyama, T. Chem. Left. 1990, 67. van der Louw, J., van der Baan, J.L., Tumnerman, P., deKanter, F J.J, Bickelhaupt, F., Klumpp, G.W. Rec. Trav. Chim. 1990, 109, 29. Marshall, J.A.; Robinson, ED. J Org. Chem. 1990, 55, 3450. Takai, K.; Tezuka, M., Kataoka, Y, Utimoto, K. J Org. Chem. 1990, 55, 5311. Mandai, T ; Hasegawa, S , Fulimoto, T.; Kawada, M ,Nokami. J, TSUJI, J Synlett. 1990, 85. Davies, SG.; Polyuka, R.; Warner, P. Tet 1990, 46, 4847 Bergens, SH, Fairle, D.P., Bosnich, B. Organomet 1990, 9, 566. Ohkuma, T; Kitamura, M ,Noyori, R Tet Lett 1990, 31, 5509 Citterio. A.; Sebastiano, R., Nicohni, M.; Santa, R Syn Letf 1990, 42. Lugan, N., Kelley, C; Terry, MR., Geoffroy, G L J Am Chem. Sot 1990, 1 f2, 3220. Nagashima, H.; Seki, K.; Ozaki, N.; Wakamatsu, H, Itoh, K., Tomo, Y.; Tsuji, J J Org. Chem 1990, 55. 985 Hoye, T R, Rehberg, G M J Am Chem. Sot. 1990, 112, 284 1 An. Z.W.; Catellani. M, Chiusoh, G.P. Gazz. Chim. Ital. 1990, 120, 383. Davies, SG J Organomet. Chem 1990, 400, 223 Beydown, N ,Pfeffer, M. Synthesis 1990 729 Aumann, R; Heinen, H. J. Organomet. Chem. 1990, 389, Cl. Parker, A, Yefsah, R.; Rudler, M.; Rudler Jr. H., Daran. J.C, Vaissermann, J J Organomet Chem 1990, 381, 19 1. Audouim, M, Blandinieres, S ; Parher, A ; Rudler. H. j Chem. Sot. Chem Comm 1990. 23 Cheng, L-C, Yang, SC Heterocycles 1990, 31. 9 11. Stadlbauer, W; Laschoben, R., Kappe, T Liebigs Ann Chem. 1990, 531. Siddiqui, M.A., Snieckus, V Tet Lett. 1990, 31, 1523 Hoberg, H ,Barhausen, D J Organomet. Chem. 1990, 397, C20 Mirkin, C.A. Lu, K L.; Snead, T E; Geoffroy, G L. J Am. Chem. Sot. 1990, I f2. 2809. 1347. Iyer, M., Trivedi, G.K Synth. Comm 1990,20, Geng, L.; Lu, X. Tet. Left 1990, 31, 111.
847. 848. 849. 850 851 852 853.
854 855 856 857. 858 859. 860 86 1. 862 863. 864. 865.
866. 867. 868 869. 870. 871. 872 873. 874 875. 876.
