Scripta METALLURGICA
Vol. 5, pp. 949-954, 1971 Printed in the United States
Pergamon Press, Inc.
TWINNING IN CUBIC SUPERLATTICES V.S. Arunachalam and C.M. Sargent Aerospace Research L a b o r a t o r i e s W-PAFB, Dayton, Ohio 45433 Permanent Address: National Aeronautical Bangalore 17 INDIA
Laboratory
{Received July 21, 1971; Revised September 7, 1971) Laves ( I )
has o f t e n been c i t e d
[e.g.
(2,3)]
"as p r e d i c t i n g
that
t i c e s would be i n c a p a b l e of t w i n n i n g and e x p e r i m e n t a l r e s u l t s support t h i s
prediction
b e h a v i o r of two-phase n i c k e l
superalloys
deformation twinning
apparently violating
(5,6)
containing NijAI
does indeed occur i n t h i s
on the d e f o r m a t i o n (LI 2 type s u p p e r l a t t i c e ) cubic s u p e r l a t t i c e ,
Laves c r i t e r i o n .
We have re-examined the p o s s i b i l i t y superlattices
are a v a i l a b l e to
(2,4).
However, r e c e n t e l e c t r o n m i c r o s c o p i c i n v e s t i g a t i o n s show t h a t
cub'ic s u p e r l a t -
of d e f o r m a t i o n t w i n n i n g o c c u r r i n g
basing our a n a l y s i s on the d e f i n i t i o n
B i l b y and Crocker ( 7 ) :
"A d e f o r m a t i o n twin is
of t w i n n i n g
a region of a c r y s t a l l i n e
which has undergone a homogeneous shape d e f o r m a t i o n in such a way t h a t sulting
product s t r u c t u r e
is
identical
with
in cubic
adopted by body the r e -
t h a t of the p a r e n t , but o r i e n t e d
different ly". Although this
it
is
conventional
expression is
as the s t r u c t u r e constituent
of an " o r d e r e d b . c . c . and hence, we w i l l
d e r i v e d from a b . c . c .
species.
We s h a l l
r e s t o r e the ordered l a t t i c e , will
to t a l k
often misleading,
(or f.c.c.)
structure",
to a " s u p e r l a t t i c e "
phase by o r d e r i n g of the
c o n s i d e r only those t w i n n i n g modes which f u l l y
i.e.,
any s h u f f l i n g
of the atoms a f t e r
twinning
not be a l l o w e d .
Bevis and Crocker
[paper I ( 8 ) ,
and Paper I I
modes of the cubic B r a v a i s l a t t i c e s shuffles.
Table I of t h e i r
of these modes is fraction
of l a t t i c e
lattice,
listed
points
the f r a c t i o n
to c o r r e c t t w i n p o s i t i o n s
of l a t t i c e
points
from t h a t
of these f r a c t i o n s
notation:
m is the r e c i p r o c a l
having to s h u f f l e ,
i n general be d i f f e r e n t
MF are the r e c i p r o c a l s
paper, using t h e i r
m and n.
sheared d i r e c t l y
the r e m a i n i n g p o i n t s
have c a l c u l a t e d those t w i n n i n g
those t w i n n i n g modes and a s e l e c t i o n
reproduced in Table I of t h i s
For centered l a t t i c e s , positions will
(9)]
which can occur w i t h small shears and s i m p l e
paper I I
The modes are d e s c r i b e d by two i n t e g e r s , tive
(or f.c.c.) refer
n is
a labelling
shearing d i r e c t l y
of the p r i m i t i v e
of the in a p r i m i integer. to t w i n
lattice.
MI and
f o r b o d y - c e n t e r e d and f a c e - c e n t e r e d
949
950
TWINNING
lattices, fully
respectively.
IN CUBIC SUPERLATTICES
tively
Ii
we reproduce only those t w i n n i n g modes w i t h m, mI ,
and which r e s u l t in a change of o r i e n t a t i o n .
Kl ,
K2, n l ,
or
n 2 are respec-
the t w i n n i n g plane, the conjugate t w i n n i n g plane, the t w i n n i n g d i r e c t i o n
and the conjugate t w i n n i n g d i r e c t i o n . to Kl
S, No.
