Transition metals in organic synthesis annual survey covering the year 1990

Transition metals in organic synthesis annual survey covering the year 1990

301 Journal of Organometallrc Chemtstry, 422 (1992) 301-681 Elsevier Sequoia S.A, Lausanne JOM 22225AS TRANSITION METALS IN ORGANIC SYNTHESIS ANNUAL...

10MB Sizes 5 Downloads 102 Views

301

Journal of Organometallrc Chemtstry, 422 (1992) 301-681 Elsevier Sequoia S.A, Lausanne

JOM 22225AS TRANSITION METALS IN ORGANIC SYNTHESIS ANNUAL SURVEY COVERINGTHE YEAR 1990* Louis S Hegedus Department of Chemistry, USA

Colorado State University,

Fort Colhns, CO 80523

CONTENTS I. General Comments Carbon-Carbon Bond Forming Reactions II A Alkylations 1. Alkylation of Organic Halides, Tosylates, Trdlates, Acetates, and Epoxides 2 Alkylation of Acid Derivatives Alkylation of Olefins 3. 4. Decomposition of Diazoalkanes and Other Cyclopropanations Cycloaddition Reactions 5 6. Alkylation of Alkynes 7 Alkylation of Allyl, Propargyl, and Allenyl Systems 8. Coupling Reactions 9 Alkylation of x-Ally1 Complexes 10. Alkylation of Carbonyl Compounds 11 Alkylation of Aromatic Compounds 12. Alkylation of Dienyl and Diene Complexes Reactions 13. Metal/Carbene 14. Alkylation of Metal Acyl Enolates B. Conjugate Addition C. Acylation Reactions (Excluding Hydroformylation) 1 Carbonylation of Alkenes and Arenes 2 Carbonylation of Alkynes (including the Pauson-Khand Reaction) Carbonylation of Halides and Triflates 3 4 Carbonylation of Nitrogen Compounds Carbonylation of Oxygen Compounds 5. 6. Miscellaneous Carbonylations 7 Decarbonylation Reactions 8 Reactions of Carbon Dioxide * Reprints References

P 643

for this

review

are not available.

303 303 303 303 346 349 371 389 398 406 424 431 436 443 452 461 469 470 495 495 504 511 517 518 520 521 522

302

D E

Oligomerization (including Cyclotrimerization Methathesis Polymerization) Rearrangements 1. 2

Metathesis Olefin Isomerization

3.

Rearrangement of Allylic and Propargylic Skeletal Rearrangements

4. I II

IV.

of Alkynes,

5. Miscellaneous Rearrangements Functional Group Preparations A Halides B Amides, Nitriles Amines, Alcohols C. D Ethers, Esters, Acids E Heterocycles F Alkenes, Alkanes G Ketones, Aldehydes H. Organosilanes I Miscellaneous Reviews

and 523 535

Compounds

535 536 537 543 543 543 543 545 550 566 575 616 625 628 634 637

General Comments This annual survey covers the literature for 1990 dealing with the use of transition metal intermediates for organic synthetic transformations. It IS not a comprehensive review but is limited to reports of discrete systems that lead to at least moderate yields of organic compounds, or that allow unique organic transformations, even if low yields are obtained. Catalytic reactions that lead cleanly to a major product and do not involve extreme conditions are also included This is not a critical review, but rather a listing of the papers published in the title area The papers in this survey are grouped primarily by reaction type rather than by organometallic reagent, since the reader is likely to be more interested in the organic transformation effected than the metal causing it Oxidation, reduction, and hydroformylation reactions are specifically excluded, and will be covered in a different annual survey. Also excluded are structural and mechanistic studies of organometalhc systems unless they present data useful for synthetic application. Finally, reports from the patent literature have not been surveyed since patents are rarely sufficiently detailed to allow reproduction of the reported results. I.

Carbon-Carbon Bond-Forming Reactions Alkylations Alkylation of Organic Halides, Tosylates, Triflates, Acetates and 1 Epoxides Transition metal catalyzed reactions of Grignard reagents continue to be extensively used for synthesis. Substituted styrenes were synthesized by the cross-coupling of substituted phenylmagnesium bromides with vinyl bromide in the presence of nickellll) phosphine complexes Ill Choral ferrocenylamine sulfide and selenide (of Pd, Pt and Ni complexes) were used to catalyze the enantioselective cross-coupling of ally1 magnesium chloride with 1-chloro- 1-phenylethane I21 Nickel phosphine complexes catalyzed the alkylatlon of halides by bridge-head Grignard reagents (equation 1) 131. Nickel phosphine complexes were also used to catalyze the cross-coupling of Grignard reagents with di-, tri-, and polychlorobiphenyls I41 Unsymmetrical biaryls were synthesized by the nickeRI chloride catalyzed coupling of aryl halides with aryl Grignard reagents (equation 2) 151 Orthothioesters were converted to oleflns by reaction with Grignard reagents in the presence of nickel(I1) phosphine complexes (equation 3) 161. Arylpalladium(II1 halides coupled with vinyl magnesium bromide to II. A

References

P 643

304 produce

catalyze

Nlckel(II) and palladium(II) complexes were used to the coupling of aryl iodides with vinylmagnesium bromides 181 styrenes

(71

(Equation

1)

(Equation

2)

modest yields

ArMgX

+

Ar’X

-

NlC&THF

Ar--Ar’ major 60-98%

tnphenyls Br

0I= Br-

trlphenyls

+

Ar-Ar

30.5

(Equatton

Ar =

I-Naphth,BNaphth,

3)

pt&Ph, pkkOPh, 2,4-(WO)2Ph, 2,5-WO)2Phs Ph

R’ = Me, TM!xH2

Copper(I) chloride catalyzed the coupling of brsallyhc halides wtth alkynyl Grrgnard reagents (equation 4) 191, (equation 5) I101 a,wbishaloalkanes were monoalkylated by Grignard reagents in the presence of a copper catalyst. Arylmanganese halides coupled to thirteen different alkenyl halides, while Li2MnCl.t catalyzed the alkylatron of allyhc hahdes by arylmagnesru m haltdes 1121. (Equatron

CI~CI

-.

oat Am-.z.--MgCI

References

P 643

+

or

-Cl

CUCI

@ Ad

4)

306

(Equation *

W'

-E3r CUCI

.@

-W

+

‘*.

1) PEW,

**.

A/o*

73%

BrW, -ohnea

.@

-W

--\\

2) same 3) *20 4) Per3

‘.v’

#

-Ew mg ”

49%

e

l -co,w

w

(Equatron

Rb@r

5

+ Br(CH.,),Br

6)

5% Ll&uC14 *

WHz)n--Br

The evolution of higher-otder cuprates has been revlewed (56 formatlon vra references) 1131. A paper deahng with in situ cuprate transmetallatron between vinyl stannanes and higher-order cuprates was were prepared from ally1 stannanes and pubhshed I1 41. Affykuprates higher-order (methylkyanocuprates, and these efflclently coupled with halides and epoxtdes (equation 7) iI51 Stannyl cuprates were prepared, and they transferred their tin group to a varrety of substrates (equation 8) (161

30;

(Equation

1R Me&uCNL12

n OM3

References

p 643

7)

308

(Equatton

Me$3I-siMe~ + h&u

-

rule$SILi -

lU@tlCl

8)

Me&SnMe3

85% 78%

71%

Functlonalized organocopper species were readily prepared from organozlnc compounds, were used m a variety of useful processes (equatton 9) 1171, (equation 10) 1181, (equation 11) 1191, (equation 12) 1201, (equation 13) [Zll Cuprates alkylated alkynyl todrdes (equation 14) 1221 Heterocyclic organocuprates Introduced these functional groups Into amino acids (equation 1s) 1231

309

(Equation

E+

P

-

2) CuCN, PLiCl

9)

RyYo E 67-93%

(Equation

R

R 1) Wl-HF

FG

2) CuCNLiCl 3) E FG 32 cases high yields

RG

p 643

= RC-, COzR, OAc, OMe, CN, Cl, I

XI

Er. Cl

R=

H, Me, Bu. NC-’

E=

RCOCI, RCHO, R3SnCI,-X

7

10)

310

(Equation X

11)

X

RCu(CN)ZIIX . Cl

R’

Sn2’ R

R = nBu, PhCHP, MeO& -/

R’=

NC-/

NC-/

Me,H

Y = SPh, SePh

(Equation

1) ZtvDMF

FG

2) CuCN*2 LiCl 3) E+

FG

FGAr = Ph, oNCPh, nNCPh, mEtO&Ph, pCIPh, oPhCOPh.

Ph

12)

311

1) iMTHF er

R’CH-SPh

2) CuCN.2 LICI 3) E+

Cl

(Equation

13 1

(Equation

14)

(Equation

15)

R HSPh F E 7&92%

R = H, Me, nPr, CH&N, CH2CH2C02Et .,Br .e E = PhCHO, -

+

Roc3.2-I

R=D,T

R’CuCNZnX

Q

R’ = Et, Ph.

..,,,,,

-f+

cH2c

-

ROC=C-R


Et&C-/

HCO#e NHSOC

+

Ar&uCNU

-

~H2w&Hm~

I NHBOC

312

Ally1 cuprates coupled to vmyl trlflates (equation 16) 1241 Triflates of optically active lactic acids were alkylated by cuprates with inversion (equation 17) 1251 Triflates of cephams (equation 18) [261 and penems (equation 19) [271 were alkylated by cuprates. Enol trlflates of lactones were similarly alkylated (equation 20) 1281 (Equation

16)

OTf

*

+

4UcNL’z

-

2

60-76%

Mate

= PhA

,,noTf

PhmOTf

tr OTf

(Equation

R ,,COzEt +

CT f

R’$xb4

-

YopE’ R’ 1050%

17)

313

(Equation 0

18)

0 RUCULi

.

R’

BFyOEt,

OTf

R

C02Et

C02Et 40-70%

R = Me, Et, nBu, tBu, Ph, 6

,’

UN

(Equation

OTBS

191

OTBS R&Li+iCN

5040%

-

R = Me, MOM0Cl-t~

(Equation

OTf 0

-0

Obk *

0

PWOW, M&N

0

0

\,,o”

0

0

--,oG),

OTf

CuLi

,,o”

63%

20)

314

Cuprates alkylated 22) 1301, and a-mesyloxy trifluoromethyl epoxides 25)

a-methoxy amlnes (equation 2 1) 1291, (equation epoxides (equation 23) 1311; and ring opened (equation 24) [321 and N-tosylazlnnes (equation

[331 (Equation

2 1)

(Equation

22)

(Equation

23)

R = Bu, Pr, nC7

Rku COR’

. BF3

COR’ ao-80%

n = 1,2 R’ = OMe,tvle R2 = nBu, nC,

f

0 BuCu(R)(CN)L12

BuLi

.WO~ BFgOEt

BuCuR(CN)U2

HO -z&Y 57% Overall

.

315

C02Et

E4026

R

R2CULl

s 4

_) N TS

(Equation

24)

(Equation

25)

C02Et

: Y Et028

NHTs 60-80%

Manganese iodide promoted the alkylatlon of organic nlckelacyclic proplonic acid equivalent (equation 26) [341[351

RI

+

dlpyNI(yO -2L n

R = Ph

References

p. 643

R/‘(

p-”

halides

by a

(Equation

26)

316

Alkylatron of organrc halides and triflates by palladrum(0) catalyzed oxrdatrve addrtion/transmetallation/reductive elimination process has become a growth Industry, and many, many papers dealrng with this process have recently appeared Aryl ethylenes (styrenes) were prepared by the palladium catalyzed cross-couphng of vinyl zinc chlorrde and vinyl trimethyl tin wrth aryl halides [361 Heteroaryl zrnc reagents alkylated vinyl halides in the presence of palladium(O) catalysts (equation 27) 137). Organic rodrdes were cross-coupled via transmetallatron processes (equation 28) [381 Palladium catalyzed the alkylation of hrghly substituted fury1 zinc halides by organic halides (equation 29) 1391. Aryl halides were crosscoupled to organozinc chlorides using palladrum catalysis (equation 30) I401 (Equation

27)

(Equation

28)

X = 0, S. NMe

1) tsuLi

RI

-

R’I

2) ZnClp

L4Pd

317

(Equation

291

Br RX = Phi, 83: PhCOBr, 32%. e

Br, 79%;

, 89%;

Br 173%;

Phfi

Ph

Ph-Br,

~&-b’~.86%

85%,

=(k

,!WT’O TMS

bO2C

(Equation

30)

bPd cat. RMX

+ Arx

-

RAr 8040%

R = pkd+NPh, pMeOPh, pMeSPh. M = ZnCI, Mar

+/

t&j I

-

I

Ar = pCNPh, pNO2Ph. pBuCOsPh, pHO$Ph, pEt#COPh

Palladium(O) catalyzed the coupling of long chain vinyl rodIdes with organoztnc reagents (equatton 31) 1411, (equation 32) I421. Aryl and vinyl triflates coupled to heteroaryl zinc halides In the presence of palladrum catalysts (equation 33) [43l. a-Lithiated enol carbamates coupled to organic halides m the presence 34) 1441.

References

P 643

of zrnc chlorrde and palladu_tm(O) catalysts

(equation

318

(Equation

1) Cul 2) W&H

I

3)

12

4) &@,

Et-

F&b

‘am

I

OAc

Et/==\-

-

OAc

(Equation

&-vbv-Jg

tBuO-

3 1)

Pm +

BrA&E#

~ZnBr WV

-

*

Pd(O)

32)

319

(Equation

33)

(Equation

34)

5040%

Ar = PNaphth, pMeOPh, pPhGOPh,

cy

m{

steroidal

1) BuLifl-MEDA %OCONRz

RX F

2) fiBr2

-

R2NO&

R

4Pd

Transmetallation from tin to palladium has also been extensively investigated. “Synthesis of natural products using the palladium-catalyzed coupling of vinyltins and vinylhalides” was the tttle of a dissertation 1451. Palladium(0 1 catalyzed the coupling of f unctionalized vinyltins with halides (equation 35) [461 and triflates (equation 36) 1471.

References

P 643

Et0

(Equation

36)

OEt BuSSn /

-t-

35)

Bu,SnH

OEt HCEC

(Equation

AIBN

OEt

+

R

ArBr PdK’)

RmClEt

bEt 55-95%

0

YEt RX +

&WAea

R

A

and 0

0 R RX

+

SnfMj

5f

H+R

OEt +

H

0

OEt \

0

03

OEt R

+f 0

?Tf

RX = PhOTf, PhBr, pfQPhBr,

OTf

good yields FTf

321

Cyclobutene drones were alkylated using palladium/tin chemistry (equation 37) 1481. (equation 38) [491[501, as were a-stannylated dihydrofurans and dlhydropyranes (equation 39) IS 11

+

(Equation

37)

(Equation

381

‘-.iPd R-*E?-SnBu,

.-p Cl mC’

R = Ph. 70%; PhC-C, 11%; nPr, 51%; TblS, 30%

Me

xc

X

0

Me

0

R

or iPf0

I DC

+

Bu$3R

iPI

0

I

References

P 643

Rxc

0

R = Ph. ptvlePh,pCtPh, TMSC-C-, f3uC-G

THPO

7040%

Of

7

0 Dz

0

U’d

I Cl

0

PhS, Em

0

322

(Equation

39)

RX SnBu3

Pd(‘3 -80%

n=1,2

R = oMeOPh,

BrUco2E’

Ph

This chemistry has been extensively used to prepare alkylated dehydro sugars (equation 40) [521, (equation 41) 1531, (equation 42) IS41, (equation 43) 1551, and alkylated nucleosides (equation 44) [56J (Equation

40)

SnBu3 L,PdCI, +

ArX

cat

-

OTBS

OTBS

Ar = Ph, pNO2Ph, pCNPh, 1-naphth,NWeO&Ph, pCIPh, omPh,

oBnOPh, 2,~(hkO),Ph

(Equation

,OTSS

5% bPdCI, .

\

OAc

41)

323

(Equation

42)

(Equation

43 1

(Equation

44)

BnO BnO

BnX or ArCOCl or ex or

&x

W3 R2

RSnR3

R2

R’ 80-90?6

References

p 643

324

Palladium been

used

(equation ene

catalyzed

couplmg

to functlonallze 46) 1581, qumolines

dlynes

(equation

of hahdes

Indoles

to organostannanes

(equation

(equation

45)

I571,

has

also

cyclopentenols

47) [59l, and to make

medium

ring

(Equation

45)

(Equation

46)

48) I601

Bl

CO+

+ /bx

= DMFf120” good yields

X = OAc, OCOpEt

0 @SnBua L4Pd

$?H and

p

/ f

325

(Equation

t t

U’d GUI

47)

t

(Equation

48)

Palladium(O) complexes also catalyzed the coupling of organotriflates with stannanes (equation 49) I6 11 This has been extensively used In functionalizing @lactams (equation SO) 1621, (equation 51) 1631, (equation References

P f,43

326

[64], [66] and trrflates (equation 52)

prostanoid chemistry 1651, steroid functionalization (equation 53) Highly functionalized aryl nucleoside chemistry (equation 54) (671 were also alkylated utilizing this reaction (equation 55) 1681, 56) 1691, (equation 57) 1701, (equation 58) I711 (Equation

49)

(Equation

50)

Pd(0) + R’SnRa

Rl

OTf C02R

C02R

321

5 1)

(Equation

52)

G

G

Pd(OAck +

0

(Equation

RSnBu3

NMP CH&kt

011

0

COzPNB

%PNB 3040%

f’QJ&

OTf+

ArSnM+

Ar

ZnCI*

CO2R

;?&4tQPh)aP 40-70%

Ar = Ph. pNCPh, pHOCH*Ph, pMeOPh, oMeOPh, pMCOPh, pHCj-Ph 0

Qy x=o,s

(Equation

OTf

OR OM8 +

AC0

A

SnBu3 of OBll ZnCl

References

P 643

53)

328

(Equation 0

0

R

OTf

+

AC0

54)

R$nR’

7

PW’) AC0

AC0

OAc

OAc

70-95%

R’ = Ph, pMeOPh, pFPh, pCF3Ph, 3,5-F2Ph, 3,5-(CF&Ph,

TM-’

&--‘-/

Ph/r\/

\\

‘-c02Et

(Equation

Tf”f-$oEt +4 $$$f WdCh

SnBu:,

0

F

55)

329

(Equation 0

OH

0

56)

OH R’

R’ = Ph, nBu, 6

Ph*l i

(Equation

57)

R’ = iPr. QFPh: R3 = Ph. Me, tBu; R4 = H, Me; R5 = pFPh, 3-W-4-FPh, Et

(Equation

z

z E

RSnB+

oMe

Me0

-

Pd(O) L, LiCl

OTI E.Z = H,Z = OMe: E = Br,SMe.CI R = l-l, alkyt, alkenyl, awl, allyl. alkynyl

OMe R

58)

330

Palladium(O) complexes also catalyze the reactions between organrc halides or trlflates and organoboron compounds (transmetallations from B to Pd). Braryls were synthesnzed by the palladium catalyzed coupling of aryl trlflates wrth aryl borates (equation 59) [72l and aryl halides (equation 60) I731 Organrc hahdes were methylated by methyl boron compounds (equation 6 1) 1741 and arylated by aryl borates (equatron 62) 1751, (equation 63) 1761, (equation 64) 1771 Vinyl boranes coupled to vinyl halides In the presence of palladium(O) catalysts (equatron 65) [781, (equation 66) 1791. (Equation

59)

U’d ArOTf

+

Ar-Arl

Ar’B(OH)p v act. Na&Os DME

7040%

Ar = mMeOPh, P-naphth, 9phen. 4quinaldine; also OTf

Ar’ = Ph, otBOCNHPh. ototyi, oiPr2NC0

(Equation

Pd(0) cat. ArBr

+

[Ar14B]Na

-

ArAr’ 80” ankle

major

+

ArlArl minor

60)

331

O-B’

(Equation

6 1)

(Equation

62)

Me A& * base PW)

R = pkOPh,

pOHCPh, d

R-MS 74-95%

&,,A$yl

Ph

0

0

RB(OHk -yiNa2C03 R&IO OSiR~

OS& -

R = Ph, p&NPh,

pI=Ph, pCFsPh, pMeOPh, 3,5-F2Ph, 3,5-CFsPh,

332

WW, many

cases

R’ = H,OMs R2 = H, OMe, NO2 R3 = H, OMe, Br

(Equation

63)

(Equation

64)

X = S, N, 0 Z = S, N, 0

333

(Equation

65)

OTBS

C02H PW’) . OHOTBS

OTBS

goodyields

(Equation

BrY/

R

Br

+

bPd -HO TIOH

HO-B(OHh

Br 6cMo%

p 643

66)

334

Transmetallation from sihcon to palladium, mediated by fluoride ion has been achreved, and was recently reviewed (42 references) [SO]. Aryl iodides (equation 67) 1811 and aryl (equation 68) [821 and vtnyl triflates (equation 69) 1831 coupled to fluorosilanes. Palladium(O) catalyzed the coupling of vinyl germanes to aryl dlazonium salts (equation 70) I841

(!

(Equation

67)

(Equation

68)

PdCU2 cat.

@Slb&F +

Arl

.

F-

ArSi(Ei)F*

ArAf

Ar = Ph,

Af = pWOPh,

mHOCH2Ph,

-3o%ee W-51%, m

X=H,MeO -3woee

Y = H. 3-CHO. 4-COMe

335

bPd R’SIR,Fs,

+

l&T!

(Equation

69)

(Equation

70)

R’--R2

TBAF

50-90%

I

K

R’ = pMeOPh, v/

Ph

/

p,,bG8MB3 P&z-% $JeM”s

+

ArN2BF4

-

P”+

Ph Ar

+ Ar

Ph& 82-95% mixlure

Ar = pMePh, Ph, pBrPh, p02NPh

The long-known palladium-catalyzed coupling of terminal alkynes to aryl and vinyl halides is enjoying a resurgence with the advent of enyne natural products. Palladium on carbon catalyzed the coupling of terminal alkynes to aryl bromides (equation 71) 1851. Palladium(I1) phosphine complexes catalyzed the coupling of terminal alkynes to vinyl halides (equation 72) [861. The conventional catalyst system consisting of palladium complexes, copper salts and amines coupled alkynes to vinyl hahdes (equation 73) 1871, (equation 74) [881, fluoro vinyl halides (equation 75) 1891, (equation 761 [9Ol, iodopurrnes (equation 77) [911, (equation 78) [92l, and bromothiophenes (equation 79) [931.

References

I) 643

336

(Equation

R-*=*-H

+

ArBr -

7 1)

PdC R-as-Ar 60-90%

R = Ph, nPr, TMS Ar = Bnaphth, pOCHPh, pNCPh, oNCPh.

(Equation 72)

~PdC12 p

,,r-.s.

Cl Cl

(Equation 73)

Br

Cul/L.,Pd +

R-a-

p EtNI(Pr);! PhH

CHO

93%

(Equation 0

0 L2PdC12 OEt Br

-

OEt GUI Et3N THF

74)

337

(Equation

75)

(Equation

76)

(Equation

77)

Ar +

RCS2H

F

k

= Ph, pCIPh, p02NPh, pMeOPh

R = Ph,

OH

F

L2PdC12 . Clil Et3N

I

RCGC

X

F

F

R

50-87% R = nPr, nBu, nC5, Ph, nC&, Hclc

-

R’ = F, Ph, CFs, (IPQ2P(0)

COCF3HN’ X = NH2, OH 80%

338

(Equation

78)

(Equation

79)

L2PdC12 +

TMSCECH cucl Et3N

HO OH

HO OH high yield

TM!3 Br I H

Br \ S

L2PdC12 +

HCECTMS

Cul Ei2NH 7442%

Palladium(O) medrated synthesis of polyacetylenic compounds calicheamicin/esperamicin, was the topic of a dissertation 1941 Polyacetylenes were prepared by the palladium/copper catalyzed alkylation of vinyl trrflates (equation 80) 1951, vrnyl halides (equation 81) 1961, (equatron 82) 1971, (equation 83) 1981, and aryl hahdes (equation 84) 1991, (equatron 85) I1001 Qune complex systems have been made by this procedure (equation 86) 11011, (equation 87N [lo21

339

(Equation

80)

(Equation

8 1)

+ CUCI E~NH/DMF

.=.-OH

L2Pdcl2

Bf cut tPr2NH

(Equation’ 82)

References

p 643

340

(Equation

Oh?

83)

L4Pd

+ CIA PrNH2 OMe 92%

(Equation

OR

84)

341

(Equation

85)

(Equation

86)

CHO Pd(0) lCul Br

+

WS-.z.-H

-

EbN 80%

TMS

342

(Equation

87)

Palladium(O) catalyzed the coupling of lithium acetyiides to aryl bromides (equation 88) ilO3l, and acetylenic tin reagents to chloroimines (equation 891 11041. Copper catalyzed the coupling of alkynes to allylie halides (equation 90) I1051 and Wodofurfural (equation 91) II061 (Equation

PWY RC--zC-U

+

ArBr

-

R0-k 40-7096

R = Ph, n0u, Me ,,/OPh Ar = Ph, pMeoPh, pMeph, PM@‘J

88)

343

(Equation

Cl

Buss”--\

NO4

+ Bu~S”~‘~)

X

-

R-N

(XI

L2PdCI, PhCHB

(Equation

R2

R’-=-H-

+ Cl

chlorides =

References

p 643

cu ‘%N

)

89)

R’,-AR*

90)

344

(Equation

Hy&,

+

PhC=CCu

9 1)

-

1:

Ph

Palladium complexes catalyzed the alkylatron of aryl halides by stabilized carbanrons (equatron 92) I1071, (equation 93) 11081 Complexation of diketoesters to metals permitted the control of regioselectivrty of alkylation (equation 94) I1 091 Vinyl halides were dialkylated by stabilized carbanions in the presence of copper catalysts (equation 95) [ 1101 (Equation

Ph Y +

Ph NaH

(4 X

Pd(ll) X

Br also

X = CN, CO&l& C02Et;

Y = CN

92)

345

(Equation

CN

X = Br, I Y = B02Ph, P(0)(OEt)2 R = H, Me, MeO, CN, NO2

I

RX

R = PhCH2, 7’

R’ = Et, nBu, PhCHP, MEO~CCH~ N

References

D 643

I

NaH RX

PhAj#

\

93)

346

(Equation

95)

R’ = Ph, -R* = H R’s R4 =

P3+2)2,

(CH2)3. K

Alkylatlon of Acid Derivatives 2. Palladium catalyzed the coupling of L-probe acid chloride with vlnyl stannanes (equation 96) [ 111 I, azetldinone stannanes with acid chlorides (equation 97) [I 121, and cyclization reactions (equation 98) 11131 (Equation

0

0 PdCl&pf Cl

+ R3SnR’

-

R’

96)

347

(Equation

97)

0 OAc

S&u, R’

(Equation

Acid chlorides

98)

were

alkylated by butyliron complexes (equation 99) complexes (equation 100) 11151 Acid derivatives were methylenated CpzTiMez (equation 10 1) (1 161 Ruthenium complexes catalyzed the alkylation of arenes by fluormated sulfonyl halides (equation 102) 11171 [ 1141 and alkylmanganese

(Equation

PhCOCl

+

Bu,Fe-3b&~BtCl -

PhCOBu 94%

References

P 643

99)

348

(Equation

100 1

(Equation

10 1)

(Equation

102 1

R’ = Bu, IPr, Ph, tBu, Et,

PhCH3

cp2lwle2

+

-

THF

works well with &Ih

OJO

OM9

cs”

WHO, R&O also work

RuC12Ls ArH

+

RrS02CI

-

ArRr +

SO2

100” mixed isomers 3664%

Rf = CF3, CsF3 ArH = PhH, PhCHS, MeOPh, +

t&OeO,

349

Alkylation of Olefins 3. By far the most popular way to alkylate olefins has been the “Heck” arylation procedure, involving palladium(O) catalyzed oxidative addition/ Many improvements olefin insertion/@hydrogen elimination processes and modifications have been made Lithium chloride was found to improve the yields of the Heck arylation of olefins (equation 103) 11181 Sulfonated phenyl phosphines - PhgP(m-03SPh) were efficient ligands for carrying out Heck arylation in aqueous solutions [ 1191. Acrylic acid was arylated by aryl iodides or bromides (0 and pMePh, pMeOPh, pClPh, mCFgPh, pOgNPh, pHOPh, mH02CPh) in aqueous solution using palladium(II1 acetate as catalyst 11201 Palladium catalysts supported on perfluorosulfonated resins also catalyzed the arylation of acrylate derivatives 11211 Palladium chloride supported on montmorillonite-silica-phosphines catalyzed the arylation of methyl acrylate by p-iodoanisole but not o-iodoanisole [ 1221 Polyhaloarenes (halogen = Br, I) were polyethylated by olefins under palladium catalysis(equation 104) 11231 A range of palladium(I1) salts catalyzed the arylation of acrylonitrile by aryl halides 11241 Substituted aryl halides were also alkylated by olefins under Heck conditions (equation 105) I1 251 (Equation

ArX + ey

-

WO)

ArbY

LiCl

ArX = Phi, pMeOPhl, oCIPhl, oMeOPhl, oHpNPhl,

Olefln =

103 1

350

(Equation

104 1

n52

0

+ HyH

xnl

pd(o))

(3402*,n n52

PhCrCH

n = l-6

3.51

(Equation

105 I

Pd(OAch - &IN. RSP Br

R’&lR HVTMS Pd(O)

/\

Pd(O)

i-MS

R = Ph, Ph

=

e i

Aryl bromides (equation 106) I1261 and triflates cleanly alkylated acetamidoacrylates

(equation

107) 1127)

(Equation

106 I

352

(Equation

OTf

107)

COgAe +

pd(o)

.

m-&

+ NHAc

Electron rich olefins also underwent Heck arylatlon (equation 108) [1281, (equatron 109) 11291 The regloselectlvity depended on the substrate and conditions (equatlon 1 10) 11301 Vinyl acetate underwent a double arylation, Indicating that p-acetate elimination rather than p-hydride ellmlnatlon had occurred (equatton 11 1) I13 11 Dlhydrofuran was also doubly arylated (equation 112) I1321 (Equation

Pd(OAc)p I DMF ArX

+

&OR Bu4NCI

)

K2C03

Ar = Ph, pMeOPh, p02NPh, mhleOPh, 1-naphth,

A/b-OR 50-85%

108 1

353

(Equation

109)

OEI OTf

boEt/

Pd(OAc)n

I i”Etor

-&

,

97%

bPd/LiCI

(-joTfboTf

also worked

2

(Equation

Ar

Pd(OA& ArOTf

.t

FOB”

-

DPPP DMF

110 1

&-

OBn 95%

(Equation

FOAc

+ b-g-SR

80-85% Ar = Ph, pMePh, oMePh, oMeOPh, pMeOPh, iPrPh cat = L-PdC12on interlamellar montmottllonite

111)

354

(Equation

112)

1% Pd(OAc)2/1L/Bu.,NCI

E-O

_d

4% Pd(OAc), Ag2C03 MeCN

Protected glycals were excellent substrates for (equation 113) [1331, (equation 114) [1341. Ally1 alcohols 11351 oleflnic epoxides (equation 116) 11361, cychc enamldes 11371, and protected ally1 ammes (equation 1 18) 11381 all under Heck condltlons, as were vinyl sllanes (equation 119) 120) 11401

Heck arylatlon (equation 115) (equation 117) were alkylated [ 1391, (equation

355

(Equation

113)

P”

c I

0

%

Ok48

I= +

0

‘o-o

0.1 eq Pd(OAc),

-SF+= \

1

0

O/

0

Y

c

‘o-o

I

o



OSiRs 85%

R,SiO

(Equation

114)

Pd(OA% +

ArH

-

HOAc

Ar

AcO

(Equation

R’ R+’

Pd(OAc), cat.

+ =L

OH

)

R&+0

1 eq As&O, Bu4NHS04

H 40-8096

R = nBu, /\/\/\/l R’ = H, Me

?eferences p 643

115 1

356

(Equation

116 1

(Equation

117)

4040% Ar = Ph. pMePh, pMeOPh, pMeCOPh, pEtO&Ph n = 1,2,4. 10

0

I

N

JI? I

Arl

N

WJ)

Al

Ar = Ph. I-naphth, pMeOPh, mMeOPh, oMeOPh, pMePh, pMeO&Ph

590% with oHOPh, pBrPh, p02NPh,

(Equation 7=2

OTf

PW +

/x_,NBOC2

w

R

118 1

357

(Equation

119 1

TMS L2P-2

Arl+ems

-

A

EIBN 17-50%

Ar = Ph. pMeOPh, pN02Ph II with 2,4,6k@Ph,

+

Ar/\\ 22%

&ll%

&attack only

(Equation

120 1

Et3N RX

+

&SW3

Pd cat. 40-70%

R = Ph, pMePh, 1-Naphth,

Ph-’

R13 = t&012, Ma&I

Intramolecular arylpalladation was promoted by ultrasound [ 14 11 and was used to synthesize polycyclic systems (equation 121) 11421, (equation 122) 11431, (equation 1231 11441. An annulation procedure involving Heck arylation followed by alkylation of a n-allylpalladium intermediate has been a-alkylpalladium(1 I) developed (equation 124) [ 1451 The intermediate complexes has been intercepted by cyanide (equation 125) 11461 With uiodoketones. the cyclization occurs by atom transfer not redox (equation 126) [ 1471.

References

P 643

358

(Equation

12 1)

Pd(O) BINAP Ag3PO4

R=

cage, Cl+oTBDMs 67%,upto8o%ee

(Equation

122)

10% Pd(OAc), .

1

4O%L 2 eq AWX),

0 NHC02Me

H NHC02Me

70%

(Equation

123 1

359

(Equation

E

5% Pd(OAc), +#Fl

Yg-&. Bu4NCI

80-90%

(Equation

halide =

phABr

’ OSiRp

-1

124)

MOPhI,

ptBuPhl, 1-BrNaphth

125 1

360

(Equation

126)

0

0 R R

I

Olefins were also alkylated by palladium-catalyzed transmetallation/ insertion reactions from tm (equation 127) 11481, thallium (equation 128) 11491, and mercury (equation 129) 11501, (equation 130) [1511, (equation 131) 11521 (Equation

FMOCN H

e

R SnBuB

+

5-1 \

PdCI#eCN)2 * DMF

FMOCN H

R

127)

361

I;

N

(Equation

128 1

(Equation

129 1

/“““*

o

N

/O

’;

c4lvle

%

30%

Li2PdC14 PhHgCl

+

w

Ph&

-

OH

0

(Equation 0

0

HsCl

Li2PdC14 -

130 1

362

(Equation

13 1)

Olefins were arylated by arylazoalkyl sulfones (equation 132) 11531 I1 54) I1531 and arylsulfonyl chlorides [equation 133) I1561 under palladium catalysis Palladium catalyzed hydroarylation and hydrovinylation of oleflns was reviewed (36 references) 11571. (Equation

Ar-y=N-SO&

+

0

Ar = Ph, pMePh, pUPh R f = H, Me, Ph R* = C02Et, CN

R’-+xR2

U’d

132 1

363

(Equation

PdC12(PhCN)2 .

R2

H

K2C03

Ar

R’

t( R3 -

R2

133 1

90?4l

Ar = Ph, pMeOPh, pCIPh, pFPh, mCIPh, p02NPh, 1-naphth,P-naphth

R’ = C02Bu, CO#Ae, Ph, H R2 = H, Me R3 = H, C4Me

The palladium(II) assisted alkylation of olefins was used to synthesize a relay to (+I-thlenamycm, using optically active ene carbamates as the olefin (equation 134) IlSSl. Olefins were dlalkylated by combined insertion, nucleophile attack chemistry (equation 135) 11591, (equation 136) I1601

Ph

(Equation

134)

(Equation

135 1

Ph 1) PdCl#eCN)2 2) Et3N 3) CHfCHr

4) CO, MeOH

0 z97%de high yield

E N

References

p 643

+

ArX

+

)

\c E

-

Pd(O)

364

(Equation

136 1

R = Ph, pMePh. oMeOPh, z,z = 00$de, COMe, S02Ph

The C-14 positlon of diterpenoids was functionallzed by cyclomanganation/olefm insertion (equation 137) 116 11 Manganese(III) acetate cychzed olefinic p-dicarbonyl compounds (equation 138) [1621 Iron carbonyls 11631 and ruthenium complexes (equation 139) 11641, (equation 140) I1651 catalyzed the addition of halocarbons to oleflns

365

(Equation

mc heptane

Ft2

& :I

R3 ALSO R

0

R,

;\

3040%

72% R’ = C4Me,

CH20Me,

R2 = H, OMe; R3 = H, C02Me

R = C02Me, CN, CHO, CH20Ac

References

I) 643

137)

366

(Equation

co*Me

138 1

WOW 0

CU(OAC)~ HOAc

61%

(Equation

139 1

(Equatron

140 1

H 6% RuC12L3 PhH

severalcases

Copper powder catalyzed the addition of rododlfluoroacetates to alkenes [166l and the addrtion of perfluoroalkyl rodides to bromo Vinyl sulfones were alkylated by heterocyclic compounds I1 671. organocopper complexes (equation 14 1) [ 1681. Cyclopropenone ketals were alkylated by organocuprates (equation 142) I1691 as were cychc olefinrc ethers (equation 143) 11701, (equation 144) [1711

367

(Equation

Phm FGR-CuCN

+

E q

THF, -30” w

E

1 hr

X-

FGR

E

H

E

14 1)

7040%

= PhMe$i,EtO&

FGR

-/

(Equation

142 1

(Equation

143)

CICQEl

R.@U

L4Pd R

H

OTBDMS OTBDMS

R = nBu, SBU.tBu

,p 643

R2CuUCN

0SiR3 OSIRS

368

(Equation

144)

RO

RO

OEt

H

RO

RO H

OkA8 H

R = TBDMS

R = TBDMS

..

R’ = H,

R’ = H,Me

R* = BTz, H

R*=Me.H

Manganese( I I I) difunct!onalization of alkenes was the topic of a dissertation [ 1721 Cobalt(I) complexes catalyzed the alkylation of oleflns by halides (equation 145) (1731 while cobalt(I1) catalyzed the alkylation of enol ethers by stablhzed carbanions (equation 146) [1741. (Equation

/4/902Ph

NC02Ph co*Me +

Br

C02Et to:t:5

72%

145 1

369

(Equation

OBu

enolether

=

WOE,

A

146 1

OEt

Zn-conium catalyzed coupling of oleflns with heteroaromatics was the Oleflns were alkylated by subject of a lecture (15 references) I1751 alkyltitanium(IV) species in the presence of aluminum alkyls (equation 147) [ 1761, (equation 148) 11771. Zn-conocene alkylated olefins with nitriles (equation 149) 11781. (Equation

Ticicpp 98-100% R1 = H, Me; R= = H, Me, (CH2)=, (CH&,,

References

P 643

R3 = Hi R4 = H, (CH2)2.