Suzuki, T., Sato, 0.; Hirama, M. ref. Lett. 1990. 31, 4747. Deshpande, P.P.; Martin, O.R. Tet. Lett. 1990, 31, 6313. Legzdins, P.; Richter-Addo, G.B.; Einstein, F W.B.; Jones, R.H Organometallics 1990, 9, 43 1. Togni, A. Organometallics 1990, 9, 3106. Hosokawa, T.; Ataka, Y.; Murahashi, S-i. Bull. Chem. Sot. Jpn 1990, 63, 166. Anastasiou, D.; Jackson, W.R. j. Chem Sot. Chem. Comm. 1990, 1205 Peiffer, C.; Siv, C.; Bendayan, A., Zahra, J-P.; Brown, P. Compt. Rend 1990, 311, 791. Schmiegel, J; Grutzmacher, H.F Chem. Ber. 1990, 123, 1749. Murakami, M.; Morita, Y.; Ito. Y. j. Chem. Sot., Chem Comm. 1990, 428 Tsumuraya, T., Ando, W. Organomet 1990, 9, 869. Tour, J.M ; Wu, R.; Schumin, J.S. _l. Am. Chem. Sot. 1990, 112, 5663. Tumas, W.; Suriano, J.A.; Harlow, R.L. Angew. Chem. 1990, 10.7, 89 Hewlett, D F; Whitby, R J. J. Chem. Sot. Chem Comm. 1990, 1685 Tsuda, T.; Kiyoi, T.; Saegusa, T. J. Org. Chem. 1990, 59, 3388 Spears, G W., Nakanishi. K.; Ohfume, Y Tet. Lett. 1990, 31, 5339 Wang, L.RR.; Benneche. T.; Undheim, K Acta Chem. Stand 1990, 44, 726. Dotz, KH.; Tiriliomis. A.; Harms, K j. Chem Sac., Chem. Comm. 1989, 788 Mukai, C.; Cho, W.J; Kim, I.J.; Hanoaka, M. Tet. Left. 1990, 31, 6893. Kimura, M; Kure, S., Yoshida, 2.; Tanaka, S , Fugami, K.; Tamaru, Y. Tet. Lett 1990, 31, 4887. Moody, C.J , Taylor, R.J. Tet 1990, 46, 6501 Ibata, T.; Nakano, H. Bull Chem. Sot. Jpn. 1990, 63, 3096. Takagi, K. Chem Lett 1990, 2205. Kadaba, P.K ; Edelstein, S.B. Synthesis 1990, 19 1. Tongi, A.; Pastor, S.D. J Org. Chem. 1990, ST, 1649. Pastor, SD.; Togni, A Teet. Left. 1990, 31, 839 Grotjahn, DB.; Vollhardt, KP.C J Am. Chem. Sot. 1990, 112, 5653. Takayama, H.; Kitajima, M.; Sakai, S Heterocycles 1990, 30, 325. Hanazawa, Y , Ishizawa, S , Kobayashi, Y; Taguchi, T Chem. Pharm. Bull. 1990, 38, 1104. Takahashi, T , Nakagawa, N.; Minoshima, T.; Yamada, H.; Tsuli, J. Tet. Lett. 1990, 31, 4333. Gross, R.S.; Grieco, PA.; Collins, J.L. J Am. Chem. Sot. 1990, II,?, 9436.
616
877 878. 879 880 881. 882 883 884 885 886 887. 888 889 890. 891. 892 893. 894 895 896 897 898 899 900 901
Hirao, ‘I’.;Man, M, Ohshiro, Y. J. Urg Chem. 1990, 5S, 359. Lee, J-T., Alper, H. Tet. Lett. 1990, 31, 4 10 1 Jang, S , Atagi, L.M; Mayer, J.M. J. Am. Chem Sot 1990, 112, 6413 Tanzawa, T ; Schwartz, J Organometaff~cs 1990, 9, 3026. Strunkina, L I.; Brainina, E.M., Minacheva, M.Kh. Metaffoorg Khim 1989. 2, 677 Asao, K ; Ho, H ; Tokorayama, T Synthesis 1990 382. Cabri, W., DeBernardinis, S., Francalanii, F , Penio, S , Santi, R J Urg Chem. 1990, -5-5, 350 Sao, J M , Dopico, M ,Martorell, G ; Garcia-Raso, A J Org Chem. 1990, -5-5,99 1. Rose-Munch, F.; Djukic, D. Rose, E Tet. Left 1990, 31, 2589 Koenig, TM., Daeuble, J F; Brestensky, D M.; Stryker, J Te’et. Left 1990, 31, 3237. Daeuble, J F., McGettmgun, C., Stryker, J.M. Tet. Lett. 1990, 31, 2397 Lipshutz, B H; Keil, R., Ellsworth, EL Tet. Left. 1990, 31. 7257 Evans, D A, Fu, GC J Org Chem 1990, 55, 2280. Evans, D A, Fu: GC. J Org. Chem. 1990, 55, 5678 Krohn, K, Rieger, H., Hopf, H, Barrett, D, Jones, P.G ; Doering, D. Chem Ber. 1990, 1.73, 1729 Krohn, K ,Khanbabaee, K ,Rieger, H Chem. Ber 1990, 123, 1357 LI, P., Alper, H. J Mol. Cataf 1990, 61, 5 1. Takehira, K, Hayakawa, T. J Mof Cataf 1989, 53, 15. Takehira, K ; Oh, I H.; Hayakawa, T.. Orita, H.; Shimizu, M J Mol. Cataf. 1989, 53, 105. Kataoka, H , Watanabe, K., Miyazaki, K-I ; Tahara, S-I; Ogu, K-I, Matsuoka, R , goto, K Cflem Lett 1990, 1705. Maletich, G, Song, J.S.; Ringold, C, Nemeth, GA Tet. Left. 1990, 31, 2239 Kaneda, K, Haruna, S, Imanaka, T, Kawamoto, K J Chem. Sot., Chem. Comm 1990, 1467 Suzuki, M., Oda, Y.; Hamanaka, N, Noyori, R Heterocycfes 1990, 30, 5 17. HISCOX,W., Jennings, PW. Urganomet. 1990, 9, 1997 Hagiwara, T ,Taya, K, Yamamoto, Yl, Yamazaki, H J Mol. Cataf. 1989, 54,
165.