Since we are concerned here only w i t h those modes which
restore the l a t t i c e ,
mF = l ,
Vol.
S is the plane of shear, p e r p e n d i c u l a r
and K2 and g i s the magnitude of the shear s t r a i n .
represents f o u r d i s t i n c t
modes, i . e .
Each mode i n Table I
Kl K2 n l n 2 i m p l i e s the existence of
K2 Kl n 2 n l (the conjugate mode), n l n 2 Kl K2 and n 2 n l K2 KI . I t is poini:ed out in Bevis and Crocker's paper I I t h a t the signs of the old or new K2 and ~l must be reversed to preserve the c o r r e c t r e l a t i v e signs of the f o u r elements in the l a s t two modes.
In general i n t e r c h a n g i n g Kl , n l and K2, n 2 (as i n the
l a s t two modes) would r e q u i r e a change from d i r e c t to r e c i p r o c a l l a t t i c e This is not necessary i n p r i m i t i v e Cubic l a t t i c e s .
parameters.
However, since the face-
centered and body centered cubic l a t t i c e s are r e c i p r o c a l to each o t h e r , i t
is
necessary to interchange mI and mF f o r these modes. K1
K2
nI
n2
S
1.2
I00
120
010
210
001
will
If
1
2
2
I00
III
011
2ii
011
2
2
1
a+ll
a-ll
a-ll
a+ii
0il
4
2
2
1.6
I00
524
012
2~2
021
5
2
2
1.7
Ob+l
Ob-I
O~b+
Olb-
I00
5
2
2
2.2
III
111
211
211
011
2
4
1
2.8
II0
i74
ili
311
i12
6
1
4
TWINNINGMODES IN CUBIC LATTICES restore the cubic Bravais
a c r y s t a l s t r u c t u r e has more than one atom associated w i t h each
p o i n t , then only those t w i n n i n g modes which preserve
be a l l o w a b l e .
only i f
mF
1.4
TABLE I
lattice
mI
1.3
Table I contains those t w i n n i n g modes which f u l l y lattices.
2 2 m g
m. n
this
A l i n e a r array of atoms at each l a t t i c e
t h i s arrangement p o i n t is preserved
l i n e is contained in Kl or K2, the u n d i s t o r t e d planes.
array of atoms,
it
For a planar
is necessary t h a t the array be p a r a l l e l to Kl or K2.
We have
examined three cubic s u p e r l a t t i c e s : I)
L2 o s u p e r l a t t i c e e.g.
CuZn
This is the s u p e r l a t t i c e discussed by Laves ( 1 ) .
I t has a cubic P
Bravais l a t t i c e w i t h two atoms associated w i t h each l a t t i c e
point, e.g.,
Cu at
Vol.
5, No.
ii
TWINNING
( 0 , 0 , 0 ) , Zn at (½,½,½).
IN CUBIC S U P E R L A T T I C E S
951
In order to preserve t h i s s t r u c t u r e a f t e r t w i n n i n g , a
mode must be chosen from Table I w i t h Kl or K2 c o n t a i n i n g [ I l l ] . mode 1.3 f i t s
this
c r i t e r i o n with
K1 = ( 2 1 1 ) , A sketch
of
this
A v a r i a n t of
mode i s
K2 = ( 0 1 1 ) , shown i n
n I = [III]
Fig.
n2 = [I00],
g :
2.
1
of
l)
I
rlO0] ~
Fig. 2) DO3 S u p e r l a t t i c e e 9.
[0111
•
Bravois lattice point
[]
Bravais
"
"
•
Body center position
G
Body
"
"
in plane below in plane below
1 - Twinning i n L2 o S u p e r l a t t i c e Fe3Be
This has a cubic F Bravais l a t t i c e w i t h f o u r atoms associated w i t h each lattice
point
Again,
~II]
in Table
Be a t
(0,0,0),
s h o u l d be c o n t a i n e d
I which
and, h e n c e , produce
eg.,
completely
twinning
twins
in the
Fe at
(k,k,k),
i n K1 ( o r
restore
the
K2).
f.c.c,
by a homogeneous s h e a r w i l l DO3 s u p e r l a t t i c e
(½,½,½),
(3/4,
3/4,
None o f the t w i n n i n g lattice
fulfills
this
n o t be p o s s i b l e .
have been u n s u c c e s s f u l
(2,4).