(CH2)3

147)

370

‘1

(Equation

148 1

(Equation

149 1

Ml

CPzWI* EWCI, 3) HCI 2)

Ph

Ph

34%

Rhodium(I) complexes catalyzed the C-alkylation of phenols with myrcene (1791 and the alkylation of olefins by indoles (equation 150) 11801. Cyclic enol ethers were alkylatively ring opened in nickel catalyzed Grignard reactions (equation 15 1) [ 18 11 Catalytic iron(O)-mediated carbocyclizations of triene esters and triene-ethers was the subject of a disseration 11821.

371

(Equation

1SO)

&y-_&H H

H

0J-Q H

q$‘p

N'

0

also cydize

(Equation

+

BuMgX

-

15 1)

()n,,OH

MCI:!

B4 n = 1,2

68-75%

Decomposition of Diazoalkanes and Other Cyclopropanations 4 Metal-catalyzed decomposition of diazoalkanes continues to be popular for cyclopropanation of olefins. A variety of transition metal complexes was screened for reactivity in the cyclopropanation of norbornene by diazomethane, with Pd(acac)z being the best 11831. Palladium chloride catalyzed the cyclopropanation of 1-alkoxy butadienes by diazomethane 11841, as well as ally1 alcohol and ally1 amine I1851I1861. Rhodium(I1) salts catalyzed the cyclopropanation of olefins by a-nitro diazo acetate 11871. Silylenol ethers were cyclopropanated by diazoacetate in the presence of copper acetylacetonate (equation 1521 11881. The cfs/trans ratio in the cyclopropanation of olefins by a-diazoesters using Rh(III catalysts could be affected by the rhodium salt and by the alcohol group on the ester (equation References

p 613

372

153) 11891 as well

as by secondary interactlons between the carbenold complex and the substrate (equation 154) 11901. Furan (equation 155) [1911 and propargyl ethers (equation 156) I1921 gave mixtures of products when treated with dlazo compounds and rhodlum(I1) catalysts (Equation

152 1

R

OTMS

N&HCO&fe .

Gu(acac)p

A co&l8 TMSO (Equation

@R

+

N2CH$-Z 0

--*

Rh2X4

Ftfy;dz

+

RfiuH

cat

coz

high franswhen Z = 0

OR olefin =

w

Ph/\\

153)

373

0I \

(Equation

154 1

(Equation

155)

C02Et

ww4

+ND+CW

+

H

0

+

HLCO

2

Et

(Equation

+ 8

OMe

N,CHC-R2

0 lll@MhOk

References

I) 643

156)

majorwithCF&Q-

314

Intramolecular cyclopropanations with optically actrve catalysts have also been developed (equation 157) I1931 A mechanistic study of the rhodium(II) carboxylate catalyzed reactions of diazo esters indicated that an equilibrium between free carbene and a metal-carbene complex existed 11941 (Equation

157)

0

b

( )” cd

cat.

Several other approaches to asymmetric induction in this process have been studied. They are summarized in equation 158 [19Sl, equation 159 [1961, equation 160 11971, and equation 161 [1981 (Equation

158 1

375

(Equation

r 4

159 1

0

Ph6

+

1

OR

-

A

QT

Ph

CW

96%eew?hR = L-llwhyi

SamecganjaSeq.158

75irans125cls

(Equation

R/\\

cI-c’

+N2cHGo2R’

v

R

*

50”

CO&V

3:l bmei!s 704mm

F”

(Equation

+

&Ph

-

u%

p 643

16 1)

A CO,R

Ph

References

160 1

316

Low valent

titanium

cyclopropanated

olefins with CFC13(equation

1621

[1991 (Equation

162 1

Transition metals catalyzed a variety of other reactions of diazo The rhodiumt I I) catalyzed species, in addition to cyclopropanations decomposition of optically active a-amino diazoketones to give optically active products resulting from C-H insertion. aromatic cycloaddition, cyclopropanation, a,a’-substitutions and fi-diketone formation have been Rhodium( II 1 catalyzed decomposition resulting in C-H studied I2001 insertions have been used to produce cychc enones (equation 1631 12011, hydroxyindoles (equation 1641 12021, cychc f5ketoesters (equation 1651 [2O3], alkenes (equation 1661 12041, furanones (equation 167) 12051, lactones (equation 168) 12061, lactams (equation 1691 12071, and other cyclic systems Unsaturated diazoketones cycloadded to (equation 1701 l2081[2091 cyclopentadiene (equation 17 1) I2 101

(Equation

Q.

Q2R

59%

spaw”

R 47-53%

57%

53%

(Equation

0

R = Me,Bn,Ph, R’ = H.t&,OMe

References p 643

163 1

0

164)

378

(Equation

165 1

R

NZ 6xwo

1346%ee

R=Me,Ph,

Lt

-

fi 3

cab2xylate =

OZC\/\Ph iPhTh

NZ Ar

.JL

O,C,,

02cv

IiPhTh

Ph 6-P,

166 1

(Equatlon

167)

CH,R

kR Ar

(Equation

lWcycH-3cb

-A

Ar

Ar -it%

R = H,CI, Me R’ = H,U.Me

0

0

Ph QJ(=)2

\rh 0

N2

‘I

Ph

PM

-xx

Ph

0 4%

Ph

319

(Equation

RoJgLo&* -

)

v

ROO O

NZ

I32

R’

O

(Equation

0

0

0

N% N2

L

CO,Me C&Me 1Wh

BUT

v 0

N2

0

0

0

mdmo4

NAtBu CO,Me

N+

-KT

0 r’ Et0

References

0 643

168 )

-

169 1

380

(Equation

cl-+ CL ( )

170 1

N2

/’

-Q?

+

N

co2

0

3FYoee

4Rh2

H

czd

EUT

0

4

..,dW=”

Phqo+0

l%ee

&S02Ph

-

&2ph

(Equation

17 1)

381

Ylids can be formed by trapping the carbene produced by catalyzed diazo decomposition with adjacent heteroatoms, leadrng to a variety of products (equation 172) (2 111, (equation 173) [2121, (equation 174) 12 131. Alkynes can trap the carbene to grve cyclopropenes which cleave to grve ally1 carbenes and ultimately produce polycyclic compounds (equation 175) (2141, (equation 176) 12 151. w-Hydroxy-a-diazoesters rearrange to f3dicarbonyl compounds (equation 177) 12 161 (Equation

MeO&--E--C02Me

0

MeO,C

References

I) 643

CO,Me

172 1

382

(Equation

A=0

173)

*

0

(Equation

A.H

Ph \

R

Ph

C02Et

174)

383

(Equation

175)

y6+o_.*., - y%. 0

C02Et

References

p 643

(Equation

176 1

(Equation

177)

OEt

384

Cyclopropanes are also made by the reaction of olefins with GroupNIl carbene complexes The carbene route to donor-acceptor substituted cyclopropanes has been reviewed 12171, and the full details published (equation 1781 I2181 Depending on the geometry of the olefin and on the solvent, C-H insertion IS sometimes observed (equation 1791 12191. O-A@ carbene complexes cyclopropanated olefins under very mild conditions (equation 1801 I2201 as did molybdenum carbenes (equation 1811 I2211 Intramolecular versions were also efficient (equation 1821 I2221. Tungsten benzyhdenes cyclopropanated allenes (equation 183) I2231 Thermolysis of iminocarbene complexes led to intramolecular cyclopropanations (equation 184) 12241. (Equation

178)

385

(Equation

Ph OMe

179)

Ph OMe

&

CN +

1

2

+ B

4 Q-b

A

92% 3 7i% 1 60% 4

B

s5”/ 2

(Equation (! 0 ONMe, (COkCr

1

R2 KBr IV0

=c R’

R4

0

R4>n<

K

R2

R’

q 409m

_( OR3 -m

ONBIJ,

W)&r =i

rices p 643

c5

PNBO

TBsi-5 OPNB

%

180 1

386

(Equation

Me0

OMe

PhjMo

4

+

Px

-

85” n-F

R

o? );I\\ (W5Cr

=t

A

18 1)

R

4

X

(Equation

182 1

(Equation

183 1

A

Ar Ar

=.

4

Ph

Ph

387

(Equation

184)

Me Ph

WV&r

L 2

Carbene complexes having remote unsaturation underwent combined metathesis/cyclopropanation (equation 185) 12251, (equation 186) 12261. Similar chemistry was observed in metal catalyzed decomposition of appropriate diazo compounds (equation 187) 12271. (Equation

R

A *

References

p 643

C02Me

\ $J

OMe

185 1

388

(Equation

OMe CWO),Mn4 +

186 1

OMe

R rzv E !ah?

*

4

E

0”

R’ R3 R2

R

R-71% E

R=

Me,Ph

R’=H, R2=H,Me, F?=H,Me, i+=Me,F’h n= 1,2 (Equation

187)

Rhodium(I1) acetate catalyzed an amlne rearrangement (equation 188) I2281 Ketones were oleflnated by diazoesters in the presence of copper catalysts and tributyl stlbane (equation 189) I2291

389

(Equation

188)

0

0

NR'W

NZ 1050

NR’FC

H

0 “‘2

(Equatton

Y b.=+

N,

==t X

R’ + l= R*

189)

cul o-

y = co2Me.ycoMe

x=w?kq_12ccMe

Cycloadditron Reactions 5 Palladium-catalyzed cyclization of enynes has been reviewed (69 references) 12301. Thus process IS very useful for the synthesis of cyclic compounds from simple starting materials (equation 190) 12311, (equation 191) 12321, (equatton 192) 12331 Enynes were cyclized wtth incorporation of carbon monoxide using titanium chemistry (equation 1931 12341

References

p 643

390

(Equation

190 1

408x!

(Equation

19 1)

391

(Equation

E

References

p 643

E

E H

H

192 1

392

(Equation

193 1

7\ -

c-

Palladium catalyzed polyene cycloadditions were also initiated by hydrosllylatlon (equation 194) 12351 and by oxidatlve addltlon/insertlon (equation 195) [2361 Regio- and stereocontrolled catalytic Pd and NI “enetype” cyclizatlons have been reviewed (equation 196) 12371 Cyclization was also affected by palladium catalyzed nucleophllic attack on dienes (equation 197) 12381. (Equation

194)

393

(Equation

195)

(Equation

196 1

(Equation

197)

w(O)of

Iron(O) complexes cyclized ene-dienes (equation 198) Unsaturated chromium carbene complexes underwent facile cycloaddition reactions (equation 199) 12401, (equation 200) I24 11. References

p 643

12391 [4+21

394

(Equation

198 1

(Equation

199 1

1) l%~Fe(O) *

Ph

2)T_

OMe

(W5M

==h R3

-

R’

Fl2

+

OMe

_f

\”

_

W),M

‘r

R2

R’

R3

Xi--

(Equation OMe

WkCr +

On0 -

R2

R3

0

200 1

395

Metal cycloheptatrlene complexes underwent a variety of cycloaddition reactions (equation 20 1) [2421, (equation 202) 12431, (equation 203) [2441. Cobalt complexes catalyzed the cycloaddition of alkynes to nonbornadiene (equation 204) [2451

_

(Equation

oh p(CQ3

\‘I R,

$2

20 1)

z

+



1) hv

/X

2) PM%

Y

/\ H

H *,.’

*

Y

8-

R2 R’ -

“Z

X

R’ = H,OMe,Me,I? = H,OMe;X = H,Me,OlMS

(Equation

R = OTM!S,OAc,H R=H,OlMS

References

p 643

202 1

396

R = Ph,ESu,lPr

(Equation

203 1

(Equatron

204)

lJptoSl%de 87%yleld

Iron acetylide complexes underwent a varrety of cycloaddition reactions (equation 205) I2461. Oxallyliron complexes cycloadded to N-s~lyl enamines (equation 206) I2471 Metal-coordinated thio and selenoketones underwent cycloaddrtion to cyclopentadlene (equation 207) 12481. Benzocyclobutane cobalt complexes underwent thermal cycloaddition with olefrns (equation 208) 12491

391

(Equation

205)

(Equation

206)

L(CO),CpFe-*S.-R’

CN

References

p 643

+

Me0

2

c&co2Me

(Equation

207)

(Equation

208 1

v

200”

co Ph

C02Me

5*eco*Me

Ph

k Ph

Ph WV0

6. Alkylation of Alkynes Cuprates added to alkynes to give vinylcopper complexes which could be further elaborated (equation 209) [25Ol, (equation 210) 12511 Trimethyl stannyl cuprates transferred the tin group to substrates (equation 21 1) [2521.

399

(Equation

XR

tBuo& tBuO,C-*Z--CO,tBu

E+

+ I?CIJ(~~~

XR

tBuO,C w

-

COdBu

CU

CQtBu

E

(Equation

n-

1,2

R = M&h

R = ~,Et,pr,mu,tBu,ph,

References

p 643

209 1

210)

400

(Equation

2 11)

SnMe,

Palladium(O) complexes catalyzed the alkylative cyclization of alkynes with aryl halides (equation 212) 12531, (equation 213) 12541, (equation 2 14) [2551, (equation 215) I2561, (equation 216) 12571. (Equation

Ph

2 12 1

401

(Equation

2 13 1

2 = H,Me,lMS

E

T I’

E

E

’ BrII

Flizha-

t

(Equation

M = Zn ZfiP&’

P 643

69 19 cl:84

2 14)

402

(Equation

2 15)

X CO+le

--TX

CO&le

+Els?+-R45

(Equation

2 16 1

TMS 1) ieu;pcl PhCsC-TMS 2)

Palladium catalyzed (equation 2 18) [2591

ene-yne

cyclizations

(equation

2 17)

(Equation X

[2581,

2 17)

403

(Equation

x=

2 18 1

E?r,U,I

Titanocene dichloride promoted the stannylation of alkynes (equation 2 19) 12601. Alkynes inserted into Zirconium-benxyne complexes to produce olefinated arenes (equation 2201 12611 and unusual heterocycles (equation 22 1) 12621. It also catalyzed the alkylation of alkynes by trialkyl aluminum reagents (equation 222) [2631. (Equation

References

p 613

219)

404

(Equation

220 1

OMe

OMe Br

4) 2BlJLl 5) 6) Q-W-J 7) H+

(Equation

R

X LI

HMe w

+I; ‘Cl

iy / Y

R=Me;

X=HH.MeO. Y=H,MeO

FIeFI

t

C&Q

R

,

-

I --Y x!? \)J

22 1)

405

(Equation

TMS

=

=

TMS

222)

1)w 2) E+

TMS

E’ = H+,II+,&+, AC’, r,y

47%3Yo

Arylmanganese compounds inserted alkynes under oxidative conditions (equation 223) 12641. Ruthenium(I1) complexes catalyzed the alkylation of alkynes by ally1 alcohols (equation 224) [2651. Rhodium(I) complexes catalyzed the addition of arenes to alkynes to produce styrenes (equation 225) [2661. (Equation

OMe

References

p 643

R

223)

406

+ PH-I

224)

(Equatron

225)

Ph

hv PhCfCH

(Equation

m 0

7. Alkylation of Allyl, Propargyl and Allenyl Systems Palladium(O) catalyzed reactions of allylic substrates haveremained a popular activity and is finding very wide application, although few if any conceptual advances have been made. Palladium(O) catalyzed macrocyclization reactions were the subject of a dissertation 12671. Cyclopropane-containing ally1 systems were alkylated by stabilized carbanions without ring opening, In the presence of palladium(O) catalysts (equation 226) j2681. A formal nucleophilic alkylation of the a-position of ketones was achieved via palladium catalyzed alkylation of an ally1 carbonate (equatron 227) I2691 Palladium(O) complexes catalyzed the alkylation of ally1 perfluoroalkanoates by malonates and by alkyl perfluoroalkyl- ketones 12701. Ally1 acetates were alkylated by tetronic acid derivatives in the presence of palladium catalysts (equation 228) j27 11.

407

(Equation

226 1

(Equation

227)

Me02CAS02Ph

0

ROKOO\/O,

+

w-w2

*

CO,Me C02Me

O-O\

Nut

2

1% I-gQ

W=

-

MJCH

NW

^r(0


0

C02Me

PhnCO

2

Me PhACN

408

(Equation

228 1

Nitrogen containing ally1 acetates were alkylated by stabilized carbanions in the presence of palladium(O) catalysts (equation 229) 12723, (equation 230) [2731, (equation 23 1) (2741 Silyl enol ethers alkylated ally1 carbonates in the presence of palladium(0) on silica (equation 232) 12751 (Equation OAc

BOCNH& + y ;,

R’ =

R”

BnO CH2

F+=H,OAc, Ro-

bW 4

x

BocNH_X

Rl

Y

I32

229)

409

(Equation

Ph.$=NfH-CO$t

+ (-) (’

= X

230)

Ph&=N-CH-CO+3 Mea

OAc

v

A

x

(Equation

23 1)

0

K,

V

OAc

AcO

NH 0

X

Ph

-

P NCR -

lur

40x%

NCOPh I OH

(Equatlon

232)

0 OTMS

0 w(o) K +

//“\/O

Ally1 carboxylates were alkylated by organoboron compounds (equation 233) [2761, (equation 234) 12771, stannylated by MezAlSnR3 (equation 235) 12781, and alkylated by organostannanes (equation 236) I2791 m the presence of palladium(O) catalysts. Thromboxane B2 precursors References

p 643

410

were synthesized utlking palladium(O) ally1 acetates (equation 2371 [2801

e”

I

woAc 2-Phstramfer

K0

+ pthB-Na+

catalyzed

allyllc functionalization

of

(Equation

233 1

(Equation

234)

OEt

--=-w ePh

411

AC0

(Equation

235 1

(Equation

236 1

+-

,C02Me

THPO +

:rences p 643

412

(Equation

237)

Chiral llgands were used to Induce asymmetry into the palladiumcatalyzed allylic alkylation process (equation 238) 12811, (equation 239) 12821, (equation 2401 12831, (equation 241) [2841, (equation 242) [2851. Functionalized allyllc substrates reacted with norbornenes to produce cyclopropanes (equation 243) 12861, (equation 244) [2871 (Equation

TMS

L-33

+ MgBr

OAc

-d /

TMS

238 1

413

(Equation

R2

,lJh ’

t-1

OAc R’

+

FP-C02R4

L’w

239 1

JJ$C02R4 lq.m82%ee

for

PhJh

0 OAc

L* =

n=2,3 HO,C

(Equation

References

I) 643

240 1

114

Phq””

+

MeO

OAC

crN;Ac

r’W

(Equation

24 1)

(Equation

242 1

phV-q(ph

)

2

Me02C

COye NH PC

(Equation 0

0Ts

+ co

-l&7 I

NTs

0

243)

41.5

(Equation

244)

OSiR3 OCO.)Je +

+

R

A variety of heterocycles were made by palladium(O) catalyzed allylic alkylation of acetates (equatron 245) [2881, (equation 246) 12891, palladium catalyzed insertion of alkynes into n-allylpalladium intermediates (equation 247) I2901 and insertion of alkenes into the same species (equation 248) [2911, (equation 249) [2921, (equation 250) 12931. (Equation

245 1

416

(Equation

246 I

(Equation

247)

SOPPh

--

(-)--

R’

x

I32

5?hM HOk

X = Cl, Br, I,

R’ = H,

R=H

(Equation

248 1

417

“‘6‘”

N’K=%W

(Equation

249 1

(Equation

250)

)

Co. THF MeOH

CO$Ae WWP

.P

OCOPh (XL

HO&

OCOPh

-+3-L

3%

N J+ Ph

0

+ CO&de II

‘h.. 0, N

pI OCOPh

B’a

418

From a very broad study of catalysts, Mo(RNCLt(COI2 proved to be the best general MO catalyst for ally1 alkylation of ally1 acetates I2941. Molybdenum catalysts favored attack at the g&q& substituted end of an ally1 system (equation 25 1) 12951 (Equation

25 1)

SO,Ph

In the copper catalyzed reactions of Grignard reagents with allylic acetates and sulfones, the regiochemistry was controlled by the reaction conditions 12961, (equation 252) [2971 Copper complexes alkylated chit-al ally1 carbamates with high ee (equation 253) 12981 (Equation

252 I

419

(Equation

253 1

0 0

A. HN OMe

R = Me,rfbPtl; 4cm% 8E91%ee

Palladium(O) complexes catalyzed the coreactlon of allenes, vinyl and aryl halrdes and triflates, and malonates (equation 254) [2991, and the alkylation of allenic esters by alkynes (equation 255) [3001. Stannyl cuprates added to allenes and the resulting vinyl cuprates were further functionahted (equation 256) I3011 Ally1 metal complexes alkylated allenic ethers (equation 257) 13021. (Equation

o-\

+ XL + (

w(a)_

);_

R, y

X

Z

N=CPb R = H,n’+,TMTMS;X,Y = w

References

p 643

(

CO&le

254)

420

(Equation

p2Me

R

ti

‘1

+

R

4%mpPc~ TDMpp

R’e

C02Me -

) -P

H

H

255)

f

R +

E

‘-c -

+

RT,Me

I/(

ti

‘\

R’

8085%

R’

(Equation

-==c SnBu,

=.= -100"

278”

cu

I

I

=lE

SnBu,

f3

Ek

ET+= H.Ac,Me,C&H

-4

cu

=c E

SnBu,

iwu?b

SnBu,

256 1

421

(Equation

257 1

OEt

R)-.-fEt+

“\)&A

H

H

E+

M

OEt

y+N H

E

Propargyl ethers were alkylated to allenes by Grignard reagents In the presence of copper catalysts (equation 258) I3031 Perfluoroalkyl copper reagents alkylated propargyl systems to give allenes (equation 259) 13041, (equation 260) [3051 Palladium(O)/copper(I) catalysts alkylated propargyl carbonates wrth alkynes (equation 26 1) 13061. (Equation

vlil

synaddibon, pekrinctihn.RMgl+ antietnnabon RMgCl-i syn elimination

chml

References

P 643

ether -i chralallsne960/o ee

258 1

422

(Equation

259 1

(Equation

260)

(Equation

26 1)

t3* R’

WJ+

tj = !=(CF&; R’=H,Me;

R,CH=C

n = 1,3,6,6 ti=H.Me,(CH&;

m+flBr

X=C~OT

-

R,CH=C=CH,

R* R’

+

R4=

-

-

w(a) (11

A dissertation dealing with the dynamics and stereochemistry of reactions of cobalt carbonyl stabilized propargyl cations has appeared 13071 These stabilized cations were alkylated by indoles (equation 262) [3081, trimethylsilylenol ethers (equation 2631 13091, and phenols (equation 264)

423

13101 Allylic halides cross coupled to ally1 organomanganese(I1)

compounds

[3111.

OR2

References

p 643

OTMS

(Equation

262)

(Equation

263 1

OR2 0

424

(Equation

264)

Me0

Coupling Reactions 8 Reductive homocoupling of hahdes has been further developed The classical Ullmann coupling of bromobenzene was compared with that effected by copper metal vapor [312l Fluoroalkyl iodobenzenes were coupled under Ullmann conditions (equation 2651 I31 31. Activated copper homo coupled allylic, benzylic and ahphatic bromides efficiently 13 141. in pyridine coupled z-chloromethyl Nickeh I I) chloride/phosphine/zinc benzoate to the biphenyl in good yield I3 151 A related system homocoupled a wide range of aryl and heteroaryl halides (equation 2661 I3 161 Aryl and vinyl halides cross coupled to a-chloro esters under electrochemical reduction in the presence of nickel complexes (equation 267) 13171 Chromium carbonyl amine complexes coupled a variety of halides (equation 2681 13181 (Equation

265 1

425

(Equation

0 I

‘J--R

X w2

,;

ZlllEf4N THF

R

Ha o-

,\

\’

/

-@ I R

*

x

@Itwo

63-B

(Equation

R Ax R +

Y Cl

@X

References

p 643

266)

C02Me

bYt=2

e-

Ar A

CO#e

267)

426

(Equation

268)

Intramolecular coupling of aryl halides was promoted by palladium(O)/hexamethyldistannane catalysts (equation 269) 13 191. Arylsulfonyl chlorides coupled to biaryls in the presence of palladium(II)/tltanlum(IV) catalysts (equation 270) 13201. Reduced tltanlum species homocoupled halldes (equation 271) I32 1I (Equation

X = Br, I,OTf Y=a-f,H

269)

421

RX + cp$llA

-

(Equation

270 1

(Equation

27 1)

R-R

goodyields

--, McMurray’s reagent (“Ti(0)“) has been extensively utihzed for the reductive coupling of ketones to olefins (equation 272) 13221, (equation 273) 13231, (equation 274) 13241, (equation 275) [3251, (equation 276) I3261, (equation 277) 13273. Reduced vanadium coupled ketones to dials (equation 278) 13281.

: Eh !

_---

References

p 643

‘.._

.

0

(Equation

THF

PY

x-

s+

TM *

-%H

*LL,

272)

428

(Equation

273)

(Equation

274)

(Equation

275)

429

\, :

0

276 1

(Equation

277)

-tc Y

Y eQ O”,

(Equation

0”

miw

O”/

0”

X = OSF&,H,Wc n = 0,1,2

(Equation

!?=H,OTEWMS

278)

430

Tungsten hexacarbonyl coupled dithioketals to olefins (equation 2791 13291. Cobalt ally1 complexes coupled dtenes to electron deficient olefins (equation 280) I3301 Manganese porphyrin complexes oxrdatively coupled phenols to make benzylisoqutnohne alkaloids [33 11. Alkylcuprates and alkylhthiums were coupled (equation 28 1) 13321.

n

R’

(Equation

279 1

(Equation

280 1

R’

4fdd-w(co), -l=t

x

R

R

431

(Equation

28 1)

LI +

CuRLi

J ‘%,

OtBlJ

Alkylation of n-Ally1 Complexes 9 Allylic halides coupled to brs-n-allylnickel complexes to produce biallyls [3331. n-Allylpalladium chloride complexes reacted with methyl formate to produce unsaturated carboxylic acid esters 13341. Chloromethyl allylpalladium complexes were arylated by tetraphenylborate (equation 282) 13351 and stabilized enolates (equation 283) 13361. Ic-Allylpalladium complexes with optically active DIOP ligands allylated optically active esters with good de (equation 284) 13371 Z-Stereochemistry could be forced in the alkylation of n-crotyl palladium complexes by using a-methylated phenanthroline ligands (equation 285) 13381. The stereochemistry of oxidative addition of palladium(O) complexes to allylic chlorides depended on the solvent and the ligands (equation 286) 13391. (Equation

Ph

References

p 643

282 1

132

(Equation

Q-

283 1

+

Ar

2

(_)

(COzMe C02Me

1) UlX4F NaH

Ar

Ar

AJ = z3, YMeO)~Rl

(Equation

PCI(-J-DC+

+

Ph,NIoo& Ph

-

284)

phyN&oR Ph

H %Ilyl

433

(Equation

+ MeO.$ (-)

C02Me

285)

ZpDdrds

-

Y

(Equation

CO,Me

\ 0 I

“‘WC,

w4w

286)

m-8 +ce / CO,Me

PZ

Pd

‘Cl

/ ‘Cl

2

2

100’0 n PH-I 3

97 n DMSO

n-Allyliron complexes of tropones were alkylated by iron ally1 and propargyl compounds (equation 287) 13401. Catlonic rhenium n-ally1 complexes were alkylated (equation 288) 13411. n-Ally1 iridium and rhodium complexes underwent alkylation at the central carbon to give metallacyclobutanes (equation 289) 13421

References

P 643

434

(Equation

287)

(Equation

288 1

0

Fp GOWe

Nut

435

(Equation

289 1

CP; Me,P

HM

M = Ir.Rh

A paper dealing wrth controlling the regiochemistry of nucleophihc attack on unsymmetrical ally1 complexes of the type CpMo(NOI(CO)(allyl)+ has appeared 13431. Cationrc Jc-allylmolybdenum complexes condensed with aldehydes (equation 290) 13441, and were alkylated by allyliron complexes Acetyl-n-allylmolybdenum complexes were (equation 29 1) 13451. elaborated into polyhydroxy compounds with a high degree of stereoselectivity (equation 292) [3461[3471. (Equation

+ F R B4-

Me

+2 0 %+R

References

P 643

290 1

436

(Equation

29 1)

+ Mo\Cp(NO(CO) +

FpM

-

M

\ FP+ wo

(Equation

CPT

co

292)

‘co

9H -

9H

OH

,,u,,

2

10. Alkylation of Carbonyl Compounds Vmyl copper reagents reacted with aldehydes and CH212/Zn to give allylic alcohols (equation 293) 13481. Aldehydes and acid bromides combined in the presence of zinc chloride, and the copper complex of the resulting product alkylated a variety of electrophiles (equation 294) 13491 Cuprates ring opened bicychc ally1 ethers (equation 295) 13501 Manganese metal reductively allylated ketones with allylic bromides (equation 296) [3511 Chromium(II) chloride carried out a similar process (equation 297) 13521, (equation 298) 13531.

431

(Equation

R&i

293)

JL f

(Equation

0

A

,a,+A,, + OAc R

.A

Is

R

A

1)zn w

2) ClKN*2Liu

Br

OAC w

Cu(CN)ZnBr

R

A.

E

Br E+ =

E-.=.-E

PhJcN

H--.=.-E

yBr E

encap

643

ph+NOz

CB-.c._~

RCXI



294)

438

(Equation

295 1

(Equation

296 1

(Equation

297)

R

x,y,,Br

+RCHO X m;iw

x=;cl,Br

a I

\

O&Br

’ OPO

n = 0,1,2

rIhY

439

(Equation

298 1

cQ/Lll

FP MF, 0” OH

OH

Alkynes reacted with ketones in the presence of tantalum(V) chloride and zinc to produce allylic alcohols (equation 299) 1354113551. Niobiuna(V) chloride condensed alkynes with dialdehydes (equation 300) [3561. Zirconium catalysts promoted the p-alkylation of naphthol by a-keto esters (equation 30 1) [3571. (Equation

TaCWn RI-.=.-#

THF m

PY

References

p 643

299 1

440

(Equation

300 1

(Equation

30 1)

R’

!

NbCl5

‘t’ -

2,04utidine )

DME

R2

R’ = nC5, Ph. nC6,nC7,MRnClo

~~ =

nC5, Ph. nC6,I-LTMs

OH

OH

+

OH

CHjXO,R

27% ee

upto 84%ee

Cobalt complexed acetylenlc aldehydes underwent alkylatlon by ylides (equation 302) [3581 and tr~methyls~lylenol ethers (equation 303) 13591 Chromium complexed benzaldehyde was allylated by choral ally1 boranes with high enantioselectlvlty, as were cobalt-complexed acetylenic aldehydes (equation 304) [3601 Nickel chloride catalyzed the converslon of dlthlanes to oleflns by Grignard reagents (equation 305) I3611[3621. Tebbe’s reagent converted a lactone Into an enol ether (equation 306) I3631

441

(Equation

302)

(Equation

303 1

R = 00$k H,Me,(0&‘)!+(CH2)4,

c

OTMS

0

R-8-H I co2wb3

R = TMS, nBu, Ph n = 1,2,3

+ /

0

oil

OH 1)

Tic14

2) CAN

0

R-y-?” SO-87% 80.20 to 95.5 eryihro/threo uncomplexed - 1’1 to 8.94

442

(Equation

304)

OH

CrGO)3

AND

c,eCHO I co2(co)s

92% ee

(Equation

NiC12L2 +

RCH2M9X

305 1

Ar

R

R’

R’ = TMS, H, Me,.% AI = Ph, l-mph, OMePh, 35MPh,

pMeOPh

(Equation 0

306)

443

Ruthenium carbonyls catalyzed the reductive alkylation of aldehydes by stabilized carbanlons (equation 307) 13641. Rhodium carbonyls catalyzed the condensation/silylatlon reaction of enones with aldehydes (equation 308) I3651. (Equation

307)

(Equatron

308 1

CH2R’ 4m%2

RCH2Z

+

R’CHO

t

H21C0 150-230” 100 at

R = Ph. CN, C02Me,

RCHZ 70-100%

COMe

Z = CN,C02Me,COMe R’ = H, nPr

h0

+y 0

RUCOh2 +

Et2MeSiH

_

R Ph,PMe 0

OTMS

60-80%

yvpPhyy4

0

Q 0

1 1. Alkylatron of Aromatic Compounds Applications of arene chromtum tricarbonyl in asymmetric synthesis has been reviewed (21 references) 13661, as has stereocontrolled synthesis using arene tricarbonyl chromiumcomplexesas catalysts (9 references) 13671, and application of $ arene complexes in organic synthesis (26 references) I3681 The chemistry of arene-manganese complexes was the subject of a References

p 643

444

dtssertation 13691 ‘Substitutron nucleophile aromatrque; actrvatton par les metaux de transitron” was the subject of a revrew (128 references) 13701 Stabrlrzed carbanions contarning imines alkylated chromrum complexed fluorobenzenes (equatron 309) 137 1I and manganese coordinated arenes (equation 310) [3721 Benxyl alcohol groups du-ected the sate of nucleophilic attack on chromrum complexes benzyl alcohols (equation 3 11) Arenes were alkylated then acylated by a process involving I3731 nucleophrhc attack on a chromium arene complex (equatron 3 12) [3741 tButylhthlum attacked chromtum complexed toluene ortho to the methyl group (equation 313) 13751 (Equation

309)

+ &N==(H Ph

Y

40-60$ R = OMe,

mM8,pMe,pm0

x = co#Jle Y = CN

(Equation

+xY

“Y” Ph

fwm3 6040%

3 10 1

445

(Equation

3 11)

R’

/(>I\ 4

CN CH20H

+

A

N e

Nud.attackpandmto CHpOH group

f-1

&(CO), OH

-_p-JoHq-JoH ““,‘d OMe

13

18

OH

,,d

t

t

47

89

(Equation

01; I df(C0)3 +

(‘I-w

s+s

I

r-7

RX/CO

. 6

s s

..A

‘/

3040%

References

p 643

o

R

3 12)

446

(Equatron

3 13 1

CH3 +

~BIJLI

-

WCQ3 WV3

Chromium du-ected regio- and stereocontrol was the subject of a revrew (3761 Arenechromtum tricarbonyl complexes were hthiated then alkylated by ally1 bromide (equation 314) 13771 Lrthiatron of ($- Itriisopropylsrloxy-3-methoxybenzene) chromrum trrcarbonyl occurred at C2 not C-4 as expected 13783 Chromium complexed a-phenethyl amine underwent directed orthometallation (equation 315) 13791 A hrgh degree of stereocontrol was manifest (equation 3 16) j3801. Chromrum complexed benzocyclobutanes were regrospecifrcally lithiated and alkylated (equation 317) I3811 Arenechromium trtcarbonyl complexes were used In the syntheses of 6,7_benzomorphans j3821 (Equatron

r

1) tBuLi

w

*)eBr WCQ3

CrKQ3

314)

ty*& WC03

Cu cat

/\ c-w WIH

NW2

(Equatron __

1) tBuLl 2) E+

\

CGQ3

WCQ3

~88%de, E+ = D, Me, Me3Si, PPh,, PhS

4040%

yield

315)

447

(Equation

3 16 1

(Equation

3 17)

OM8 1) tBuLi - 2) CYl 3) ox CWV3

CrGO)3 AND

CGO)3

CrWki

R = TM,

D. Me, I, CHO, C4Me

+

\ICD ;

1:2wittlBuu 1:11 with TMPLI

I

CrWV3

Chromium complexed aryl aldehydes were alkylated with a high degree of stereoselectivity (equation 318) [3831, (equation 319) [384], (equation 320) 13851, (equation 321) 13861. Arene complexes having benxyl hydrogens alkylated formaldehyde (equation 322) [387l and bromoacetic References

p 643

acid (equation 323) I3881 The stability of chromium complexed benzyl catlons was used III a cyclizatlon reaction (equation 324) 13891. Chromium complexed benzocyclobutanes were in equilibrium with the dlene form and underwent cycloaddltlon reactlons (equation 325) [3901. (Equation

318)

(Equation

3 19 1

(Equation

320

x+o+(==J

1) BF3*OEt,

2) CAN

n

Nuc-

Nut = CH3, D

(4 NC-CO*Et

CW23

(resolved)

1) 02 -

2) H+

-loo%ee

1

449

(Equation

0

cf) 1,;

/

(C0)3Cr

Meo

32 1)

65 .,,m

_MlCl

1,; * (C0)3Cr Meo Oti /

0

Lf

81%

I

1) IAH 2) A%0

OAc

80%

(Equation

+

HCHO

-

Bmajor

8&l OF% de 1548% yield

A = OMe, OiPr, NMq,, NED* R = Me, iPr

minor

322)

450

(Equation

323)

(Equation

324)

1) NaH 2) BrCH&02Na 3) H+

1) HBF4

w 2) 4,

hv

Me0

Me0 complete retention

(Equation

dr(CO),

325 1

dr(CO), 53%

BIS complexed biphenyls were reduced then alkylated by halides (equation 326 1 I39 1I. Iron arene complexes were alkylated by chloroform (equation 327) [3923 and were reduced, alkylated and acylated (equation 328) [3931

451

(Equation

326 I

(Eauation

327)

R’X

-I ox

TFA

R’ = H, Me, Et, Bu,

452

(Equatron

328 1

1) Ph&+ 1) NaBH4

2) tBuO-

3) PhCOCl 4) tBuO5) A1203

Alkylatton of Drenyl and Drene Complexes 12 The alkylatlon of cyclohexadienyln-on complexes continues to be developed for use In organic synthesis (equatron 329) 13941, (equatron 330) 13951, (equation 331) 13961, (equation 332) 13971 Drenyl complexes with external olefins underwent attack at either the rrng or the side chain depending on condttrons (equatton 333) 13981. Cationic molybdenum drene complexes have also been utiltzed to functionalize cyclohexyl systems (equation 334), cycloheptyl systems (equatron 335) 13991, and pyran systems (equations 336 and 337) I4001 (Equation ‘329 1 OMe GOMe

(3 *02c

\’ 3

NaCN

‘..,,,

r SOpPh

W&Fe

Ph02S --

S02Ph

co2Me

453

(Equation

c Ohh

\ -Fe(CO)3 /

330)

Ph t-) (E

1) Ph&+ -

Fe(CO)3 2) PhLi 3) TFA

OMe

E

0 Oh48 63%

Ph ..6 i, Me0 Fe(CO)3 75%

(Equation

NH2

References

p 643

33 1)

454

(Equation

332)

KOaFe

1) LiNHSRBuOH .

aftersep of

2) TsOH 3) WW5

1) Ph3C+ 2) wcy 3) CuCI.2 t

x

X.,,

R 0

65%

(Equation

Fe&Ok

Nut = Me&U 73% Bu@lLi 60% c”

-

73%

BH.,-

76%.

CN-

66% 73%

333)

455

(Equation

334)

0

0

goodyields E, E’ = D@, Mel, PhCHO, MeCOCI,

Br-C02M3

PQPh

(Equation

335)

(Equation

336)

0

+

+

~(CO)&P 1’ [‘7

WCO)&P R-

0

THF

( R\\“’9 o 56-92%

x,,,,CO2H

3) CF&&H “m2

R- = D, Me, ptolyl. (-)CH&02Me,

BuCC-, A /

(-)( (4

References

P 643

Y

456

(Equation

+

MoamJQcP

0rx 0

,i<,.