902
Wright,
903.
9, 136 Liu, H-J.; Yan Zhu, B. Synth. Comm. 1990, 20, 557.
M.E,Svelda,
S.A., Jm, M-J;
Peterson,
M A
Urganomet
1990,
677
904. 905 906. 907. 908 909 9 10. 911 912. 913. 914 915 916 917 919. 920. 921 922. 923. 924 925 926 927 928 929 930 931 932.
Brandsma, L., van den Heuve, H.G.M.; Verkruijsse, H D. Synth. Comm. 1990,20, 1889. Liu, H.Q ; Hat-rod, J.F. Can. J. Chem. 1990, 68, 1100. Murphy, P.J.; Spencer, J.L., Procter, G. Tet. Lett. 1990, 31, 1051 Hayashl, T.; Kobayashi, T-a.; Kawamoto, A.M.; Yamashlta, H.; Tanaka, M Organomet. 1990. 9. 280. Soderqurst, J A ; Santiago, B , Rivera, I Tet. Lett 1990, 31, 498 1. Krafft, T.E.; Rich, J.D.; McDermott, P.J. J Org. Chem 1990, 55, 543 1. Doyle, M.P.; High, K.G.; Bagheri, V; Pieters, R.J.; Lewis, P J; Pearson, M.M J. Org. Chem. 1990, 55. 6082. Chatani, N.; Sano, T.; Ohe, K.; Kawasaki, Y., Murai, S J. Org. Chem 1990, 5-X 5924. Murai, T.; Sakane, T, Kato, S J Urg Chem. 1990, 55. 449. Fukazawa, S-i., Fujrnami. T., Sakar. S. Chem. Lett 1990. 927 Cochran, J.C.; Bronk, B.S.; Terrence, K.M ; Phillips, H.K Tet Lett. 1990, 31, 6621. Zhang, H.X.; Guibe. F.; Balavoine. G. J Org. Chem 1990. 55, 1857 Mrtchell, TN., Schneider, U., Frohling, B J Organomet. Chem 1990, 384, c53. Chantr, N, Horinchi, N.; Hanafusa, T. J Urg. Chem. 1990.5-5, 3393 Hmkles, R J, Stang, P.J; Kowalski, M.H. J Urg. Chem. 1990, 55, 5033. Chauvm, R. J. Organomet. Chem. 1990, 387, Cl. Pomerantz, M., Levanon, M. Tet. Lett. 1990, 31, 4265. Hojo, M.; Tanrmoto, S J Chem. Sot. Chem. Comm. 1990, 1284. Kukushkin, VYu; Moiseev, A I IZh. Obshch. Khim. 1990, 60, 692. Herr mann, W A , Kulpe, J A ; Kellner, J.; Riepl, H ; Bahrmann, H, Konkol, W Angew Chem Int. Ed Engl. 1990, 29, 39 1 Hayakawa, Y.; Wakabayashi, S; Kato, H.; Noyori, R J. Am. Chem. Sot. 1990, 112, 1691 Shibata, T; Gilheany, D.G, Blackburn, BK; Sharpless. KB. Tet. Lett. 1990, 31, 3817 Beaucourt, J.P Synth Appl. Isot Labelled Cpd 1988 Proc Int Symp 1989, 309. Gruselle, M ; Deprez, P. Vessreres. A ; Greenfield, S ; Jaouen, G.: Larue, J.P.; Thouvenot, D. J Organomet Chem. 1989, 359, C53 Hegedus, L S. j. Organomet Chem 1990, 380, 169. Hegedus, L.S J Organomet Chem 1990,392. 285. Thomas, S.E.; Gallagher, T Gen Synth. Methods 1989. 11, 393 Suess-Fink, G ; Neumann, F Chem Met.-Carbon Bond 1989, 5, 23 1
678
933. 934 93s. 936. 937. 938 939. 940 941. 942 943. 944. 945. 946. 947. 948. 949. 950. 95 1. 952. 953. 954. 955. 956 957. 958. 959 960. 961 962. 963.
