Travelling wave solutions for a class of generalized KdV equation

Travelling wave solutions for a class of generalized KdV equation

Applied Mathematics and Computation 215 (2009) 2768–2774 Contents lists available at ScienceDirect Applied Mathematics and Computation journal homep...

172KB Sizes 0 Downloads 45 Views

Applied Mathematics and Computation 215 (2009) 2768–2774

Contents lists available at ScienceDirect

Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc

Travelling wave solutions for a class of generalized KdV equation q Shengqiang Tang *, Jianxian Zheng, Wentao Huang School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin, Guangxi 541004, PR China

a r t i c l e

i n f o

a b s t r a c t In this work, the K  ðl; pÞ equation is investigated. The sine–cosine method, the tanh method and the extended tanh method are efficiently used for analytic study of this equation. New solitary patterns solutions and compactons solutions are formally derived. The proposed schemes are reliable and manageable. Ó 2009 Elsevier Inc. All rights reserved.

Keywords: Compactons Solitary patterns solutions Sine–cosine method The extended tanh method

1. Introduction In 1993, Cooper et al. [1] considered the following generalized KdV equation:

K  ðl; pÞ :

ut ¼ ux ul2 þ a½2uxxx up þ 4pup1 ux uxx þ pðp  1Þup2 ðux Þ3 ;

ð1Þ

þ

where p; l P 2; l; p 2 Z . This equation was derived from the Lagrangian

# Z " 1 ðwx Þl p 2 Lðl  pÞ ¼ ww  þ aðwx Þ ðwxx Þ dx; 2 x t lðl  1Þ

ð2Þ

where uðx; tÞ was defined by uðx; tÞ ¼ wx ðx; tÞ: The authors of [1] investigated the Hamiltonian structure and integrability properties for this class of KdV equations. The authors of [2] investigated the bifurcation behavior of the travelling wave solutions of the corresponding travelling wave equations in its parameter space. It is well known that searching for explicit solutions for nonlinear evolution equation, by using different methods, is the goal for many researchers. Many powerful methods, such as Bäcklund transformation, inverse scattering method, Hirota bilinear forms, pseudo spectral method, the tanh–sech method [3–8], the sine–cosine method [9], and many other techniques were successfully used to investigate these types of equations. Practically, there is no unified method that can be used to handle all types of nonlinear problems. The sine–cosine method and the extended tanh method are direct and effective algebraic method for finding exact solutions of nonlinear diffusion equations and Wazwaz developed the methods of sine–cosine [10,11, and the references therein] and the extended tanh [6–8, and the references therein]. The sine–cosine and the extended tanh algorithms, that provides a systematic framework for many nonlinear dispersive equations, will be employed to back up our analysis to determine compactons and solitary patterns travelling waves solutions. Let uðx; tÞ ¼ /ðx  ctÞ ¼ /ðnÞ, where c is the wave speed. Then (1) becomes to

c/0 ¼

1 ð/l1 Þ0 þ a½2ð/p /00 Þ0 þ pð/p1 ð/0 Þ2 Þ0 ; l1

ð3Þ

q This research was supported by Science foundation of the Education Department of Guangxi Province (D2008007) and Program for Excellent Talents in Guangxi Higher Education Institutions. * Corresponding author. E-mail address: [email protected] (S. Tang).

0096-3003/$ - see front matter Ó 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2009.09.019

S. Tang et al. / Applied Mathematics and Computation 215 (2009) 2768–2774

2769

where ‘‘0 ” is the derivative with respect to n. Integrating (3) once and setting integration constant as 0, we have

2a/p /00 þ ap/p1 ð/0 Þ2 þ

1 /l1 þ c/ ¼ 0: l1

ð4Þ

The paper is organized as follows: In Section 2, the sine–cosine method and the tanh method are briefly discussed. In Section 3, represents exact analytical solutions of (1) by using the sine–cosine method. In Section 4, represents exact analytical solutions of (1) by using the tanh method and the extended tanh method. In the last section, we conclude the paper and give some discussions. 2. Analysis of the two methods The sine–cosine method, the tanh method and the extended tanh method have been applied for a wide variety of nonlinear problems. The main features of the two methods will be reviewed briefly. For both methods, we first use the wave variable n ¼ x  ct to carry a PDE in two independent variables