(4 <; -__c_)

\

0, 0

“‘,,,

I

337)

““#, cqh4e

co*Me

Acychc dienyhron complexes also underwent (equation 338) 14011, (equation 339) 14021, (equation

attack by nucleophiles 340) 14031. (Equation

338 1

+ Nut -

Nut = H20, 93%; H-. 76%, PPh,, 95%,@‘---ms

(Equation

RLI

R = Me, tBu

L = CO. tBuNC

339)

457

(Equation

340)

0

R

Fe(CO)s+

J5 I

+ 2) air

40-60% R = Me. Bu, Ph

Iron-complexed diene aldehydes were extensively elaborated (equation 341) 14041, (equation 342) 14051, (equation 3431 [4061, (equation 344) 14071. (Equation

_

Bu+

Bu&Nxph Fe(CO)3

(+)

Fe(CO)3

34 1)

(3

(3

N I

Ph

1) BuLi .

. w

Bu~CHO

2)

0

k(CO,, (3 2s 5R high seiecfivffy for matched pair

References

P 643

winig

458

BU

(Equation

342 1

(Equation

343)

30%

70% AND

I

459

(Equation

WC%

2R

(fast)

344)

WCOh

>100: 1

Palladium catalyzed the bis alkylation of b-dicatbonyl compounds by dienes (equation 345) 14081, as well as the arylation/alkylation of dienes reaction with (equation 346) 14091 Iron complexed enones underwent methyllithium to give vinyl ketene complexes which reacted with isonitriles to give vinyl ketenimine complexes (equation 347) 14101, (equation 348) 14111. (Equation

ALSO

References

1, 643

345 1

460

Y

N

+

ArX

+

(Equation

346 1

(Equation

347)

PW’)

(

*

ArdX

X 40-600~

Ar = Ph. pMePh, mMePh, pClPh X, Y = CN, COpEt

G33Fe

(COMe

i

I,

0 1) EtLi phy

:i %

Ph H”

Ph\\

(/”

-2) TFA 3) ox

separate I( VWe

70% 75% 1 1 at Iron

Ph

461

(Equation

348 1

0 Nuc-

.

Nut = Me. PhCH2NH, b&O. StBu.

Nut

X

NHtBu

Metal Carbene Reactions 13. A large number of reviews on carbene complexes in organic synthesis “Carbene complexes in catalysis” (83 have been published. These include references) 14121, “Transition metal complexes of unsaturated carbenes synthesis structure and reactivity” (280 references) (4131; “The role of metals In carbene synthon introduction” (37 references) 14141, “Carbene complexes m stereoselective cycloaddition reactions” (52 references) I4151; “Amlnocarbene complexes” (23 references) [4 161, “Metal mediated cyclizatlon of alkynes and carbenes - a new route to highly substituted cyclopentanords” (8 references) I4 171; “Chromium carbene complexes in the synthesis of molecules of brologrcal interest” (18 references) [4 181; “Alkene carbene complexes of tungsten and chromium Therr reactions wrth alkynes” (32 references) 14191, and “Carbene complexes derived from the activation of lsocyanides and alkynes by electron-rich metal centers” (77 references) 14201. and “Metal carbene complexes from alkynes” 142 11. An optrmrzed procedure for the synthesis of chromium aminocarbene complexes from amrdes and KzCr(C015 has appeared 14221. Tungsten throcarbenes underwent reaction with ynamines to give low yrelds of rndenones (equatron 349) I4231 References

P 643

462

(Equation

349 1

SR ww(

+ Ph

+ 0

1; / 05 The reactions of unsaturated chromium carbene complexes with alkynes continues to produce an array of complex cyclic compounds (equation 350) 14241, (equation 351) I4251, (equation 352) 14261, (equation 353) 14273, (equation 354) [4281, (equation 355) 14293. (Equation

OR3 WWr +

R’&f2

&

0

,34

R’

R3 30-60%

350 1

463

(Equation

x

OR

m+

;:“;I”

35 1)

J-q20 8040%

R’ R’

Ft20

R’ =

H, C02Et, CH_PSIR3, l-MS,

t /*Ok&

OR

x = 0, H-SiR3

R’ = CO&l@, COW, R2 = H, CO@,

NC

0SiR3

MBOel

TMS, Cti@SiR3

(Equation

t) A OMe

2) CAN

28%

Referencesp 643

352 1

(Equation

353 1

X = H; major 43% x = oMe;o%

x = H, 34% X = OMe, 24%

X = Oh,

24%

(Equation

Oh463 Re

+

(CO)&r Me0

if R = 0, furans, indenes predominate

A -

quinones, furanes, indenes (see equatkm

3%)

354)

465

(Equation

+

x-ray of

+

low

355)

yields of mixtures

0 N

\ 9

o*-+cr(u3,,

Cyclopropyl carbenes having acetylenic 0x0 groups formed blcychc compounds upon thermal reaction (equation 356) 14301. Chromrum acyl compounds also underwent reaction with alkynes (equation 357) I43 11. Tetraalkoxy olefins underwent a 2+2 cycloaddition to the side chain of alkynyl carbenes (equation 358) I4321 Photolysis of chromrum alkoxy carbenes with olefrns produced cyclobutanones (equatron 359) 14331 Photolysis of alkoxycarbenes with isoindoles gave dlmertc compounds (equation 360) 14341.

466

(Equation

3%)

0

o*“L&R*

=b

(C0)5Gr

/ * 33 R

( )“,O

(Equation

R’ = Me, PhCH2, Ph,m M’ = Li, MeaN+, k&l+

\

357)

46-l

(Equation

a

358 1

OR

f-JR1

PO

WI +

R%

x’

OR3

OR3

M

-

R30 R30

- I32

DMSO c

OR3 OR3

(Equation

R OR’

=c

(COk.Cr

+

x

359)

X

hv

R

high yields many examples

(Equation

360 1

468

Tungsten carbyne complexes were annulated with alkynes to produce naphthols (equation 361) 14351 Carbon-carbon bond formatlon by means of zlrconocene-derived carbene complexes has been reviewed ( 16 references) I4361 This chemistry permits the useful elaboration of the diene starting materials (equation 3621 14371 [438l (Equation

OH cs oc-w=_tot Oc’

1) H13F4 2) Fl’efl2 3) ox.

R’ = Me, H. Et, nPr, iPr

HBF,

R* = Me, Et, nPr, IPr, tBu OH

36 1)

469

(Equation

CPa

3

362 1

+ W(CO), -

1

0 1) Ph3PCH 3/

WC015

HO \ HO

““‘cH3

5 0

0

Alkylatlon of Metal Acyl Enolates 14 The two examples of use of this chemistry 4391 and equation 364 14401

are shown in equation

(Equation

co

Ph

CpppFhe 3

0 .Iq,, I;‘

+

2eq Br (4

0 71% SSWSSS

References

p 643

= 30:1

363

363 1

410

(Equation

co CpFe PPhs‘r( 0

1) BuLi

2)

OtBu

co

p

0

364)

CpFe L+

0 0

OtBu

\r

40.1

Br

B.

Coniuaate Addition Organocuprates remained the reagents of choice for conjugate addition reactions, and both new reagents and new apphcatlons continue to evolve. Cyclic ally1 cuprates could not be made from tm precursors but exchange with lithium gave ally1 cuprates whmh were efftcient nucleophrles (equation 365) I4411 Phosphorous-containing cuprates added 1,4- to enones (equation 366) 14421. Ally1 copper/trLmethyl silyl chloride was an efficient 1,4-alkylation reagent (equation 367) 14431 High 1,4-selectivity was achieved in copper-catalyzed addition of Grignards to enones In the presence of trimethylsllyl chlorrde (equation 368) [444l, (equation 369) (4451 Unsaturated lactams also underwent 1,4-addition of organocopper reagents (equation 370) 14461 (Equation

SnBuB

1) MeLi . 2) CuCNdiCI

Olher E+ also react

e.g. RX, RCOX,

365 1

471

(Equation

0

366

1

CtiCNZnBr

2) CuCN*WI

(Equation R ~ ~cu*-rMsct \

References p 643

+ w”

-

%ynA

367)

4.72

(Equation

+

.

BuMgBr

a

KI

CU(ll) -

TMSCI

co*Me

BU

(Equation

R’ R*

h -

R3MgCI

TMSCI

369 1

R’

3% Cucl *

C02Et

368)

R’ -k Rs

C02Et

good yields R’ = H, Me R* = Me, Pr, iPr, oh R3 = Ma, Bu, IPr, tBu, Ph, a\

(Equation

RuCuLi

tBOC

tBOc 62-84%

R = Ph, Me, Bu3Sn, PhMe2Si n = 1.2.3

370)

473

Vlnylcuprates were readily derived from vinyl zirconium 371) [4471, (equation 372) [4481. or aluminum reagents (equation and these reagents added cleanly in a 1,4-fashion to enones

(equation 373) [4491

(Equation

Cp&H)CI RCzCH

2) CuCN 3) MeLl

OTMS

References

p 643

37 1)

474

(Equation

-/\OSiR, -

-

372)

1) C@HcI ‘_7

0

2) 3MeLl 3) CuCN.LiCI

0

0 \

OSiR~

%

77%

0

‘ypn

&

_-

C,C02Et

_

_

I

R OBiR~

asm equation 371

TEBO

(Equation RCGCH

R’fjAl -w

R 7

CP2zrcf2

R’

‘1

12

2) tBuU 3) cux 4)

R

373)

Conjugate addition reactions were central to the synthesis of prostanoids (equation 374) 14501, (equation 375) 145 11, Polycyclic compounds (equation 376) 14521, (equation 377) 14531, precapnellene (equation 378) 14541, and steroids (equation 379) 14551. (Equation

e

+

BupSny

I

t)H 55% AND

-

I

/C02H

-

m 6H 76% (coriolk add)

374)

416

(Equation

375)

477

(Equation

376 1

(Equation

377)

0

0

IP I

JL

+ MeaGe

CuCNLi

I .. ‘Q,

&

GeMe, 9

65%

65%

418

(Equation

378 1

419

(Equation

379 1

--

Methods to control stereochemistry in the conjugate additions of cuprates warranted extensive studies. Several approaches were fruitful. Control of relative stereochemistry was achieved by constricting the enone into a rigid, hindered cychc system (equation 380) 14561 [4571 14581, (equation 381) 14591 or by the use of bulky ester groups (equation 382) [4601.

References

p. 643

180

BF30Et

(Equation

380)

(Equation

38 1)

0

R’ = Ph, Me, Et, Bu. H R* = Me, Pr, Bu, Cs, Ph, w

1) l@CULi 0

-

BF30Et

R = Me, Bu, tBu, Ph, PhCH,, I-naph,

0

481

(Equation

8044%

382 1

70 .30

R’s = H. Me

Asymmetric Induction was achteved by the use of chiral ligands (equation 383) 14611, (equation 384) 14621, (equation 385) I4631 More commonly, a choral auxiliary somewhere in the substrate was utrlized. This could be on the carbonyl group (equation 386) 14641, (equation 387) [465], (equation 388) I4661, Q- to the carbonyl group (equation 389) [467], Y - to the carbonyl group (equation 390) 14681, (equation 39 1) [4691. (equatron 392) 14701, (equatron 393) 14711, (equation 394) [4721. or i- to the carbonyl also induced group (equation 395) 14731. The use of chiral sulfoxides asymmetry (equatron 396) 14741 (Equation

Q+

0

0

RMgX

CuN' R3SiCI HMPA

R up to 78% ee

R = Bu, Me, Et, Ph, fi /

R = Ph, 1-napth

References

P 643

383)

482

(Equation

384)

upto9o?kyiekl upto8Q%ee L’=

Ho

(Equation

L”R@LI

+

&-tlR 92% yield 91% 88

Ph

385)

483

(Equation

386)

(Equation

387)

R = Ph, Me, Bu

Y = (CH&Ck

k NNyNrR’

15-N% : 10

(c&),l

90

Ph

+

“mcu

-

92-97% yield 97% de

(Equation

388 1

4.84

(Equation

389 1

/OMe

0

1

NOz

3

+ HN

82-849/o

4060% high ee

R = Me, nBu, Et, Ph. /-‘/

(Equation

m

yield 97% de R’ = H,Me ~~ = Me. iBu, PhGH2, Me

390)

485

(Equation

39 1)

(Equation

392 1

40-90% yield

R=

Pr, Me, Bu

-

tmns (R)(S)

6049% lrom70:301097 R = Me. Pr, Ph, PhCH2, 61

:sp

643

3

487

(Equation

395 1

tdS&ULl w

TMSCI or not

withTMBcl6l%yWd,39%es3(R) withoutTMBCI 43% yield, 93% ee (S)

(Equation

396 1

Cuprates underwent addition-elimination wth fi -tosyl sulfoxides (equation 397) 14751, but added to other substltuted enone systems (equation 398) [4761, (equation 399) 14771, (equation 400) 14781 (Equation Ph,, P TBoMN;s \ I OTs

-) RAlR2’?rbPd

R = Me, Et, nBu, IPr. Ph, &/

References P 643

Ph,, ?

R&ULl

TBod R

397)

488

(Equation

e

398)

0

0

X

l;,Ix +

R*CULI

ti

-

co

R

60-92%

X = CHO, COW, COPh, CO&fe, CN

(Equation

63-63%

399 1

67%

R = Me, Et, nBu, SBU, Ph

(Equation

400 1

R2CuCNLi2BF3 w COgAe

THF, -76”

R’. R2 = H, Me

R = Me,nBu, Ph, b+Ph.Si,

fi !

Ynones (equation 40 1) [479l, (equation 402) 14801, ynenones 403) [481], (equation 404) 14821, methylenecyclopropyl ketones

(equation (equation

489

405) 14831 and epoxyenones also underwent reagents (equation 406) [4843.

conjugate

addition

with copper

(Equation

40 1)

&uLi

1) MepcuLi

w ““XkO

2Me

2) H+ OBn 91%

-

fi OBn

0

0 73%

(Equation

‘o-o

1) BuU

I 2) CuCN

COPEt

3) H--GOpEt TM!m

77% overall 97% retention

BUT

4’ +

a2CuCNL12

6548% 29% retention!

402 1

(Equation

403)

R3 1) R*&ULi . cox

2) HX

R,J+&ox R* = Me, Bu, tBu R4 R3 = H,t& minor R4 = H,Me X = OEt

(Equation

20-m n=l RM = Me2CuCNU2, Ph@CNU2 R’M = M~+ICNL~~, MeLi. Ph, Me@, CUCNU2

O-37% n=2

404)

491

(Equation

0

R

4

405)

M4CUU_RI&+RL

(Equation

406 1

R = Me, Pr, Ph, PhCmCPhCmCC,61

Alkylmanganese compounds added 1,4-to conjugated aldehydes and esters (equation 407) [48Sl, (equation 408) [4861 14871 in the presence of Cyclohexenone was 1,4-alkylated by alkylmanganese copper chloride compounds (equation 409) [4881 but cyclopentenone, and p-methyl cyclohexenones failed

References

p 643

492

RMlClI5%

CUCI

(Equation

407)

(Equation

408 1

(Equation

409 I

CHO

R

R

R’ = H, Me --

R” = Ph. Me, Bu, -1

R’

R”MlCI R

COzEt

3% CUCI 1.2 eq TMSCI

R good yields

R = H,Me R’ = Me, Pr, IPr, Ph R” = Me, Bu, iPr, tBu, Ph

0 BFs*OEt2 +

“RMn” R moderate yields

NIClp v

RMn = BuMnCI, Bu2Mn.

BusMnLl

Fgls

6&749/o

493

Cuprates added to cyclohexenone with fair diastereoselectivrty In the presence of anions of chn-al secondary amines (equation 410) 14891. Methyl cobalt species added to enones In fan yield (equation 411) j49Oj The reaction of cyclohexenone with alkyl silver, palladium, ruthenium, iron and nickel was thoroughly studied 14911. NrckehII) catalyzed the conjugate addition of diethyl zinc to enones with fair enantioselectivity in the presence of chiral hgands (equation 412) 14921 Cobalt acetylacetonate catalyzed the Michael addition enones to acrylates with low (18%) enantiomeric excess In the presence of chiral diamines j4931. Rhodium(I) complexes catalyzed the conjugate alkylatron of enones by terminal alkynes (equation 413) j4941. Alumrnum chloride assisted the conjugate addition of ally1 tins to a,bunsaturated iron acyl compounds (equation 414) 14951 (Equation

4 10 1

(Equation

411)

uptoBO%de

R = Me.Bu

0

I

0

+

Me.&OLi~

-. v 0

64%

References

p 643

494

(Equation

412)

(Equation

4 13 1

(Equation

4 14)

L’ +

Et2Zn

Ni(acac)p

60-70% yield

Upto 74% ee

R = Ph, PMePh, pMeOPh R’ = Ph

R = Me.

--Cl

R’ = nPr, Ph, Bu, nCB

R3B”vR1

+

RsvFp

2.

R3!$---&;oFp R3

R’ H R”

20-m%

495

C.

Acvlation Reactions (Excludine Hvdroformvlation) Carbonylation of Alkenes and Arenes 1. The effect of iron( III) chloride and cobaM I) chloride on the regioselectivity of hydrocarboxylation of olefins by palladiu mf I I) blsphosphine complexes was examined 14961. as was the effect of temperature on rate and selectivity 14971. PalladiumfII) bisphosphine complexes catalyzed alkoxycarbonylation of allylbenzene [4981. The role of quaternary ammonium salt cocatalysts in the palladium catalyzed carbonylation of butadiene-methanol telomers was examined 14991. Terminal olefins were alkoxycarbonylated by palladium catalysts to give primarily branched products (equation 4 15) ISOOI. Unsaturated acids underwent carbonylative cyclization (equation 416) I50 1I. Palladium( II) catalyzed the carbonylative cyclization of a.a’-bisallyl ketones (equation 417) [5021. Terminal olefins were alkoxycarbonylated to acrylates and diesters in the presence of palladium(I1) catalysts (equation 418) I5031 oPalladated oxazolines of benzoic acids underwent carbonylative coupling (equation 4 19) I5041. 4 15 1

(Equation

PdC CuCl RCH=CH*

RwCo2R

-

R

CO R’OH

CO*R’

+

72-98%

R =

C-12, Cm

4-28%

-1

Ph-k

-1

(Equation

mCO2H

0

2OaIm +

bPd

+

CO -

+

ti

0

0

0

upto 17%

References

p 643

4 16 1

UPta38%

(Equation

417)

PdQ I CO MeOH TMOF

5040%

c4Me

“Ma”-

d-@ oo

co&48

(Equation

PdClz(PhCN), RCH=CH2

+

.

BUN&

OMe

Ph,P, CO, MeOH

t

418)

49-l

(Equation

419)

X = 0, M, P, Me, OMe, pCI, pN4

Intramolecular alkoxycarbonylations of hydroxyalkenes promoted by palladium(II) was reviewed (11 references) 15051. Crotyl alcohol was cyclocarbonylated with reasonable ee’s using palladium chloride in the presence of poly L-Leucine (equation 420) I5061. Isocoumarins were synthesized by the cycloacylation of o-vinyl esters (equation 421) I5071 Olefinic amines were cyclized to lactams using rhodium(I1) catalysts (equation 422) [SOS]. Rhodium(I) complexes catalyzed the carbonylative cychzation of 1,4-dienes (equation 423) [SOS]. (equation 424) 15 101 Ligand directed rhodium(I) catalyzed hydroformylation was used effectively in a complex synthesis (equation 425) I5 111 (Equation

co,

02

0

l

-0”

CuCi2, HCI PdC12,poly(L)Leudne

-4

0 75% yield 61% BB

420)

(Equation 42 1)

x t Ii,

pa,5-cI,3-Ms, 4-Me, !sofJk (Equation 422 I

70 : 30

R’=*,PhHt R2=H

a,

(x

80%

499

Y

?T I I

(Equation

423 1

(Equation

424)

Y

Ph(WCOWl,

Co&& I co 0

y = COd3 c&Me, C02H,Ct+OH,

)

CH#Me,

CH&lAc

$+$+A

4OBar CO 0

0

0

z

low yields

Y = OH, OMe, OAc, OTMS, H R = Me.Bu,H

(Equation

CO/& (CODRhOAck =Opsl

ReferenCeS

D 643

H -

425)

500

Allenic palladium complexes underwent double carbonylation (equation 426) [5 121. Nickel complexes catalyzed the hydrocarboxylation of allenes (equation 427) 15131 Cobalt carbonyl dtmerized and carboxylated acrylonrtrile (equation 4281 [5 141 Cyclopropenes were cyclotrrmerized wrth carbonylation by palladtum catalysts (equation 429) 15 151 Allylcopper species incorporated carbon monoxide and 1,4-acylated enones (equatron 430) [5161 (Equation

426 I

(Equation

427)

1.5 barC0

M = Pd, Pt

R R

NI(CN)2*4 H20 +

co

COpH

PhCHsICTAB 5N NaOH 90’ 1 atm

‘\

R = Me, Et, nPr, H, iBu, -(CH&-

(Equation CN Co2GOh~

2

@CN

+

‘OH

+

CollO”

PY

lOOBAD

w

NC

-4

good Yields

C4R

428 1

501

x -

L2Pdc12I PPh!J +

*

co

(Equation

429)

(Equation

430 1

4 0

R

1)

‘:

co

&.CuCNLI,

2, qf

0

R=

RxJ-( 0 4040%

H, 2-Me, Cl-Me

enone =$ ----&-yiJ Br



Arenes (equation 431) 15 171, cyclohexene (equation 432) [5181, furan and thiophene (equation 433) 15191, and cyclohexene (equation 434) 15201 were oxldatively carboxylated by palladium or ruthenium catalysts

References

P 643

502

(Equation

Pd(OAc)? I IBuOOH I ec’ ArH

+

43 1)

+ArH

CO

equal amounts

(Equation

0

I

co

432 1

0

Pd(OAc)2 ! CF&OOH rfx

C4H

3:1

(Equation

433 1

(Equation

434)

CO Pd(OAc)2 AcQH

WH

x=s,o

0I

Rh(ll) (EDTA-H)CO 120”

503

Vinyl phosphonates were aminoacylated by cobalt catalysts (equation 435) (5211, while ruthenium catalysts hydroiminoformylated olefins with isocyanides in low yield 15221. Iron-diene complexes underwent multiple carbonylations when treated with aluminum chloride (equation 436) 15231, (equation 437) 15241. (Equation

0

* AR’

0

Fi%ONH, I H2 I CO

H&-:/\ C?dCOh loo”c 200 KgCm2

H3C

CH&b--YH-C02H -!-

OR

NHCO# 70-80%

(Equation

References

p. 643

435 1

436)

504

(Equation

4371

CO/AU&

95% 4.1 exolendo

2 Carbonylation of Alkynes (Including the Pauson Khand Reaction) Alkynes were hydrocarboxylated by nickel cyanide under phase transfer conditions (equation 4381 15251 Cobalt carbonyl catalyzed the reaction of acid halides with alkynes to give butenolides (equation 439) 15261, while rhodium catalyzed the addition of benzoic acid to alkynes catalyzed the addition of (equation 4401 15271. Nickel(O) complexes aldehydes to alkynes (equation 44 1) 15281 (Equation NI(CN):, 4 Hfl RCECH

+

co (1 aW

CTAB

NaOH

PhCHs . 90”

R

C4H

good yields

--_()“---=

-

n = 4,5

438 1

505

(Equation

439)

x 0

R-R’ -

+

f R-c-Cl

-

@2Ga3

IT

1

o

R

i?

70-90% R=R’=Et R” = Me, Et, Pr, nC8, tBu. nwentyi,

Ph, PhCH2. CICH2CH&H2

When R + A’, mlxed regioisomers

(Equation

MeC=CH

+ PhCOPH

440)

OCOPh

W’W )

+ \;=/OCOPh

+,+,OCOPh

===t

(Equation

44 1)

RsP-Ni(0) + RCHO -

upto90% R = IPr, nPr, Ph

o-Iodoanilines (equation 442) [5291 and phenols (equation cyclocarbonylated alkynes m the presence of palladium catalysts. References

p 643

443) 14301 Propargyl

506

alcohols were converted to a-methylene+-lactones by rhodium hydrosilylation/carbonylation (equation 444) [53 11.

catalyzed

(Equation

442 1

(Equation

443 1

0

I,,

Wd

+ CO +PhCCCH

-

0

+

RCECH

=$120” PdCl&pf

R’ R 50-81%

R’ = Ph. pMeOPh, nC5,

(Equation

R&iiH

+ Rh4CO)w PhH 100’

R’ = H. hb. R2 = H, Me

(CH2)4

444)

Alkynes were converted to quinones by cobaltacyclopentenones (equatron 445) 15321. cyclocarbonylated allenes (equation 446) 15331

reaction with Iron carbonyl

(Equation

445 1

75%

(Equatron

74R

+ WWo

446 1

R’BR2 20”

20%

8oatm

R2 . I

co 50” R’ &f 70%

0 90%

R’ = Ph, MeOCH2 R2 = Ph, H

Methylene cyclopropanes underwent a [2+2+11 cycloaddition to cobalt alkyne complexes (equation 447) [5341. The Pauson-Khand reaction - the combmatron of an alkyne. an alkene and CO to give cyclopentenones - has References

P 643

508

been extensively studied this year. These were effective in both intermolecular (equation 448) 15351, (equation 449) 15361, (equation 4501 15371, and intramolecular (equation 451) 15381, (equation 452) [5391, (equation 453) 15401, (equation 454) 15411 versions.

JLI

(Equation

447)

(Equation

448 1

R2 co2w3),

+;-

I R’

R

4F

0

/

0 2?h CO&O)8 +

co +=

lOOBarCO 150" 16ht

60%

(Equation

449)

69% vs26%for free alkyne

3) KOHM20

AND

30 .70 90% yield vs 20% for free alkyne

(Equation

PhCECH

I Co&O)s

Glyphos

+C ’O

l

20-50% 4769% ee

450 I

510

H

~

b 1s. 2R

Ph

(Equation

452 1

7: 1 55%

o&+

ROdH

R=

c%(co)8

45 1)

oY&

o&+

“+”

(Equation

o&

5:l

20%

511

(Equation

453)

R3N-0

8 hr 25”

high yields R3N0 catalyzes reacttons

studied.

(Equation

o-87%

454)

o-52%

depends on conditions R = Me;

R’=

H.TMS,Et

Carbonylation of Halides 3. Transition metal catalyzed carbonylation of hahdes IS amongst the most useful of processes, and it continues to be utihzed.Aryl halides were hydrocarboxylated in aqueous solutlon in the presence of palladium catalysts to give benzoic acids 15421. Palladium on carbon catalyzed a References

P 643

512

Iron carbonyl carbonylated simrlar process (equation 455) [5431 dibromocyclopropanes to cyclopropane carboxylic esters (equatron 456) 15441. Palladium catalyzed the carbonylatron of alkyne rodonrum tosylates (equation 457) [545] Benzyl halides were converted to aryl ethanols by hydrogen/carbon monoxrde in the presence of dicobalt octacarbonyl 15461 Alkyl iodides and benzyl halrdes were carbonylated by n-on nltrosyl carbonyls (equatron 458) (5473 Carbonylatton of Z-halobenzorc acids with dlcobalt octacarbonyl In methanol gave half esters of phthalic acrd [548] Benzyl chloride was carbonylated to phenyl acetlc acrds by palladrum phosphine complexes under biphasrc condittons IS491 (Equation

455 1

CO I MeOH *

ArCl

ArC02Ms

AcONaIPdlC PhCH3 200”

5-280 turnovers

Ar = Ph, pCF3Ph. pHOPh, pMeOPh, pCIPh. mCIPh. t-naphth (K2Cr207 enhances)

(Equation

456 1

Br Br Ph

w

WC015

-d’

+

-d”

MeONa DMF O-35%

1040%

(Equatron Pd(OAc), R’C_=CI+Ph OTs-

*

R’C~C-c0$l2

base R20H I CO 80-80% R’ = Ph, Am, Bu R2 = Et, Me

457)

513

(Equatron

CO, K&03,

458 1

MeOH

RX

*

RCO$le

Fe(C0)3N0 (1 eq)

-80%

R = PhCH2, PhCH Me

Palladtum complexes catalyzed the acylation of droxene trn reagents by acid chlorides (equation 459) 15501, and the conversron of ethyl chloroformate Into drethyl malonate (equation 460) 15511. Palladium also catalyzed the carbonylative coupltng of aryl iodrdes and alkylmercurlc halides to grve substrtuted aryl alkyl ketones [552l, the carbonylative homo coupling of vinyl mercuric halides to give dwlnyl ketones [5531, and the carbonylative homo coupling of vinyl hahdes to give divinyl ketones [SS41. Mixed n-on carbonyl/cobalt carbonyl catalysts carbonylatively coupled aryl iodides to give draryl ketones (equation 461) ISSSI. (Equation

0

(A 0

R3COCl I PhH SnR3

&.Pd(PhCH,)(Cl) 0 82-95%

R = Me, iBu, Ph, pMeOPh, pNO3Ph,

References p 643

459 1

514

+

co

460 1

(Equation

46 1)

C02Et

EW CICOR

(Equation

-

(

Pd(OA@n (1 eq)

C02Et / from m

0

WCOk 1Co2(C% .

Art PTC

1 at CO

Ar

K

20-57%

Ar

+

AfC02H

15-60%

Ar = Ph, pMePh, pfdeOPh, pCIPh, mMePh, mCIPh, oMePh

Palladlum(I1) complexes catalyzed the carbonylatlve coupling of aryl lodides with diethyl malonate to give benzoyl malonates b561. Palladium also catalyzed the carbonylation (equation 462) 15571, (equation 463) 15581, and carbonylatlve coupling (equation 464) [559I of vinyl triflates (Equation

462)

515

,&4~

OTf

(Equation

463 1

(Equation

464)

Pd(OAc)2, L CO, DW Et3N. MeOH

Pdf32WW2

.

DMF, WI co 15opsi

o-Haloaniline enamlnes were carbonylatively cycllzed using palladium catalysts (equation 465) 1561. Coumarins were synthesized using similar chemistry (equation 466) 15611. as were quinolones (equation 467) 15621.

References

P 613

516

(Equation

465 1

(Equation

466 1

30-7.5% X = Br, I, Z = H, Cl, F Y = H, F,

R = Me, CH20hk,

COW?

0247%

R

600

psi co

Ei3N L2PdC12 I THF 100”

0 m-90%

COpEt

517

(Equation

467)

Carbonylation of Nitrogen Compounds 4. The synthesis of oxamates by double carbonylatlon (27 references) 15631 and organometallic carboxamidation (183 references) I5641 have been reviewed. Palladium complexes catalyzed the synthesis of dlphenyl urea from nitrobenzene, aniline, and carbon monoxide I5651. Substituted nitrobenzenes were reductively carbonylated to ureas by Fe(CO& or Ru3(CO)12 15661, and by ruthenium(II1) Schiffs base complexes [5671 Aromatlc primary amines were oxidatively carbonylated to acyclic and cyclic ureas using cobalt(II) salen complexes 15681. Palladium(O) complexes catalyzed carbonylatlon reactions to produce arylsulfonyl isocyanates (equation 468) 15691 and imtdes (equation 469) 15701. Cobalt carbonyl catalyzed the N-acylation of azobenzene (equation 470) 1571 I (Equation

[ ArB02NCI]

-

M+

-

co ArB02NC0 Pd (cat

)

Ar = Ph, pMePh, oCIPh, oBrPh, P-naphth

70-60%

468)

518

(Equation

0

PW’) Arx + 3THF*Mg&l~onNCo

469)

0

A$-_N_;-_k

-

H 14-28%

Ar = Ph, pMePh, pMeOPh

(Equation

COAX

y0bh3

I CHBl .

Ar-N=N-Ar’

470 1

PhH, Hfl, PhCH2NEt3+

ArYN-Ar COMe 2&50%

+

k

ArNHCOkk

+

Ar’NCCOMe

+

ArNHN \ COME

= Ar’ = Ph, pMePh, mMePh, pCIPh, pMeOPh, pHOPh, pmPh

Carbonylatron of Oxygen Compounds 5. Nickel cyanide catalyzed the carbonylation of ally1 alcohols to carboxylic acrds under phase-transfer conditions 15721, while rhodium(I) complexes catalyzed the conversion of ally1 alcohol to Y-butyrolactone [5731 The mechanrsm of hydrocarbonylatron of alcohols catalyzed by rutheniumiodide complexes was studied 15741. The full details of the conversion of 2butene- 1.4-diols to ferrllactone complexes have appeared (equation 47 1) Allenic carbonates were carbonylated to dienrc esters using I5751 palladium(O) catalysts (equation 472) 15761. Lipase selectively acylated one enantiomer of a chromium benzyl alcohol complex (equation 473) 15771 Cobalt carbonyl catalyzed the conversion of epoxy alcohols to butenolides (equation 474) I5781

519

(Equation

47 1)

(Equation

472 1

(Equation

473 I

Fe2W’h

HonOH

1))

R’

R2 WO)

=. R’

-

MBOH

Meo#20

R2 /

co d

c4Me 9148%

R’ = Ph. H. -++

OH

W333

kkO&-

go&

“pase ,a * &OH+ P

CrWh3

CGQ3

520

(Equation

4741

OH Ar

OH

CMCOkl +

co

+

Mel

____ec

CH3

COpH

TDA-1 1NNaOH

0

Miscellaneous Carbonylations 6 Iron-complexed cycloheptatriene was cleanly acylated by acid chlorides were synthestzed from aromatic (equation 475 1 15791 Benzocyclobutanones acyl sllanes with Group(VI1 metal carbonyl catalysts (equation 476) 15801 Aromatic and allphatic hydrocarbons were carbonylated by rhodium(I) Ally1 catalysts under photochemlcal conditions (equation 477) IS8 1 I cuprates incorporated carbon monoxide, then 1,4-acylated conjugated enones (equation 4781 15821 (Equation

WCQ3

R = Me, Ph. OMe, Bu, /\/

‘t

Cl-/

475 1

521

-

(Equation

476 1

(Equation

477)

WO)6

rfx PhCH3

SPh

R = nBu, Ph,

RhCI(CO)(PMe3)2 ArH

+

w

CO hv

ArCHO

+ ArCH20H

72

+ ArCOAr + ArAr + ArC02H

16

16

5

1

Ar = Ph. pMePh, pMeOPh, pCIPh. pNCPh

(Equation

478 1

0 1) CO, THF, 110”

/ “#,

-r,

1 0 73%

Decarbonylatlon Reacttons 7 Nickel(0) complexes decarbonylated amino acids (equation 479) 15831.

a-ammo

acid anhydrldes

to a-

522

(Equatron

479 1

0

Ifi

Ni(COD)L*

0

R2N

-

COpH RPN

THF H+

0

COpH

+

Fi*Nw

91% 11’1 L = bpPhP 1 28 L = PCy3 AND

0

47 0

B2N

BzN

1 +

R2N-COzH

CO,H

0

98%

>50 1

8 ReactIons of Carbon Dioxide Electrochemrcally generated nrckelf0) complexes catalyzed the additron of carbon dioxide to diynes (equation 480) [5841I5851 Nickel(O) complexes catalyzed the cyclocarboxylatron of drynes with carbon dioxide (equation 48 1) [5861 (review, 23 references) 15871. Palladium(O) catalyzed the conversion of aryl hahdes, propargyl alcohol and carbon dioxide to cyclobutenylidene carbonates (equatron 482) 15881

-C

(Equation

NI(II)I &I + co2

-

L = TMEDA, 99% L = Blpy. 65%

anode I e-

DMF

480 1

523

(Equation

,x-R

+ co2

Z

48 1)

zP& +zf-&

WOW,

\=-R R’

R 7040%

Fi = H, Et, TMS R’ = TMS z =

(CH2)3

(Equation

=-k

OH

+ Arx

PW’) +

co2 -

$

482 1

0

0

h0

Ar

968%

Ar = pMePh, pCIPh, pHOPh,

Ph-\

D Oliaomerization (Includina Cvclottimerization of Alkvnes and Metathesis Polymers). Ethylene was dimerized to a mixture of butenes by cobalt or nickel acetylacetonates in the presence of alkylaluminum halides IS891, and to lbutene by (hXgMe5)TafPMe3)(Hl(BrI(h2CHPMe21 IS901 and (CHz=CHCH=CH2)Cp(Etl (diphosRr I59 1I. Chiral zirconocene dihalides catalyzed the isotactic polymerization of propene 15921. Styrene was dimerized by palladium(II) salts in nitromethane (equation 483) 15951. 3,3,3Trifluoropropene was dimerized by stoichiometric amounts of low valent nickel catalysts 15941. Iron hydrides dimerized methacrylic esters (equation Nickel(O) complexes catalyzed the dimerization and 4841 IS951 trimerization of Cg-cyclic olefins IS961 I5971 I5981 Vinyl ketones were linearly dimerized to 1,5-diketones by rhodium(I) catalysts 15991 [600] 160 11

524

(Equatron

483 1

L2Pd(MeCN)2 Ph/\\ MeNO2

Ph

AND

linear polymer MW 6000 (head-to-head I head-to-tail)

(Equatron

484)

FeH NP (dmpe)2 &C02R *

ROpC

or FeH2 (dmpe)2/hv

high yield high conversion

The role of dinuclear nickel complexes in alkyne ohgomerization was the toprc of a dissertation I6021 Rhodrum complexes dimerized terminal complexes alkynes to enynes (equation 485) I6031 16041. Palladrum catalyzed the srlylatron of 1,4-brs trimethylsilylbutadiyne (equatron 486) [6051, while molybdenum complexes ollgomerlzed the monosilyl analog Alkoxyacetylene was drmerized by copper(I) (equatron 487) [6061 lodide/TMEDA (equation 488) I6071

525

(Equation

WW’)sR”CI 2

*

R _H

R _ -

\

R

+

485)

R

4040% conversion R = C3H7, CdHg,

60.30

Cd-43

(Equation

1) SQClxMe5xlPd TMS

=

1

486 1

cat. w

TMS 2) tvtwtx

“s)-.-.-(“s TMS

TMS 048%

+ TMS

TMS

ms-\\ t\ TMS

o-7%

(Equation

MoC13Et3SiH H=

=

TMS PhCH3

80%

n s-7056

rences P 643

487)

526

(Equatton

488 1

Cuk2WDA RO-H

w 4

RO

=

=

OR

acetone 85-95%

R = tBu, l-adamentyl, Clo, L-menthyi, o-

I

The cyclooligomerlzation of 13, st-phosphaalkynes in the coordination sphere of a transitron metal was reviewed (9 references) 16081 Rhodru m trrchloride / ahquat 336 catalysts cyclotrimerlzed alkynes to benzenes 16091 and cyclodi merize d phenyl alkynes to 2,3-dlsubstituted lphenylnaphthalenes [6 101. Palladium(O) complexes of bis rmines cocyclotrlmerized allenes wrth dimethylacetylene dicarboxylate (equation 489) 16 111 and cyclotrimerized alkynes to benzenes (equation 490) [6 121 (Equation

Me0 H

28%

=-‘I

OPh

489)

521

(Equation

R = Et, H, TMS, Ph. tWXH2,

490 1

CO@@

R’ = Et, Bu, TMS, PhMeOCH2, CO&

CO&H&CH

Cobalt-mediated [2+2+2l cycloadditrons to the pyrrole nucleus was the topic of a dissertation [6 131. Methyl propiolate was cyclotrimerized by Ru3(CO)l2 16 141. Cobalt alkyne complexes underwent cocyclotrimerrzation with alkynes upon heating (equation 49 1) 16 151. Diynes were cyclodimerrzed by CpCo(COl2 (equation 492) 16 161. Cobalt cyclobutadiene complexes underwent reaction with dinitriles to give pyridine analogs (equation 493) [6 171. (Equation

R3

+

References

p 643

R3eR3

-* d

Ph-N

R3

49 1)

528

(Equation

mwco)P

492)

*

(inter)

32%

6%

(Equation

493)

Nickel(O) medlated intramolecular cycllzatlon has been revlewed 16 181. The cobalt cluster catalyzed cocychzatlon of a, o -dlynes with nitrlles was studled by epr [6191. Nltriles were cyclized to pyrazines by reduced titanium catalysts (equation 494) [6201

529

(Equation

494)

R

1) liC141ZnITHF,rfx,6days 4 RCN 2) 10% aq. K&O3

R

3643%

R = Me, Et, Pr, Bu, iBu, nC5, nCs, Bn, pCIPhCH2, 34e,

4-h&O,

Ph -1

Propargyl alcohol was cyclotetramerized by nickel catalysts I62 11 [6221. Cumulenes were cyclooligomerized by nickel(O) catalysts (equation 495) I6231 I6243 Palladium(II1 catalyzed reactions of 1,6-enynes: remote binding effects on cycloisomerizations, [2+2+21 cycloadditions, and skeletal rearrangements was the title of a dissertation 16251.

