Transverse vibrations of a tapered beam embedded in a non-homogeneous winkler foundation

Transverse vibrations of a tapered beam embedded in a non-homogeneous winkler foundation

Applied Acoustics 26 (1989) 67-72 Technical Note Transverse Vibrations of a Tapered Beam Embedded in a Non-homogeneous Winkler Foundation A BS TRA C...

199KB Sizes 0 Downloads 22 Views

Applied Acoustics 26 (1989) 67-72

Technical Note Transverse Vibrations of a Tapered Beam Embedded in a Non-homogeneous Winkler Foundation

A BS TRA C T The present study deals with the determination of the fundamental frequency of transverse vibration of the structural elements described in the title. The fundamental mode shape is approximated by means of a polynomial coordinate function which contains an exponential optimization parameter 'n' which allows for minimization of the fundamental frequency parameter.

INTRODUCTION The present study deals with the determination of the frequency of vibration of the structural system shown in Fig. 1 using Rayleigh's optimization procedure. 1 Apparently no studies are available on the title problem with the exception of the investigation reported in Ref. 2. The approximate approach presented in this Note makes it possible to obtain natural frequencies of embedded systems of more complex characteristics than the one considered in Ref. 2, for instance the case of linearly varying thickness.

A P P R O X I M A T E S O L U T I O N OF T H E P R O B L E M U N D E R INVESTIGATION In the case of normal modes of vibration one makes: v(x, t) = V(x). e iw'

(1)

67 Applied Acoustics 0003-682X/89/$03.50 O 1989 Elsevier Science Publishers Ltd, England. Printed in Great Britain

68

C. P. Filipich, M. J. Sonenblum, E. A. Gil

P<"

>P

~,

T

~.L

L Fig. I. Vibrating structural system studied in the present investigation.

and following Ref. 3 it is convenient to make:

(2)

V(x) ~_ Va(x) = x" + A x 3 + B x 2 + C x + D

where n is Rayleigh's optimization parameter and x = X / L . The constants A, B, C and D are determined substituting eqn (2) in the governing b o u n d a r y conditions (see Fig. 1): [V" - VoV']x_-o = 0

Ev]x_-o=O [ B V " + v 1V']x= 1 = 0

(3)

[v]~=~ = 0

k.

1//\\.,///\~ t/2

~

L/2

,~

Fig. 2. Vibrating beam of discontinuously varying cross section.

69

Transverse vibrations of a tapered beam

Proceeding now with the determination of Rayleigh's quotient given by: Us + p 2 0 p + Uw = [2x2(n)

2 , PoAo

n

=w,L e- 0 =

(4)

rk

where: 20s = Jo ~p(x). (V") 2 dx + v o g'~(O) + v~ V'2(1) 2 Up = .f~ ( V')2 dx 2Uw = k

V2 dx + ~

V2 dx

Tk = f l g(x) V2 dx

3o

B = E111

k,o2 = ko L4

Edo

Edo

golo

P1A1

kaL 4

k'l2

Y = PoAo

v ,IL Vo,l = Eolo

k'12 = El11

p2= pL2

(>o)

~ = k--~o

cp(x) = (1 + ( h l / h o - 1)x)3 g(x) = 1 + '(ht/h o - 1). x

one determines numerically the value of the parameter 'n' which minimizes eqn (4). The eigenvalue can be improved by constructing a summation of polynomial coordinate functions and the higher optimized eigenvalues may also be determined by minimization with respect to the parameter 'n' as shown in Refs 4 and 5. N U M E R I C A L RESULTS Tables 1 and 2 contain frequency coefficients for several tapered beams elements as a function of the governing parameters. The following combinations of boundary conditions have been considered: ---clamped-clamped ---clamped-simply supported --simply supported-clamped --simply supported-simply supported

C. P. Filipich, M. J. Sonenblum, E. A. Gil

70

TABLE 1 Fundamental Frequency Coefficients and Values of the Optimization Parameter for Several Combinations of the Boundary Conditions and of the Governing Geometric and Mechanical Parameters

Structural ~vstem

Tensile force

Compressive force

0

3

5

2

5

C l a m p e d - - s i m p l y supported 1"0 k~2 = 25 vo ~ oo k'~ = 0 v 1 = 0 0"5 ct = 0.5

15'71 n =4.33 12.72 n = 10.96

16-77 n = 4.21 14.74 n=8"84

17.44 n=4"13 15.92 n=7"84

14.95 n = 4"41 11.14 n=12"77

13.74 n = 4-56 8.16 n=15-51

1"0

15"96 n=4.16 13'40 n = 9"56

17"00 n=4"06 15'29 n=7-77

17-65 n=3'99 16.41 n=6"96

15-22 n=4"24 11"93 n=11.24

14"05 n=4"37 9"23 n=14"12

22.72 n=4"10 16.76 n=8-31

23"50 n = 4"09 18-24 n=8"00

24.00 n = 4"09 19-16 n=7"82

22.18 n = 4" 11 15"69 n=8"54

21"36 n = 4.12 13'92 n=8"94

22.72 n = 4"03 17"04 n = 7-84

23-50 n = 4"02 18"49 n = 7-57

24-01 n = 4"02 19'39 n = 7'41

22"19 n = 4.04 16-00 n = 8'05

21"36 n = 4.04 14'28 n = 8-41

C l a m p e d - - s i m p l y supported k ~~ = 0

Vo--" oo

k~ = 25 = 0"5

v1 - 0

0-5 1.0

Clamped-clamped k~~ = 25 k'~ = 0 ct = 0.5

vo ~ vI ~ o v

0'5 1"0

Clamped-clamped ~ = 0

Vo ~

k'~ = 25 = 0"5

v I --*

As an addition corresponding presented

0"5

to the results presented

to a beam

in Table

in Ref. 2 the frequency

of discontinuously

3. E n d s

varying

elastically

restrained

accuracy

achieved

cross

against

coefficients section rotation

are are

considered. Judgifig reasonably

from expect

the that

excellent

the results obtained

possess, at least, acceptable

engineering

in

Ref.

in the present

2, o n e

may

investigation

precision.