Pðu; ut ; ux ; uxx ; uxxx ; . . .Þ ¼ 0

ð5Þ

into an ODE

Q ðu; u0 ; u00 ; u000 ; . . .Þ ¼ 0:

ð6Þ

Eq. (6) is then integrated as long as all terms contain derivatives where integration constants are considered zeros. 2.1. The sine–cosine method The sine–cosine method admits the use of the solution in the form [5, and references therein].

 uðx; tÞ ¼

k cosb ðlnÞ; jlnj < p2 ; 0;

otherwise

ð7Þ

or in the form

( uðx; tÞ ¼

b

k sin ðlnÞ; jlnj < p2 ; 0;

otherwise;

ð8Þ

where k; l and b are parameters that will be determined. We substitute (7) or (8) into the reduced ordinary differential equation obtained above in (6), balance the terms of the cosine functions when (7) is used, or balance the terms of the sine functions when (8) is used, and solving the resulting system of algebraic equations by using the computerized symbolic calculations to obtain all possible value of the parameters k; l and b. 2.2. The tanh method and the extended tanh method The standard tanh method introduced in [3–5] where the tanh is used as a new variable, since all derivatives of a tanh are represented by a tanh itself. We use a new independent variable

Y ¼ tanhðlnÞ;

ð9Þ

that leads to the change of derivatives:

d d ¼ lð1  Y 2 Þ ; dn dY 2

d

dn2

¼l

2

! 2 d 2 d ð1  Y Þ 2Y þ ð1  Y Þ 2 : dY dY 2

ð10Þ

We then apply the following finite expansion:

uðlnÞ ¼ SðYÞ ¼

M X

ak Y k

ð11Þ

k¼0

and

uðlnÞ ¼ SðYÞ ¼

M X k¼0

ak Y k þ

M X

ak Y k ;

ð12Þ

k¼1

where M is a positive integer that will be determined to derive a closed form analytic solution. However, if M is not an integer, a transformation formula is usually used. Substituting (9) and (10) into the simplified ODE (6) results in an equation in

2770

S. Tang et al. / Applied Mathematics and Computation 215 (2009) 2768–2774

powers of Y. To determine the parameter M, we usually balance the linear terms of highest order in the resulting equation with the highest order nonlinear terms. With M determined, we collect all coefficients of powers of Y in the resulting equation where these coefficients have to vanish. This will give a system of algebraic equations involving the parameters ak ðk ¼ 0; . . . ; MÞ; l and c. Having determined these parameters, knowing that M is a positive integer in most cases, and using (11) or (12) we obtain an analytic solution uðx; tÞ in a closed form. 3. Using the sine–cosine method Substituting (7) into (4) yields

akpþ1 l2 b½bðp þ 2Þ  2 cosbðpþ1Þ2 ðlnÞ  akpþ1 l2 b2 ðp þ 2Þ cosbðpþ1Þ ðlnÞ þ

1 l1 k cosbðl1Þ þck cosb ðlnÞ ¼ 0: l1

ð13Þ

It is clear that Eq. (13) is satisfied if the following system of algebraic equations holds:

bðp þ 1Þ  2 ¼ b;

bðp þ 1Þ ¼ bðl  1Þ;

akpþ1 l2 b½bðp þ 2Þ  2 ¼ ck; akpþ1 l2 b2 ðp þ 2Þ ¼ 

1 l1 k : l1

ð14Þ

Solving this system yields

p ¼ l  2;



2 ; p

p



1

1p

l ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ; k ¼  cðp þ 1Þðp þ 2Þ ; 2 2 aðp þ 1Þðp þ 2Þ