References p 643

530

(Equation

495 1

-_

L2NWV2

di, tBu

end group =

\ m’/ 03

I

only cydobutane 54%

Palladiumf I I) complexes catalyzed the cooligomerization of vinyl halides with alkynes (equation 4961 16263 Rhodium(I) complexes catalyzed the cyclization of yne dienes and trienes (equation 4971 16271 Photolysis of tetraenes in the presence of copper(I) triflate gave a manifold of cyclic compounds (equation 4981 I6281 Nickel(O) complexes cocyclotrimerized an alkyne with carbon dioxide (equation 499) 16293.

531

Rb’

+

R’cIGH

(Equation

496)

(Equation

497)

‘-zPdH2 7

EtsN

R = Ph. WOPh, oMePh, PNaph, 34hienyl, nC6 R’ = TM, Ph, nPr, @II, C&OH

R’

R’

.B R2

bRhCl cat.

R2 -

THF M-98%

532

(Equation

498 1

36%

36%

(Equation

499)

Ni(COD)p EtOCEC-TMS

+ CO;!

dwb TMS OEt

Butadiene and N-acyl ally1 amlne codimerlzed In the presence of rhodium(III) chloride (equation 500) 16301. Aromatlc amine complexes of Nlckel(0 1 cobalt(I I) catalyzed the dlmerization of 1,3-dlenes 163 11 complexes catalyzed the linear dlmerlzatlon of 1,3-dlenes (equation 50 1) (6321 The Influence of metal hahdes on the cyclotrlmerizatlon of butadlene

533

to cyclododecatriene by benzene-titanium(II1 complexes was studied 16331. The mechanism of telomerization of 1,3-dienes with sulfinic acids catalyzed by palladium complexes was studied by infrared spectroscopy 16341. Water soluble ligands were developed for the biphasic palladium catalyzed Enantioselective telomerization of butadiene and isoprene I6351 telomerization of butadiene with formaldehyde, nitroalkanes and enamines using palladium catalysts with chiral diphosphine ligands was developed with ee’s up to 41% being obtained j6361. (Equation

500 1

RhC13/Na2C03 N

+

-NHCOR

. Ph,P

w

NHCOR 600x7

(Equation

2

N

50 1)

Ni(COD)*

90% ee

35%M

Living ring opening metathesis polymerization catalyzed by well characterized transition metal alkylidene complexes was the subject of a review (36 references) I6371 The metathesis polymerization of norbornene by tungsten-carbene complexes was developed I6381 Molybdenum complexes formed living polymers with norbornadienes (equation 502) Ruthenium(I1) chloride or osmium(III) chloride ROMPED I6391 functionalized norbornadienes (equation 503) j6401. Pyrrole was oxidatively polymerized by aluminum chloride/copper(I) chloride (equation 5041 I6411

References

p 643

534

(Equation

502)

(Equation

503)

E flUCi38ti20 -

(Equation

0I\

N H

02

I

__cI a13

CUCI

\

N H ??I-

n

504)

535

E

RearranQe

IWIltS

Metathesis 1. have appeared this Several reviews dealing with olefin metathesis year. These include one on reactions of acetylenes and alkenes induced by catalysts of olefin metathesis (26 references) (6421; the presence of drchlorotungsten carbenes in photocatalytic olefin metathesis reactions 16431; metathesis of imines with Fischer-type carbene tungsten complexes 16441; metathesis and isomerization of olefins with polystyrene-bonded cyclopentadienyltungsten tricarbonyl complexes has been developed I6451 A number of metathesis catalyst systems including [WBrg(CO)gdiene]/AIClgEt 16461; MoO$Si02 16471, Re207/A1203/CsN03 16481, Mo~0u(C~0~)~CH~0~1~- on g alumina 16491 and (Mo(N0)4(HS04)21(HS04)2/EtAlC12 I6501 have been developed Acetylenic hydrocarbons were metathesized by Mo@(acac)2 / AlEt / PhOH catalysts 165 11. Other new metathesis catalysts include Mo(CHTMS)(NAr)(OR)2 [6521, RefC-tBu)(CHtBu)(COCMe(CF3)212 I6531 and [Mo(NO)(H~NO)(X~)L~I~- / EtAIC12[6541 Allylsilanes cometathesized with lhexene (equation SOS) I6551 Metathesis was used in the synthesis of capnellene (equatron 5061 I6561 (Equation

SOS)

(Equation

506)

92%

+TMS

m

-+ 60%

co2tBu

References

p 643

23%

536

Olefin Isomerizations Stereoselective isomerization of acetylenic derivatives as a new methodology in organic synthesis was the subject of a review [6571, as was isomerization of olefins and diene complexes with iron tricarbonyl (132 references) I658l. Ziegler-Natta catalysts isomerized allylbenzene to trans b-methylstyrene and eugenol to isoeugenol 16591. Palladium chloride catalyzed the 2 to E isomerization of styrenes 16601. Iron carbonyls isomerized divinyl tetrahydropyrroles to pyrroles (equation SO71 I66 1I. Rhodium(II1 complexes catalyzed isomerization of substituted cyclopropenes (equation 508) I6621 Palladium acetate rearranged silylenol ethers to enones (equation 509) 16631 2

(Equation

-

-

phw

WW5

-kC

Phi”“

N

Ph

+

ph

-

;h

ph=?$-Ph

kh

bh

33%

57%

(Equation

Ph Rh*+

cat &Ph

-

+

;;flph

Ph

x X = H; 95%

Ph

x = OMe; 94%

Ph .

Ph

OEt

5071

508 1

531

(Equation

509 1

1 eq. Pd(OAc)*

TM0

BQ 0 ;

55%

Rearrangement of Allylic and Propargylic Systems 3. Palladium(II1 complexes catalyzed the allylic transposition of ally1 acetates (equation 510) [6643, (equation 5111 16651, ally1 sulflnates (equation 5 12) [6661, (equation 5 131 [6671, and o-allyloxycarbonyl-asulfenyloximes (equation 514) 16681 16693. The mechanism of the palladium(I1) catalyzed Cope rearrangement of 1,5-dienes was studied and reported in detail [6701. (Equation

Pd*+ cat )

R2hoAc

R’

References

p 643

R3

5 10 1

538

(Equation

6

r,

2) PdC12(MeCN),

Y -If

Y

r

0

0

Y = H, OMe, Cl, N3

-YSiR3-

Y

5 11)

“r( 0

0

70-90%

FS’” r 0

Y

0

(Equation

92%

49%ee

5 12)

539

(Equation

5 13 1

R

::

-R

RO-s-o

::

0

ir

Pd$fba3 * WOhP w 0 ./

A/

RoP 0

0

good yields

s’-0

P 0

0’ \\

0

(Equation

5 14)

0 R +

00

N

U’d STol

The mechanism of the rhodium(+)-Binap catalyzed rearrangement of ally1 amines to enamines was fully studled and reported 16711 and was used to synthesize optically active aldehydes (equation 515) 16721. Achiral catalysts were also useful for this type of rearrangement (equation 516) [6731, (equation 517) I6741

540

(Equation

5 15 1

Rh’BINAP NR2

H+

-

NR2

_) H

(Equation

NHBOC

R30H -

R2 R’

NHBOC + OR3 good yields

5 16 1

541

(Equation

5 17 1

Similar rhodium(I) catalysts rearranged ally1 alcohols to aldehydes (equation 518) I6751 [6761. Palladium(I1) salts catalyzed the rearrangement of propargyl acetates to a-acycloxyaldehydes (equation 5 19) 16773 and palladium(O) complexes catalyzed the 1,3-diene monoepoxides to enones (equation 520) 16781 and cyclopropyl ally1 alcohols to dienones (equation 521 I 16791. Chromium arene complexes catalyzed the rearrangement of ally1 siloxanes to silyloxydienes (equation 522) 16801. (Equation

HO

References

D 643

/\//\/OH

IbRhCOl+CIO,

5 18 1

542

(Equation

5 19)

4040% R. R' =

0X2)5,

(CHPk.

Wf2)11

!=I=

Et, R’ = Ce R = Ph; R’ = H R = Me; R’ = Co

(Equation

520 1

or

L = Ph2PCHCHPPh2

65%

L = PPh3

I I MeMe

(Equation

98% 88

1MO%

52 1)

543

(Equation

522 1

W-W333

R’ = H, nuu,me R2 = H, Me R3 = H, Me

Skeletal Rearrangements 4. Transition metal complexes catalyzed isomerization of highly strained systems was the subject of a review (26 references) 16811. Miscellaneous Rearrangements 5. Palladium(O) complexes catalyzed the rearrangement of unsaturated 1,4-epiperoxides [6821. Iron(O) complexes catalyzed the cycloisomerization shown in equation 523 i6831. (Equation

523)

0

I II. A. over References

Functional Group Preparations Halides Bromoaromatics were converted to iodoaromatics by halide exchange Ruthenium(II1 complexes catalyzed the KI/CuI/alumina 16841. P 643

544

trlfluorochloropropyfldenation of sllylenol ethers (equation 524) 16851. Improved conditions for the palladlum(1 I) catalyzed haloacyloxylatlon of cyclic conjugated dlenes have been developed [686l (equation 525) [6873 Platinum(0) complexes catalyzed the rearrangement shown in equation 526 [6881

TMS

‘0 R’

R x

L3RUCI,

+ CF3CC13 -

I H

(Equation

5241

(Equation

525)

:: RC-YH-CCl&F3

DMF

R’

Pd(OAc)&iCI R-R LiOAc BQ HOAc

*

R&

/

R OAc

!HTs 1) TsNHNa --WR-2) Pd4

R OAc

Ts

(Equation

526 1

545

B

Amides. Nitriles Nickel(O) complexes catalyzed the addition of isocyanates to olefins to give amides (equation 5271 16893, (equation 5281 16901. Cyclic amines were oxidized to amide N-oxides by hydrogen peroxide/sodium tungstate Ruthenium(II1 complexes catalyzed the condensation (equation 5291 169 11 of formamides with aryl amines (equation 5301 16921. Aryl sulfonamides were N-acylated by isocyanates in the presence of copper(I) salts (equation 53 11 I6931 Ruthenium chloride catalyzed the N-alkylation of amides and lactams by alcohols I6941 (Equation

+

5271

I(lP~h%Nt PhNCO

-

75% yield 10tumsoncat

(Equation

-

‘-

PhNCO LnNi(0)

NHPh

NHPh 0

References

p 643

528 1

546

(Equation

529 1

(Equation

530)

R = H, ‘I-Me, B-Me, &MO, 6MeOCNH, 6-CI, B-Br, B-M&O, 6-CN, 8-Me

L&Cl2

f: Arb$-C-H

+ Ar’NHR

- tfx mesitylene

5: ArYc-Yr’ R R 7693%

Ar’ = Ar = pCIPh, pMeOPh, pMePh, oMePh, o,o’b&Ph R = R’ = H

(Equation 0

NHR2 +

R2NC0

46-99%

R’ = H,Me R2 Et, Bu, tBu, Ph, /\/\r\/

53 1)

541

Nickel(II) complexes catalyzed the conversion of bromothiophene to cyanothlophenes (equation 532) 16951. o-Palladated aromatics were converted to nitriles by treatment with tetrabutylammonium cyanide to (equation 533) [6961. Platinum catalyzed the addition of phosphine acrylonitrile (equation 534) 16971. Copper salts catalyzed halide exchange Chiral titanium complexes wrth iodonucleosides (equation 535) I6981 catalyzed the asymmetric addition of TMSCN to aldehydes (equatron 536) 16991 Cobalt carbonyl catalyzed the ring opening of tetrahydrofuran by TMSCN (equation 537) I7001, while rhodium(I) complexes catalyzed the conversion of ketals to protected cyanohydrins (equation 538) 170 11.

cI

bBr

+ LzNICI(2-naph)

(Equatron

532 1

(Equation

533)

-

BP

2 diphos Bu4NCN

CN

(Equatmn

534 1

(Equation

535 1

I

OTMS

OTMS 60-80% X = CN, SCN, N3, NH21NH20H GH(C02Et)2, EC-

549

z

Ti’

RC-H

+

TMSCN

(Equation

536)

(Equation

537)

OTMS

cat

-

R

I

A l

CN

70-80% yield 60-910~ ee

R = Ph, MePh, pMeOPh, 0 cat. =

...I\0 \ ,~(o~Prk& 0

iPrO IPrO 3 0

I32 -i!G% R1

+TMSCN

-

CN

1500

+ R’ R’ = H, Me, OEt

CN

TM!30 R2 = H,Me,OMe

+ R2 82%

References

I) 643

550

(Equation

R’ = Ph. pMeOPh, Ph-j

Ph-

538 1

-’ /

R* = t-l, Ph

R3 = Me, Et

C.

Amines. Alcohols Combined palladium-copper complexes catalyzed the oxygenation of benzene to phenol or benzoquinone I7021 Benzene was hydroxylated by hydrogen/oxygen in the presence of palladium(IIViron(II1 complexes 17031. The complex IMo05*PyoDMPUI was advanced as a safer alternative to MoOPh for a-hydroxylation of enolates 17041. MoOPh was used to hydroxylate lithiated arenechromium tricarbonyl complexes (equation 539) 17051. Manganese 0x0 complexes catalyzed the reductive a-hydroxylation of conjugated esters (equation 5401 I7061 (Equation

539 1

551

(Equation

540 1

cat. hrh(dprn)& C02R4

PhBiH3

7694%

\

R’ = H, Me, nPr, COMe -

-1

R’ = H R3 = H, Me R4 = Bn, Me, Et

Mixed cuprates reduced epoxides to alcohols (equation 541) [7071, as did formic acid m the presence of palladium catalysts (equation 542) 17081. Cobalt(I1) catalyzed the ring opening of epoxides by thiols (equation 543) I7091 and amlnes (equation 544) 17101. Palladium(0) catalyzed similar were converted to processes (equation 545) 17 11 I. Vinyl oxetanes homoallylic alcohols by reactlon with organocopper complexes (equation 546) 17121. (Equation

0

6

OH +

(Rbl)(CuBr)(PBu,),

_

54 1 I

552

(Equation

4:l

90%

(Equation

OH

COG12 +

PhSH

-

R A/

or CO,(CO)~

co

SPh

0

R = Me, Et, Ph, CH,Cl, PhOCH*,

542)

also works.

543 1

553

R

w

R

CO@ + R2NH2

-

R

X

HO

0

(Equation

544)

(Equation

545)

R’ NHR2

w70%

R = Et, Ph. CH2CI, PhOCHp R’ = H. (CH& R2 = Ar

Nut

Pd(0)

NW = Et2NH, PhSH, NH4CI, NH4SCN NH40Bn, PhC02H

OH

&OH

hc 90%

from 1:2to 1.7

(Equation

546 1

554

Grignard reagents reduced aliphatic, aromatic, and a,B-unsaturated ketones to secondary alcohols in the presence of titanocene dichloride 17131 Ketones and aldehydes were reduced to alcohols by zinc in the presence of NiClzo 6H2O This reagent also reduced olefins, nitriles, and nitroaromatics I7 141 In 90 as solvent, deuterium was incorporated (equation 547) 17151 Aldehydes and ketones complexed to optically active rhenium complexes were reduced with high asymmetric induction (equation 548) 17161 I7171

(j

D201ZnINiC12_

(Equation

5471

(Equation

548 I

,-$

0

AND

OH

OH 81%

1) H

Re ON’

“PPh, I

_ 2)

91-96% de

555

Acetophenone was microbially oxidized to the cyclohexadienol which complexed to iron (equation 549) 17181. Ruthenium complexes catalyzed the a-hydroperoxidation of amides (equation 550) 17191 17201, and the varied oxidations of norborene epoxlde shown in equation 551 172 11 (Equation

549)

0

I= ;4

1) P putida

2)

1) HPFB 2) NaHC03

F92W)e

OH

WkJ%

(Equation

F-t2

R2 tBuOOH .

Referencerp 643

550)

556

(Equatron

55 1)

NaOCl

0

vfl

Ru cat.

50% 1 1 .

ox.

85% Hz02

or S20ezs No reacbon

mop

0

K-;OH+R 2

OXONE

’ 37%

48%

Drenes were converted into allylic alcohols by cobalt dmgH2 complexes (equatron 552) I7221 Olefrns were hydroborated and oxidized to optrcally active alcohols using chn-al rhodrum catalysts (equation 553) 17231. Intramolecular (equation 554) 17241, (equatron 555) 17251, and intermolecular (equation 556) I7261 hydrosrlylatrons/oxrdatrons were used to produce alcohols (Equation

552)

551

(Equation

-I-

66

References

P 643

BH

*

ox.

W) L’

L’ = (+)-DIOP (+)-BINAP (S)(R)-BPPFA (S)(S)-chiraphos

w

ROH 4040% yield o-74% ee

553)

558

(Equation

554)

Rh(l)DIOP . 0,

SiR,H

OH

O-SIR2

SllT4P

>99%

OH

syl

93%es AND

Mm0

OMOM

MOM0

OMOM

44

. + OSik&H

OH

OH

7o%ea

(Equation R

Y-\

pt, [lCH&H-SiMed,Ol,

H24 >

NmS2

TMS/N--S’. Me2

OH R + NH2 -50%

NH2

555)

559

(Equation

556 1

1) ElOH/EbN SiMBcl~ 2)

OH

402

n = 4, 5, 6

Asymmetric oxidation of olefins with osmium tetroxide has been reviewed (67 references) 17271. The highest ee’s in this process have been achieved using K3Fe(CN)6 as the oxidant in place of trimethylamine N-oxide [728]. By using polymer-bound chiral alkaloid ligands and this oxidant, the hydroxylation of stilbene went in 96% yield and 87% ee, and the alkaloid could be reused [7291. Allylic ethers were cis hydroxylated wrth high stereoselectivrty (equation 557) [7301, (equation 558) [7311 Olefins were CIS hydroxylated by Os04/Fe(CN)6-/DABCO (equation 559). 17321. (Equation Y R,Si + R’O

OR

anti 5s70% Y = H, 14O:l 8s ske of RSSl increased, 94 anti hnxeased

References

P 643

OH

syn

557)

560

(Equation

OH

APco2Et

558)

QH C02Et +

OTBS

&C02Et : TBS6

I dH

35:1

mSO~C02E’ 6TBS

0904

4

.

1

h4e3N0

Bnowco2Et

2.71

OTBS

99.1

(Equation

X

HO

559)

OH

m4

-

Fe(CN)s3-

New aspects of oxypalladation of alkenes have been reviewed (54 -eferences) 17331. Schlffs bases were reduced to amlnes by Ru3(CO)12 under

561

hydrogen and carbon monoxide 17341. Platinum complexes catalyzed the reduction of halonitroaromatics to haloamines I735l. Nitrobenzene and aromatic ketones were reduced to anilines and benzyl alcohols over palladium(II)/montmorillonite silylamine catalysts I7361. Palladium(O) complexes catalyzed the removal of allyloxycarbonyl Nprotecting groups in a very complex molecule (equation 5601 I7371. Allylic carbonates were aminated with high ee using chiral palladium catalysts (equation 56 1) 17381. Optically active amines were made from aldehydes and chiral ferrocenylamines (equation 562) I7391 Iron carbonyl hydrides catalyzed the reductive amination of aldehydes (equation 5631 I7401 I7411. while ruthenium complexes catalyzed the oxidative amination of dials (equation 564) I7421 (Equation

References

p 643

560)

562

(Equation

56 1)

&NH2

/-‘=\_

OCO*Et

-

y

PdlL*

+

wNR2

NR2

OC4Et 07%

97 :3

64%ee

OH

(Equation

H “-N&H

NH2 1) PhCHO v ‘Fe

H

b (racemlc)

Ct.43

Ph

l

__

2) GH3Li

H

v Fe

Jb 67:33de SRIRS

3 HOAc

CH3 -

PhYCH3 NH2

562)

563

(Equation

RNH,

+

,LJH

z

n RNHH&-CH

563 1

( )”

HFe(CO).+u

EtOH

40-w%

R = Ph, pMeOPh,oMeOPh, pMePh, pCIPh, o-

/

(Equation

564)

Ru cat. HO/\/OH

+ 180”

Molybdenum hexacarbonyl ring opened oxazolidines to aminoalcohols (equation 565) 17431. Cationic rhodium(I) complexes catalyzed the reaction of benzene with isonitriles to give tmines (equation 566) I7441 Ruthenium carbonyls catalyzed the reduction of oximes to imines (equation 567) I7451 while cobalt complexes catalyzed the formation of oximes from enones (equation 568) I7461 and palladium on carbon catalyzed the reduction of Palladium(O) complexes nitroolefins to oximes (equation 569) I7471. catalyzed the conversion of ally1 acetates to ally1 azides (equation 570) 17481

References

P 643

564

Y

/ \0 N

R

(Equation

565 1

(Equation

566 1

wcas

-7-c

-

RNH

OH

60-80%

hv +

R’NC (R3P)2Rh(CNR’)2+

2-7 hmowrs

565

(Equation

,OH R’

A

NH

m3wh2

+

‘;

co

-

R*

567 1

100° 4h

+ R’ A

cop

R*

70-90%

R’ = Ph, Bu, pClPh R* = Et, IPr, Ph. Me, nBu

(Equation

NOH 10% GoMow R’m~02R2

+

nBuON0

*

R, d.

PhSIH3 THF 7s96%

R1 = H, Me, nPr. IPr, C4Et R* = nBu, PhCH2, tBu, ptol. Et

eobe = EK)2C+w;$C02Et

C02R2

568)

566

(Equation

NO2

HC02Na I Pd I C *

NOH

R

MeOH I MF

R

569 1

R

(Equation

570 1

WNs

R-x

-

Pd(0) I THF

R-N3 good yields

I%-OAC

W-Cl

Ptl-oco2Et 6C02Et

TMsOJ=LxqEt

Ethers. Esters. Acids Copper bromide catalyzed the alkoxylation of bromothiophenes Palladium(O) catlayzed the o-allylation of sugars (equation 571 I 17493 (equation 572) I7501 while palladium(II1 catalyzed the methoxylation of norbornene (equation 573) I75 11. Rhodium(I1) catalyzed the rearrangement of a-diazo+-methoxy ketones to enol ethers (equation 5741 17521.

P

567

(Equation

57 1)

(Equation

572 1

(Equation

573 1

MeOH NMP

0

0 -7 0

HO

0

T 0

References

p 643

0 0

0

X

5-

OH -

0

568

(Equation

N2

574)

40-809/o

R = Ph, Bn, mBrPh,w/

Phw 0

Terminal olefins were oxidized to optically active acids using Wacker type conditions with chit-al catalysts (equation 5751 17531. Arenes were oxidized to acids by Ru04/periodate (equation 576) 17541, as were epoxy alcohols (equation 577) I7551 Iridium oxygen complexes oxidized alcohols to carboxyhc acids (equation 578) I7561 Amides were converted to a-amino acids via chromium

carbene

complexes

(equations

579 and 580) I7571 (Equation

4,

THF, L”, H20, GO

l

-w

RCH=CH2 PdC12, CuCI, HCI, 25’

RCH-C02H

I CH3

89% yield 83% ee

64% Bl%ee

575 1

569

RIO4 Am

(Equation

576 1

(Equation

577)

(Equation

578 1

I IO4-

RC&H

_

biphaslc

OAc

OAC Phd

-

HO&k

PhJ- -

HO&A

\\ co I

//

0

#4

R

CH20H

(triphos)kCI(CH,CH2)

References

p 643

0

RuClg,NalO, H20

I

MeCN

VA

R

C%H

1) 0,

_ 2) RCH20H

tfiPh31;<“>

HO

R

570

K&r(CO)5

+

(Equation

579)

(Equation

580)

(CO)&+

R

R

high yields

2) E+ CH3

3) hv, tBuOH

50-70% &7% de

An improved procedure for the palladium(II1 catalyzed chloroacetoxylation or diacetoxylation of cyclic 1,3-dienes has been developed [7581. Palladium(O) complexes catalyzed the syn 1,4-addition of acetic acid to cyclopentadiene monoepoxide (equation 58 11 17593. The palladium(1 I) catalyzed chloroacetoxylation of dienes was used to make ally1 amines, ultimately (equation 5821 17601. New procedures for the bis acetoxylation of dienes (equation 5831 17611, (equation 584) I7623 and the allylic acetoxylation of olefins (equation 5851 17631, (equation 586) 17641 were developed

571

(Equation

0\

0

CHj-OH L

+

Ho

/ 9

OAC

(Equation

Pd(OAc), I BQ N

4Pd

*

LiCI I LiOAc

58 1)

582)

~

Et2NH 91%

(Equation

583 1

OAC \ 0 /

HOAc + l/202 cat Pd(OAc), iAc hlgh yields cat. Co(saiophen)

0I References

P 643

R/\\

-

.K

f@J -

ooAc

512

(Equation

584)

(Equation

585 1

KOAc I HOAc

5% Pd(OAc)2

20%BQ 200%Mn02,

HOAc

60-90%

n = 1,2,3,4,6,8

573

(Equation

0

586)

5% Pd(OAc), 5% CU(OAC)~ I lO%HQ 1 at Oz HOAc 50” 22hr

bf,cy 0-l u t t

(y

Alkanes and arenes were trifluoroacetoxylated by palladiu mf I I) acetate in trrfluoroacetic acid [7651. Lipase selectivity acylated one enantiomer of a racemic mrxture of the chromium complexes of omethylbenxyl alcohol (equation 587) [7661 Chromium carbene complexes were converted to diesters by reduction followed by reaction with CO2 (equatron 588) [7671 Ruthenium complexes catalyzed the addition of carboxylrc acids to eneynes (equation 589) 17681. Chromium complexed phenol formed sugar acetals (equatron 5901 17691. (Equation

OH

WCOh

(1) x=Ma,oMe.TMs

References

p 643

97% w

587)

574

(Equation

OMB

OMB

Bll3P(C0)4Cr

588 1

2-

(C0)4Cr=(

[

Ph

1)

COP

2)

CH2Nz

*

Ph

1

yxz:

02%

(Equation

R

~~c~dpMeS)(pcyme~)

? HCsC-C=W

+

RC4H

R’ = H, Me R = Ph, tBu, \//

AND

R tBOCN H

+

HCEC&CH,

7

tEQCN++

589)

575

(Equation

Cr(CO),

OAO

OAO

590)

R=Me,35%vs1o%lree OMe,21%vso%free

E.

Heterocvcles Metal-catalyzed epoxidations continue to be very actively explored, wrth many references each year. Molybdenum catalyzed epoxidations of 3chloro- l-butene I7701 and cyclohexene [7711 1772.1 with tOlefins were efficiently epoxidized butylhydroperoxide have been reported. by hydrogen peroxide/sodium tungstate 17731, by oxygen vanadate Systems (equation 591) [7741 and by oxygen/nickel systems (equation 592) [7751. (Equation

66 I +

VOL, 02

-

dv 0

1240% 0-49%w

0 L=

References

p 643

0

KT

oonvefsion

59 1)

576

(Equation

592 1

02 I cat Ni(dmp)* ROH MOI. sieve 4A

” 65%

H

lH

Iodosyl benzene epoxidized olefins in the presence of transition-metal phthalocyanines 17761 and manganese (sale&amino acid complexes 17771 Homogeneous catalysis of epoxidation of olefins by mono- and binuclear Schiff base complexes has been reviewed (28 references) 17781. Molybdenum 17791 and manganese porphyrins 17801 17811 were effective olefin epoxidation catalysts Manganese “picnic basket” porphyrins catalyzed the shape-selective epoxidation of olefins (equation 5931 I7821

(Equation

““7

Q

+

593)

PhlO

RhR

-

FIPR’

Ml

“picnic basket porphyrin” by varymg R” can select between

-0 -

0

>lOoo .I

0

0

’ ‘or>/ “Ooo”

The origin of enantioselectivity in the Katsuki-Sharpless epoxidation procedure has been considered I7831. Sharpless epoxrdation of 1, ldimethoxy-3-hexen-5-01s and l,l-dimethoxy-4-hexen-3-01s went with high enantio- and diastereoselectivity I7841 This process was used extensively in total synthesis (equation 594) 17851, (equation 595) [7861, (equation 596) 17871, (equatron 597) [7881, (equation 598) [7891. A relatively simple manganese compound was an efficient catalyst for the asymmetrrc epoxidation of olefins by iodosyl benzene (equation 599) 17901.

References

p 643

578

-

(Equatib

594)

(Equation

595)

TBSO

(2zoTHps iGoTHp OH

OH

(3

+

Chvleee reeolution)

ICOTHP 6H

519

(Equation

/&/OH~/+

596)

--

tsuooH

(Equation

Rss’o~O”

s

Rs=%+

D (-)_DET

92%

---~~ 0

99%

References

P

643

EbN, Diox.

597)

580

(Equation

5

\OmOH

598 1

-

\o&OH

tBuOOH

-

YHBOC

7’ F:

-

HNyN+COzH =

NH

(Equation

= . \

/

‘O

+S,S-1

\ 0 59%ee

50%

93% ee 52%

R=Ph,R’=H;X=H R=H,R’=Ph;X=H R=H,R’=Ph;X=tBu

p’,bph

Ph67% ee 72%

30% ee 63%

3O%ee 36%

78% ee 72%

84% ee 73%

599)

581

Peroxytungstate catalyzed the epoxidation of alkynes (equation 600) [79 1I Chromrum complexed benzaldehydes to epoxides by treatment with alkyl chlorides/peroxide 17921.

to epoxyketones were converted (equation 601)

(Equation

600 1

peroxytungstate

-

A

+ Hz4 62%

--

m

PhePh

Phe-R

PheH

(Equation

60 1)

R

R 1) IBuO-RBuOH CHO

+

R’

R’CH2CI 2)

‘W2

WCQ3

4597% de 6545% yield R=Ms,OMe,CI R’ = CN, C&tBu, COPh (+I- or (-)-single enantiomer

Transition-metal mediated approaches to a-amino acids, fi-lactams and mitomycrn 17931 and B-lactams from cycloaddition of nitrones with copper acetylides 17941 were topics of dissertations. Bicyclic B-lactams were synthesized by the rhodium(I1) catalyzed decomposition of drazoketones (equation 602) [7951. B-Lactams were prepared by the reaction of copperReferences

I) 643

582

derived ester enolates with imines (equation 6031 17961. Manganese(III1 acetate produced a @-lactam from a chloroacetamide (equation 604) 17971. A wide range of optically active I3-lactams were made by photolysis of optically active aminocarbene chromium complexes in the presence of imines (equation 605) [798J. A relay to (+I-thienamycin was prepared by palladium assisted alkylation of an optically active ene carbamate, itself produced from a chromium carbene complex (equation 606) [7991. Diazirines were carbonylated to diazetidinones by palladium and cobalt catalysts (equation 607) l8001.

/%/GMe

+ (PhMe2SI)&uCNL12 -

(Equation

602 1

(Equation

603 1

583

70-90% aQ7% da

References

p 643

(Equation

604)

(Equation

605)

584

(Equation

Ph ‘s.

606 1

Ph 3

H N-0,

mcr =(

:Iph

CH3

* OBn

3) CO, MeOH

TBSO Okk

--

26% overall

0 297% de 6Q%

(Equation

R=

nC-r,Me,(CH&

R’ =

H

‘r

607)

/

R” = Me R’” = Me, Ph, C, ,, I&,

Bu e /

ML,, = Pd(dba)p, Co&O),,

Pyrroles iron (equation

were made by the molybdenum (equation 608) [8011 and 609) (8021 catalyzed ring contraction/extrusion reaction of

585

six-membered heterocycles. diazadlene complexes (equation

Iron azadiene (equation 6 11) I8041 were converted

610) I8031 and to pyrroles (Equation

608)

(Equation

609 1

R’ = Ph, Et02C

R’s

R3

=

(CH2)4s

(CHP)B,

W2)5,

Et, Me, H, Ph

R4 Mo(CO)E WN A H 4&70% R’ = H, Me (CHP)Bs

R2 = H, Me R4 = Ph, C02Ma

References

P 643

(CH2)4

586

(Equation

-

F%W%

6 10)

1) Meu

Ph

w 2) tBuBr

(CO)&

Ph

Ph

(Equation

iPr’

// N.Fe’ NYPr

+

2 EtOzC-aE~-C&Et

-

-

6 11)

WV)

OC’;&CNtBu

Pyrroles were synthesized from alkynes and chromium iminocarbene complexes (equation 612) 18051 18061, (equation 613) 18071, from ynamlnes and imidato carbenes (equation 614) 18081, and from w-acetylenic aminocarbene complexes (equation 6 15) I8091

587

(Equation

6 12 1

Ph

4040% PhCN %/

\ M = W,Cr Ph R’ = Me, Ph, tBu R

1

‘la,

Ph 05%

R3 = nPr, OEt, Et R4 = H. nPr, COCH3, Et

(Equation

6 13 1

R2=Me.H,Ph

~2~~3 *

A

R3 = NEt2, Me. Ph, CH@ble

Ph H 2648%

References

p 643

588

(Equation

6 14)

80” (CO),&

Ph

+

Et2Ne

-

Ph 88%

(Equation

OMB

+

HCI*H,NJR

NH (CO)&r=(

6 15 1

-

PhCH3 t 1100

Ar 8530% 50%

R = Me. Et, TM.!3

Pyrrolidlnes were prepared by palladrum-catalyzed acetoxylation of dienes (equation 616) [8101, and palladium-catalyzed Insertion of dienes into a-lodo-N-tosylanllines (equation 6 17) 18 111 Indoles were prepared by palladium (equation 6 18) 18 121 and ruthenium catalyzed processes (equatron 6 19) I8 131 Pyrrohdrnones were made by Insertron of lsocyanates Into o-manganated arenes (equation 620) [8141 and from palladium catalyzed olefin Insertron reacttons (equation 62 1) IS 151.

589

+

(Equation

6 16 1

(Equation

6 17)

HOAc

also works.

R 50-90% X = NHTs, OH diene =

0\ ’

R = COMS, CHO

References

I) 643

590

(Equation

a ‘=

X

NH2

R2

R2

Pd(ll) cat, LICI BQ

H

Pd(OAc):!

6 18)

)

EhN I DMF 120’

0

35-71%

R’ = H, Me, CH2CQEt. CO#Ae, C02Et, Ph R2 = Me, OEt, Ph, OMB

(Equation

OH

R = H, 4-M& 5-OMe. &Cl, 44X6-Br

6 19 1

591

(Equation

620)

R’ +

ptolyiNC0

2

R’ = H, F, Cl. MO, CF3 R* = H, F, Cl, Me0

WO) DMF

(HCQNa) = Y = H (NaBPh4) = Y = Ph

Organopalladium approaches to oxygen heterocycles 18161, and a palladium catalyzed synthesis of 4-methylenetetrahydrofurans I8 171 were Palladium catalyzed the I3+21 cycloaddition of topics of dissertations. trimethylenemethane complexes to aldehydes (equation 6221 18 181 aOlefinic alcohols cyclized to tetrahydrofurans in the presence of palladium catalysts (equation 6231 18191, (equation 6241 I8201, (equation 6251 18211. Cobaltf II) catalyzed an oxidative cyclization of this class of compounds (equation 626) 18221. Palladium(O) complexes catalyzed the formation of cyclic acetals form allylzincs and ketones (equation 627) 18231. Furans were synthesized from allenic ketones with rhodium(I) catalysts (equation 628) References

p 643

592

[8241 and from alkynes 629) [8251

and ketones

using low-valent

tantalum

(equation

(Equation

,l,

+

622)

R

+

pd(oAc)2.

I-MS

L

R

R

A 0

+ R 0 (full details) R R’ = Me. Ph, 6

+

I

(Equation

R2y R’ AOti

PdX2

1

/ R2=CH20H

-

)

b. R’

0

R’=Me,Ph R2 = C02f48, CH20H

7o-a0% 6040% de

623 1

593

(Equation

6241

(Equation

625 1

1 eq. Pd&(PhCNh

4046%

R’ +

\o

0

)=?I

Fe

‘/

/

0

1

42-50%

13’=

H, Cl

R2 = H. Me, Cl, Br

L4Pd *

References

p 643

594

(Equation

626 1

(Equation

627)

R = Ph, pMeOPh, pCIPh, PhCH2, Me, tBu,

R’

+,w,.==.L

R

4

ala

OR"

R-0

R’ = H, CH3, R” = Me, Et

(CH2hj

OR”

OR"

OR”

4Pd

OZIlBr -

595

R2=

(Equation

628 1

(Equation

629)

nPr, H

R3= H,M3

major

R2

H. Csm Ce,

minor

C7,

R3 = nPr. C5, C8

CIO,

Ph

596

y-Butyrolactones were synthesized by the palladium catalyzed reaction of vinyl halides with butene diols (equation 6301 18261, u-on acyl enolates with epoxides (equation 63 1) 18271, aromatic dialdehydes with rhodium(I) catalysis (equation 6321 [SZSI. reduction of 1,4-diketones with ruthenium binap catalysts (equation 6331 18291, the iron(II1) catalyzed reaction of alkenes with malonates (equation 6341 18301, the reaction of manganese acetylides with epoxides (equation 6351 18311, and transition metal catalyzed chloroacylation of olefins (equation 636) 18321 Butenolides were formed in the reaction of chromium acylate complexes with alkynes (equation 637) I8331 o-Iodophenol, phenylacetylene and carbon monoxide co-cyclized in the presence of palladium catalyst (equation 638) 18341. (Equation

R

HOflOH

PW’) +

RX

-

h0

RX = Phi, IV-‘--’

OH

ox .