Khetani, V.D. Diss. Abstr. Int. 8. 1989, SO, 1946. Beletskaya, 1.P IN. Akad. Nauk SSSR, Ser. Khim. 1990, 221 1. Harrington, P.J., John Wiley, New York, 1990. Werner, H., Erker, G , Springer-Verlag, Berlin, 1989 Mitchell, D. Diss. Abstr. Int. B. 1990, 50, 2932. Lukevics, E ; Ignatovich, L.M Latv. PSR Zinat. Akad. Vestis, Kim. Ser 1990, 387. Rockett, B.W.; Marr. G. J Organomet Chem. 1990, 392, 16 1. Yamagishi, T. Mem Fat Technol., Tokyo Metrop. Univ 1989, 39, 4037. Forni, L Chim. Ind. (Milan) 1990, 72, 521 Utimoto, K; Oshima, K; Takai, K., Matsubara, S Yuki Gosei Kagaku Kenkyusho Koenshu 1990, 4, 53. Watanabe, Y., Kondo, ‘I’ Yuki Gosei Kagaku Kyokaishi 1989, 47, 1132. Theopold, K.H. Accts. Chem. Res. 1990, 23, 263. Kocienski, P , Barber, C. Pure Appi. Chem 1990. 62, 1933. Fiandunese, V. Pure Appi. Chem. 1990, 62, 1987. Brunet, JJ Chem. Rev 1990, 90, 1041. Pearson, A.J Synth Lett 1990. 1 Cainelli, G ; Panunzio, M., Andreoli, P., Martelli, G.; Spunta, G, Giacomini, D., Bandini. E. Pure Appl. Chem. 1990, 62, 605. Astruc. D; Hamon, JR.; Mandon, D.; Moulines, F. Pure Appf. Chem. 1990, 62, 1165. Stack, JG. Diss. Abstr. Int B. 1990, 50, 4543. Guibe, F. Main Group Met. Chem 1989, 12, 437. Negishi, E I, Takahashi, T.; Akiyoshi, K. Chem. Znd. (Dekker) 1988, 33, 381 Catellani, M., Chiusoli, G.P.; Costa, M. Pure Appi Chem 1990. 62, 623 Wang, X.; Zhang, 2 , Xi, 2 Huaxue Ship 1990, 12, 2 1. Larock, RC Pure Appl. Chem. 1990, 62, 653. Backvall, J E. New. J. Chem. 1990, I4, 447 Russell, M.J.H. Platinum Met Rev 1989, 33, 186 Siem de Sanchez, C ; Gelambi, 0 Acta Cient. Venez 1988, 39, 3 19 Sun, C H Hua Hsueh 1987, 45, A 143. Huang, 2 Huaxue ShiJi 1990, 12, 149. Song, K ,LI, J. YOUJI Huaxue 1990, f0,4 11. Davies, S G.; Bashiardes. G.; Coote, S J , Goodfellow. C.L.; McNally, J P New Aspects C&g.Chem. 1, Proc. Int. Kyoto Coti. 4th 1988 1989, 8 1.
619
964 965. 966. 967. 968. 969. 970 971 972. 973. 974 975. 976 977 978. 979. 980. 981 982. 983 984 985. 986 987 988. 989. 990. 991. 992. 993. 994.