ð15Þ

that can also be obtained by using the sine ansatz (8). Consequently, for a > 0 we obtain a family of compactons solutions

8  1p > < pðxctÞ ; jlnj < p2 ;  12 cðp þ 1Þðp þ 2Þ cos2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi uðx; tÞ ¼ 2 aðpþ1Þðpþ2Þ > : 0; otherwise

ð16Þ

8  1p > < 2 pðxctÞ ; jlnj < p2 ;  12 cðp þ 1Þðp þ 2Þ sin pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi uðx; tÞ ¼ 2 aðpþ1Þðpþ2Þ > : 0; otherwise:

ð17Þ

and

However, for a < 0 we obtain solitary patterns solutions

( uðx; tÞ ¼

" #)1p 1 pðx  ctÞ 2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  cðp þ 1Þðp þ 2Þcosh 2 2 aðp þ 1Þðp þ 2Þ

ð18Þ

" #)1p 1 pðx  ctÞ 2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi : cðp þ 1Þðp þ 2Þsinh 2 2 aðp þ 1Þðp þ 2Þ

ð19Þ

and

( uðx; tÞ ¼

4. Using the tanh method and the extended tanh method The K  ðl; pÞ equation: the following two cases will be investigated: Case I l ¼ p þ 2; p ¼ p > 2. Case II l ¼ 2ðp þ 1Þ; p ¼ p. 4.1. Case I. l ¼ p þ 2; p ¼ p > 2 In this case, Eq. (4) becomes

2a/p /00 þ ap/p1 ð/0 Þ2 þ

1 /pþ1 þ c/ ¼ 0: pþ1

ð20Þ

Balancing / with /p /00 we find

M ¼ pM þ 4 þ M  2;

ð21Þ

so that

2 M¼ : p

ð22Þ

S. Tang et al. / Applied Mathematics and Computation 215 (2009) 2768–2774

2771

To get a closed form analytic solution, the parameter M should be an integer. A transformation formula 1

/ ¼ v p

ð23Þ

should be used to achieve our goal. This in turn transforms (20) to

að3p þ 2Þ p2 Balancing

2 1 ðv 0 Þ2  avv 00 þ v 2 þ cv 3 ¼ 0: p pþ1

ð24Þ

vv 00 and v 3 gives M ¼ 2. The tanh method allows us to use the substitution

v ðx; tÞ ¼ SðYÞ ¼ a0 þ a1 Y þ a2 Y 2 :

ð25Þ

Substituting (25) into (24), collecting the coefficients of each power of Y, and solve the resulting system of algebraic equations to find the following sets of solutions:

2½4al2 ð6p þ 1Þðp þ 1Þ þ p2  ; a1 ¼ 0; 3cp2 ðp þ 1Þðp þ 2Þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4al2 ðp  2Þ p 15p2 þ 24p þ 8 ; l¼ ; a2 ¼  3cp2 4 aðp þ 1Þð3p3  12p2  9p  1Þ a0 ¼

ð26Þ

1

where c is selected as a free parameter. Noting that / ¼ v p , for a > 0; p P 5 or a < 0; 2 6 p 6 4, we find a family of solitary patterns solutions

(

" sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi #)1p p 15p2 þ 24p þ 8 a0 þ a2 tanh ðx  ctÞ 4 aðp þ 1Þð3p3  12p2  9p  1Þ 2

uðx; tÞ ¼

ð27Þ

and

( 2

uðx; tÞ ¼

a0 þ a2 coth

" sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi #)1p p 15p2 þ 24p þ 8 ðx  ctÞ : 4 aðp þ 1Þð3p3  12p2  9p  1Þ

ð28Þ

However, for a < 0; p P 5 or a > 0; 2 6 p 6 4, we obtain a family of compactons solutions given by