6301

597

(Equation

63 1)

co

Ph3P. I

Fe. cp

+

OLi W)

(S)

I

56% (S)(R)

(W(S) (R)

(Equation

H

0 Rh(diWWz)+ -600

6321

598

(Equation

633 1

0

OEt

“2

w

“+

-

Rn-BINAP

0 3 R

0

R = Me, Et, nC8

T_%

(Equation

CO*R

/ RCH \ C&R’

R2

Fe(ClO&

+

R* R3 M-90%

R = Et, PhCHp, Me Rl = Me, pCIPh, H, nBu, PhCHs.Ph-1 R* = H, Me, Ph R3 = Ph. pWPh.

\

pCIPh. t8uv dss Y

634)

599

(Equation

54%

89%

(Equation

Cl

Jf

TM

Cl

cat. -

635 1

O

636 1

Cl

0

upto 95%withCUCI

(Equation

637)

(Equation

638 1

0

O i+ R

R

I

Ph Pd cat. +

PhC33-l

+

CO

-

Stereocontrolled syntheses of N-methyl- 1,2,3,4-tetrahydroisoquinohne derivatives via Cr(C013 methodologies was reviewed [8351. Palladium catalyzed the formation of quinolines from alkynes and iodoaromatic amines (equation 639) [8361. Chromium aminocarbenes were used to produce a number of nrtrogen heterocycles fequatton 6401 18371, (equation 641) 18381, (equation 642) I8391

m5cr’(

NH2

+

PhC-Cl

Ph

-

(CO)& Et3N

639)

(Equation

640 1

Y +N/APh

TIC14

t

(Equation

Y Ph

R_.E.-_R’

A

1240% R = H. Me, Ph R’ = Ph, PW nBu. TMB, CHzOMe, NEt2, CO&b

1O-56%

601

(Equation

64 1)

(Equation

642)

PhH +

Ph-a=*-Ph

-

41%

Palladium complexes catalyzed the formation of several six membered nitrogen heterocycles (equation 643) 18401, (equation 644) 18411, (equation Nickel(O) complexes cycloollgomerlzed isoprene and 645 1 (8421. phenylisocyanate to produce piperidinones (equation 646) 18431. Bridging carbene complexes of iron reacted with phosphinimtnes and alkynes to produce pyridines (equation 647) 18441.

602

(Equation

643 1

(Equation

644)

(Equation

645 1

1 eq. Pd(OAc),

Y”

X = H, 23%; &MeO, 21%; &MJO, 23%; 5 or 7-W,

04%

6040% R =

Me,

Et; Ft’

X

RzMe0.H

= H. OMe; R” = OMe, H

603

(Equation

646 1

(Equatron

647)

LnNI(0) + PhNCO 3P 5tums

,co)4Ft3~(co) 4

+

R’N=PR3

-

hv

4

(CO)aFe k\ N

FUJI

.

R2aR3

6oopeico -

PPNCI 60” 50-6o?h overall

R’ = Ph. tBu, H R’ = tBu, Ph, Et, TMB R3 = H, D, Ph

Palladium catalyzed a number of cyclizations to the pyran or coumarin ring systems (equation 648) [8451, (equation 649) 18461, (equation 650) [847], (equation 65 1) 18481. GroupWII Cp nrtrosyl carbonyl compounds effected the coupling of olefins and methyl propriolate to give oxygen heterocycles (equation 652) [8491. Vanadium complexes catalyzed the cyclization of aldehydes with alkoxy silyloxy dienes (equation 653) [SSOI

References

P 643

604

Palladium-bismuth systems catalyzed poor olefins and propane diol (equation

the formatlon 654) IS511

of ketals

of electron

(Equation

648 1

(Equation

649 1

cat PdClp I CuCl

18-30%

R = 4-M@

4,5-(MeO)2, 5-OH, 4.5 coo-

R

605

(Equation

650)

(Equation

65 1)

1) Bu,NF 2)

bf’d +

R = H.TBPS

OBn

90%

OMe

z-99.1

OBn

OMe

NaOAc I DMA 13CP12 hr

0 79%

R = H,kk

P 643

R

1) I-

‘I

* 2)

12

(Equation

652)

(Equation

653)

O

xi-

+

1) ‘V

R’CHO p 2) TFA /CCL,

R5

4045% ee

(Equation PdC12(MeCN)2 . BiCIBI LiCI

X =

PhCO,MCO,

Me02C, Ph. CN

X

654)

607

Rhodium acetate catalyzed anilines (equation 655) 18521.

the carbonylative

cyclization

of o-ally1

(Equation

655)

R’ = H,S-Cl, 4-Me R2 = H, Me, Ph. ptol

Nickel(O) complexes co-cyclotrimerized butadiene and 2,3-diazadiene (equatron 656) 18531. Macrocyclic tetraazo compounds were prepared by cobalt catalyzed carbonylative coupling of bis benzyl halides (equation 657) Palladium complexes catalyzed the formation of tin-silicon 18541. heterocycles (equation 658) I8551 and germanocycles (equation 659) [8561 from alkynes Low valent zirconium species formed sulfur/silicon heterocycles from acetylenic silanes (equation 660) 18571. Titanlo cyclobutenes were used to form arsenic and phosphorus heterocycles (equation 661) I8591 while titanium oxygen heterocycles were formed from olefinic ketones (equation 662) [8601.

References P

643

(Equation

656 1

Ph

Ni(0) N

+

Ph’--+NONb-Ph

Ph

7

upto 59%ee

(Equation

4) ox

18%

657)

609

(Equation

bpd R2-

R3

+

R’3SnSihk+ib&

FV3Sn

X

PhCH3

R2 -

658)

SIMe2siMe3

R3

40-80%

Ph

H

bf’d PhClCH

82-100%

R’ = Me, Bu R2 = Ph, R02C R3 = H.hleO&

(Equation

GeAr2 Ar2Ge/--\GeAr2

L2PdC12 +

HCICH -

Q 72

2

28

659)

610

TMS

(Equation

660 1

(Equation

66 1)

TMS

TM'S TMS

f’h

+

PhMCi2

Ph

Ph

Ph

>75% M = As,P

(Equation

A-

CP2W~d2 \

-

-0 5

$0,

:

TiCPP

CJJ 53%

662)

611

Heterocycles containrng two heteroatoms were prepared by palladium catalysis (equation 663) 18601. (equatron 664) 18611 and were alkylated by palladium(O) chemistry (equation 665) 18621. 1,3-Oxaphospholes were prepared from chromrum carbene complexes (equatron 666) [8631, while chromium complexed benzaldehyde nrtrones underwent cycloaddition to olefins (equation 667) I8641. Oxazolidrnones were synthesized by intramolecular addition of carbamates to alkynes catalyzed by copper (equatron 668) 18651. (Equation

Yr-7,

+RNFZ

/ J L4Pdp ,,j 33-74%

Y = oco&ls R = Bn,Ts Z = NW

NH, NBn, TsN, 0

RNH’()“NHR

-

n = 3.4

References

D 613

663)

612

(Equation

664)

0

70-80%

Ph-0

OEt

Ao

+

PEC

(Equation

665)

(Equation

666 1

613

-

(Equation

667)

(Equatron

668)

+/

O-N

Cr(C0)3

70-9596 -8% c/s

R=H,TMS x = Ph, OEt, OAc, TMS

R-q-R2 0

NHR’

CuCl I Et3N

)

THF, mC

K 0

Rqy

/

0

R2

NR’ K 0

71-93%

R’ = pTs, PhCO. M&O, Ph, pMeOPh -

1

R2I R3, R4 = H

wyl 0

R’ = Ts; R4 = Me, Et; R3 = Me; R3, R4 = (CH2)5

Rhodium(II) catalyzed decomposition of a-diazoketones was used to synthesize sulfur heterocycles (equatron 669) 18661, (equation 670) 18671 Nickel(O) catalyzed the addrtron of thioacetamide to o-iodobenzamide (equation 671) 18681, and nickel oxide oxidized triazene (equation 672) 18691. Optically active oxazolines were prepared by the gold-catalyzed condensation of aldehydes with isocyanoacetic ester (equation 673) 18701 (8711.

References

P 643

614

Z=

C&Et,

n=

1,2

COW

5I

0X s

Ar Rh20Ac4 +

cs2

-

N2

H

K

0 a-70% Ar = Ph, plbWPh,

669 1

(Equation

670 1

pfO)(OEt),

0 Ar

(Equation

pCIPh, pNO2Ph

615

(Equation

67 1)

(Equation

672 1

,,w,H

+

2

0 40-70%

R’

R2

R’

Ii t

N

// ‘N

NiO, I PhH -

lfx

t

P

/‘N + N 50-7436

R’ = oCIPh, 2,4-C12Ph,2,6-C12Ph R2 = pMPh,

References

P 643

3+C$Ph,

pCIPh, Ph. mCIPh, pFPh, pCFsPh, pBrPh

(Equation

RCHO

+

CNCH&02Et

673)

-

Wee 89:ll

R = Ph

I

L’ =

N-P\ I Fe and PPh2 (W(S)

A transannular cyclization occurred when the cobalt heterocycle complex In equation 674 was oxidized by MnOz, and a rearrangement occurred when the metal was removed with copper(I) chloride I8721 Palladium(O) catalyzed the cyclization shown In equation 675 18731.

617

(Equation

674)

(Equation

675 I

X = 0, NBn,N-

OH

F.

Alkenes. Alkanes Palladium(O) complexes catalyzed the elimlnatlon of ally1 acetates to dienes (equation 676) 18741, (equation 677) I8751 Palladium acetates was used to oxidize enolates to enones (equation 678) [8761 Vanadium oxychlotldes oxidized cychc enones to aromatlc oxygen compounds (equation 679) 18771.

References

p 643

618

(Equation

OAc

phAcF3

4Pd

Ph-AAfF 42%

OAc pt/+

-

P-‘-f CF3

CF3

57% and

C6 C6 45%

F

676 1

619

rho-0

(Equation

677)

(Equation

678 1

MEO-0 Pd20Ac4 . ““OAc 95%

References

P 643

620

(Equation

0

679 1

OR

b I

VO(OR)Cl~

-

ROH 70-90%

Allyk alcohols were deoxygenated to olefms by cobalt(I1) chloride In the presence of cyclodextrm (equation 680) 18781, and by WClz(PMPh214 (equation 68 1) 18793. a-Hydroxyacids were converted to olefins by WOC14 (equation 682) 18801 (Equation

Hz I Co&

I KCN I KCI .

R

04NKOH B_cyclodextrin

R = Bu, R’ = H R = Ph, R’ = H, no reaction

R&R’ 40-90%

680)

621

(Equation

68 1)

(Equation

682)

< 1 min

-OH

-A

< 1 min

-

OH

-w

c 1 min OH 1 day

good ykrlds

R’s = cycl’-JhW’i.Bu, Ph. iPr, Me,

A

Benzyl chlorrdes and chlorobenzene were reduced to the correspondrng hydrocarbon by CpgZrH2 and Cp$rHCl 188 1I. Palladium catalyzed the reduction of vrnylphosphonates (equation 683) 18821, aryl sulfonates (equation 684) 18831 and aryl t&fates (equation 685) 18841 to hydrocarbons. Alkoxy groups on chromium-complexed arenes could be replaced by hydrogen or by hydrides (equation 686) [88Sl

References

P 643

622

DIBAH MesA’

(Equation

683 1

(Equation

6841

(Equation

685 1

5364%

ElsNH+HC02)

NS02R Pd(OAc), cat. DMF

ArH high yields

Ar = l-mph, QNCPh, CAcPh

H

OTf Me0

LpPdcl2 RCOOH, Bu3N X

Ph2PvPPh2

X

623

(Equation

686 1

The hexamer (LCuHls reduced conjugated enones in a 1,4-manner without reducing other functional groups (equation 6871 I8861, and reduced alkynes to cis alkenes (equation 6881 18871. Alkynes were reduced to alkenes by hydrozirconation/protonation (equation 689) (8881. The rhodium(I) catalyzed hydroboration of olefins was shown to involve both reversible complexation and olefin insertion steps [8891. Catechol borane efficiently reduced enones in a 1,4-manner in the presence of rhodium(I) catalysts (equation 690) I8901. (Equation

OAc

OAc 94%

91%

References

I) 643

x = I,Br,OTs

9&95%

687)

624

(Equation

R R--R’

+

0.5eq [PPh3CuHle w

5eq Hz0

688)

R

X-

H

l-l

6030%

--

--0”

/\

PhePh

&/OH

ph< ph<

PhbOAO,/

/“”

“‘\ =

(Equation

1) Cpni3W4

Re *

VbH

2) H+ 7040%

R = PhThN-’

HO-/

f+ OTMS 0

Phs-’

pBrPhAOA-

Ph

689)

625

(Equation

690 1

G

Ketones, Aldehvdes MoOPh oxidized 4-hydroxy-n-cyclophane into the a-hydroxy cyclohexadienone (equation 69 1) I89 11 Zirconium complexes catalyzed the by talcohols to aldehydes or ketones oxidation of benzyl butylhydroperoxide 18921, as did cobah chloride in the presence of Cyclopentene was oxidized to cyclopentanone using oxygen I8931 PdClZ/CuC12 catalysts and 02 I8943 or PdCl2 and t-butylhydroperoxide I8951 (Equation

References

p 643

69 1)

626

Palladium(II1 catalyzed the oxidation of alkynes to a-acetoxy enones (equation 692) 18961 while chromium hexacarbonyl oxidized cyclohexenes to cyclohexenones in the presence of t-butylhydroperoxide (equation 693) 18971. Ruthenium dtoxide oxidatively cleaved olefins to carbonyl compounds (equation 694) I8981 Palladium(O) complexes catalyzed the ring opening of endo peroxides (equation 6951 18991 Platinum(II1 salts catalyzed the hydrolysis of alkynes to ketones (equation 696) 19001. (Equation

692)

(Equation

6931

Oz I Pd(ll) _)

OAc

9035% 0

Base

8590%

621

Ru02 t CH&HO

YH

w

R

40”

YH

0

(Equation

694)

(Equation

695)

+RC02H

CHz R =

c&75%; q&90%.;

Q

0

I76 I

bid

%CO*H

-

)

91%

b +5 +6 HO 4060%

and

Ho 1a-29%

2&27%

628

(Equatron

Pt(ll) R--R’ -

0

cat.

-

H20, THF

696 1

R

R’

R = n6u, R’ = H, R = nPr, R’ = H R = nPr, R’ = Me, R, R’ = nPr, R = tSu, R’ = & R = R’ = Ph; R = Ph. R’ = H

cat =/

\pd-C’. Cl’

’ / 2

r C u ds BIS isorutrile complexes of platinum, nmkel and palladium catalyzed the hydrosrlylatron of a-methylstyrene and ketones [90 11. (Bispyridme) methanol having an optically active alkoxy group a- to one nrtrogen catalyzed the hydrosilylatron of ketones, but with low ee 19021. Rhodrum complexes catalyzed the 1,4-hydrosilylation of ally1 esters of acrylates (equation 697) 19031.

/

(Equation

Et&H OM

L3RhCI

-

A

f--

\

W-k&H-C02siEt3

6971

629

Trimethylsilyl acetylene was alkylated by aryl halides using palladium/copper catalysts (equation 698) 19041 Terminal alkynes were silylated using copper chloride catalysts (equation 6991 I9051 Propargyl alcohols were hydrosilylated to vinyl silanes over platinum catalysts (equation 700) 19061. Disilanes added to olefins to give disilyl alkanes using platinum catalysts (equation 70 1) 19071. Ally1 silanes were prepared by the trimethylsilylmethylatlon of vinyl halides (equation 7021 19081. Aryl chlorides were converted to aryl silanes using palladium(II1 catalysts (equation 7031 19091 (Equation

698)

(Equation

699 1

L,+PdI Cul RSr

+ TMS-

piperidine

R = pFPh, oCIPh, 1-Naph, Mhieng, 24~~4

RSIHB +R%.CH

-

EW CUCI

H RSIeR H 70%

References

P 643

630

(Equation

Pi +

R&IH

700 1

oat.

R*

+

major 7Mo%

OH

R’ = H, Me, CS Fl* = H, Me. I&,

SiRa Cg, CH20Bn. C&Me, CH&%OH

(Equation

LnPl XIL+SISI~X

+

CH2_CH2 -

Xh+SCH&H~Me2X

X = F, 95%; MeO, 52%; Cl, 48%;, Me, 18%, pCF3Ph, 18%; Ph, 4.3%; ptoly, 3.8% also

70 1)

631

(Equation

702 1

(Equation

703)

RX c Pd(O), OH

R = Ph, pl’&OPh, A

RC~TMS 70-Qo?G

-

L,PdCb AIcOcl

+

cIrule2s-siMe2cI

-

PhN02 1250

ArsIMeg 90%

Rhodium(II) perfluorobutyrate catalyzed the silylation of alcohols with an order of reactivity of 1” > 2” >) 3” (equation 704) I9101. With this catalyst Benzyl and ally1 the primary OH of dials cold be selectively protected. acetates were carbonylated/reduced/silylated by cobalt carbonyl (equation 705) 19 111. Nitriles were reductively silylated by the same catalysis (equation 706) 19121.

References

P 643

632

(Equation

704)

Rhdpfbh R’OH

+

R&i

-

R’OSiR3 cat M-99%

R = phCH2,n& cholesterol,glycidol,(0)menthol, (Womeol, phenol, WJOPOL 1” > 2” >> 3”

(Equation

705)

Me,.SiHI CO Ar-OAc

_

00&0),3, PhH

ArW

OTMS

50-75%

Ar = PwPhu owPh, fermcenyl

PmPh, oMePh, Ph. pCIPh, l-neph, 2-fuw, 3-f~@,

Bmiophenyl

(Equation

706)

Co2cwa

AICN

+

Me3SIH

-

ArCH2NTM& co 5040%

Ar = Ph, oMePh, mMePh, pMePh, pNCPh. pMeOPh, pMepNPh, pCIPh, mCIPh, pMe02CPh 2-naph also /\/\CN

yCN

vCN

QCN

“x”

633

Ally1 acetates were converted to ally1 selenium complexes using palladium chloride/samarium(II) iodide (equation 707) [9 131. Palladium(O) complexes catalyzed the hydrostannylation of alkynes (equation 708) 19141 19 151, the stannylation/germanylation of allenes (equation 7091 I9 161, and the cyanogermannylation of alkynes (equation 7101 I9 171. (Equation

7071

Smlp

R-

OAc

+

PhSeSePh

-

PdC12 L

R_

SePh 60-80?/0

(Equation

RVR

THF +

R”$nH

Pd0

H

SnR”, 44-70%

R Or R’ = H, Me, Et, Ph. CO&k, COMe R” = Me, Ph

References

P 643

R

StW3

708 I

634

(Equation

709 1

(Equation

7 10 1

Wd RCH=C=CHp

+

Me&SnBus

-

+

A-/R

BuBSn

GeMe3

R = MeO, EtOCCH2, Ph, Cs, tBu

PdCi2 RGlCH

+

Me3GeGN PhCH7

R t\ CN

GeMe3

SO-90%

R = Ph, pFPh, pCIPh, mMeOPh, oMeOPh, NC/*\/\ P-neph, I-naph, nC6,ACOCH&H2.

/

Miscellaneous Palladium(O) complexes catalyzed the reaction of vinyl triflates with triphenyl phosphine to give vtnylphosphonium salts (equation 71 1) [9 191. Trimethylphosphite reacted with chromium complexed chlorobenzene in low yield (equation 712) [9201 Rhodium(I1) acetate coupled diazomalonates to diazadienes (equation 7 13) 192 11 Cuprates desulfurized ketene thioacetals (equation 714) I9221 Platinum carbonyl complexes deoxygenated sulfoxides with CO (9231 The preparation, characterization and purification of the water soluble rhodium complex [(O-$PhI3PlSRhCl*H20 was reported [9241 The use of allyl- and allyloxycarbonyl protecting groups which could be removed by Pdg(dba)g/HCOOH has been developed 19251. Optically active alkaloids promoted high asymmetric induction in the osmium tetroxide I.

635

were conversion of oleflns to dlols (equation 715) [9261. Leukotrlenes labelled with metal carbonyl clusters for ir markers for In vitro analysis 19271. Cobalt and molybdenum carbonyl clusters were used m imunology 19281 (Equation

7 11)

(Equation

712)

OTf

OTf I(

+ OTf

bPd

cat.

R;pph3 .

OTf-

/L OTf

x

PdClp x

+

P(Ofvle&

-

R 120”

Cr(W3

WCQ3 low yelds

References

p 643

636

(Equation

713)

MO& WO&

K

Rh(ll) acetate

co&l6

CO~Me

t -N,

p

~eofi

N4

N2

co2Me 5040%

R

x

G4Ms

Me&uCNLi

I

Mes

x Mes

Sk48

(Equation

7 15)

I

QO 10 R = Et, Ph, w/

714)

co&le

R

.

(Equation

Ii E.2

9597%

R = H, 55%

+

w

OS04 e

WWW6 NM0

87%ee

dlol

631

Reviews IV “Transition metals in organic synthesis; annual survey covering the year 1988”. (907 references) ]9291 “Transition metals in organic synthesis; annual survey covering the year 1989”. (992 references) ]930] “Organometalhcs in synthesis”, (295 references) (93 11 “The use of transition metal clusters in organic synthesis”, (425 references) ]9321 “Organomolybdenum complexes in organic synthesis: construction of quaternary carbon centers”, ]933] “Organometallic compounds in synthesis and catalysis”, (106 references) ]9341 “Transition metals in total synthesis”, I9351 2. Aspects of a modern “Organometallics in organic synthesis interdisciplinary field”, I9361 “Transition metal organometalhcs in the synthesis of biologically active molecules: alkylidene indanones and quinones”, (9371 “Organometallic compounds in the synthesis of pharmaceuticals”, (3 references) ]9381 “Organic reactions of selected x -complexes. Annual survey covering the year 1988” (335 references) ]9391 “Highly selective synthetic processes utilizing the specific properties of metals”, (11 references) I9401 “Heterogeneous catalysis and fine chemistry”, (28 references) [941] “Synthetic organic reactions by means of organometallic reagents”, (2 references) 19421 “New organic synthesis using Group(VII1) metal complexes”, (64 references) (9431 “Organochromium(II1) chemistry A neglected oxidation state”, (43 references) I9441 “Synthetic applications of metallate rearrangements”, I9451 “Sequential cross-coupling reactions as a versatile synthetic tool”, (2 1 references) I9461 “Tetracarbonylhydridoferrates, MHFe(C0)4. Versatile tools in organic synthesis and catalysis”, (170 references) (9471 “Multiple stereocontrol us.ng organometallic complexes. Applications in organic synthesis and consideration of future prospects”, (46 references) ]9481 “Metallo-immes useful reagents in organic synthesis”, ( 14 references) [949] References

p 643

638

“Aspects of aromatrc n-on sandwiches. application to organic and organometallic syntheses”, ( 12 references) [9501 Syntheses and carbon-carbon bond forming reactions of rhenrum enolates”, [9511 “Palladium-catalyzed hydrostannolytic and hydrostannatron reactions and their apphcation m organic synthesis”, (17 references) [9521 “Aspects of cross-coupling reactions catalyzed by palladium and nickel complexes”, [9531 “Some palladrum-catalyzed carbon-carbon bond formatron reactions”, (43 references) I9541 ‘Cyclopalladated compounds as organrc synthesis reagents”, (34 references) I9SSl “New appbcations of organopalladium compounds In organrc syntheses”, (26 references) I9561 “Stereoselectrve annulations vra palladrum catalyzed reactions”, (22 references) [9571 “An advantageous use of palladium compounds In organic synthesis”, ( 10 references) [9581 “Reactron of a-amtno acrds in the presence of palladrum compounds”, [959] “Organopalladrum chemistry - palladrum-assisted arylatron”, (14 references) 19601 “Palladrum complexes in organrc synthesis”, (3 1 references) I96 1I “Some applicatrons of palladrum complexes in organic syntheses”, (41 references) 19621 “Asymmetrrc synthesis wtth transition metals”, 19631 “Right or left - this is the questron (enantloselectlve catalysrs wrth transition metal compounds)“, (24 references) 19641 “Multiple stereocontrol using organometallic complexes. Applrcatrons m organrc syntheses and consrderation of future prospects”, (46 references) I9661 “Enantioselectrve syntheses wrth optically active transrtron metal catalysts”, (285 references) 19671 “Asymmetrrc carbon-carbon bond formatron with titanrum carbohydrate complexes”, [9671 “Asymmetrrc synthesis catalyzed by chu-al phosphine-metal complexes”, (25 references) [9681 “Asymmetrrc syntheses usrng transItron metal complex catalysts”, ( 19 references) [9691

639

“Enantioselective catalysis with metal complexes An overview*‘, (253 references) 19701 “Application of chiral ferrocenylphosphines in catalytic asymmetric synthesis”, (32 references) I97 11 “Recent advances in catalytic asymmetric reactions promoted by transition metal complexes”, (148 references) I9721 “Chiral acetals in asymmetric synthesis”, (170 references) 19733 “BINAP An efficient chit-al element for asymmetric catalysis”, (50 references) I9741 “Reactions of cyclohexadienyliron tricarbonyl complexes, their synthetic applications, and the controlling factors of their regioselectivity”, (8 references) 19751 “Acyclic butadiene-iron tricarbonyl complexes in organic synthesis”, ( 109 references) 19763 “Reactions de type Friedel-Crafts de complexes dieniques de Fertricarbonyle Doubles acylations d’line meme unite dienique et acylations de complexes de dienes a fonction ester”, (24 references) 19773 “A novel stereospecific method of synthesis of symmetric functionahzed 1,3dienes” I9781 “Transition-metal pentadienyl chemistry”, (31 references) 19791 “Stereocontrolled functionahzation of cycloheptadienes using organometallic chemistry: synthesis of macrohde subunits”, I9801 “Cyclohexadiene iron complexes in lycorine asymmetric synthesis” 198 11 “Hydrozirconation (IV). Hydrozirconation of aromatic nitriles and its application in organic synthesis” 19821 “Cationic Zr catalysts for C-C bond-forming chemistry”, (43 references) 198311 “Cyclization, coupling, and rearrangement reactions of organozirconium and related compounds”, (49 references) [9841 “Organozirconium chemistry revisited on the surface things don’t look quite the same”, (22 references) 19893 “Functionalization of alkynes, enynes and arynes using organozirconium reagents”, (20 references) 19863 “Zirconocene complexes of unsaturated organic molecules”, (18 references) 19873 “Preparation and reactivity of a-zirconocenyl thioethers: new carbon-carbon bond forming reactions via a transition metal hydroxymethyl or metalloxirane analog”, 19881 References

P 643

640

“C-glycoside synthesis by palladium-mediated glycal-aglycon coupling reactions”, (57 references) 19891 “Organometallic methodologies for nucleic acid synthesis”, (15 references) I9901 “Synthesis of nucleic acids based on organometallic chemistry”, (21 references1 199 11 “Stereoselective reactions on molybdenum ally1 complexes”, 19921 “Transition metal-stabilized vinylketenes”, (24 references) 19931 “Carbon-hydrogen bond activation and the hydride-mediated ring cleavage of methylenecyclopropane by rhodium(I)“. 19941 “Mechanisms of intramolecular activation of carbon-hydrogen bonds in transition-metal complexes”, (127 references) 19951 “Carbon-carbon and carbon-hydrogen bond activation at ditungsten centers supported by alkoxide ligands”, (26 references) 19961 “Mechanisms of intramolecular activation of CH bonds in transition metal complexes”, ( 127 references) 19971 Photocatalytic carbon-hydrogen activation by RhCl(CO)(PMe312”, (14 references) 19981 “Carbon-hydrogen bond activation of aldimines by rhodium(I) new synthesis of pl Y -unsaturated ketones from aldehydes through iminoacylrhodium(III)-h3-ally1 complexes” 19991 “Synthesis, reactivity, and structures of organometallic complexes containing multiple transition-metal carbene fragments of chromium and tungsten”, [ 10001 “Carbenes, carbides, and carbon Ten years of transition metal-acetylene chemistry”, (25 references) 1100 11 “Carbene methods for the introduction of acyl and acylmethyl groups into organic molecules”, ( 120 references) [ 10021 “Carbonylcarbenes in specific synthesis of natural products”, ( 134 references) 110031 “Synthesis and reactivity of asp-unsaturated carbene complexes of chromium and tungsten”, I10041 “Carbyne complexes of tungsten” 110051 “Transition metal-activated organic compounds. Part 28 Easily accessible methylene complexes of molybdenum and tungsten: structure and application in organic synthesis”, (30 references) 110061 “Directed orthometallation tertiary amide and o-carbamate directions in synthetic strategies for polysubstituted aromatics”, (2 14 references) I10071

641

“The directed ortho metalation reaction. Methodology, applications, synthetic links and a non-aromatic ramification”, (17 references) I10081 “Regioselective synthetic processes based on the aromatic directed metalation strategy”, ( 16 references) [ 10091 “Transition metal-catalyzed cyclization reactions and stereoselective synthesis of exocyclic alkenes”, [ 10 101 “Metal-catalyzed alkene addition reactions in organic synthesis”, [ 10 1 1I “Selective molecular transformation by carbon-carbon bond activation”, ( 17 references) I10 121 “Metal complex and regioselectivity in carbon-carbon coupling reactions”, (17 references) I10131 “Organometallic oxidation catalysts”, (44 1 references) [ 10 141 “Carbon-carbon, carbon-nitrogen and carbon-oxygen bond formation reactions of organoruthenium and organorhodium complexes”, I10 151 “Ruthenium and osmium 0x0 complexes as organic oxidants”, (3 1 references) 110161 “Transition metal dioxygen complexes as intermediates in homogeneous catalytic oxidations”, ( 128 references) I1 0 171 “Homogeneous catalysis of organic reactions by transition metal complexes”, (321 references) [10181 “Application of homogeneous rhodium catalyst in organic synthesis”, (19 references) I10 191 “Carbonyl complexes as homogeneous and supported catalysts”, (28 references) I10201 “Comments on the chemistry of low-valent alkylidyne complexes of the Group( VI) transition metals”, (94 references) I1 02 11 “Heterometallic clusters in catalysts”, (320 references) I10221 “Reactions of the h5-pyrrolyl ligand: a new challenge in the chemistry of pyrroles”, (36 references) I10231 “Metalation and metal-assisted bond formation in I -electron deficient heterocycles”, (86 references) 110241 “A new approach to the construction of novel r-electron systems using nickel complexes”, (47 references) [ 10251 “Stereochemical aspects of organometallic clusters A view of the polyhedral skeletal electron pair theory”, ( 109 references) [ 10261 “Diene substituent effects on the retro Diels-Alder reaction, and dimeric cobalt(II1) complex promoted phosphate ester hydrolysis”. (10271 “Intermediates and reaction mechanisms in the interaction of nickel(O) complexes with organic substrates”, (93 references) [ 10281 References

p 643

642

“Preparation of organometallic compounds from highly reactive metal powders”, (34 references) (10291 “Homogeneous catalysis by ruthenium carbonyl clusters”, (125 references) 110301 “Organometallic chemistry The transition elements”, (73 references) 1103 11 “Metal coordination compound-assisted coupling reactions of norbornadiene”, ( 16 references) [ 10321 “Organo-element transformations of semiquinoid compounds”, (60 references) I10331 “Organometallic derivatives of a, p-unsaturated enones”, ( 176 references) 110341 “Supported metals and supported organometallics”, (58 references) I10351 “5-Cyclopentyl and S-cyclopentyloxy derivatives of 4-oxa- 1-pentyne and their catalytic transformations”, 110361 “The role of transition metal centered radicals in inorganic and organometallic chemistry”, (102 references) 110371 “The stabilization and reactivity of strained cyclic alkynes on transition metal centers”, (27 references) I1 0381 “Methods for the synthesis of allylsilanes, Part 1”. (94 references) 110391 “Rh phosphine complexes as acetalization catalysts”, (9 references) [ 10401 “The directed synthesis of biaryl compounds modern concepts and strategies”, ( 157 references) 1104 11 “Expanding industrial applications of palladium catalysts”, (89 references) 110421 “Nickel. an element with wide application in industrial homogeneous catalysis”, (84 references) 110431 “On the conformation and structure of organometal complexes in the solid state, two studies relevant to chemical synthesis”, (97 references) [ 10441 “Highly reactive intermediates from the cocondensation reaction of iron, cobalt, and nickel vapors with arenes”, (89 references) 110451 “Transition-metal mediated C-S bond cleavage reactions”, ( 139 references) 110461 “Synthesis of potential hybrid catalysts upon coordination of bare palladium(II1 with crosslinked macromolecular nitriles. Catalytic drmerization of methyl acrylate”, 110471 “Synthesis of allylic and homoallylic alcohols via organometallic ringopening of vinylic epoxides and oxetanes”, 110481

643 References

1

2. 3

4 5 6 7.

Lebedev, S.A.; Sorokina, R.S.; Petrov, ES Zh Org. Khim. 1989, 25, 2026. Ah, H.M ,Brubaker, C.H J Mol. Catal. 1990, 60, 331 Kottirsch, G ; Szeimies, G Chem. Ber. 1990. 123, 1495. Bochmann, M ; Creaser, CS., Wallace, L. J. Mol Catal 1990, 60, 343 Ikoma, Y.; Tayam, F.; Ozaki, E-i.; Higuchi, S , Naoi, Y , Fuji-I, K. Synthesis 1990, 147. Tzeng, Y-L ; Luh, T-Y, Fang, J-M. _l. Chem Sot Chem Comm 1990, 399 Bumagin, N A., Andryukhova, N.P.; Beletskaya, I.P. Metalloorg. Khim 1989.

8

Bumagm, N A ; Andryukhova, 1989,

9. 10. 11

2, 893.

N P ; Beletskaya,

I P Metalloorg.

Khim.

2. 605.

Gaudm, J-M, Morel, C. Tet. Lett 1990, 31, 5749 Inami, K ; Teshima, T.; Emura, J, Shiba. T Tet. Lett Andringer, H., Hanekamp, J; Brandsma, L Synth

1990, 31, 4033. Comm.

1990,

20,

2349

12. 13.

14. 15.

Kasatkin, A.N.; Romanova, T Yu , Tsypyshev, OYu , Tolstikov, G.A., Lomakina, S.1 Izv. Akad. Nauk SSSR, Ser Khim 1989, 2623. Lipshutz, B.H. Synlett 1990, 119 Roush, W R Chemtracts- Org. Chem 1988, 1, 243. Lipshutz, B H; Crow, R.; Dimock, SH ; Smith, R.A J; Behling, J.R J Am. Chem

16. 17 18 19 20 21. 22. 23.

Sot

1990,

Chim. Fr. 1989,

24. 25 26. 27

112, 4063.

Lipshutz, B.H ; Sharma, S ; Reuter, DC. Tet Lett 1990, 31, 7253. Knochel, P. J Am. Chem. Sot 1990, 112, 743 1. Berk, SC.; Chang, M, Yeh, P, Jeong, N.; Knochel, P Organomet. 1990, 9, 3053 Chen, H.G; Gage, J.L; Barrett, SD; Knochel, P. Tet. Lett. 1990, 31, 1829 Majid, T.N.; Knochel, P Tet Lett. 1990, 31, 4413. Raq, S.A., Tucker, CE, Knochel, P Tet Lett 1990, 31, 7575 Sorensen, H.; Greene, A.E. Tet. Lett. 1990, 31, 7597 El Marini, A , Roumestant, M.L., Pappalardo, L , Viallefont, P. Bull Sot 554.

Lipshutz, BH, Elworthy, T R j Urg Chem. 1990,55, 1695. Petit, Y.; Sanner, C.; Larcheveque, M Tet. Lett 1990, 31, 2149. Kant, J, Sapino Jr, C.; Bader, S.R. Tet. Lett 1990, 31, 3389. Philhps, D, O’Neill, B.T Tet Lett 1990, 31, 329 1

644

28. 29. 30 31. 32 33 34. 35. 36 37 38 39. 40

Tsushima, K ,Murai, A Chem. Lett. 1990, 761 Skrinjar, M., Wistrand, L-G. Tet. Left. 1990, 31, 1775 Ludwig, C., Wistrand, L-G. Acta Chem. Stand. 1990, 44, 707 Kurth, M, Abreo, M.A. Tetrahedron 1990, 46, 5085. Takahashi, 0; Furuhashi, K; Fukumasa, M., Hiram, T. Tet. Lett 1990, 31, 7031 Tanner, D., Burgersson, C, Dhaliwal, H.D. Tet. Lett 1990, .?I, 1903 Shonecker, B ; Walther, D ; Fischer, R ; Nestler, B.; Braunhch, G ,Eibisch, H , Droescher, P. Te’et.Lett. 1990, 31, 1257 Braunlich, G, Fischer, R, Nestler, B , Walther, D. 2. Chem. 1989, 29, 416 Bumagin. N A ; Andryukhova. HN.P.; Beletskaya, I.P. Dokl. Akad. Nauk SSSR 1989. 307, 375. Luo, F-T, Wang, R-T Heterocycles 1990, 31, 1543. Negishi, E-i, Swanson, D.R,Rousset, C J J Urg Chem. 1990, 55, 5406. Ennis, D.S.. Gilchrist, T.L. Tetrahedron 1990, 46, 2623. Amatore, C, Jutand, A ; Negri, S , Fauvarque, J-F J. Organomet. Chem 1990,

41 42. 43 44. 45 46. 47 48

390,

389

Ramiandrasoa, F.; Tellier. F Synth. Comm. 1990, 20, 333, 371. Telher. F, Descans, C. Tet. Lett. 1990, 31, 2295 Arcadi, A, Burini, A., Cacchi. S.; Delmastro, M., Marmelli, F.; Pietroni, B Syn Left 1990, 47 Sengupta, S ; Snieckus, V. J Org Chem. 1990, 55, 568 1 Sweet, MP DISS Abstr Int B 1990, 50, 4565. Parrain, J-L., Duchene, A.; Quintard, J-P. Tet. Left 1990. 31, 1857 Kwon, H B., McKee, B H.; Stille, JK J Org. Chem. 1990, 55, 3 114. Rubin, Y.; Knobler, C.B , Diederich, F J Am. Chem Sot. 1990, 112, 1607

49. 50 51. 52 53. 54 55 56 57.