Brunner, H. Pure Appl Chem. 1990, 62, 589. Pearson, A.J. Synlett. 1990, 10. Brunner, H. Chem. Met.-Carbon Bond 1989, 5, 109. Duthaler, R.0 ; Hafner, A.; Riediker, M. Pure Appl. Chem. 1990, 62, 631. Hayashi, T ; Ito, Y. Nippon Kagako Kaishi 1989, 1965. Hayashi, T. Farumashia 1989, 25, 1240. Noyro, R.; Kitamura, M. Mod Synth. Methods 1989, 5, 115. Xiang, J.; Wang, J. Huaxue Shiji 1989, 11. 284. Ojima, I.; Clos, N; Bastos, C. Tetrahedron 1989, 45, 6901. Alexakis, A.; Mangenez, P Tet./Asymm. 1990. 1, 477. Noyori, R; Takaya, H Accts. Chem. Res. 1990, 23, 345. Wang, CW. Hua Hsueh 1987, 45, A131. Gree, R. Synthesis 1989, 341. Franck-Neuman, M.; Sedrati, M; Mokhi, M. NewJ Chem 1990, 14, 471. Danllova, N A ; Vel’der, Ya.L ; Miftakhov, M.S.; Spn-ikhin, L.V.; Khalilov, L M.; Baikova, I.P.; Tolstrkov, g.A. Metalloorg Khim. 1989, 2, 1079 Liu, R-S Proc. Natl. Sci. Count, Republ. China, Part A: Phys Sci Eng. 1989, 13, 368. Lai. Y S Diss. Abstr. Int. B. 1990, 51, 753. Palotai, I.M. DISS Abstr. Znt. B. 1990, 50, 5630. Wang, J.; Zhang, Y, Xu, Y.; Lin, 2. Gaodeng Xuexiao Huaxue Xuebao 1989, 10, 263. Jordan, R.F.; Bradley, P.K.; LaPointe, R.E.; Taylor, D.F. New. J Chem 1990, 14, 505. Negishi, E Chem. Ser. 1989, 29, 457 King, S A , Miller, J.B.; Wong, A.CC.; Schwartz, J. Chem. Ser. 1989, 29, 411 Fryzuk, M.D. Chem. Ser. 1989, 29. 427. Buchwald, S.L.; fisher, R.A Chem Ser. 1989, 29, 417. Mint& E.A Chem. Ser. 1989, 29, 443. Daves Jr. D.G. Act. Chem Res. 1990, 23, 201. Noyori. R; Uchlyama, M.; Kato, H ,Wakabayashi, S, Hayakawa, Y. Pure Appl. Chem. 1990, 62, 613 Noyori, R.; Hayakawa, Y. Kagaku Zokan (Kyoto) 1990, 235. Linebarrier, D.L. Diss. Abstr Int. B. 1990, 50, 5056. Hill, L.; Richards, C.J.; Thomas, S.E. Pure Appl. Chem. 1990. 62, 2057 Jun. CH ,Lim, Y.G. Bull. Korean Chem. Sot. 1989, 10, 468.