(

" sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi #)1p p ð15p2 þ 24p þ 8Þ ðx  ctÞ a0  a2 tan 4 aðp þ 1Þð3p3  12p2  9p  1Þ 2

uðx; tÞ ¼

ð29Þ

and

( uðx; tÞ ¼

" sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi #)1p p ð15p2 þ 24p þ 8Þ a0  a2 cot : ðx  ctÞ 4 aðp þ 1Þð3p3  12p2  9p  1Þ 2

ð30Þ

We next apply the extended tanh method give in (12), where we substitute

uðnÞ ¼ a0 þ a1 Y þ a2 Y 2 þ b1 Y 1 þ b2 Y 2

ð31Þ

into (24), and proceed as before to find the following sets for a0 ; a1 ; a2 ; b1 ; b2 and

l

8al ð2p þ 1Þðp þ 2Þ þ p ; 3cp2 ðp þ 2Þ 8al2 ; b1 ¼ 0; a1 ¼ 0; a2 ¼ b2 ¼  cp2 2

2

a0 ¼

where

ð32Þ

l2 satisfies the following equation cpa2 ð6a2  7a0 Þ þ

1 ða0 þ 2a22 þ 8a0 a2 Þ þ ca0 ða20 þ 6a22 Þ þ 12ca2 ða20 þ a22 Þ ¼ 0: pþ1

The following three cases will be investigated: Case (I) l2 > 0. Case (II) l2 < 0. Case (III) l2 ¼ a1 þ ia2 , where a1 ; a2 are two real number. In view (32) we find a family of solitary patterns solutions for Case (I): l2 > 0.

n h io1p 2 2 uðx; tÞ ¼ a0 þ a2 tanh lðx  ctÞ þ coth lðx  ctÞ : In view (32) we find a family of solitary patterns solutions for Case (II): given by

ð33Þ

l2 < 0, we obtain a family of compactons solutions

2772

S. Tang et al. / Applied Mathematics and Computation 215 (2009) 2768–2774

uðx; tÞ ¼

  1p qffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffi a0  a2 tan2 l2 ðx  ctÞ þ cot2 l2 ðx  ctÞ :

In view (32) we find a family of solitary patterns solutions for Case (III):

ð34Þ

l2 ¼ a1 þ ia2 . Denote that two second roots of l2 :

l1 ¼ a3 þ ia4 ; l2 ¼ a5 þ ia6 ; we obtain the complex solutions:

(

uðx; tÞ ¼

 2 cos a4 ðx  ctÞ sinh a3 ðx  ctÞ þ i sin a4 ðx  ctÞ cosh a3 ðx  ctÞ cos a4 ðx  ctÞ cosh a3 ðx  ctÞ þ i sin a4 ðx  ctÞ sinh a3 ðx  ctÞ  2 )1p cos a4 ðx  ctÞ cosh a3 ðx  ctÞ þ i sin a4 ðx  ctÞ sinh a3 ðx  ctÞ þ cos a4 ðx  ctÞ sinh a3 ðx  ctÞ þ i sin a4 ðx  ctÞ cosh a3 ðx  ctÞ a0 þ a2

ð35Þ

and

(

uðx; tÞ ¼

 2 cos a6 ðx  ctÞ sinh a5 ðx  ctÞ þ i sin a6 ðx  ctÞ cosh a5 ðx  ctÞ cos a6 ðx  ctÞ cosh a5 ðx  ctÞ þ i sin a6 ðx  ctÞ sinh a5 ðx  ctÞ  2 )1p cos a6 ðx  ctÞ cosh a5 ðx  ctÞ þ i sin a6 ðx  ctÞ sinh a5 ðx  ctÞ þ : cos a6 ðx  ctÞ sinh a5 ðx  ctÞ þ i sin a6 ðx  ctÞ cosh a5 ðx  ctÞ a0 þ a2

ð36Þ

4.2. Case II l ¼ 2ðp þ 1Þ; p ¼ p In this case, Eq. (4) becomes

2a/p /00 þ ap/p1 ð/0 Þ2 þ

1 /2pþ1 þ c/ ¼ 0: 2p þ 1

ð37Þ

Balancing / with /p /00 we find

M ¼ pM þ 4 þ M  2;