Liebeskmd, L.S., Wang, J Tet. Lett 1990, 31, 4293. Liebeskmd, L S, Fengl R W. J. Org Chem. 1990, -55, 5359. MacLeod, D; Moorcroft, D., Quayle, P., Dorrity, M.R.J, Malone, J.F Tet Left. 1990, 31, 6077 Friesen, R.W., Sturmo, C F J Org. Chem 1990, 55, 2572 Friesen, R.W.; Sturino, C.F. J Urg. Chem. 1990, -53, 5808. Dubois, E; Beau, J-M J Chem Sot Chem Comm. 1990, 119 1 Dubois, E, Beau, J-M. Tet. Lett 1990, 31, 5165. Moriarty, R.M.; Epa, W R, Avasthi, A.K Tet Lett 1990, 31, 5877 Yokoyama, Y, Ikeda, M, Saito, M, Yoda, T., Suzuki, H, Murakami, Y Heterocycles 1990, 31, 1505

645

58. 59.

Forsythe, C.J.; Clardy, J. J Am. Chem. Sot. 1990, 112, 3497. Porco, J.A.; Schweneu, F.J.; Stout, T.J.; Clardy, J., Schreiber, S.L. J Am. Chem. Sot. 1990,

60

61 62

Fujiwara, K.; Kurisaki, A.; Hirama, M. Tet. Lett. 1990, 31, 4329. Stork, G; Isaacs, R.C.A. J. Am. Chem. Sot. 1990, 112, 7399. Farina, V.; Baker, S.R.; Benigni, DA.: Hauck, S.I.; Sapino Jr C. J Org. Chem. 1990.55,

63. 64. 65 66 67 68 69. 70. 71. 72 73

112, 7410.

5833.

Baker, S.R.; Roth, G.P. Sapmo, C. Syn. Comm. 1990, 20, 2185. Rano, T.A; Greenlee, M.L.; Ninno, FP.D. Tet. Lett. 1990, 31. 2853. Stille, J K.; Sweet, M.P. Organometaflics 1990, 9, 3 189. Ciattini, P.G, Morera, E; Ortar, G. Tet. Lett. 1990, 31, 1889. Crisp. G.T.; FLynn, B L Tet. Lett. 1990, 31, 1347. Laborde, E.; Lesheskl, L.E., Klely, J.S. Te’et.Lett. 1990, 31, 1837. Tamayo, N, Echavarren, A.M ; Pairedes, M.C.; Farina, F., Nokeda, P Tet. Left. 1990, 31, 5189. Robl, J.A. Tet. Lett 1990, 31, 3421 Martorell, G.; Garcia-Raso, A, SaP, J.M. Tet Lett 1990, 31, 2357. Fu, J.M.; Snieckus, V Te’et.Lett 1990, 31, 1665 Catellani, M.; Chiusoli, GP., Fornasan, V. Cat.? Chim. Ital. 1990, 120, 779.

74. 75. 76. 77 78

Soderquist, J.A.; Santiago, B. Tet. Lett. 1990, 31, 5541. Crisp, G T.; Macolino, V. Syn. Comm. 1990, 20, 413 Gronowltz. S , Peters, D. Heferocycles 1990, 30, 645 Suri, S.C.; Nair, V. Synthesis 1990, 695. Kobayashi, Y.; Shimazaki, T.; Takeguchi, H.;‘Sato, F. J Org. Chem. 1990. -55, 5325.

79. 80 81. 82 83 84. 85 86. 87.

Roush, W.R.; Moriarlty, K.J.; Brown, B.B. Tet. Lett 1990, 31, 6509. Hatanaka, Y.; Hiyama, T. Yuki Gosei Kagaku Kyokaishi 1990, 48, 834 Hatanaka, Y.; Fukushima, S.; Hiyama, T. Heterocycfes 1990, 30. 303. Hatanaka, Y.; Hiyama, T. J Am Chem. Sot. 1990, 112, 7793. Hatanaka, Y.; Hiyama, T. Tet. Lett 1990, 31, 2719. Ikenaga, K, Matsumoto, S., Klkukawa, K., Matsuda, T. Chem Lett. 1990, 185. De la Rosa, M.A ; Verlarde, E.; Guzman, A. Synth. Comm. 1990, 20, 2059. Loffler, A.; Humbert, G. Synthesis 1990, 125. Saito, I.; Yamaguchi, K., Nagata, R.; Murahashi. E. Tet. Left. 1990, 31, 7469.

646

88.

89 90 91 92. 93. 94. 95 96. 97 98 99. 100. 101. 102 103 104. 105

106 107 108 109. 110. 111 112 113.

Myers, A.G.; Harrington, P.M.; Kuo, E.Y. J. Am. Chem. Sot. 1991, 113, 694. Eddarir, S.. Francesch, C.; Mestdagh, H.; Rolando, C. Tet. Lett. 1990, 31, 4449. Yang, Z-Y; Burton, D J Tet Lett. 1990, 31, 1369 Robbins, M J, Vinayak, RS.; Wood, S.G. Tet. Lett 1990, 31, 373 1. Robbins, J.M. Manfredini, S Tet Lett 1990, 31, 5633. Brandsina, L ; Verkruijsse. H.D. Synth. Comm 1990, 20, 2275 Smith, CA. Diss. Abstr. Int. B. 1989. 50, 1421 Nakatani, K.; Arai, K., Hirayama, N.; Matsuda, F., Terashima, S. Tet Lett 1990, 31, 2323. Wender, P.A , McKinney, J A.; Mukai, C J Am Chem. Sot. 1990, Il.?. 5369 Krebs, A., Wehlage, T, Kramer, C-P. Tet. Lett 1990, 31, 3533 Wehlage. T; Krebs, A.; Link, T Tet. Lett. 1990, 31, 6625 Nicolaou, KC ; Skokotas, G ; Furuya, S ; Suemune, H ,Collette, D. Angew. Chem. Int Ed. Engl. 1990, 29, 1064 Suffert, J Tet Lett. 1990, 3f, 7437 Nicolaou, K.C.; Hwang, C-K., Smith, A.L , Wendeborn, S.V. J Am Chem. Sot 1990, 112, 7416 Magnus, P., Annoura, H., Harling, J J Org. Chem. 1990, -55, 1709 Al-Hassan, M I J Organomet. Chem. 1990, 395, 227 Ito, Y; Inouye, M., Yokota, H ; Murakami, M j Org Chem. 1990, 55, 2567 Mignani, G., Chevalier, C., Grass, F, Allmang, G; Morel, P Tet. Lett. 1990, _?I, 5161 Zavodnov. VS., Kul’nevich, V G., Zniov’ev, V.D Khim Geterotsikl Soedin 1990 453 Sakakihara, T , Kume. T.; Shimohara, K, Fulishima, H.; Hara. S.; Shineda, T. Heterocycles 1990, 31, 459. Sakamoto, T., Katoh, E , Kondo, Y., Yamanaka, H Chem Pharm. Bull. 1990, 38, 15 13. Cervillo, J , Marquet, J,, Moreno-Manas, M Tetrahedron 1990, 46, 2035 Ogawa, T., Hayami, K, Iyama, H, Suzuki, H Chem. Lett 1990, 937 Crisp, G T ,Bubner, T P Synth Commun. 1990, 20, 1665 Native, C., Rmci, A ; Taddei, M Tet. Lett 1990, 31. 2637 Linderman, R J, Graves, D M ; Kwochka, W R, Ghannam, A.F., Ankelhar, T.V J .4m Chem. Sot 1990, 112, 7438.

641

114. 115. 116. 117 118. 119 120. 121. 122. 123. 124. 125. 126 127. 128 129 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141

Kauffmann, T.; Laarmann, B.; Menges, D.; Voss, K-U.; Wingbermuhl, D Tet. Lett. 1990, 31, 507. Cahiez, G.; Laboue, B. Tet. Lett. 1989, 30, 7369. Petasis, N.A.; Bzowej, E I J Am Chem. Sot. 1990, 112, 6393. Kamigata, N; Fukushima, T., Yoshida, M. Chem. Lett. 1990, 649. Merlic, CA.; Semmelhack, M.F J Organomet. Chem. 1990, 391, C23 Casalnuovo, A.L.; Calabrese, J.C J Am. Chem Sot. 1990. 112, 4324 Bumagin, N.A.; Andryukhova, N P., Beletskaya, I P Metalloorg. Khfm. 1989, 2, 911. Dai, X ; Zhang, J; Ma, J. EIouji Huaxoe, 1989, 9, 361. Choudary, B.M ; Ravichaudra Sarma, M; Rao, K.K. Tet. Lett. 1990, 31, 5781. Tao, W ; Nesbitt. S , Heck, R.F. j. Org. Chem. 1990, 55, 63. Bumagin, N.A., Andryukhova, N P, Beletskaya, I.P. Dokl Akad. Nauk SSSR 1990,313, 107 Davies, S.G.: Pyatt, D., Thomson, C J Organomet. Chem 1990, 387, 381. Yokoyama, Y; Takahashi, M.; Kataoka, K.; Fulikawa, Y , Murakami, Y. Heterocycles 1990, 31, 803. Arcade, A., Cacchi, S.; Marinelli, F., Morena, E.; Ortar, G. Tetrahedron 1990, 46, 7151. Andersson, C-M; Larsson, J ; Hallberg, A. J. Org Chem 1990, -5.5, 5757 Paquette, L A; Ra, C.S.; Edmonson, S.D. J Org. Chem. 1990. 55, 2443 Carbri, W.; Candiani, I.; Bedischi, A. J Org. Chem. 1990, 55, 3654. Choudary, B.M.; Sarma, M.R. Tet. Left. 1990, 31, 1495. Larock, R.C.; Gong, W.H. j Org. Chem. 1990, 55, 407 Fart-, RN.; Outten, R A.; Cheng, J C-Y, Daves Jr, G.D. Organometallics 1990,9,3151 Bellosta, V , Czernechi, S.; Avenel, D ,El Bahil, S , Gillier-Pandrand, H. Can. J Chem 1990, 68, 1364 Jeffrey, T. Tet. Lett. 1990, 31, 6641 Larock, R.C, Leung, W-Y. J. Org. Chem. 1990, S-5, 6244 Nilsson, K.; Hallberg, A. J. Urg. Chem. 1990, -55, 2464 Arcadi, A.; Benocchi, E.; Cacchi, S, Caglioti. L, Marinelh, F Tet Lett 1990, 31. 2463. Nilsson, K.; Hallberg, A Acta Chem. Scan. 1990, 44, 288 Yamashita, H ,Roan, B.L., Tanaka, M. Chem. Lett. 1990, 2175 Cheng, J.W.; Luo, F.T. Bull Inst. Chem., Acad. Sin. 1989, 36, 9.

648

142. 143 144 145 146. 147. 148. 149 150. 151. 152 153. 154. 155. 156. 157. 158 159 160 161 162. 163 164. 165 166. 167 168 169

Sato, Y., Sodeoka, M., Shibasaki, M. Chem. Left. 1990, 1953. Abelman, M.A.; Overman, L.E.; Tran, VD. J. Am Chem. Sot. 1990, 112, 6959. Sundberg, R.J; Cherney, R J. J. Org Chem. 1990.5.5, 6028. Larock, R.C.; Fried, C.A. J. Am. Chem. Sot. 1990, 112, 58&X2. Torii, S.; Okumoto, H.; Ozaki. H.; Nakayasa, S.; Kotani, T. Tet. Left 1990,31, 5319 Curran, D.P, Chang, C-T Tef. Left. 1990, 31, 933. Kende, AS, DeVita, R.J Tet. Left 1990, 31, 307. Somei, M ; Kawasaki, T Chem. Pharm. Bull. 1990, 37, 3426. Len&, N.L.; Peet, N.P. Tet. Left. 1990, .?f, 81 1. Larock, RC.; Stinn, DE.; Kuo, M-Y Tef. Left. 1990, 31, 17. Morris, I.K., Snow, KM.; Smith, NW.; Smith, K.M. J Org. Chem. 1990, 55. 1231 Kamigata, N ,Satoh, M. Suffur Left. 1989, 9, 233 Kamigata, N., Satoh, M.; Kukushima, T. Buff. Chem Sot. Jpn. 1990, 63, 2118. Kamigata, N., Kukushima, T.; Satoh, A., Kameyama, M. J Chem. Sot. PerkIn Il990, 549. Miura, M; Hashimoto, H, Itoh, K.; Nomura, M j. Chem. Sot., Pet-kin Trans I 1990, 2207. Cacchi, S. Pure Appl. Chem. 1990, 62. 713. Montgomery, J, Wieber, GM.; Hegedus, L S. J Am. Chem. Sot. 1990, 112, 6255. Uno, M.; Takahashi, T.; Takahashi, S. j. Chem Sot., Perkin Trans I 1990, 647. Fournet, G., Balme, G ; Gore, J. Tetrahedron 1990, 46, 7763. Cambie, R.C., Metzler, M.R., Rutledge, PS , Woodgate, P.D. j. Organomet. Chem. 1990, 381, C26. White, JD, Somers, T.C., Yager, K.M. Tet Left. 1990, 31, 59. Davis, R.; Durrant, J.L A, Khazal, N M.S ; Bitterwolf, T.E. j. Organomet Chem. 1990, 386, 229. Lee, G.M.; Weinreb, S.V. j. Org Chem. 1990, 55, 1281 Ishibashi. H.. Nakatani, H, Iwami, S.; Sato, T.; Nakamura, N.; Ikeda, M J Chem. Sot. Chem. Comm. 1989, 1767. Yang, ZY., Burton, D J. J. Flourme Chem. 1989, 45, 435 Chen, G.J.; Tamborski, C J Fluorine Chem. 1990, 46, 137. Tucker, C.E.; Rao, S.A , Knochel, P. J. Org. Chem. 1990, 55, 5446. Isaka, M; Nakamura, E J Am. Chem. Sot. 1990, 112. 7428.

649

170 171. 172 173. 174. 175. 176. 177. 178. 179. 180. 181. 182. 183.

184. 185 186. 187. 188. 189. 190. 191. 192.

Lautens, M.; Smith, A.C.; Abd-Elaziz, A.S ; Huboux, A.H Ter. Lerr 1990, 31, 3253. Valverde, 5.; Bernabe, M.; Ochos, S G.; Gomez, A.M. J Org. Chem. 1990, SS, 2294. Donnelly, K.D. Diss. Abstr. Znt. B 1990, 50, 3993. Baldwin, J.E.; Moloney, M.G.; Parsons, A.F. Tetrahedron 1990, 46, 7263 Iqbal, J.; Srivastava, R.R.; Khan, M.A. Ter. Lerr. 1990, 31, 1485 Jordan, R.F.; Taylor, D.F. Prepr. - Am. Chem. Sot., Div Per. Chem. 1989, 34, 577. Rigollier, P ; Young, J.R ; Fowley, L A., Stille, JR. J Am. Chem. Sot. 1990, 112, 9441. Young, J.R; Stille, J.R Urganomeraflics 1990, 9, 3022. Mori, M, Uesaka, N.; Shibasaki, M J Chem. Sot., Chem Comm. 1990, 1222. Kihara, N.; Tashiro, M. Chem. Express 1990, 5, 641. Salas, M.; Joule, J.A. j Chem. Res (S), 1990, 98. Ducoux, J.P.; LeMenez, P.; Kunesch, N.; Kunesch, G.; Wenkert, E. Ter. Lerr. 1990, 31, 2595. Newsome, P.W. Diss. Absrr. B. 1990, 50, 5074 Dzhemilev, U.M.; Dokichev, V.A.; Sultanov, S.Z.; Khusnutdinov, R I.; Tomilov, Yu.V., Nefedov, O.M.; Tolstikov, G.A. Zzv. Akad. Nauk SSSR, Ser. Khim. 1989, 1861. Tomilov, Yu V.; Kostitsyn, A.B.; Shulishov, E.V ; Khusid, A.Kh ; Nefedov, 0 M. I.zv Akad. Nauk SSSR, Ser. Khim. 1989, 2746. Tomilov, Yu.V., Kostitsyn, A.B.; Dokichev, V.A.; Dzhemilev, LJM.; Nefedov, O.M. I.% Akad. Naok SSSR, Ser Khim. 1989, 2752. Tomilov, Yu V ; Kostitsyn, A.B., Snudshov, E.V., Nefedov, 0 M. Synthesis 1990, 246. O’Bannon, P.E.; Dauley, W.P. j. Org. Chem. 1990, 55, 3531. Kunz, T.; Janowitz, A.; Reissig, H-U. Synthesis 1990, 43. Doyle, M.P.; Bagheri, U.; Wandless, T.J.; Harn, N.K., Brinker. D.A, Eagle, C.T.; Loh, K-L. J. Am. Chem. Sot. 1990, 1 I2, 1906. Demonceau, A.; Noel% A F.; Hubert, A.J Tetrahedron 1990, 46, 3889. Wenkert, E.; Guo, M.; Lavilla. R ; Porter, B.; Ramachandran, K.; Shew, JH. J. Org. Chem. 1990, 55. 6203. Doyle, M.P.; Bagheri, V.; Claxton, EE. j. Chem. Sot, Chem. Comm. 1990, 46.

650

193.

194. 195. 196 197. 198 199. 200 201 202 203. 204.

Dauben, W.G.; Hendricks, R.T.; Luzzio, M.J.; Ng, H.P. Tet Lett. 1990, 31, 6969. Demonceau, A ; Noels, A.F., Costa, J.L. J Mol. Catal. 1990, 58, 21 Evans, D.A., Woerpel, K.A ; Hinman, M M., Faul. M M. J Am. Chem. Sot 1991, 113, 726. Lowenthal, R.E.; Abiko, A.; Masamune, S. Tet. Lett. 1990, 31, 6005 Pfaltz, A. Bull. Sot. Chum Belg. 1990, 99, 729 Doyle, M.P., Branders, B D; Kazala, A.P., Pieters, R.J.; Jarstfer, M.B ; Watkins, L M.; Eagle, C.T Tet. Lett. 1990, 31, 66 13. Dolbier Jr., W.R., Burkholden, CR. J. Org. Chem. 1990, 55. 589. Collins, J C ; Dilworth, B.M.; Garvey, N.T.; Kennedy, M.; McKervey, M A.; O’Sullivan, MB J C S. Chem Comm 1990, 362. Ceciherelli, P., Curuu, M , Marcotulho, M.; Rosati, G ; Wenkert, E J Org. Chem 1990,55, 3 11 Etkin, N.; Babu, SD.; Fooks, C J., Durst, T. J Org. Chem 1990, 55, 1093 Hashimoto, S-i; Watanabe, N., Ikegani, S. Tet. Lett 1990, 31, 5173 Wolf, J., Brandt, L.; Fries, A.; Werner, H Angew. Chem. Int Ed Engl. 1990,29,

205 206 207. 208.

Hon, Y.S., Chang, R-C., Chau, TY. Heterocycles 1990, 31, 1745 Lee, E; Jung, K W, Kim, Y.S. Tet. Lett. 1990, 31, 1023. Doyle, M P.; Pieters. R.J ; Taunton, J.; Pho, H Q, Padwa, A ; Hertzog, D.L ; Preiedo, L J Org Chem 1991, 56, 821 Kennedy, M., McKervey, M A ; Maguire, A.R.; Roos, G H P. J. C. S. Chem Comm

209 210

510

1990,

361

Saba, A Tet Lett. 1990, 31, 4657 Davies, H M L ; Saikali, E.; Clark, T J ; Chee, E H. Tet. Lett

1990,

31,

6299

211 212. 213. 214 2 15. 216 217

Padwa, A, Zhi, L J Am Chem Sot 1990, 11.2, 2037 Padwa, A, Dean, D.C.J Org. Chem 1990, 55, 405. Padwa, A ; Gryxell, G.E; Zhi, L. J. Am. Chem Sot 1990, Kinder, FR , Padwa, A Tet Lett 1990, 31, 6835 Padwa, A, Chiacchio, U., Garreau, Y, Kassir, J M Schoffstall, A.M J Org. Chem. 1990, 55, 415 Padwa, A.; Kulkarni, Y.S., Zhang, 2 J Org Chem. 1990, Wienand, A.; Buchert, M.; Hofmann, B , Reissig, H U. Ser. C

218. 219

1989.

269,

112, 3100 ; Krumpe,

K.E.,

55, 4144. NATO ,451 Ser.,

271

Wienand, A, Reissig, H.U Organometalhcs 1990, 9, 3133. Wienand, A., Reissig, H U Angew. Chem. Znt. Ed Engf 1990,

29,

1129

651

220.

Murray,

C.K.; Yang, D.C.; Wulff, W D J. Am. Chem.

Sot. 1990,

112,

5660.

225 226. 227.

Harvey, D.F.; Brown, M.F Tet Lett 1990, 31, 2529. Soderberg, B.C ; Hegedus, L.S. Organometallics 1990. 9, 3 113 Fischer, H.; Bidell, W.; Hofmann. J. J C. S. Chem Comm. 1990, 858 Aumann, R.; Heinen. H.; Krueger, C.; Betz, P Chem. Ber. 1990, 123, 605. Harvey, D F ; Brown, M.F. J. Am Chem. Sot 1990, 112, 7806. Hoye, T.R., Rehberg, G. Organometallics 1990, 9, 30 14 Hoye. T.R , Dinsmore, C.J ; Johnson, D S ; Korkowski, P.F. J Org. Chem

228 229 230 231

Mathur, NC.; Schechter, H Tet Lett. 1990, 31, 6965. Liao, Y, Huang, Y-Z. Tet. Left 1990, 31, 5897 Trost, B M. Ace. Chem Res. 1990. 23, 34 Trost, B.M.; Lautens, M; Chan, C.; Jebarstnam, D.J; Mueller, T. j. Am.

22 1. 222. 223. 224.

1990,5X

Chem.

232 233 234. 235. 236.

45 18

Sot. 1990,

113, 636

Wender, PA.; McDonald, F.E. J. .4m Chem. Sot Trost, B M ,Shi, Y.J. Am. Chem Sot 1991, Il.?, Dennehy, R.D, Whitby, R J. J C S Chem Comm. Takacs. J.M., Chandramouli, S. Organometallics Zhang, Y ,Wu, G Z; Agnel, G., Negishr, E-I J Am

1990,

112, 4957.

701. 1990, 1990,

1060. 9. 2877.

Chem. Sot. 1990,

112,

8591.

241 242. 243. 244

Oppolzer, W. Pure Appl. Chem 1990, 62, 1941. Takacs, JM, Zhu, J. Tet. Lett. 199031, 117 Takacs, BE.; Takacs, J M Tet. Lett 1990, 31, 2865. Wulff, W D.; Bauta, WE.; Kaesler, R.W.; Lankford, P J.; Miller, R.A.; Murray, CK ,Yang, DC J Am Chem. Sot. 1990, 112, 3642. Wang, SLB, Wulff, W.D J. Am Chem Sot. 1990, 112, 4551 Rrgby, J.H., Ateeq, H.S. J Am. Chem. Sot. 1990, 112, 6442. Rigby, J.H., Ogbu, CO. Tet Lett. 1990, 31, 3385 Goldschmidt, Z, Gottlieb. HE.; Almadhown, A Tet. Lett 1990, 31,

245.

Lautens,

237 238 239. 240

6711.

M A., Lautens,

J C.; Smith, A.C j. Am

Chem

Sot. 1990,

112,

5627.

246

Barrett, 1990,

247.

A G., Carpenter,

Corriu, R J.P; Moreau, 2878

N.E.; Mortrer, J., Sabata, M. Organometallics

9, 131.

J.J E; Patand-Sat,

M. J Org Chem. 1990,

55,

652

248 249

250 251 252. 253

Fischer,

255 256

Ber. 1990,

Gerbing, U ,Treier, K., Hofmann, J. &em

f 23,

725 Butenschon, H. Angew Chem ht. Ed. Engl. 1990, 29, 1056. Mongrain, C, Gaudreault, R C Syn &rum. 1990, 20, 249 1 Cheng, M ; Hulce, M. J Org Chem. 1990, -5-5, 964 Oehlschlager, A.C; Hutzinger, M.W.; Aksela, R., Sharma, S., Singh, S M Tet Lett 1990, 31, 165. Grigg, R., Loganathan, V ; Sukirthalingam, S., Sridharan, V Tet Lett 1990,

254.

H;

31, 6573.

Wang, R-T., Chow, F-L, Luo, F-T J. Org Chem. 1990, 55, 4846 Negishi, E-I., Noda, Y, Lamaty, F, Vawter, E.J Tet Lett. 1990. 4393 Fournet, G , Balme, G.; VanHeimelryck, B , Gore, J. Tet Lett 1990,

31, 31,

5147

257. 258 259 260 261 262

Al-Hassan, M.I. J. Organomet. Chem 1990, 386, 395 Trost, B M ,Edstrom, ED Angew Chem Znt. Ed Engl 1990, 29, 520 Ma, S, Lu, X J C S Chem Comm 1990 733 Lautens, M ,Huboux, A.H Tet Lett. 1990 31, 3105. Hsu, DP.; Lucas, E.A., Buchwald, SL Tet Lett 1990, 31, 5563. Buchwald, S L., Fisher, R.A., Foxman, B M. Angew Chem Int. Ed. Engl. 1990,

263

29, 771

Kusumoto,

T, Nishide, K; Hiyama, T Bull

264 265.

; Metzler, M 398,

Rutledge, P S.. Woodgate, P D

Organomet

Chem

1990,

Trost,

B M , Dyker, G , Kulawlec, R J J Am. Chem Sot 1990, 1 I.?,

C22.

7809.

266

Tokunaga,

Y, Sakakura,

T.; Tanaka,

Masato J. Mol

Catal

1989,

56,

305

267 268. 269 270 271.

Brzezowski, CM DISS. Abstr Int B. 1990, 50, 4534 Stolle, A; Salaun, J.; deMeilere, A Tet. Lett. 1990, 31, 4593 Ikeda, I , Gu, X-P.; Okuhara, T ,Okahara, M Synthesis 1990, 32 Chen, J ; Chen, Q. Acta Chum Sin (Engl Ed 1 1989, 558. Moreno-Maiias, M, Pleixates, R, Villarroya, M J Org Chem. 1990, -55, 4925

272

Thompson, 1990.31,

273. 274

W J, Tucker,

T J; Schwering,

JE.; Barnes, JL

68 19

O’Donnell, M J.. Yang, X., LI, M. Tet Lett 1990, 31, 5135 Miller, A, Procter, G Tet Lett 1990. 31, 1043

Tet

Lett

653

275

Baba, T.; Nakano, K.; Nlshiyama,

276 277 278.

Yan, C, Nan Sheng, L.; Min Zh, D. Tet. Lett 1990, 31, 2405. Legros, JY; Fiaud, J.C. Tet. Lett. 1990, 31, 7453. Paquette, L.; Rayner, CM ; Doherty, A.M. j Am. Chem. Sot 1990,

Comm.

1990,

S.; Tsurya. S; Masai, M. J C S. Chem

348.

112,

4078

279 280 281 282

DelValle, L.; Stille, J.K ; Hegedus, L.S. J. Org. Chem. 1990, 55, 30 19 Basson, M.M., Holzapfel. C W.; Verdoorn, G.H Heterocycfes 1990, 29, 226 1 Fotiadu, F.; Cros, P, Baure, B.; Buono, G. Tet. Lett. 1990, 31, 77. Okada, Y., Mmami, T ,Sasaki, Y.; Umezu, Y, Yamaguchi, M Tet Lett 1990,

31, 3905.

283. 284. 285

Hiroi, K; Abe, J Tet. Lett 1990, 31, 3623 Fiaud, J C., Legros, J.Y. J Org Chem. 1990, 55, 4840. Yamaguchi, M.; Shima. T ; Yamagashi, T.; Hida, M Tet. Lett

286

Ohe. K; Ishihara.

1990,

31,

5049.

T., Chatani, N, Mural, S. J. Am

Chem.

Sot. 1990,

112, 9646

287 288 289 290 291

Trost, B M , Vrake, H Tet Lett 1990, 31, 6 15. Hanzawa, Y , Ishizawa, S., Ito, H ; Kobayashi. Taguchi. T. J Chem Chem.

Comm

1990,

Trost,

B.M.; Tasker,

1991,

113.

Sot,

394.

AS., Ruther,

G; Brandes,

A J Am.

Chem.

Sot

1990,

31,

1990,

31,

670.

Ma, S ; Lu, X J Chem. Sot Chem. Comm 1990, 733 Oppolzer, W.; Birkinshaw, T N, Bernandelh. G Tet

Lett

6995

292

Oppolzer, W ; Keller, T.H,Kuo, D L., Pachinger,

W Tet Lett

1265

293. 294 295. 296. 297 298 299 300 301

Yoo, SE, Lee, S.H.; Yi, KY, Jeong, N Tet Lett.

1990,

31, 6877

Trost, B M.; Merhc, C.A J Am. Chem Sot 1990, 112, 9590 Trost, B M , Merhc. C.A J. Urg Chem 1990, 5.5, 1 127. Backvall, J E; Sellen, M ,Grant, B J Am Chem Sot 1990, 112, 6615 Underiner, T L.: Goering, H L. J Org Chem. 1990, 55, 2757 Denmark, S E, Marble, L K J. Org. Chem 1990, 5.5, 1984 Gazes, B Pure Appl Chem. 1990, 62, 1867. Trost, B M.; Kottirsch, G J. Am Chem Sot 1990, f12, 2816. Barbers, A.; Cuachado, P.; Fleming, I ; Gonzalez, A M ; Rulido, F.J J. Chem Sot Chem Comm 1990, 1030

654

302

Normant, J.F, Quirion, J-Ch.; Masuda, Y., Alexakis, A Tet. Lett

1990.

31, 2879. 303.

Alexakis, 1990,

A., Marek, I ; Mangeney,

P; Normant, J.F. J. Am

Chem

Sot

112, 8042.

311

Burton, D J., Hartgraves, GA, Hsu, J. Tet. Lett. 1990, 31, 3699 Hung, M.H. Tet Lett. 1990, 31, 3703. Mandai, T.; Nakata, T.; Murayama, H.; Yamaoki, H.; Ogawa, M ; Kawada, M, TSUJI.J. Tet. Lett. 1990, 31, 7179 Klimas, MT DISS. Abstr Int B. 1990, -51. 752 Nakagawa, M , Ma, J , Hino, T. Heterocycfes 1990, 30, 451. Tester, R ; Varghese, V , Montana, A M., Khan, M ; Nicholas, K.M. J. Org. Chem 1990,5-5,186 Grove, D.D, Miskevich, F.; Smith, CC ,Corte, JR Tet Lett 1990, 31, 6277 Kasatkin, A.N.; Tsypyshev, O.Yu.; Romanova, T.Yu, Tolstikov, GA.

312

Negrel, J.C., Zoellner, R W ; Chanon, M.; Chanon, F NATO ASZ Ser., Ser C

313 314

Soulen. R.L. Griffith, JR j. Flourrne Chem 1989, 44, 195. Ginah, F 0, Donovan, T.A., Suchas, S D ; Pfennig. D.R,Ebert, G W. J Org. Chem 1990, 55, 585 Kageyama, H.; Furusawa, 0, Kimura, Y. Chem Express 1990, 5, 645. Iyoda, M , Otsuka, H ,Sato, K, Nisato, N, Oda, M Bull Chem Sac Jpn 1990, 63, 80 Conan. A, Sibille, S , d’Incau, E; Perichon, J J Org Chem. 1990. 55, 48 Wey, H G, Butenschon, H Chem. Ber. 1990, 123,93 Kelly, T R, LI, Q, Bhushan, V Tet Lett 1990, 31, 161. Miura, M.; Hashimoto. H.; Itoh, K; Nomura, M. Chem Lett. 1990, 459. Yanglong, Q , Guisheng, L ; Huang, Y-Z. J Organomet Chem 1990, 381,

304 305 306. 307 308 309 310

Met&loot-g. 1989,

315. 316 317 318 319 320 321

Khlm

1989,

2, 830.

257

29

322 323 324. 325

Marchand. A.P.; Reddy, G M ,Deshpande, M.N; Watson, W.H ; Nagl, A., Lee, OS, Osawa, E J. Am Chem. Sot. 1990, 112, 3521. Agranat, I ; Cohen, S.; Isarasson, R, Sandstrom, J., Suissa, M.R. j. Org. Chem 1990,_5_5, 4943. Dauben, W.G; Wang, TZ; Stephens, R.W Tet Lett. 1990, 31, 2393. McMurry, JE; Dushin, R.G J Am Chem. Sot 1990. 112, 6942

.

655

332 333

Clive, D.L.J., Keshavamurthy, K.S.; Wee, A.G.H.; Siva Prasad, J.. da Silva, G.V.D.; Majewski, M; Anderson, P.C., Evans, C.F.; Haugen, R.D.; Heerze, L.D.; Barrie, JR. J Am Chem. Sot 1990, 112, 3018. Clive, D.L.J.; Keshavamurthy, KS.; Zhang, C.; Hayward, W.D.; Daigneault, S. J. Chem. Sot. Chem. Corn. 1990, 509. Rau, A.S.; Pedersen, S.F. J. Org. Chem. 1991, 56, 830. Yeung, L.L.; Yie. Y.C.; Luh, I-Y. J. Org. Chem. 1990, 5.5, 1874. Feldman, K.S.; Grega, K.C. j Organomet Chem. 1990, 381. 251. Bassoli, A ; Di Gregorio, G., Rindone, B.; Tollan, S ; Chioccara, F. J Mol Catal. 1989, 53, 173. Stocks, M, Kocienski, P.; Donald, D.K. Tet. Lett 1990, 31, 1637 Flid, V P , Vasyukov, V S ; Velov, A.P Tear. Eksp. Khim 1990, 26,

334.

Keim, W., Becker, J.; Kraneburg,

P.; Greven, R. J Mol. Catal 1989,

54,

335 336

Donaldson, W A ; Wang, J j Urganomet. Chem. 1990. 395, 113. Donaldson, W.A , Stepuszek, D.J; Gruetzmacher, J.A Tet. 1990,

46,

337.

Genet, JP.; Kopola, N.; Jupe, S ; Ruiz-Monte% J., Antunes. 0.A C.; Tanier, S. Tet Lett 1990, 31, 3133. Akermark, B.; Hansson, S ; Vitaghano, A J. Am Chem. Sot. 1990, 112,

326.

327.

328. 329 330 331.

371 37

2273.

338.

4587.

339. 340. 341. 342. 343 344 345. 346

Kurosawa. H ; Ogoshi, S.; Kawasaki, Y.; Murai, S.; Miyoshi, M-a.; Ikeda. I. J Am. Chem. Sot 1990, 112, 28 13 Rosenblum, M.; Watkins, J.C. J Am. Chem. Sot. 1990, f 12, 6316. Casey, CP ,Yi, C.S. Organomet. 1990, 9, 2413. Tjaden, E.B., Stryker, J.M. J Am Chem. Sot. 1990, 112, 6420. Failer, J W ; Lambert, C.; Mazzieri, M.R J Urganomet. Chem, 1990, 383, 16 1. Failer, J.W ; Linebarrier, D L. Organomet. 1990, 9, 3 182. Berryhill, S R.; Breitenbucher, J G. Tet Lett. 1990, 31, 167 1 Lin, S.H, Vong, W.J.; Cheng, C.Y; Wang, S.L; Liu. R.S. Tet. Lett 1990, 31, 7645.

347

Uong, W J.; Lin, S-H., Liu, R-S., Lee, G-H ; Peng, S-M J Chem.

348 349 350.

Knochel, P.; Rao, S.A. J. Am. Chem. Sot 1990. 112, 6 146. Chow, T S.; Knochel, P J Org. Chem 1990,55, 479 1 Lautens, M.; Abd-El-Aziz, A.S, Lough, A. J Org. Chem.

Chem.

5305

Comm

1990,

Sot.

1285

1990.

55,

656

351 352 353. 354 355 356 357 358 359. 360. 3.6 1. 362 363 364 365 366 367 368 369 370 371 372 373 3.7 4 37 5

376. 377 378 379

Clavez, G.; Chavant, PY Tet Lett 1989, 30, 7373 Wender, P.A.; Grissom, JW, Hoffman, U.; Mah, R Tet. Lett 1990, 31, 6605 Fulimura, 0, Takai, K., Utimoto. K J Org Chem 1990, 55, 1705 Takai, K., Kataoka, Y, Utimoto, K J Org. Chem. 1990, 54, 1707. Takai, K.; Miyai, J , Kataoka, Y.; Utimoto, K. Organomet 1990, 9. 3030 Kataoka, Y.; Miyai, J, Tezuka. M ; Takai, K Tet. Lett. 1990, 31, 369 Erker, G, Ah van der Zeilden, A Angew. Chem Int Ed Engl. 1990, 29,512 Khanous, A, Gorgues, A, Jubault, M Tet Lett 1990, .?I, 731 1 Mukai, C, Suzuki, K, Hanaoka, M Chem. Pharm Bull. 1990, 38, 567 Rousch, W R , Park, JC J Urg Chem 1990, -55, 1143 N.1,.ZJ... Yang. P F ,. Ng.. DKP ,. Tzeng. Y I_%,.l_Jlh_.T .Y ,r am f&m. sac 1990, 112, 9356 Shi, X, Luh, T Y Organomet 1990, 9, 30 19 Kang, H J, Paquette, L.A J Am Chem Sot 1990, 112, 3252 Abe, F, Hayashi, T.; Tanaka, M. Chem. Lett 1990, 765 Matsuda, I, Takahashi, K., Sato, S Tet Lett 1990, 31, 5331 Wang, D Hoaxue Shllr 1990, 12, 98 Sodeoka, M Kagaku to Kogyo (Tokyo) 1990, 43, 2 16 Song, Xiaoping Huaxue Shqf 1989, 11, 144 Hong, Y H DISS Abstr Int B 1989, 50. 963 Balas, L , Jhurry, D., Latxague, L , Grehev, S , Morel, Y, Hamdani, M , Ardoin, N , Astruc, D Bull Sot Chum Fr 1990, 40 1 Rose-Munch, F , Aniss, K, Rose, E J Organomet Chem 1990, 38.5, Cl Rose-Munch, F, Aniss, K Tet Lett 1990, 31. 635 1 Camps, F, Cole, J, Moretb, JM, Pages, L, Roget, J J Chem Res 1990, 236 Kundig,. E P ,. c,unuh&a~~_ JII ,_ b F ,_ Pa_@_q. P ._ S~_m_m_an_s.. B P I_ Bernardelh. G Helv. Chum Acta 1990, 7.?, 386 BLagg. J.:. bwP,s.