REFERENCES 1. Bert, C. W., U s e o f s y m m e t r y in a p p l y i n g the R a y l e i g h - S c h m i d t m e t h o d to static a n d f r e e - v i b r a t i o n p r o b l e m s . Industrial Mathematics, J. Industrial Math. Soc., 34 (1984) 65-7. 2. F i l i p i c h , C. P., L a u r a , P. A. A., S o n e n b l u m , M. & Gil, E., T r a n s v e r s e v i b r a t i o n s o f a n o n - u n i f o r m b e a m s u b j e c t to an axial f o r c e e m b e d d e d in a n o n - h o m o g e n e o u s W i n k l e r f o u n d a t i o n . Institute of Applied Mechanics, Puerto Belgrano Naval Base, 8111 A r g e n t i n a , P u b l i c a t i o n N o . 87-29, 1987.

TABLE 2 F u n d a m e n t a l Frequency Coefficients and Values o f the O p t i m i z a t i o n P a r a m e t e r for Several C o m b i n a t i o n s o f the B o u n d a r y C o n d i t i o n s a n d o f the G o v e r n i n g G e o m e t r i c a n d M e c h a n i c a l Parameters

Structural system

Simply s u p p o r t e d - c l a m p e d k~~ = 25 vo = 0 k'~=O vl-,~ 0c =~0'5 Simply s u p p o r t e d - c l a m p e d 12 ko = 0 vo = 0 k'~ = 25 vl~oo ~t= 0'5 Simply s u p p o r t e d - s i m p l y supported k~2 = 25 vo = 0 k'l~ = 0 vl=0 ct = 0-5 Simply s u p p o r t e d - s i m p l y supported r2 ko = 0 Vo=0 k I = 25 vI = 0 ct = 0'5

?•p2 1.0 0.5

1.0 0"5

1.0 0"5

1"0 0'5

Compressive force

Tensile force 0

3

5

2

5

15"96 n=3"95 11"03 n=7"55

17.00 n=4"03 12"79 n=7"57

17"65 n=4"08 13"84 n=7"59

15"23 n=3"90 9"68 n=7'52

14"06 n=3'83 7"20 n=7'49

15"72 n=3-84 10-87 n=6"71

16"77 n=3-92 12.66 n=6"80

17.44 n=3"96 13.72 n=6"85

14.97 n=3"79 9"50 n=6"65

13.77 n=3"72 6"95 n=6"55

10"48 n=4.21 8"08 n=10"32

I 1"81 n=4-20 10-32 n=8'27

12"62 n=4'19 11"57 n=7'41

9.49 n=4"22 6-11 n=12'31

7"78 n=4"23 <0

10.48 n=3.88 8"36 n=7'08

11.81 n=3"88 10-51 n=6"10

12.62 n=3'89 11.72 n=5-70

9.50 n=3.87 6-53 n=8"24

7.78 n=3.86 1-11 n=11-41

TABLE 3 V i b r a t i n g Beam o f D i s c o n t i n u o u s l y Varying Cross Section with E n d s Elastically R e s t r a i n e d Against R o t a t i o n

Structural system

kb2 = 25 k'; = 25 ~t = 0"5

Vo= 1 vl=l

~ 1'0

0-5

k '=25 k'? = 25

vo = 10 v I = 10

ct = 0"5 k~2 = 25

k'] = 25 ct = 0"5

1"0 0"5

Vo=100 vl=l~

1"0 0-5

2

Tensile force

Compressive force

0

3

5

2

5

12"59 n = 4"04 11.32 n=10"33

13'72 n = 4"03 13.07 n=9-61

14"42 n = 4"03 14"11 n=9.19

11"78 n = 4-04 9.98 n=10"88

10"45 n = 4-04 7"51 n=11"79

18"01 n = 4"05 15-10 n=9"32

18"85 n = 4"05 16"62 n=8"91

19'39 n = 4"04 17'55 n=8"66

17"43 n = 4'06 13"99 n=9"62

16'52 n --- 4"07 12"13 n=10"ll

22" 18 n = 4"06 17-04 n=9"35

22"95 n = 4"06 18-59 n=8'94

23.45 n = 4"05 19'54 n=8-68

21.65 n = 4-07 15"92 n=9'66

20"83 n = 4"08 14"05 n=10'17

72

C. P. Filipich, M. J. Sonenblum, E. A. Gil

3. Laura, P. A. A. & Cortinez, V. H., Transverse vibrations of a cantilever beam carrying a concentrated mass at its free end and subjected to a variable axial force. J. Sound and Vibration, 103 (1985) 596-9. 4. Laura, P. A. A. & Cortinez, V. H., Optimization of eigenvalues when using the Galerkin method. American Inst. of Chem. Engineers J., 32 (1986) 1025-6. 5. Filipich, C. P. & Rosales, M. B., A variant of Rayleigh's method applied to Timoshenko beams embedded in a Winkler-Pasternak medium. Department of Engineering U.N.S., Bahia Blanca 8000 Argentina, Publication 87-2, 1987.

C. P. Filipich Mechanical Systems Analysis Group, Facultad Regional Bahia Blanca and Universidad Nacional del Sur, 8000 Bahia Blanca, Argentina M. J. Sonenblum & E. A. Gil Mechanical Systems Analysis Group, Facultad Regional Bahia Blanca, Argentina

(Received 17 August 1987; accepted 19 April 1988)