ð38Þ

so that

2 M¼ : p

ð39Þ

To get a closed form analytic solution, the parameter M should be an integer. A transformation formula 1

/ ¼ v p

ð40Þ

should be used to achieve our goal. This in turn transforms (37) to

að3p þ 2Þ p2 Balancing

vv 00

2 1 ðv 0 Þ2  avv 00 þ v þ cv 3 ¼ 0: p 2p þ 1

and

ð41Þ

v 3 gives M ¼ 2. The tanh method allows us to use the substitution

v ðx; tÞ ¼ SðYÞ ¼ a0 þ a1 Y þ a2 Y 2 :

ð42Þ

Substituting (42) into (41), collecting the coefficients of each power of Y, and solve the resulting system of algebraic equations to find the following sets of solutions:

a0 ¼

8al2 ð2p þ 1Þ 

a1 ¼ 0;

a2 ¼ 

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ½8al2 ð2p þ 1Þ2  cð3p þ 5Þð5p þ 2Þð2p þ 1Þ

8al2 ; cp2

l

ð3p þ 2Þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffi 8½3cp2 ðp þ 2Þð2p þ 1Þ  D ¼ ; 9cap2 ðp þ 2Þ2

; ð43Þ

where D ¼ 9c2 p4 ð2p þ 1Þ2 ðp þ 2Þ2 þ cð9p2  4Þð2p þ 1Þð6p3  3p2 þ 4p þ 4Þ, c is selected as a free parameter. Noting that 1 / ¼ v p , we find a family of solitary patterns solutions for a < 0; c > 0

( uðx; tÞ ¼ and

2

a0 þ a2 tanh

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffi )1p 8½3cp2 ðp þ 2Þð2p þ 1Þ þ D 9cap2 ðp þ 2Þ2

ð44Þ

S. Tang et al. / Applied Mathematics and Computation 215 (2009) 2768–2774

( 2

uðx; tÞ ¼

a0 þ a2 coth

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffi )1p 8½3cp2 ðp þ 2Þð2p þ 1Þ þ D 9cap2 ðp þ 2Þ2

2773

ð45Þ

:

For a > 0; c > 0, we also find a family of solitary patterns solutions

( 2

uðx; tÞ ¼

a0 þ a2 tanh

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffi )1p 8½3cp2 ðp þ 2Þð2p þ 1Þ  D

ð46Þ

9cap2 ðp þ 2Þ2

and

( 2

uðx; tÞ ¼

a0 þ a2 coth

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffi )1p 8½3cp2 ðp þ 2Þð2p þ 1Þ  D 9cap2 ðp þ 2Þ2

ð47Þ

:

However, for a > 0; c > 0, we obtain a family of compactons solutions given by

( uðx; tÞ ¼

a0  a2 tan

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffi )1p 2 ðp þ 2Þð2p þ 1Þ þ 8½3cp D 2

ð48Þ

9cap2 ðp þ 2Þ2

and

( 2

uðx; tÞ ¼

a0  a2 cot

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffi )1p 8½3cp2 ðp þ 2Þð2p þ 1Þ þ D 9cap2 ðp þ 2Þ2

ð49Þ

:

For a < 0; c > 0, we also obtain a family of compactons solutions given by

( uðx; tÞ ¼

a0  a2 tan

2

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffi )1p 8½3cp2 ðp þ 2Þð2p þ 1Þ  D

ð50Þ

9cap2 ðp þ 2Þ2

and

( uðx; tÞ ¼

2

a0  a2 cot

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffi )1p 8½3cp2 ðp þ 2Þð2p þ 1Þ  D 9cap2 ðp þ 2Þ2

ð51Þ

:

We next apply the extended tanh method give in (12), where we substitute

uðnÞ ¼ a0 þ a1 Y þ a2 Y 2 þ b1 Y 1 þ b2 Y 2 ;