S G ,. c;nslrifP,l~_QW,. c I, ,. sll.t_tm~. K_H_J Cllem

sac Perk

Trans 1 1990, 1133 Dickens, P , Gilday, J P , Negro, J T , Widdowson, D A Pure Aypl 1990, 62, 575 Mathews, N, Widdowson, DA Synfett 1990, 467 Clough, J M ,Mann, IS, Widdowson, DA Synlett 1990, 469 Heppert, J A , Aube, J: Thomas-Miller, ME; Milligan, Takusagawa, F Organomet 1990, 9, 727

Chem

ML ,

388

Coote, S.J ; Davies, S G ; Goodfellow, C.L.; Sutton, K H.; Middlemiss. D.; Naylor, A. Tet. Asymm 1990, 1, 817 Kundig, EP.; Perret, C., Rudolf, B Helv Chim. Acta 1990, 73, 1970 Kalinin, V N., Moiseev. S.K ; Bakhmutov, V.I., Cherepanov, I A J. Organomet. Chem. 1990, 383, 85. Mukai, C , Cho, W J.; Hanaoka. M Tet Lett 1989, 30, 7435 Davies, S G; Goodfellow, CL. J Chem Sot Perkln I 1990. 393 Colonna, S.; Manfredi, A.; Solladie-Cavallo, A.; Quazzotti, S Tet Lett 1990, 31, 6185 Uemura, M ; Nishimura, H; Hayashi, Y Tet Left. 1990, 31, 2319 Lebibi, J, Pehnski, L, Maciewjewski, L., Brocard, J. Tet 1990, 46, 6011 Kahnin, V.N.; Moiseev, S K; Bakhmutov, V T , Cherepinov, 1.A J

389.

Coote, S.J., Davies, S G., Middlemiss.

390.

Kundig, E P , Bernadinelli,

380. 381 382

383. 384 385 386. 387

Organomet.

Chem

1990,

383, 85

D; Naylor, A. Tel. Asylum.

1990,

I, 33 Int

39 1. 392 393 394. 395.

Ed Engl. 1990,

G.; Leresche,

J , Romanens,

Angew.

Chem

29, 406.

Rieke, RD., Schulte. L D., Dawson. B.T ; Yang, S S. J 1990, 112, 8388 Sutherland, R.G., Zhang, C, Piorko, A Tet. Lett 1990, Mandon, D ,Astruc, D. Organomet 1990, 9, 34 1 Pearson, A J., Roden, B.A. J. Chem. Sot. Perkin I 1990, Owen, DA.; Stephenson, G R., Finch, H, Swanson, S.

Am.

Chem

Sot.

31, 683 1 723 Tet

Lett

1990,

31, 3401

396. 397. 398. 399 400.

Knolker, H.J.; Bauermeister, M J Chem Sot Chem. Comm 1990, 664. Polter, G.A ,McCague, R. J Chem Sac Chem Comm. 1990, 1172. Stephenson, G.R., Voyle, M, Williams, S Tet. Lett. 1990, 31, 3979 Pearson, A.J., Malhk. S.; Mortezaei, R.; Perry, M W.D.; Shively Jr, R J.; Youngs, W J. J Am Chem Sot 1990, 112, 8034 Hansson, S , Miller, J F, Liebeskind, L.S J Am Chem Sot. 1990, 112, 9660.

401 402

Donaldson, W.A. J Organomet Chem. 1990, 395 187. Bleeke, JR., Wittenbrink, R J, Clayton Jr., T W.; Chiang, MY J Am. Chem

403

Sot. 1990,

112. 6539

McDaniel, KF; Kracker

II, L.R; Thambural,

PK

Tet. Left.

1990,

31,

2373

404.

Pinsard, 1137.

P., Lellouche, J.P; Beaucourt,

J.P.; Gree. R Tet. Lett.

1990, 31,

658

405

411

Pinsard, P.; Lellouche, J.P.; Beaucourt, J.P.; Gree, R. Te’et.Lett. 1990, 31, 1141. Benvegnu, T , Martelli, J ; Gree, R ; Toupet, L. Tet. Lett. 1990, 31, 3145. Roush. W.R., Park, JC. Tet. Lett. 1990, 31, 4707. Jolly, P W., Kobel, N. Synthesis 1990, 771. Uno, M.; Takahashi, T; Takahashi. S. J Cheru Sot. Perkln I 1990, 647. Alcock, N.W, Pike, G.A., Richards, C.J.; Thomas, E.E. Tet. Asym. 1990, I, 531. Hill, L, Richards, C J., Thomas, S.E. J Chem Sot. Chem. Comm. 1990

412. 413 414 415. 416 417

Moiseev, I I Russ. Chem Rev. 1989, 58, 682 Antonova, A B; Ioganson, A.A Russ. Chem. Rev 1989,58, 693. Nozaki, H. Synlett 1990, 44 1 Dotz, K H New J Chem. 1990, 14, 433. Dotz, K.H Nachr Chem , Tech Lab 1990, 38, 872. O’Connor, J.M , Pu, L.; Johnson, J.A.; Uhrhammer, R NATO ASI Ser, Ser

406.

407 408. 409. 410.

1085

C 1989, 269, 43.

418. 419. 420. 421.

Hegedus, L.S Pure Appl Chem. 1990, 62, 691 Rudler, H., Pat-her, A , Denise, B ; Yefsah, R.; Alvarez, C.; Daran, J C , Vassermann, J.; Knobler, C. NATO ASI Ser., Ser. C. 1989, 269, 279 Pombeiro, A JL. NATO ASI Ser, Ser C. 1989, 269, 79 Le Bozec. H , Devanne, D.; Dixneuf. P.H NATO ASI Ser, Ser. C. 1989, 269, 107.

422. 423 424

Schwindt, M A, Lelon, T., Hegedus, L.S. Organomet. 1990, 9, 2814. Aumann, R, Schroeder, J, Heinen, H Chem i?er. 1990. 123, 1369. Brandovold, T A ; Wulff, W D, Rhengold, A. J Am Chem. Sot 1990,

425 426 427 428. 429 430 431 432

Boger, D L ; Jacobson, I C J Org. Chem 1990.55, 19 19 King, J ; Quayle, P ; Malone, J.F Tet. Lett 1990, 31, 522 1 Semmelhack, M F; Jeong, N Tet. Lett. 1990, 31, 605. Semmelhack, M.F, Jeong, N, Lee, GR. Tef Lett 1990, 31, 609. Anderson, B A, Wulff, W D J. Am Chem. Sot 1990. 112, 86 15 Herndon, J.W , Matasi, J J J Urg Chem 1990, 55, 786 Hoye, T R; Rehberg, G.M J Am. Chem Sot 1990, 112, 284 1 Camps, F, Llebaria, A ; Moreto, J M , Ricart, S ; Viiias, J M. Tet. Lett

433

Soderberg,

112,

1990,

1645.

31, 2479

112, 4364

B.C, Hegedus,

LS; Sierra,

M.A. J Am. Chem.

Sot

1990,

659

434. 435 436. 437. 438. 439. 440. 441 442 443 444. 445. 446 447 448 449 450. 45 1. 452. 453 454 45s 456 457 459. 460 461 462

Giordani, G.; Licandro, E ; Maiorana, S.; Papagni, A.; Swain, A.M ; Williams, D.J. J Organomet. Chem. 1990, 393, 227. Erker, G.; Aulbach, M.; Mena, M., Pfaff, R.; Sosna, F. Chem. Ser. 1989, 29, 451. Garrett, K.E.; Feng, W C.; Matsuzaka. H.; Geoffroy, G L.; Rheingold, A.L J. Organomet. Chem. 1990, 394, 251 Erker, G.; Sosna, F.; Betz, P; Werner, S., Kruger, C. J Am. Chem Sot. 1991, 113, 564. Erker, G; Sosna. F. Organomet 1990, 9, 1949. Davies, S.G.; Middlemiss, D ; Naylor, A; Wills. M J Chem. Sot. Chem Comm 1990, 797. Collingwood, S P.; Davies, S G.; Preston, SC. Tet Lett. 1990, 31, 4067. Llpshutz, B.H.; Ung, C., Elworthy, T.R; Reuter. D.C. Tet Lett 1990, 31, 4539 Retherford, C , Chow, T-S ; Schelkun. R M.; Knochel, P. Tet. Lett 1990, 31. 1833 Lipschutz, B.H ; Ellsworth, EL.; Dimock, S.H ; Smith, R A J J. Am. Chem sot 1990,112. 4404. Sakata, H, Aoki, Y.; Kuwajima, I Tet Lett 1990, 31, 1161. Cahiez, G.; Alami, M Tet Lett. 1990, 31, 7245. Hagen. T J. Syn. Lef. 1990, 63 Bablak, K.A ; Behhng, J.R; Dygos, JH.; McLaughlin, K.T.; Ng, T.S.; Kabsh, V.J.; Kramer, S.W.; Shone, R.L J. Am. Chem. Sot. 1990, 112, 7442. Lipshutz, B H.; Ellsworth, EL. j Am. Chem. Sot 1990, f 12, 7440. Ireland, R E.; Wipf, P J C&g.Chem 1990, 55. 1425 Stllle, J K ,Sweet, M.P Organometaffics 1990, 9, 3 189 Tsullyama, H , Ono, N, Yoshihara, T.; Okamoto, S, Sato. F. Tet. Lett. 1990, 31, 4481 Asaoka, M; Sakurai. M., Takei. H. Tet. Lett. 1990, 31, 4759. Piers, E , Marais, PC. J Org. Chem. 1990, 55, 3454. Petasis, N A.; Patane, M A. Tet. Lett. 1990, 31, 6799 Doi, T., Shim&u, K ; Takahashl, T , Tsuji, J ; Yamamoto. K Tet. Lett. 1990, 31, 33 13 Amberg, W ; Seebach. D. Chem Ber. 1990, 123, 2413 Amberg, W., Seebach, D Chem. Ber. 1990, 123, 2439 Boquel, P.; Chapleur, Y Tet. Lett. 1990, 31, 1869. Aoki, Y; Kuwajima, I Tet Lett 1990. 31, 7457. Ahn, KH.; Klassen, R.B. Lippard, S.J. Organomet. 1990, 9, 3178 Tanaka, K; Ushlo, H, Suzuki, H J Chem. Sot. Chem. Comm. 1990, 795.

660

463 464 465

Rossiter, B.E, Eguchi, M Tet. Lett 1990, 31, 965. Fang, C; Suemune. H., Sakai, K. Tet. Lett. 1990, 31. 4751. Pourcelot, G , Melnyk, 0, Besace, Y , Stephan, E , Cressor, Organomet

466.

Bergdahl,

Chem

1990,

P J

388, CS

M ; Nilsson, M.; Olsson, T J Organomet

Chem

1990,

391.

Cl9 467

Tamura, R, Watake, K-i, Katayama, H ,Suzuki, H ,Yamamoto, Y J Org Chem

468 469

1990,

-55, 408

Ibuka, T., Habashita, H, Funakoshi. S; Fujii, N; Oguchi, Y, Uzehara, T.. Yamamoto, Y Angew. Chem Int. Ed Engl 1990, 29, 801 Yoda, H , Naito, S , Takake, K, Tanaka, N., Hosoya, K Tet. Lett. 1990, 31, 7623

470 471 472 473. 474. 475 476 477 478 479 480 481 482 483 484.

Jako, I, Uiker. P, Mann, A, Taddei, M., Wermuth, CG Tet Lett 1990, 31, 1011 Rehnberg, N, Sundin, A., Magnusson, G. J Urg. Chem. 1990, 55, 5477 Jung, M E, Lew, W Tet. Lett 1990, 31, 623 Alexakis, A, Sedvani, R, Mangeney, P Tet Lett 1990, 31, 345. Bulman Page, PC ,Prodger, J C, Hursthouse, M B , Mazid, M J Chem Sot Perkrn Trans I 1990, 1, 167 Paley, R S, Snow, S R Tet Lett. 1990, 31, 5853 Saengchantars, S T ,Wallace, T W. Tetrahedron 1990, 46, 3029 Charonnat, J A ; Mitchell, A L , Keogh, B P Tet Lett. 1990, 31. 3 15 Gerard, C, Remain, I, Ahmar, M.; Block, R Tet Lett. 1989, 30, 7399 Takano, S , Shimazaki, Y., Ogasawara, K Tet Lett 1990, 31, 3325 Linderman, R J., Griedel, B.D J Q-g. Chem 1990, S5, 5428 Krause, N Chem Ber 1990, 123. 2 173 Lee, S H.; Hulce, M Tet Lett 1990, .?l, 311 Thomas, E W, Szmurszkerrcz, JR J Org Chem 1990, -5.5, 6054 Kasatkin, A N, Kulak, A N, Biktimrov, R Kh., Tolstikov, G.A. Tet Lett 1990,

485 486 487 488 489 490

31, 4915

Cahiez, G, Alamo, M. Tet Lett. 1989, 30, 7365. Cahiez, G., Alami, M Tet. Lett 1990, 31, 7423 Kasatkin, A N , Tsypyshev, 0 Yu , Romanova, T Yu , Tolstikov, G A Izv Akad Nauk SSSR, Ser Khim 1990, 1154 Cahiez, G ,Alamo, M. J. Organomet Chem 1990, 397, 29 1. Dieter, RK., Lagu, B, Deo, N., Dieter, J W Tet Lett 1990, 31, 4105 Kauffmann, T ,Hopp, G ; Laarmann, B , Stegemann, D ; Wingbermuhle, D Tet Lett. 1990, 31, 511

661

49 1.

492. 493. 494 495. 496 497. 498. 499 500. 501 502 503 504. 505. 506. 507 508 509 510 511. 5 12. 513. 514 515 516

Kauffman, T.; Hulsdinker. A ; Menges, D ; Nienaber, H.; Rethmeir, L ; Roffe, S., Scheiler, D.; Schrickel, J; Wingbermule, D. Tet Lett. 1990, 31, 1553. Balm, C.; Ewald, M Tet. Lett. 1990, 31, 501 1. Brunner, H.; Kraus, J J Mol. Catal. 1989, 49, 133 Nikishin, G I; Kovaleu, 1.P Tet Lett. 1990, 31, 7063. Herndon, J.W.; Wu, C; Harp, J.J. Urganomet. 1990. 9, 3157. Noskov, Yu G.; Terekhova. M.I., Petrov, E.S Zfz. Obshch. Khlm. 1990, 60, 1336. Noskov, Yu G., Terekhova, M I.; Petrov, ES Kinet. K&al. 1989, 30, 234. Cipres. I., Jenick, J, Kalck, P. j. Mol. Cataf 1990, 58, 387. Bonnet, MC , Coombes, J., Manzano, B.; Neibecker, D.; Tkatchenko, I J Mel Catal 1989, 52, 263 Inomata, K., Toda, S ; Kinoshita, H. Chem Lett. 1990, 1567. Osahada, K.: Doh, M-K, Ozawa, F.; Yamamoto, A. Organometallics 1990, 9. 2197. Yadav, JS, Rao, ES ; Rao, V.S, Choudary, B.M. Tet Lett. 1990, 31, 2491. Brechot, P ; Chauvin, Y , Commereuc. D ,Saussme, L Urganomet 1990, 9, 26 Balavoine, G ; Clinet, JC , Zerbib, P; Boubekeur, K J Organomet. Chem. 1990, 389, 259 Semmelhack, M F.; Kim, C.; Zhang, N.; Boduro, C, Sanner, M.; Dobler, W., Meiro, M. Pure Appl. Chem. 1990. 62, 2035. Alper, H., Hamel. N J. Chem Sot. Chem. Comm 1990, 135. Izumi, T, Nishimoto, Y, Kohei, K., Kasahara, A. J Heterocycl Chem 1990, 27. 1419 Anastasiou, D, Jackson, W R Tet. Lett. 1990 31. 4795 Eilbracht, P.; Huttmann, G.E Chem Ber 1990. 123, 1053. Eilbracht, P; Hutmann, GE.; Deussen, R Chem. Ber. 1990, 123, 1063 Burke, S.D; Cobb, J E.; Takeuchi, K j. Org Chem. 1990, 55, 2138 Wouters, J M A, AVIS, M W.; Elsevier, C J, Kyriakidis, C.E; Stam, C.H Organomet 1990, 9, 2203. Satyanarayana, N., Alper, H.; Amer, I Organomet 1990, 9, 284. Sisak, A.; Ungvary, F, Marko, L J Org. Chem 1990, 55, 2508 Grobovenko, S Ya; Zlobina, V.A ; Surmina, L S ; Bolesov. I G ; Lapidus, A L , Beletskaya, I P. Metalloorg Khim. 1990, 3, 697 Lipshutz, B H., Elworthy, TR.Tet. Lett 1990, 31, 477.

662

5 17. 5 18. 519 520. 521 522 523 524 525 526 527. 5.28 529 530.

Jintoku, T, Fujiwara, Y., Kawata, I, Kawawchi, T.; Taniguchi, H. J. Organomet Chem. 1990, 385, 297. Fuliwara, Y.; Kintoku, T.; Uchida, Y New J. Chem 1989, 13, 649 Ugo, R.; Chiesa, A , Nardi, P.; Psaro, R. J Mol Catal. 1990, 39, 23 Khan, M M.T.; Halhgudi, S.B.; Abdi, S.H.R.; Shukla, S j Mol. Cataf 1990, 60, 275. Takigawa, S ; Shinke, S., Tanaka, M Chem. Left. 1990, 14 15 Tanaka, M.; Hayashi, T. J Mol. Catal. 1990, 60, L5. Eilbracht, P.; Hittinger, C.; Kufferath, K Chem Ber 1990, 123, 1071 Eilbracht, P.; Hittinger, C; Kufferath, K; Henkel, G Chem. Ber. 1990, 1.23, 1079 Amer. I.; Alper, H J Organomet. Chem. 1990. 383, 573. Krafft, M.E.; Pankowski, J, Tet. Left. 1990, 31, 5139. Bianchini, C , Meh, A ; Peruzzini, M ,Zanobini, F.; Bruneau, C, Dixneuf, P Organomet 1990. 9, 1155 Tada, T.; Kiyoi. T.; Saegusa, T J. Or-g Chem. 1990, 55, 2554 An, Z-W ; Catellani, M ; Chiusoli, G P. J. Organomet Chem. 1990, 397, c31 Kahnin. V.N; Shostakovsky, M V , Ponomaryou, A.B Tet Left 1990, 31, 4073.

531 532

Matsuda, I , Oglso, A ; Sato, S J. Am Chem. Sot 1990, 112, 6120 Liebeskind, L S, Chidambaram, R; Nimkar, S , Liotta, D Tet. Left

533.

Aumann. R ; Melchers, H.D.; Weidenhaupt, H J. Chem. Ber. 1990, f2.3, 351 Kireev, S L , Smit, V A ; Nefedov, 0 M Izv Akad Nauk SSSR, Ser. Khlrn 1989, 2061 Rautenstrauch, V , Megard, P., Conesa, J., Kuster, W Angew. Chem. Int Ed. Engl. 1990, 29, 1413. Schore, N.E.; Najdi, SD. J Amer. Chem. Sot. 1990, 112, 441 Brunner, H.; Niedernhuber. A. Asymm 1990, I, 711. Poch, M ; Valenti, E.; Moyano, A.; Pericas, M.A., Castro, J., DeNicola, A, Greene, A.E. Tet Left. 1990, 31, 7505. Castro, J, Sorensen, H ; Riera, A, Morin, C., Moyano, A.; Pericas, M A ; Greene, A.E j Am Chem Sot. 1990, 112, 9388. Shambayati, S.; Crowe, WE.; Schreiker, S.L. Tet. Left. 1990, 31, 5289 Brown, S W ; Pauson, P.L J Chem. Sot. Perkin I 1990, 1205. Bumagin. N.A , Nikitin, K.V ; Beletskaya, 1.P Dokl Akad. Nauk SSSR 1990, 312, 1129

1990,

534. 535 536. 537. 538. 539. 540 541. 542

31. 3723

663

543. 544 54s. 546. 547. 548. 549. 550.

551 552 553. 554 555. 556. 557 558. 559 560. 561 562. 563. 564. 565 566 567. 568

DuFaud, V., Thivolle-Cazat, J.. Basset, J.M. J Chem Sot Chem. Comm. 1990, 426. Reyne, F.; Brun, P.; Waegell, B. Tet. Lett. 1990, 31, 4597. Kitamura, T., Mihata, I.; Taniguchi, H., Stang, P. J Chem Sot Chem. Comm. 1990, 614. Ishino, M.; Deguchi, T. J. Mel Catal. 1989. 52. L17 Davies, S.G.; Smallridge, A.J., Ibbotson, A. J Urganomet Chem. 1990, 386, 195. Miura, M ,Okuro, K.; Itoh. K.; Nomura, M J Mol. Catal 1990, 39, 11 Okano. T ; Uchida, I ; Nakagaki, T.; Konishi, H.; Kiji, J J Mel Catal 189, 54, 65 Blanchart, V.; Fetizon, M.; Hanna, I. Synthesis 1990, 755. Barton, D.H.R.; Longlois, P.; Okano, T, Ozbalik. N Tet. Lett 1990, 31, 325. Bumagin. N.A.; More, P.G.; Beletskaya, I.P. Metalloorg. Khlm 1989, 2, 530 Khim. J I., Lee, K H Taehan Hwahakhoe Chl 1989, 33, 657. Kim, J I ; Lee, KH ; Im, S.J. Taehan Hwahakhoe Chi 1989, 33, 522 Brunet, J J., Taillefer, M J. Organomet. Chem. 1990, 384, 193. Kim, J.I.; Lee, K.H ; Yoon, T S Taehan Hwahakhoe Chi 1989, 33, 530 Tius, M A.; Kamah Kannangara, G.S. J Org. Chem 1990, 35. 571 1 Thompson, SK.; Heathcock, C.H. _/ Org. Chem 1990, S_T,3004 Gyorkos. A.C , Stille, J K.; Hegedus. L S J. Am. Chem Sot 1990, 112, 8465 Torn S.; Okumoto, H.; Xu, L.H Tet Lett 1990, 31. 7175 Shimoyama, I., Zhang, Y; Wu, G, Negishi. E-i. Tet Lett 1990, 31, 2841 An, Z-W.; Catellani, M ; Chusoli. G.P. Gaze. Chim. Ital. 1990, I2U, 383 Murahashi, S ; Washizuka, K ; Imada, Y. Senryo to Yakuhim 1989,34, 148 Screttas, C.G.; Steele, B.R Org. Prep. Proced Int 1990, 22. 269 Lee, JS; Lee, C.W.; Lee, SM.; Park, K.H J Mof Catal. 1990, 61, L15. Bassoh, A, Rindone, B; Tollari, S., Cenini, S, Crotti, C J. Mol. Cataf. 1990, 60, 155. Khan, M.M.T.; Halligudi, S.B.; Shukla, S.; Shaikh, Z.A. J Mol. Cataf 1990, -57, 301. Bassoli, A.; Rindone, B; Tollari, S.; Chioccara, F. J Mol. Cataf. 1990, 60, 41.

664

569 570 571. 572 573.

574 575 576 577. 578. 579 580. 58 1. 582. 583 584 585 586. 587 588. 589 590 591 592.

Bensenyei, G., Nimeth, S , Simandi, L.I. Angew. Chem. Int. Ed Engl 1990, 29, 1147 Mart, M ; Uozumi, Y., Shibasaki, M. J Organomet Chem. 1990, 39-5, 255 Roberto, D., Alper, H. Organamet. 1990, 9, 1245 Alper. H., Amer, I J. il4of Catal. 1989, -54, L33. Korneeva, G.A.; Potarin, M.M.; Elyashberg, M.E., Elagin, A.L , Tikhomirov, S V , Yampol’skii, Yu.Yu , Botnikov, M Ya , Slivinskii, E V , Loktev, S M Neftekhimiya 1990, 30, 58 Jenner, G ; Andrianary, P j. Mel Cataf. 1990. 58, 307. Bates, R W, Diez-Martin, D, Kerr, W.J, Knight, J G , Ley, S.V., Sahellaridis, A Tet. 1990, 46, 4063. Nokami, J.; Maihara, A ; TSUJI,T. Tet Lett. 1990, 31, 5679 Yamazaki, Y, Hosone, H. Tet Lett 1990, 27, 3895 Alper, H.; Eisenstat, A, Satyanarayana, N. J Am Chem. Sot. 1990, 112, 7061 Williams, G M , Rudisell, D.E, Barnum, B.A.; Hardcastle, K; Heyn. R.H, Kozak, C.J.; McMillan. J W J Am. Chem Sot 1990. 1 f.7, 205 Kang, J.; Chow,Y.Ro.; Kim, B.J., Jeong, J.U, Lee, S, Lee, J H., Pyun, C Tet Lett 1990, 31, 2713. Sakakura, T, Sodeyama, T.; Sasaki. K, Wada. K; Tanaka, M. J. _4m. Chem. Sot. 1990, 112, 722 1 Lipshutz, B.H, Elworthy, TR Tet. Lett. 1990, 31, 477 Castano, A M , Echavarren, A M Tet Lett. 1990, 3 1, 4783. Derien, S ; Dunach, E; Perichon, J J Organomet Chem 1990, 385, c43 Dunach, E; Perichon, J. Synfett 1990, 143 Tsuda, T ,Morikawa, 5 ; Hasegawa, N, Saegusa, T. J Org Chem. 1990, 55, 2978. Tsuda, T , Kiyoi, T ; Hasegawa, N; Saegusa, T Yukr Case1 Kagaku Kyokalshi 1990, 48, 362. Inoue. Y. Itoh, Y; Yen, IF., Imaizumi, S. J Mel Catal 1990, 60, Ll Pillai, S M ; Tembe, G L , Ravindranathan, M J Mof Catal 1990, 58. 171 Gibson, V C , Kee, T.P , Poole, A.D j Chem. Sot. Chem Comm 1990, 1720. Wielstra, Y.; Gambarottes, S , Spek, A. Organomet 1990. 9, 572. Roll, W ; Brintzinger, H-H, Rieger, B, Zolk, R. Angew. Chem Int. Ed. Engl 1990, 29, 279.

665

593. 594. 595

bang. 2, Sen, A.J. Am. Chem. Sot 1990, 112, 9655. Keim. W., Raffeis, G H ; Kurth, D. J Ffuorine Chem. 1990, 48, 229 Komiya, S.; Oyasato, N., Furukawa. T Bull. Chem. Sot Jpn. 1990,

596.

Furman, D B , Rudashevskaya, T.Yu.; Kudryashev, A V., Ivanov, A.O.; Isaeva, L S., Morozova, L N.; Peganova, T.A,Bogdanov, V.S.; Kravtsov, D.N; Bragm, O.V. I.zv Akad Nauk SSSR, Ser Khim 1990, 345. Furman, D.B.; Ivanov, A.O., Morozova, L.N ; Kustov, L M.; Elev, 1.V

62,

4078

597.

Metalloorg 598

599

600

Akad

601. 602 603

604

606 607.

1990,

3, 264.

Nauk SSSR, Ser

Khim

1989,

12 15.

Kovalev. I P.; Kolmogorov, Yu.N., Ignatenko. A.V.; Vinogradov, M.G , Nikishin. G I. Izv Akad. Nauk SSSR, Ser Khim 1989, 1098 Lawrie, C J.C. Diss Abstr Int B 1989. 50, 953. Kovalev, I.P., Yevdakov, K V., Stvelenko. Yu A, Vinograd, M.G ; Nikishin, G I _I. Urganomet. Chem 1990, 386, 139 Ohghita, J; Furumori, K, Matsuguchi, A, Ishikawa, M _j. Org Chem. 1990,

605.

Khim

Furman, DB; Ivanov, A.0, Kudryashev, A V.; Morozova. L N, Peganova, T A, Petrovsku, P.V.; Isaeva, L.S ; Kravtsov, D N , Bragin, 0 V Izv. Akad. Nauk SSSR. Ser. Khrm. 1989, 990. Kovalev, I P., Kolmogorov, Yu.N.; Vinogradov, M.G , Nikishin, G I ; Kolesnikov, S.P. Zzv. Akad. Naok SSSR, Ser. Khim 1990, 1189. Kovalev, 1.P ; Kolmogorov, Yu N ; Vinogradov, M.G, Nikishin, G I. Izv

55, 3277

Kusumoto, T.; Hiyama, T. Bull Chem Sot Jpn. 1990, 63, 3103. Yamaguchi, M ; Torisu, K.; Hiraki, K-i.; Minami, T Chem Lett. 1990. 222 1 Valenti. E ; Pericas, M.A , Serratosa, F. J Am. Chem. Sot. 1990, 112 7405

608

Binger, P., Biedenbach, Phosphorus,

609

Amer, Catal

610 61 1.

Sulfur

AT.; Milczarek, R.; Schneider,

Silicon Relat. Elem. 1990,

I.; Bernstein, 1990,

B.; Herrmann.

R.

49. 337

T.; Eisen, M, Blum, J; Vollhardt,

K.P.C. J. Mof

60, 313.

Amer, I , Blume, J, Vollhardt, K.PC j. Mol. Catai 1990. 60, 323 Munz, C; Stephan, C., Tom Dieck, H. J. Organomet. Chem 1990,

395,

C42 6 12.

Tom Dieck, H ; Munz, C, Mullet-, C J Organomet 243.

613

Sheppard,

G.S. DISS Abstr

Int. B 1990,

50, 2936.

Chem.

1990,

384.

666

614 615. 616. 617. 618 619 620 621 622 623 624 625. 626. 627 628 629 630 631 632. 633 634 635.

Ren, C Y., Cheng, W.C , Chan, WC , Yeung, C H., Lau, C P J. Mol Catal. 1990,59, Ll Ito, Y.; Inouye, M, Murakaml, M., Shiro, M J. Organomet. Cfzem 1990, 385, 399. Gleiter, R, Kratz, D.; Ziegler, M.L.; Nuker, B. Tet. Lett. 1990, 31, 6175 Gleiter, R.; Kratz, D. Angew. Chem. 1990, 102, 304. Tamao, K ,Kobayashl, K , Ito, Y Yuki Gosei Kagaku Kyokalshi 1990, 48, 38 1 Colhgiani, A, Vltulli. G , Kraus, J; Blagi, S., Salvadori, P., Settambolo, R.; Pasero, M j. Mol. Catal 1989, 56, 133. Chen, W-X., Zhang, J-h ; Hu, M-y ; Wang, X-c. Synthesis 1990 70 1. Walther, D; Braun. D, Schulz, W, Rosenthal, U. 2 Chem. 1989, 29, 293 Walther, D.; Braun, D.; Schulz, W.; Rosenthal, U 2 Anorg Aflg Chem. 1989,577, 270. Iyoda, M ,Kuwatanl, Y., Oda, M., Kai, Y, Kaneshisa, N; Kasai, N. Angew. Chem Int Ed. Engl 1990, 29, 1062. Iyoda, M ; Oda. M ; Kal, Y., Kaneshisa, N.; Kasal, N. Chem. Lett. 1990, 2149 Tanoury, G.J. Diss Abstr lnt B 1990, 50, 2413 Lee, GC M ,Toblas. B., Holmes, J M.; Harcourt, D.A, Garst, ME. J Am Chem Sot 1990, 112, 9330 Jolly, R S , Luedtke, G , Sheehan, D., LivInghouse, T. J Am Chem. Sot 1990, 112, 4965 Hertel, R, Mattay, J; Runsink, J j. Am Chem Sot. 1991, 113, 657 Tsuda, T ,Hasegawa, N, Saegusa, T. J Chem Sot, Chem. Comm 1990, 945 Chlusoli, G P , Costa, M., Flare, A. J Chem Sot., Chem Comm 1990, 1303 Vardanyan, M.A , Freidlm, L.Kh Neftekhrmiya 1989, 29, 502 Dentse, P, Jean, A ; Crolyz, J F , Mortreux, A , Petit, F. J Am. Chem. Sot 1990, 112, 1292 Polacek, J.; Petrusova, L.; Antroplusova, H , Mach, K. Coifect. Czech. Chem. Commun. 1989, -54, 1839 Dzhemilev, U M ; Kunakova, R V ; Gaisln, R L , Valyamova, FG , Tolstikov, G A. Izv Akad Nauk SSSR, Ser. Khim. 1990, 1146. Peiffer, G, Chhan, S.; Bendayan, A, Waegell, B; Zahra, J.P J. Mol Catal. 1990, 59, 1

667

641. 642. 643. 644. 645. 646.

Keim, W.; Koehnes, A; Roethel, T.; Enders, D. J. Organomet. Chem. 1990,382, 295. Schrock, R.R. Accts. Chem Res. 1990, 23. 158. Ivin, K.J.; Kress, J., Osborn, JA.; Rooney, J.J. NATO ASZ Ser, Ser. C. 1989, 269, 313. Bazan, G C , Khosravi, E.; Schrock, R.R ; Feast, W J.; Gibson, V.C.; O’Regen, M.B ; Thomas, J.K., Davis, W.M. J Am Chem. Sot. 1990, 112, 8378 Hamilton, JG ; Marques, D.G., ONeill, T.J.; Rooney. J.J. J Chem. Sac. Chem Comm. 1990, 119. Toshima. N.; Tayanagi. J-i. Chem. Left. 1990, 1369. Katz, T.J. NATO ASI Ser, Ser. C. 1989, 269, 293. Karan, B ; Imamoglu, Y. NATO ASI Ser., Ser. C 1989, 269, 347. Weiss, K., Hoffmann, K. NATO ASZ Ser, Ser. C. 1989, 269, 351. Heveling, J. J. Mol. Cataf. 1990, 58, 1. Davidson, J.L.; Vasapollo, G., Nobile, CF.; Sacco. A J. Organomet. Chem.

647

Suzuki,

636. 637. 638 639 640

1989,

648 649. 650 651 652 653. 654. 655.

Nauk SSSR, Ser

Khim. 1989,

1358.

Stille, J.R.; Santarsiero, B.D; Grubbs, RH. J 0-g. Chem. 1990, 55, 843. Lu, X.; Ma, S. Pure Appl. Chem. 1990, 62, 723. Rodriguez, J; Brun, P.; Waegell, B. Buff Sot. Chim Fr. 1989, 799 Ryabichev, A G., Trukhacheva, N.P. IN Akad Nauk Kaz SSR, Ser. Khim.

660 66 1. 662

297.

T.; Hiram, T, Hayashi, S., Tanaka, K., Toyoshima, I. Chem Express 1989, 4, 4 17. Kawai, T.; Maruoka, N.; Ishikawa, T j. Mol. Cataf. 1990, 60, 209. Klimov. 0 V.; Krivoshchekova, E.A ; Startsev, A.N. React. Kinet. Catal Left. 1990, 42, 95. Keller, A. J. Mol. Catal, 1990, 59, 75. Bages, S ; Petit, M.; Mortreux, A., Petit, F. j Mol. Cataf. 1990, -59, L25. Schrock, R.R.; Murdzek, J S, Bazan, G.C.; Robbins, J; Mare, M.D; Regan, M.O. J. Am Chem Sot. 1990, 112, 3875 Toreki, R, Schrock, R.R. J. Am Chem. Sot 1990, 112, 2448. Keller, A J. Organomet Chem. 1990, 393, 389 Finkel’stein, E Sh ; Portnykh, E.B.; Antipova, I V.; Vdovin, V M Izv. Akad

656 657. 658. 659

371,

1989,

40

Giles, R.G.F.; Son, V RL , Sargent, M V. Aust. J. Chem 1990, 43, 777 Lassalle, G.; Gree, R Tet. Left. 1990, 31, 655. Mullet-, P.; Pautex, N.; Doyle, M P.; Baghen, V. Hefv. Chum Acta 1990, 73, 1233

668

663.

664 665. 666

Krm, M ; Applegate, L A., Park, O-S ; Vasudevan, S , Watt, D.S Syn Comm. 1990, 20, 989 Stone, G B ; Liebeskind, L.S. J. Org. Chem. 1990, 55, 46 15. Panek, JS ; Spark, M A J. Org. Chem. 1990, 5’5, 5564 Hnoi, K, Yamamoto, M , Kurihara, Y, Yonezawa, H Tet Lett. 1990, 31, 2619.

667 668 669

Tamaru, Y.; Nagao, K., Bando, T.; Yoshida, Z-i j. Org. Chem 1990, 55, 1823 Hirer, K ,Koyama, T ,Anzar, K Chem. Lett 1990, 235 Matsuyama, N, Goto, M; Hiroi, K Annu. Rep Tohoko Co11 Pharm.

670 671.

Overman, L E, Renaldo. A F. J Am Chem. Sot. 1990, 112, 3945 Inoue, S-I, Takaya, H ,Tanr, K ,Otsuka, S., Sato, T., Noyorr, R. J Am

672. 673

Schmid, R; Hansen, H-J Hefv Chim Acta 1990, 73, 1258. Nemoto, H., Jimenez, H N.; Yamamoto, Y J Chem Sot Chem. Comm 1990, 1305. Salas, M.: Joule, J A J Chem. Res., Synop. 1990, 98. Chrn, C S.; Lee, B.; Hong, K. Bull, Korean Chem. Sot. 1990, 11, 162 Chin, CS., Park, J, Kim C. Buff. Korean Chem Sot 1989, IO, 360. Kataoka, H ,Watanabe, K ,Goto, K Tet Lett 1990, 31, 418 1 Vmentm, G , Piccolo. 0, Conslgho, G J Mol Catal 1990, 6 f, Ll. Olrvier, J , Legros, J-y, Fraud, J-C, de Menere, A, Salaun. J. Tet. Lett

1988,

119

Chem. Sot. 1990,

674 675 676 677 678 679.

1990,31,

680

112, 4897

413s

Sodeoka,

M ,Yamada, H., Shrbasakr, M J Am

Chem

Sot

1990.

112,

4906

68 1. 682

Ohno, T Kagaku to Kogyo (Osaka) 1989, 63, 3 14 Suzukr, M, Oda, Y.. Hamanaka, N, Noyori, R Heterocycfes

1990,

30,

5 17.

683

Takacs, J M , Newsome, 1990,

P W , Kuehn, C, Takusagawa,

F. Tetrahedron

46, 5507.

554

685 686 687 688.

Okano, T., Uekawa, T ,Sawakr, H ,Eguchr, S Synfett. 1990, 403. Backvall, J E., Granberg, K L , Hopktns R B Acta Chem. Stand 1990, 44, 492 Backvall, J.E ; Schmk, H.E, Renko, Z P J Org Chem 1990, 55, 826 Gavrrlova, G A, Nrkanorov, V A, Rozenberg, V I , Reutov, O.A. Metalborg. Khrm 1990, 3, 330

669

689. 690 691 692. 693. 694. 695. 696 697 698 699 700. 701 702 703 704. 705. 706. 707. 708. 709. 710. 711. 712 713 714 715.