680
995. Ryabov, A.D Chem. Rev 1990, 90, 403. 996. Chisholm, M.H Pure Appl Chem., 1989, 61, 1707. 997 Ryabov, A.D. Chem. Rev. 1990, 90, 403. 998 Tanaka, M., Sakakura, T. Pure Appl. Chem. 1990, 62, 1147. 999 Jun, C.H. Bull Korean Chem. Sot 1990, 11) 187 1000 Hung, M.H Diss. Abstr. Int. B. 1989, 50, 1945. 1001. Bruce,M.I Pure Appl Chem. 1990, 62, 1021. 1002 Kuhnkovich, O.G. Russ. Chem. Rev. 1989, 58, 711. 003 Mandel’-Shtain, T V. Russ. Chem. Rev 1989, 58, 720. 004 Madhukar, P Diss. Abstr. Int B. 1990, 50, 3996 005 Fischer, E.0; Wittmann, D Znorg. Synth. 1989, 26, 40 006 Kauffman, T. NATO ASI Ser. Ser. C 1989, 269, 359. 1007 Snieckus, V Chem. Rev 1990, 90, 879 008. Snieckus, V. Pure Appl Chem. 1990, 62, 2047. 1009. Snieckus, V. Pure Appl Chem. 1990, 62, 671 1010. Zhang, Y Diss Abstr Int B 1990, 50, 5080 1011. Lewandowska, K DISS.Abstr. Int. B. 1990, 51, 214 1012. Takahashi, T I’uki Gosei Kagaku Kyokaishi 1990, 48, 476. 1013 He, C. Huaxue Tongbao 1990, 25. 1014 Speier, G Chem Met -Carbon Bond 1989, 5, 147 1015 Chang, J Diss Abstr Int. B. 1989, 50, 1398 1016 Griffith, W P Platinum Met Rev 1989, 33, 18 1. 1017 Simandi, L I Int Rev Phys. Chem 1989, 8, 21 1018 Bochmann, M Mech Inorg. Organomet React. 1989, 6, 365 1019 Wu, H. Huaxue Tongbao 1990, 25. 1020. Bhaduri, S Proc - Indian Acad. SIX, Chem Sot 1990, 102, 239 1021 Mayr, A Comments Inorg Chem. 1990, 10, 227 1022 Braunstein, P; Rose, J Stereochem Organomet Inorg Compd. 1989, 3, 3. 1023 Zakrzewski, J Heterocycles 1990, 31, 383 1024 Undheim, K., Benneche, T Heterocycles 1990, 30, 1155 1025 Iyoda. M Yuki Goser Kagaku Kyokarshi 1990, 48, 370. 1026 Osella, D; Raithby, P.R. Stereochem Organomet Inorg. Compd 1989, 3, 303 1027 Chung, Y DISS.Abstr Int B 1990, -50, 5622. 1028 Eisch, J J, Sexsmith, S R Res Chem Intermed 1990, 13, 149. 1029 Rieke, R D Science (Washington D C 1883) 1989. 246, 1260 1030 Bhaduri, S., Sharma, K R, Khwaja, H.1 Proc -Indian Acad SCI Chem Scf 1989, 101, 195
681
1031 1032. 1033. 1034 1035. 1036 1037. 1038 1039. 1040. 1041. 1042 1043 1044 1045. 1046 1047 1048
Davies, 5 G.; Dordor-Hedgecock, I.M. Anno. Rep. Prog. Chem., Sect. B 1988, 8-5, 225 Feng, Y.Y.; Chou, T.H. Hua Hsueh 1987, 45, A151. Nikanorov, V.A.; Rozenberg, V I ; Reutov, 0 A Proc Indian Natl. Sci. Acad, Part A 1989, S-5, 363. Howell, J.A.S. Chem. Enones 1989, 2, 1023 Gates, B.C.; Lamb, H.H j. Mol. Cataf. 1989, 52, 1 Aliev, A.K, Babaev, G.B.; Karaev, S.F. Azerb. Khrm. Zh. 1988. 60 Roman, EE; Astruc. d. Bol. Sot Chll Qulm 1989, 34, 39 Bennett, M.A Pure Appl Chem. 1989, 61, 1695. Sarkar, T.K Synthesis 1990, 969. Ott, J.; Schmid, B, Venanzr. L M, Wang, G; Ward, T.R New. j Chem 1990. 14, 49s. BrIngmann, G.; Walter, R., Weirich. R Angew. Chem. Int. Ed Engl. 1990, 29, 977. Tsuji, J. Synthesis 1990, 739 Kerm, W Angew Chem. Int. Ed. Engl. 1990, 29, 235 Shambayati, S ; Crowe, WE.; Schreiber, S L Angew Chem. Int Ed En@. 1990, 29, 256. Zenneck, LJ. Angew. Chem. Znt. Ed. Engf. 1990, 29. 126. Luh, T-Y.; Ni, Z-J Synthesis 1990 89. Coram, B, Rancan. S., Zecca, M.; Lora, S, Palma, G J Mol. Catal. 1989, 5-5, 2 0 9 Stolz-Dunn. S K. Diss Abstr Znt B 1990, 50, 4001.