ð52Þ

into (24), and proceed as before to find the following sets for a0 ; a1 ; a2 ; b1 ; b2 and

a0 ¼

l4 ¼

16al2 ; 3cp2

a1 ¼ b1 ¼ 0;

a2 ¼ b2 ¼ 

45cp4

a2 ð2p þ 1Þð9216p þ 11264Þ

l

8al2 ; cp2 ð53Þ

:

The following two cases will be investigated: Case (I) l4 > 0. Case (II) l4 < 0. In view (53) we find a family of solitary patterns solutions for case (I):

n h io1p 2 2 uðx; tÞ ¼ a0 þ a2 tanh lðx  ctÞ þ coth lðx  ctÞ : Denote that four fourth roots of

l1;2

 ¼ i

ð54Þ

l4 < 0:

14 45cp4 ; a2 ð2p þ 1Þð9216p þ 11264Þ

lk ¼ ak þ ibk ; k ¼ 3; 4;

where ak ; bk are real number. In view (53) we find a family of compactons solutions for

l1;2 given by

  1 uðx; tÞ ¼ a0  a2 tan2 l1 ðx  ctÞ þ cot2 l1 ðx  ctÞ p : However, for

ð55Þ

lk ðk ¼ 3; 4Þ, we obtain the complex solutions:

n h io1p 2 2 uðx; tÞ ¼ a0 þ a2 tanh lk ðx  ctÞ þ coth lk ðx  ctÞ ;

k ¼ 3; 4:

ð56Þ

2774

S. Tang et al. / Applied Mathematics and Computation 215 (2009) 2768–2774

5. Discussion The sine–cosine method, the tanh method and the extended tanh method were used to investigate the K  ðl; pÞ equation. The study revealed compactons solutions and solitary patterns solutions for some examined variants. The study emphasized the fact that the two methods are reliable in handling nonlinear problems. The obtained results clearly demonstrate the efficiency of the two methods used in this work. Moreover, the methods are capable of greatly minimizing the size of computational work compared to other existing techniques. The two methods worked successfully in handling nonlinear dispersive equations. This emphasizes the fact that the two methods are applicable to a wide variety of nonlinear problems. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

F. Cooper, H. Shepar, P. Sodano, Solitary waves in a class of generalized Korteveg-de-Vries equation, Phys. Rev. E 48 (5) (1993) 4027–4032. S. Tang, M. Li, Bifurcations of travelling wave solutions in a class of generalized KdV equation, Appl. Math. Comput. 177 (2006) 589–596. W. Malfliet, Solitary wave solutions of nonlinear wave equations, Am. J. Phys. 60 (7) (1992) 650–654. W. Malfliet, W. Hereman, The tanh method: I. Exact solutions of nonlinear evolution and wave equations, Phys. Scripta 54 (1996) 563–568. W. Malfliet, W. Hereman, The tanh method: II. Perturbation technique for conservative systems, Phys. Scripta 54 (1996) 569–575. A.M. Wazwaz, A reliable treatment of the physical structure for the nonlinear equation K(m, n), Appl. Math.Comput. 163 (2005) 1081–1095. A.M. Wazwaz, The tanh method for travelling wave solutions of nonlinear equations, Appl. Math. Comput. 154 (3) (2004) 713–723. A.M. Wazwaz, The tanh method: exact solutions of the sine-Gordon and the Sinh-Gordon equations, Appl. Math. Comput. 167 (2) (2005) 1196–1210. S. Sirendaoreji, S. Jiong, A direct method for solving sinh-Gordon type equation, Phys. Lett. A 298 (2002) 133–139. A.M. Wazwaz, A class of nonlinear fourth order variant of a generalized Camassa–Holm equation with compact and noncompact solutions, Appl. Math. Comput. 165 (2005) 485–501. [11] A.M. Wazwaz, A sine–cosine method for handling nonlinear wave equations, Math. Comput. Model. 40 (2004) 499–508.