3/4). modes condition,
Attempts
to
952
TWINNING
IN CUBIC SUPERLATTICES
Vol.
S, No. ii
3) 1.12. eg. Ni3Al This has a cubic P Bravais l a t t i c e with four atoms associated with each l a t t i c e point, eg., A1 at ( 0 , 0 , 0 ) , Ni at (½,0,½), (½,½,0), (0,½,½) forming a tetrahedron. I t is convenient to describe the r e l a t i v e positions of the atoms in a d i f f e r e n t but c r y s t a l l o g r a p h i c a l l y equivalent way: Al at (0,0,0) Ni a t (½,0,½), (½,½,0), and (0,-½,½), i e . , the t h i r d nickel atom is translated by [OTO] Thus, a planar array lying on ( T l l ) is associated with each l a t t i c e point. System 1.3 (Table I) has K2 = ( I l l ) , and i s , therefore, a possible twinning mode for the Ll 2 s u p e r l a t t i c e . The conjugate mode (K l = ( I l l ) , K2 = (lO0), nl=[2TT ] , n 2 = [Oil] and g = 2) is sketched in Fig. 2. This is the system observed by Guimier and Strudel (5). A pole mechanism f o r twinning this s u p e r l a t t i c e by this system has been suggested by Kear et al. (lO).
-q, --r 21ij
= ['OI I ]
\\
[IOO1 ~ [ 0 1 1 1
Fig.
X
Troceof K~=[III]
•
Brovois lattice point
O X
Brovois . . . . i n p l o n e / [ O I ] : ] below Face centering positions (depthindicoted by fraction of [01i.1 distance
2 - Twinning in L12 Superlattice
Vol.
S, No.
II
TWINNING
IN CUBIC SUPERLATTICES
The above a n a l y s i s shows t h a t t w i n n i n g i s superlattices which do t w i n ,
examined.
It
do not e x h i b i t
from which they were formed. crystal
structures
953
p o s s i b l e in two of the t h r e e
is not s u r p r i s i n g
cubic
t h a t those cubic s u p e r l a t t i c e s
the same modes as those of the d i s o r d e r e d l a t t i c e s The s u p e r l a t t i c e s
do, in f a c t ,
which must obey s e p a r a t e c r i t e r i a .
It
r e p r e s e n t new
is t h i s
distinction
which has r e s u l t e d in c o n f u s i o n i n the p a s t . We would l i k e
to thank P r o f e s s o r s
vious v e r s i o n of t h i s
R.W. Cahn and A.G. Crocker f o r
reading a p r e -
manuscript.
REFERENCES I.
F. Laves, Naturwissenschaften, 39, 546 (1952).
2. R.W. Cahn and J.A. Coil, Acta Met. 9, 138 (1961). 3. G.F. Bolling and R.H. Richman, Acta Met., 13, 709 (1965). 4. M.J. Marcinkowski
and R.M. Fisher, J. Appl. Phys. 34, 2135 (1963).
5. A. Guimier and J.L. Strudel, Proceedings of the Second I n t e r n a t i o n a l Conference on the Strength of Metals and Alloys, American Society for Metals, p. I145 (1970). 6. B.H. Kear, J.M. Oblak and A.F. Giamei, Proceedings of the Second I n t e r n a t i o n a l Conference on The S t r e n g t h of Metals and A l l o y s , p. 1155 (1970). 7. B.A.
Bilby
and A.G. Crocker, Proc.
Roy. Soc A 288, 240 (1965).
8. M. Bevis and A.G. Crocker, Proc.
Roy. Soc. A 304, 123 (1968).
9. M. Bevis and A.G.
Roy. Soc, A 212, 509 (1969).
I0.
B.H. Kear, A.F.
Crocker, Proc.
Giamei, G.R. L e v e r a n t , J.M. Oblak, S c r i p t a M e t . , _3, 123 (1969).