Hoberg, H.; Guhl, D.; Betz, P. J. Urganomet Chem. 1990, 387, 223 Hoberg, H.; Guhl, D. j. Organomet. Chem. 1990, 384, C43. Murahashi, S-i.; Oda, T; Sugahara, T.; Masui, Y. J. Org Chem. 1990, 55, 1744. Kotachi, S.; Tsuji, Y; Kondo, T.; Watanabe, Y. J. Chem. Sot. Chem Comm 1990, 549. Cervello, J.; Sastri, T. Synthesis 1990, 221 Jenner, G. J. Mol. Catal. 1989, 55. 241 van Soolingen, J.; Verkruijsse, H.D; Keegstra. M.A.; Brandsma, L. Synth. Comm. 1990, 20, 3 153. Affotler, S.; Pregosin, P.S. J. Organomet. Chem 1990, 398, 197. Pringle, P.G.; Smith, M.B. J Chem. Sot. Chem Comm. 1990, 1701. Nan, V.; Sells, T.B. Tet Left 1990, 31, 807. Hayashi, M.; Matsuda, T.; Ogumi, N j Chem Sot Chem. Comm 1990, 1364. Okuda, F, Watanabe, Y Bull Chem. Sot Jpn. 1990, 63, 1201. Saga, T.; Takenoshita, H.; Yamada, M.; Mukaiyama. T. Bull. Chem Sot. Jpn. 1990, 63, 3122. Kunai, A.; Wani, T, Uehara, Y.; Iwasaki, F.; Kuroda, Y.; Ito, S.; Sasaki, K BUN Chem Sot. Jpn 1989, 62, 26 13. Tamagaki, S., Ueno, K., Tagaki, W. Chem. Express 1989, 4, 617 Anderson, J C ; Smith, S C Synlett. 1990, 107. Cambie, RC; Higgs, P.I.; Rutledge, PS.; Woodgate, P.D. J. Organomet. Chem. 1990, 384, C6. Inoki, S.; Kato, K, Isayama, S.; Mukaiyama, T Chem. Lett. 1990, 1869 Mitani, M, Matsumoto, H, Gouda, N.; Koyama, K. J Am. Chem. Sot 1990, 112, 1286 Shimazu, I.; Yamazaki, H. Chem. Lett. 1990, 778. Iqbal, J.; Pandey, A, Shukla, A ; Ranlam Srivastava, R. Tetrahedron 1990, 46, 6423 Iqbal, J; Pandey, A Tet. Lett. 1990, 31, 575. Chowdary, B M, Rani, S.S; Kantain, M.L. Synth. Comm. 1990, 20, 2313 Larock, R C , Stolz-Dunn, S K. Synfett 1990, 341. Zhang, Y.; Hu, Z Youji Huaxoe 1989. 9, 426. Nose, A, Kudo, T. Chem Pharm. Boll 1990, 38, 2097. Petrier, C.; Lavaitte, S.; Morat, C. j. Org Chem 1990, T-5, 1664.

670

716

717. 718. 719 720. 72 1. 722. 723

724.

Garner, CM ; Quiros-Mendez, N.; Kowalczyk, J J.; Fernandez. JM , Emerson, K.; Larsen, R.D.; Gladszy, J.A. J. Am. Chem. Sot. 1990, 112, 5146. Dalton, D.M , Fernandez, J.M.; Emerson, K , Larsen, R D ; Arif, A M , Gladys& J.A. j Am. Chem Sot. 1990, 112, 9199. Howard, P.W.; Stephenson, GR; Taylor, S.C J Chem. Sot. Chem Comm. 1990, 1183 Murahashl, S-I., Naota, T.; Kuwabara, T.; Salto. T , Kumbayashi, H , Akutagawa, S. J. Am. Chem. Sot. 1990, 112, 782 1. Naota, T.; Nakato, T.; Murahashl, S-i. Tet. Lett. 1990, 31, 7475 Tenaglia, A.; Terranova, E , Waegell, B. Tet Lett. 1990, 31, 1157. Howell, A.R.; Pattendm, G J Chem. Sot, Chem. Comm 1990, 103. Sato, M.; Miyaura, W.; Suzuki, A. Tet. Lett. 1990, 31, 231. Tamao, K.; Tohma, T., Inui, N.; Nakayama, 0.. Ito, Y Tet. Lett 1990, 31, 7333

725. 726. 727 728

Tamao, K; Nakagawa, Y, Ito, Y J Org. Chem 1990, 55, 3438. Hayashl, T.; Hengrasmee, S ; Matsumoto, Y Chem. Lett. 1990, 1377. Nakahjima, M , Tomioka, K; Koga, K. Yuki Gosei Kagaku Kyokalshi 1989, 47, 878. Kwong, H-L, Sorato, C., Ogino, Y.; Chen, H, Sharpless, K B Tet Lett. 1990,

729 730. 731 732 733. 734 735.

Moon Kim, B; Sharpless, K.B. Tet. Lett. 1990, 31, 3003. Panek, J S.; Cirillo, P.F j Am. Chem Sot 1990, 112, 4873 0 S , Morikowa, Y.; Moriwake. T J Org Chem. 1990, 55, 5424. Mmato, M, Yamamoto, K., TSUJI,J J Org. Chem. 1990, 55, 766. Hosokawa, T ,Murahashi, S-i Act Chem Res. 1990, 23, 49 Hayashl, T, Abe, F; Sakakura, T.; Tanaka, M. J Mol. Catal. 1990, 58, 165 Anderson, J.B.F., Griffin, K.G.; Richards, R E Chem.-Tech (Heidelberg) 1989,

736. 737

.?l, 2999.

48

Rao, Y V S , Mukkanti, K ,Choudary, B.M. J Mol. Catal. 1989, 49, L47. Paquette, L.A.; MacDonald, D.; Anderson, LG J Am Chem Sot. 1990, 112, 9292

738. 739.

Hayashi, T, Klshl, K, Yamamoto, A; Ito, Y Tet. Lett. 1990, 31. 1743. David, D M; Kane-Maguire. L.A.P.; Pyne. S.G J Organomet. Chem. 1990,

740.

390,

C6.

Shim, SC, Kwon, Y.G.; Doh, C.H., Kim, H S.; Kim T J. Tet Left. 1990, 105

31.

671

741. 742. 743. 744 745. 746. 747.

Shim, S C.; Kwon. Y G; Doh, CH.; Woo, B.W.; Baeg, J.O.; Kim, H.S., Kim, T J ; Lee, D.H ; Kwak, Y.W. Bull. Korean Chem. Sot. 1990, 1 I, 140. Huh, K.T.; Shim, SC.; Doh, C.H. Bull. Korean Chem. Sot 1990, 1 I, 45. Cicchi, S.; Goti, A, Brandi, A.; Guarna, A.; DeSarlo, F. Tet Lett. 1990, 31, 3351. Jones, W.D.; Hessell. E.T. Urganomet. 1990. 9. 719. Akaome, M.; Tsuji, Y.; Watanabe, Y. Chem. Lett. 1990, 635. Kato, K.; Mukaiyama, T. Chem. Left. 1990, 19 17 Kabalka, G.W; Place, R.D.; Wadgaonbar, P.P. Synth. Comm. 1990, 20, 2453.

748 749. 750.

Safi, M.; Fahrang, R., Sinou, D. Tet. Left. 1990, 31, 527. Keegstra, M.A.; Peters, T.H A., Brandsma, L. Synth. Comm. 1990, 20, 2 13. Lakhmiri, R; Lhoste, P.; Boullanger, P.; Sinow. D. J. Chem. Res (S)

751

Roberto,

752 753 754 755. 756.

Hudhcky. T.; Olive, H.F, Natchus, M.G. J. Org. Chem. 1990, -55, 4767. Alper, H.; Hamel, N. J Am. Chem. Sot 1990, f fZ, 2803. Nunez, M.T; Martin, V.S. J. Org. Chem. 1990, 55, 1928. Pons, D.; Savignac, M., Genet, J-P. Tet. Lett 1990, 31, 5023. Bianchmi, C., Meli, A.; Peruzzini, M.; Vizza, F J. Am. Chem. Sot. 1990,

757

Hegedus, L.S.; Schwindt, M.A.; DeLombaert,

758.

Backvall,

1990,

342.

1990,

Il.?,

D.; Catellani, 120,

M ; Chiusoli, G P.; Mann, B E. Gaze. Chim.

Ztaf

251.

6726.

Chem. Sot. 1990,

S; Imwinkelreid,

R. J Am.

I 12, 2264.

J.E, Granberg,

K.L.; Hopkins, R.B. Acta Chim.

Stand.

1990,

44, 492

759. 760. 761 762.

Deardorff, D.R; Myles, D.C. Org. Synth. 1989, 67, 114. Nystroem, J.E, Rem, T.; Backvall, J.E. Org. Synth. 1989, 67, 105. Backvall, J.E.; Hopkins, R.B.; Grennberg, H.; Mader, M.M.; Awaatt, A.K J. Am. Chem. Sot. 1990, 112, 5160. Soderberg, B.C.; Akermark, B.; Chen, Y-H.; Hall, S.S. J Org Chem. 1990, STS, 1344.

763

Hansson, S.; Heumann,

A.; Rein, T.; Akermark,

B J Org. Chem. 1990,

55, 975.

764

Bystrom,

765

Sen, A.; Gretz. E.; Oliver, T.F.; Jiang, 2. New. J Chem. 1989,

S.E., Larson,

E.M., Akermark,

B. J. Or-g Chem. 1990,

5674. 13, 755.

55,

672

766 767 768 769 770. 771. 772 773. 774. 775 776. 777. 778 779. 780 781 782. 783 784 785 786 787 788 789 790. 791 792.

Nakamuro, K., Ishihara, I, Ohno. A.; Uemura, M ; Nishimura, H , Hayashi. Y Tet Lett. 1990, 31, 3603 Lee, S; Cooper, N.J J. Am Chem. Sot 1990, 112, 9419. Philippot, K.; Devanne, D, Dixneuf, P.H J Chem. Sot., Chem Comm 1990, 1199. Badman, G.T., Green, D.V.S, Voyle, M J. Organomet. Chem. 1990, 388, 117 Milkert, E Neftekhimtya 1989, 29, 693. Goto, M.; Goto, S J Mof Card. 1990, 57, 361. Lu, Z., Yin, Y., Jm, D. Fenzl Cuihoa 1989, 3, 276 Quenard, M , Bonmarin, V.; Gelbard, G, Krumenacker, L. New J. Chem 1989, 13, 183 Takai, T ,Yamada, T ,Mukayama. T. Chem Lett 1990, 1657. Mukaiyama, T.; Takai, T.; Yamada, T; Rhode, 0 Chem. Lett. 1990, 1661. Larsen, E., Joergensen, K.A Acta Chem Stand. 1989, 43, 259. Joergensen, K.A , Schioett, B , Larsen, E J. Chem Res., Synop. 1989, 2 14. Bhattacharya, P.K Proc-Indtan Acad. Sci, Chem Sci. 1990, 102, 247. Matsuda, Y., Nakamura, K; Murakami, Y.; Kenkyu Hokoku - Asaht Garasu Kogyo Gttutsu Shoreelkat 1989, 55, 15 1 Haber, J.; Mlodnicka, T ,Poltowicz, J. Bull Pol. Acad Set., Chem. 1988, 36, lS9 Querci, C, Ricci, M. j Chem. Sot, Chem. Commun. 1989, 889. Collman, J P , Zhang, X.; Hembre, R T.; Brauman, J.1 J Am Chem. Sot 1990, 112, 5356. Corey, E J J Urg Chem 1990 55. 1693 Raifel’d, Yu E, Arshava, B M, Zil’berg, L L, Makin, S.M Zh. Org. Khim 1990, 26, 527. Marshall, JA; Blough, B.E. j. Org. Chem. 1990, 55, 1540. Yadav, JS, Radhakrishna, P. Tet. 1990, 46, 5825. Shimizu, I, Hayashi, K., Oshima, M. Tet. Lett. 1990, 31, 4757. Shimizu, I ; Yamazaki, H. Chem Lett. 1990, 777 Schmidt, U.; Mundinger, K, Mangold, R , Liebesknecht, A j Chem Sot., Chem. Comm 1990, 1216. Zhang, W., Loebach, J L , Wilson, S R; Jacobsen, E.N j. Am. Chem. Sot. 1990, 1 f2, 280 1 Ishii, Y.; Sakata, Y. j. Urg Chem. 1990, 55, 5545. Baldoh, C, DelButtero, P, Maiorana, S Tet 1990, 46, 7823

673

793. 794 79s. 796.

D’Andrea, S V. DISS. Abstr. Int. B. 1989, 50, 962 Smith, JR Diss. Abstr Int. B. 1990, 50, 5637. Williams, M.A ; Miller, M.J Tet. Lett. 1990, 31, 1807. Palomo, C.; Azpurua, J M., Urchegui, R. J Chem. Sot, Chem. 1990,

797 798 799

Comm

1390.

Bremner, J.B , Jaturonrusmee, W Aust J. Chem. 1990, 43, 146 1 Hegedus, L.S., I mwinkelried, R , Alarid-Sargent, M.; Dvorak, D, Satoh. Y J Am Chem Sot. 1990, 112, 1109. Montgomery, J.; Wieber, G.M; Hegedus, L.S. J Am Chem Sot 1990, 112, 6255.

800. 80 1. 802.

Alper, H.; Delledonne, D.; Kamejima, M; Roberto, D. Organomet 1990, 9, 763 Hippeh, C., Zimmer. R., Reissig, H.U. Liebigs Ann. Chem. 1990, 469 Nakanishi, S.; Otsuli, Y.; Hayashi, N. Bull. Chem Sot Jpn. 1990, 63, 359s

803 804

Danks, TN; Thomas, SE j Chem. Sot., Chem delange, P M.; Fruhauf, H-W, vanwijnkoop,

805. 806

810. 811

Dragisich, V., Wulff, W.D, Hoogsteen, K. Organomet 1990, 9, 2867. Dragisch, V.; Murray, C.K,Warner, B.P, Wulff, W.D.. Yang, DC j Am Chem Sot 1990, 11.2, 1251. Aumann, R.; Heinan, H J Organomet. Chem. 1990, 391, C7 Aumann, R , Heinen, H., Kruger, C ; Bet& P. Chem Ber 1990, 123, 599 Dotz, K H ; Schafer, T ; Harms, K Angew Chem Int. Ed. Engl 1990, 29, 176 Backvall, J E; Andersson, PG. j Am. Chem. Sot 1990, f 12, 3683 Larock, R.C; Berrios-PeAa, N, Nadayanam, K J. Org Chem. 1990.55,

812

Sakamoto,

813.

TSUJI, Y., Kotachi, S., Huh, K-T ; Watanabe,

814

Liebeskind,

1990,

807. 808. 809.

Comm.

1990

761

M ; Vriez, K. Organomet

9, 1691

3447

T.; Nagano, T.; Kondo, Y; Yamanaka,

H. Synthesis

1990,

215

Y J Org. Chem. 1990,

S5,

580

L S.; Johnson,

S A.; McCallum, J S Tet. Lett

1990.

31,

4397

8 15.

Grigg, R.; Dorrity, Tet. Lett.

816. 817 818

1990,

M.; Malone, J.F, Sridhavan, 31,

V ; Sukithalingham,

1343.

Stinn, D.E Diss. Abstr Int. B 1989, 50, 2413. King, SA Diss Abstr Int. B. 1989, 49, 5309. Trost, B.M, King, S A. J Am Chem Sot. 1990,

11.2, 408.

S.

614

819 820

Kosokawa, T.; Nakajima, F.; Iwasa, S.; Murahashi, S-i. Chem Lett. 1990, 1387 Jagdish Kumar, R.; Krupadanam, GL.D.; Srimannarayana, G. Synth 1990, 53.5.

82 1. 822 823 824. 83s 826. 827 828. 829 830. 831 832. 833. 834. 835 836 837 838.

839. 840. 841. 842 843 844. 84.5. 846.

Hiroc, K.; Abe, J Her 1990, 30. 283 Inoki, S , Mukaiyama, T. Chem. Left. 1990, 67. van der Louw, J., van der Baan, J.L., Tumnerman, P., deKanter, F J.J, Bickelhaupt, F., Klumpp, G.W. Rec. Trav. Chim. 1990, 109, 29. Marshall, J.A.; Robinson, ED. J Org. Chem. 1990, 55, 3450. Takai, K.; Tezuka, M., Kataoka, Y, Utimoto, K. J Org. Chem. 1990, 55, 5311. Mandai, T ; Hasegawa, S , Fulimoto, T.; Kawada, M ,Nokami. J, TSUJI, J Synlett. 1990, 85. Davies, SG.; Polyuka, R.; Warner, P. Tet 1990, 46, 4847 Bergens, SH, Fairle, D.P., Bosnich, B. Organomet 1990, 9, 566. Ohkuma, T; Kitamura, M ,Noyori, R Tet Lett 1990, 31, 5509 Citterio. A.; Sebastiano, R., Nicohni, M.; Santa, R Syn Letf 1990, 42. Lugan, N., Kelley, C; Terry, MR., Geoffroy, G L J Am Chem. Sot 1990, 1 f2, 3220. Nagashima, H.; Seki, K.; Ozaki, N.; Wakamatsu, H, Itoh, K., Tomo, Y.; Tsuji, J J Org. Chem 1990, 55. 985 Hoye, T R, Rehberg, G M J Am Chem. Sot. 1990, 112, 284 1 An. Z.W.; Catellani. M, Chiusoh, G.P. Gazz. Chim. Ital. 1990, 120, 383. Davies, SG J Organomet. Chem 1990, 400, 223 Beydown, N ,Pfeffer, M. Synthesis 1990 729 Aumann, R; Heinen, H. J. Organomet. Chem. 1990, 389, Cl. Parker, A, Yefsah, R.; Rudler, M.; Rudler Jr. H., Daran. J.C, Vaissermann, J J Organomet Chem 1990, 381, 19 1. Audouim, M, Blandinieres, S ; Parher, A ; Rudler. H. j Chem. Sot. Chem Comm 1990. 23 Cheng, L-C, Yang, SC Heterocycles 1990, 31. 9 11. Stadlbauer, W; Laschoben, R., Kappe, T Liebigs Ann Chem. 1990, 531. Siddiqui, M.A., Snieckus, V Tet Lett. 1990, 31, 1523 Hoberg, H ,Barhausen, D J Organomet. Chem. 1990, 397, C20 Mirkin, C.A. Lu, K L.; Snead, T E; Geoffroy, G L. J Am. Chem. Sot. 1990, I f2. 2809. 1347. Iyer, M., Trivedi, G.K Synth. Comm 1990,20, Geng, L.; Lu, X. Tet. Left 1990, 31, 111.

847. 848. 849. 850 851 852 853.

854 855 856 857. 858 859. 860 86 1. 862 863. 864. 865.

866. 867. 868 869. 870. 871. 872 873. 874 875. 876.

Suzuki, T., Sato, 0.; Hirama, M. ref. Lett. 1990. 31, 4747. Deshpande, P.P.; Martin, O.R. Tet. Lett. 1990, 31, 6313. Legzdins, P.; Richter-Addo, G.B.; Einstein, F W.B.; Jones, R.H Organometallics 1990, 9, 43 1. Togni, A. Organometallics 1990, 9, 3106. Hosokawa, T.; Ataka, Y.; Murahashi, S-i. Bull. Chem. Sot. Jpn 1990, 63, 166. Anastasiou, D.; Jackson, W.R. j. Chem Sot. Chem. Comm. 1990, 1205 Peiffer, C.; Siv, C.; Bendayan, A., Zahra, J-P.; Brown, P. Compt. Rend 1990, 311, 791. Schmiegel, J; Grutzmacher, H.F Chem. Ber. 1990, 123, 1749. Murakami, M.; Morita, Y.; Ito. Y. j. Chem. Sot., Chem Comm. 1990, 428 Tsumuraya, T., Ando, W. Organomet 1990, 9, 869. Tour, J.M ; Wu, R.; Schumin, J.S. _l. Am. Chem. Sot. 1990, 112, 5663. Tumas, W.; Suriano, J.A.; Harlow, R.L. Angew. Chem. 1990, 10.7, 89 Hewlett, D F; Whitby, R J. J. Chem. Sot. Chem Comm. 1990, 1685 Tsuda, T.; Kiyoi, T.; Saegusa, T. J. Org. Chem. 1990, 59, 3388 Spears, G W., Nakanishi. K.; Ohfume, Y Tet. Lett. 1990, 31, 5339 Wang, L.RR.; Benneche. T.; Undheim, K Acta Chem. Stand 1990, 44, 726. Dotz, KH.; Tiriliomis. A.; Harms, K j. Chem Sac., Chem. Comm. 1989, 788 Mukai, C.; Cho, W.J; Kim, I.J.; Hanoaka, M. Tet. Left. 1990, 31, 6893. Kimura, M; Kure, S., Yoshida, 2.; Tanaka, S , Fugami, K.; Tamaru, Y. Tet. Lett 1990, 31, 4887. Moody, C.J , Taylor, R.J. Tet 1990, 46, 6501 Ibata, T.; Nakano, H. Bull Chem. Sot. Jpn. 1990, 63, 3096. Takagi, K. Chem Lett 1990, 2205. Kadaba, P.K ; Edelstein, S.B. Synthesis 1990, 19 1. Tongi, A.; Pastor, S.D. J Org. Chem. 1990, ST, 1649. Pastor, SD.; Togni, A Teet. Left. 1990, 31, 839 Grotjahn, DB.; Vollhardt, KP.C J Am. Chem. Sot. 1990, 112, 5653. Takayama, H.; Kitajima, M.; Sakai, S Heterocycles 1990, 30, 325. Hanazawa, Y , Ishizawa, S , Kobayashi, Y; Taguchi, T Chem. Pharm. Bull. 1990, 38, 1104. Takahashi, T , Nakagawa, N.; Minoshima, T.; Yamada, H.; Tsuli, J. Tet. Lett. 1990, 31, 4333. Gross, R.S.; Grieco, PA.; Collins, J.L. J Am. Chem. Sot. 1990, II,?, 9436.

616

877 878. 879 880 881. 882 883 884 885 886 887. 888 889 890. 891. 892 893. 894 895 896 897 898 899 900 901

Hirao, ‘I’.;Man, M, Ohshiro, Y. J. Urg Chem. 1990, 5S, 359. Lee, J-T., Alper, H. Tet. Lett. 1990, 31, 4 10 1 Jang, S , Atagi, L.M; Mayer, J.M. J. Am. Chem Sot 1990, 112, 6413 Tanzawa, T ; Schwartz, J Organometaff~cs 1990, 9, 3026. Strunkina, L I.; Brainina, E.M., Minacheva, M.Kh. Metaffoorg Khim 1989. 2, 677 Asao, K ; Ho, H ; Tokorayama, T Synthesis 1990 382. Cabri, W., DeBernardinis, S., Francalanii, F , Penio, S , Santi, R J Urg Chem. 1990, -5-5, 350 Sao, J M , Dopico, M ,Martorell, G ; Garcia-Raso, A J Org Chem. 1990, -5-5,99 1. Rose-Munch, F.; Djukic, D. Rose, E Tet. Left 1990, 31, 2589 Koenig, TM., Daeuble, J F; Brestensky, D M.; Stryker, J Te’et. Left 1990, 31, 3237. Daeuble, J F., McGettmgun, C., Stryker, J.M. Tet. Lett. 1990, 31, 2397 Lipshutz, B H; Keil, R., Ellsworth, EL Tet. Left. 1990, 31. 7257 Evans, D A, Fu, GC J Org Chem 1990, 55, 2280. Evans, D A, Fu: GC. J Org. Chem. 1990, 55, 5678 Krohn, K, Rieger, H., Hopf, H, Barrett, D, Jones, P.G ; Doering, D. Chem Ber. 1990, 1.73, 1729 Krohn, K ,Khanbabaee, K ,Rieger, H Chem. Ber 1990, 123, 1357 LI, P., Alper, H. J Mol. Cataf 1990, 61, 5 1. Takehira, K, Hayakawa, T. J Mof Cataf 1989, 53, 15. Takehira, K ; Oh, I H.; Hayakawa, T.. Orita, H.; Shimizu, M J Mol. Cataf. 1989, 53, 105. Kataoka, H , Watanabe, K., Miyazaki, K-I ; Tahara, S-I; Ogu, K-I, Matsuoka, R , goto, K Cflem Lett 1990, 1705. Maletich, G, Song, J.S.; Ringold, C, Nemeth, GA Tet. Left. 1990, 31, 2239 Kaneda, K, Haruna, S, Imanaka, T, Kawamoto, K J Chem. Sot., Chem. Comm 1990, 1467 Suzuki, M., Oda, Y.; Hamanaka, N, Noyori, R Heterocycfes 1990, 30, 5 17. HISCOX,W., Jennings, PW. Urganomet. 1990, 9, 1997 Hagiwara, T ,Taya, K, Yamamoto, Yl, Yamazaki, H J Mol. Cataf. 1989, 54,

165.

902

Wright,

903.

9, 136 Liu, H-J.; Yan Zhu, B. Synth. Comm. 1990, 20, 557.

M.E,Svelda,

S.A., Jm, M-J;

Peterson,

M A

Urganomet

1990,

677

904. 905 906. 907. 908 909 9 10. 911 912. 913. 914 915 916 917 919. 920. 921 922. 923. 924 925 926 927 928 929 930 931 932.

Brandsma, L., van den Heuve, H.G.M.; Verkruijsse, H D. Synth. Comm. 1990,20, 1889. Liu, H.Q ; Hat-rod, J.F. Can. J. Chem. 1990, 68, 1100. Murphy, P.J.; Spencer, J.L., Procter, G. Tet. Lett. 1990, 31, 1051 Hayashl, T.; Kobayashi, T-a.; Kawamoto, A.M.; Yamashlta, H.; Tanaka, M Organomet. 1990. 9. 280. Soderqurst, J A ; Santiago, B , Rivera, I Tet. Lett 1990, 31, 498 1. Krafft, T.E.; Rich, J.D.; McDermott, P.J. J Org. Chem 1990, 55, 543 1. Doyle, M.P.; High, K.G.; Bagheri, V; Pieters, R.J.; Lewis, P J; Pearson, M.M J. Org. Chem. 1990, 55. 6082. Chatani, N.; Sano, T.; Ohe, K.; Kawasaki, Y., Murai, S J. Org. Chem 1990, 5-X 5924. Murai, T.; Sakane, T, Kato, S J Urg Chem. 1990, 55. 449. Fukazawa, S-i., Fujrnami. T., Sakar. S. Chem. Lett 1990. 927 Cochran, J.C.; Bronk, B.S.; Terrence, K.M ; Phillips, H.K Tet Lett. 1990, 31, 6621. Zhang, H.X.; Guibe. F.; Balavoine. G. J Org. Chem 1990. 55, 1857 Mrtchell, TN., Schneider, U., Frohling, B J Organomet. Chem 1990, 384, c53. Chantr, N, Horinchi, N.; Hanafusa, T. J Urg. Chem. 1990.5-5, 3393 Hmkles, R J, Stang, P.J; Kowalski, M.H. J Urg. Chem. 1990, 55, 5033. Chauvm, R. J. Organomet. Chem. 1990, 387, Cl. Pomerantz, M., Levanon, M. Tet. Lett. 1990, 31, 4265. Hojo, M.; Tanrmoto, S J Chem. Sot. Chem. Comm. 1990, 1284. Kukushkin, VYu; Moiseev, A I IZh. Obshch. Khim. 1990, 60, 692. Herr mann, W A , Kulpe, J A ; Kellner, J.; Riepl, H ; Bahrmann, H, Konkol, W Angew Chem Int. Ed Engl. 1990, 29, 39 1 Hayakawa, Y.; Wakabayashi, S; Kato, H.; Noyori, R J. Am. Chem. Sot. 1990, 112, 1691 Shibata, T; Gilheany, D.G, Blackburn, BK; Sharpless. KB. Tet. Lett. 1990, 31, 3817 Beaucourt, J.P Synth Appl. Isot Labelled Cpd 1988 Proc Int Symp 1989, 309. Gruselle, M ; Deprez, P. Vessreres. A ; Greenfield, S ; Jaouen, G.: Larue, J.P.; Thouvenot, D. J Organomet Chem. 1989, 359, C53 Hegedus, L S. j. Organomet Chem 1990, 380, 169. Hegedus, L.S J Organomet Chem 1990,392. 285. Thomas, S.E.; Gallagher, T Gen Synth. Methods 1989. 11, 393 Suess-Fink, G ; Neumann, F Chem Met.-Carbon Bond 1989, 5, 23 1

678

933. 934 93s. 936. 937. 938 939. 940 941. 942 943. 944. 945. 946. 947. 948. 949. 950. 95 1. 952. 953. 954. 955. 956 957. 958. 959 960. 961 962. 963.

Khetani, V.D. Diss. Abstr. Int. 8. 1989, SO, 1946. Beletskaya, 1.P IN. Akad. Nauk SSSR, Ser. Khim. 1990, 221 1. Harrington, P.J., John Wiley, New York, 1990. Werner, H., Erker, G , Springer-Verlag, Berlin, 1989 Mitchell, D. Diss. Abstr. Int. B. 1990, 50, 2932. Lukevics, E ; Ignatovich, L.M Latv. PSR Zinat. Akad. Vestis, Kim. Ser 1990, 387. Rockett, B.W.; Marr. G. J Organomet Chem. 1990, 392, 16 1. Yamagishi, T. Mem Fat Technol., Tokyo Metrop. Univ 1989, 39, 4037. Forni, L Chim. Ind. (Milan) 1990, 72, 521 Utimoto, K; Oshima, K; Takai, K., Matsubara, S Yuki Gosei Kagaku Kenkyusho Koenshu 1990, 4, 53. Watanabe, Y., Kondo, ‘I’ Yuki Gosei Kagaku Kyokaishi 1989, 47, 1132. Theopold, K.H. Accts. Chem. Res. 1990, 23, 263. Kocienski, P , Barber, C. Pure Appi. Chem 1990. 62, 1933. Fiandunese, V. Pure Appi. Chem. 1990, 62, 1987. Brunet, JJ Chem. Rev 1990, 90, 1041. Pearson, A.J Synth Lett 1990. 1 Cainelli, G ; Panunzio, M., Andreoli, P., Martelli, G.; Spunta, G, Giacomini, D., Bandini. E. Pure Appl. Chem. 1990, 62, 605. Astruc. D; Hamon, JR.; Mandon, D.; Moulines, F. Pure Appf. Chem. 1990, 62, 1165. Stack, JG. Diss. Abstr. Int B. 1990, 50, 4543. Guibe, F. Main Group Met. Chem 1989, 12, 437. Negishi, E I, Takahashi, T.; Akiyoshi, K. Chem. Znd. (Dekker) 1988, 33, 381 Catellani, M., Chiusoli, G.P.; Costa, M. Pure Appi Chem 1990. 62, 623 Wang, X.; Zhang, 2 , Xi, 2 Huaxue Ship 1990, 12, 2 1. Larock, RC Pure Appl. Chem. 1990, 62, 653. Backvall, J E. New. J. Chem. 1990, I4, 447 Russell, M.J.H. Platinum Met Rev 1989, 33, 186 Siem de Sanchez, C ; Gelambi, 0 Acta Cient. Venez 1988, 39, 3 19 Sun, C H Hua Hsueh 1987, 45, A 143. Huang, 2 Huaxue ShiJi 1990, 12, 149. Song, K ,LI, J. YOUJI Huaxue 1990, f0,4 11. Davies, S G.; Bashiardes. G.; Coote, S J , Goodfellow. C.L.; McNally, J P New Aspects C&g.Chem. 1, Proc. Int. Kyoto Coti. 4th 1988 1989, 8 1.

619

964 965. 966. 967. 968. 969. 970 971 972. 973. 974 975. 976 977 978. 979. 980. 981 982. 983 984 985. 986 987 988. 989. 990. 991. 992. 993. 994.

Brunner, H. Pure Appl Chem. 1990, 62, 589. Pearson, A.J. Synlett. 1990, 10. Brunner, H. Chem. Met.-Carbon Bond 1989, 5, 109. Duthaler, R.0 ; Hafner, A.; Riediker, M. Pure Appl. Chem. 1990, 62, 631. Hayashi, T ; Ito, Y. Nippon Kagako Kaishi 1989, 1965. Hayashi, T. Farumashia 1989, 25, 1240. Noyro, R.; Kitamura, M. Mod Synth. Methods 1989, 5, 115. Xiang, J.; Wang, J. Huaxue Shiji 1989, 11. 284. Ojima, I.; Clos, N; Bastos, C. Tetrahedron 1989, 45, 6901. Alexakis, A.; Mangenez, P Tet./Asymm. 1990. 1, 477. Noyori, R; Takaya, H Accts. Chem. Res. 1990, 23, 345. Wang, CW. Hua Hsueh 1987, 45, A131. Gree, R. Synthesis 1989, 341. Franck-Neuman, M.; Sedrati, M; Mokhi, M. NewJ Chem 1990, 14, 471. Danllova, N A ; Vel’der, Ya.L ; Miftakhov, M.S.; Spn-ikhin, L.V.; Khalilov, L M.; Baikova, I.P.; Tolstrkov, g.A. Metalloorg Khim. 1989, 2, 1079 Liu, R-S Proc. Natl. Sci. Count, Republ. China, Part A: Phys Sci Eng. 1989, 13, 368. Lai. Y S Diss. Abstr. Int. B. 1990, 51, 753. Palotai, I.M. DISS Abstr. Znt. B. 1990, 50, 5630. Wang, J.; Zhang, Y, Xu, Y.; Lin, 2. Gaodeng Xuexiao Huaxue Xuebao 1989, 10, 263. Jordan, R.F.; Bradley, P.K.; LaPointe, R.E.; Taylor, D.F. New. J Chem 1990, 14, 505. Negishi, E Chem. Ser. 1989, 29, 457 King, S A , Miller, J.B.; Wong, A.CC.; Schwartz, J. Chem. Ser. 1989, 29, 411 Fryzuk, M.D. Chem. Ser. 1989, 29. 427. Buchwald, S.L.; fisher, R.A Chem Ser. 1989, 29, 417. Mint& E.A Chem. Ser. 1989, 29, 443. Daves Jr. D.G. Act. Chem Res. 1990, 23, 201. Noyori. R; Uchlyama, M.; Kato, H ,Wakabayashi, S, Hayakawa, Y. Pure Appl. Chem. 1990, 62, 613 Noyori, R.; Hayakawa, Y. Kagaku Zokan (Kyoto) 1990, 235. Linebarrier, D.L. Diss. Abstr Int. B. 1990, 50, 5056. Hill, L.; Richards, C.J.; Thomas, S.E. Pure Appl. Chem. 1990. 62, 2057 Jun. CH ,Lim, Y.G. Bull. Korean Chem. Sot. 1989, 10, 468.

680

995. Ryabov, A.D Chem. Rev 1990, 90, 403. 996. Chisholm, M.H Pure Appl Chem., 1989, 61, 1707. 997 Ryabov, A.D. Chem. Rev. 1990, 90, 403. 998 Tanaka, M., Sakakura, T. Pure Appl. Chem. 1990, 62, 1147. 999 Jun, C.H. Bull Korean Chem. Sot 1990, 11) 187 1000 Hung, M.H Diss. Abstr. Int. B. 1989, 50, 1945. 1001. Bruce,M.I Pure Appl Chem. 1990, 62, 1021. 1002 Kuhnkovich, O.G. Russ. Chem. Rev. 1989, 58, 711. 003 Mandel’-Shtain, T V. Russ. Chem. Rev 1989, 58, 720. 004 Madhukar, P Diss. Abstr. Int B. 1990, 50, 3996 005 Fischer, E.0; Wittmann, D Znorg. Synth. 1989, 26, 40 006 Kauffman, T. NATO ASI Ser. Ser. C 1989, 269, 359. 1007 Snieckus, V Chem. Rev 1990, 90, 879 008. Snieckus, V. Pure Appl Chem. 1990, 62, 2047. 1009. Snieckus, V. Pure Appl Chem. 1990, 62, 671 1010. Zhang, Y Diss Abstr Int B 1990, 50, 5080 1011. Lewandowska, K DISS.Abstr. Int. B. 1990, 51, 214 1012. Takahashi, T I’uki Gosei Kagaku Kyokaishi 1990, 48, 476. 1013 He, C. Huaxue Tongbao 1990, 25. 1014 Speier, G Chem Met -Carbon Bond 1989, 5, 147 1015 Chang, J Diss Abstr Int. B. 1989, 50, 1398 1016 Griffith, W P Platinum Met Rev 1989, 33, 18 1. 1017 Simandi, L I Int Rev Phys. Chem 1989, 8, 21 1018 Bochmann, M Mech Inorg. Organomet React. 1989, 6, 365 1019 Wu, H. Huaxue Tongbao 1990, 25. 1020. Bhaduri, S Proc - Indian Acad. SIX, Chem Sot 1990, 102, 239 1021 Mayr, A Comments Inorg Chem. 1990, 10, 227 1022 Braunstein, P; Rose, J Stereochem Organomet Inorg Compd. 1989, 3, 3. 1023 Zakrzewski, J Heterocycles 1990, 31, 383 1024 Undheim, K., Benneche, T Heterocycles 1990, 30, 1155 1025 Iyoda. M Yuki Goser Kagaku Kyokarshi 1990, 48, 370. 1026 Osella, D; Raithby, P.R. Stereochem Organomet Inorg. Compd 1989, 3, 303 1027 Chung, Y DISS.Abstr Int B 1990, -50, 5622. 1028 Eisch, J J, Sexsmith, S R Res Chem Intermed 1990, 13, 149. 1029 Rieke, R D Science (Washington D C 1883) 1989. 246, 1260 1030 Bhaduri, S., Sharma, K R, Khwaja, H.1 Proc -Indian Acad SCI Chem Scf 1989, 101, 195

681

1031 1032. 1033. 1034 1035. 1036 1037. 1038 1039. 1040. 1041. 1042 1043 1044 1045. 1046 1047 1048

Davies, 5 G.; Dordor-Hedgecock, I.M. Anno. Rep. Prog. Chem., Sect. B 1988, 8-5, 225 Feng, Y.Y.; Chou, T.H. Hua Hsueh 1987, 45, A151. Nikanorov, V.A.; Rozenberg, V I ; Reutov, 0 A Proc Indian Natl. Sci. Acad, Part A 1989, S-5, 363. Howell, J.A.S. Chem. Enones 1989, 2, 1023 Gates, B.C.; Lamb, H.H j. Mol. Cataf. 1989, 52, 1 Aliev, A.K, Babaev, G.B.; Karaev, S.F. Azerb. Khrm. Zh. 1988. 60 Roman, EE; Astruc. d. Bol. Sot Chll Qulm 1989, 34, 39 Bennett, M.A Pure Appl Chem. 1989, 61, 1695. Sarkar, T.K Synthesis 1990, 969. Ott, J.; Schmid, B, Venanzr. L M, Wang, G; Ward, T.R New. j Chem 1990. 14, 49s. BrIngmann, G.; Walter, R., Weirich. R Angew. Chem. Int. Ed Engl. 1990, 29, 977. Tsuji, J. Synthesis 1990, 739 Kerm, W Angew Chem. Int. Ed. Engl. 1990, 29, 235 Shambayati, S ; Crowe, WE.; Schreiber, S L Angew Chem. Int Ed En@. 1990, 29, 256. Zenneck, LJ. Angew. Chem. Znt. Ed. Engf. 1990, 29. 126. Luh, T-Y.; Ni, Z-J Synthesis 1990 89. Coram, B, Rancan. S., Zecca, M.; Lora, S, Palma, G J Mol. Catal. 1989, 5-5, 2 0 9 Stolz-Dunn. S K. Diss Abstr Znt B 1990, 50, 4001.