Two Dimensional Convection Patterns in Large Aspect Ratio Systems

Two Dimensional Convection Patterns in Large Aspect Ratio Systems

Lecture Notes in Num. Appl. Anal., 5, 205-231 (1982) Nonlineur PDE in Applied Science U.S.-Jupun Seminur, Tokyo, 1982 Two Dimensional Convection Patt...

853KB Sizes 0 Downloads 95 Views

Lecture Notes in Num. Appl. Anal., 5, 205-231 (1982) Nonlineur PDE in Applied Science U.S.-Jupun Seminur, Tokyo, 1982

Two Dimensional Convection Patterns i n Large Aspect Ratio Systems*

Alan C . N e w e l l Program i n Applied Mathematics University of Arizona, Tucson

85721

This work was supported i n part by DOA Contract DAAG29-82-C-0068.

205

206

c. NEWEI.1.

Alan

F i g u r e 1 below i s t a k e n f r o m a v i s u a l i z a t i o n of a n e x p e r i m e n t of G o l l u b a n d M c c a r r i a r 111 in which t h e y f o l l o w t h e t i m e development o f a c o n v e c t i n g h o r i z o n t a l l a y e r of f l u i d of d e p t h techniques.

h

t h r o u g h t h e u s e of l a s e r D o p p l e r

The d o t s a r e p o i n t s where, a t a depth of

h/4

from t h e t o p of t h e

l a y e r , t h e v e l o c i t y component p a r a l l e l t o t h e l a r g e r s i d e of t h e box is z e r o a n d mark t h e b o u n d a r i e s of t h e c o n v e c t i v e r o l l s .

The e x p e r i m e n t is c o n d u c t e d i n a

r a n g e of R a y l e i g h number where n o n l i n e a r s t a b i l i t y t h e o r y g u a r a n t e e s t h a t i n a h o r i z o n t a l l a y e r of i n f i n i t e e x t e n t , s t r a i g h t p a r a l l e l r o l l s b o t h e x i s t a n d a r e stable.

.. .. .. .. .. .. .. .. .. .. .. .. .. .<..'.' : ... ... ... ........... ... .! t.' ., *. .....'..' .. '...** . ...... .*:. . . . . . . .: .* ..; . ......... ... 1,;:::::

10

.

.

.

.

*

.

.

I

.

.

.

.

::::;!;;:*.s.:

... ...:...:...:...:...:...:...i .:. I. ... .,... ...: ..:. :;:,: . . . . .., .,,. .. .. .. .. .. ..... . . . . ........ .t*,..*'

::..;,t

2 .

... I ................. ............. ....... , ... .. . . ...... . . .r.t.! . i .

, . . !: , ::::.' :/a. ! :!:::::::;:I:.+, ,.* ..;:::;::;:::;::.+* . : : : : :: : : : : ;!::;!;/*. I

0

5

0

10

1s

x (cm) Figure 1 :

D o p p l e r Map Of The V e l o c i t y F i e l d F o r A S t a b l e C o n v e c t i v e Flow 256 Hrs. After R a y l e i g h Number Was I n c r e a s e d To 2.05 Rc. ( H o r i z o n t a l D i f f u s i o n Time, 40 HKS.)

However, t h e e x i s t e n c e of o r i e n t a t i o n a l d e g e n e r a c y a n d a band of s t a b l e r o l l wavenumbers t o g e t h e r w i t h t h e f a c t t h a t t h e rolls a l i g n t h e m s e l v e s p e r p e n d i c u l a r t o a l l l a t e r a l b o u n d a r i e s makes t h e s e s o l u t i o n s u n a t t a i n a b l e .

The p a t t e r n s t h a t

a r e s e e n a r e much more c o m p l i c a t e d n o t only c o n t a i n i n g Curved r o l l s b u t a l s o e x h i b i t i n g many d i s l o c a t i o n s .

F u r t h e r m o r e , i t is n o t c l e a r w h e t h e r a n d , i f s o ,

u n d e r what c i r c u m s t a n c e s t h e p a t t e r n a c h i e v e s a t i m e i n d e p e n d e n t e q u i l i b r i u m . I n d e e d , i n some cases, G o l l u b a n d M c c a r r i a r h a v e s e e n p a t t e r n s which are s l o w l y t i m e dependent o v e r many h o r i z o n t a l d i f f u s i o n t i m e s .

The f a i l u r e t o r e a c h a

207

Two Dimensional Convection Patterns s t e a d y s t a t e was a l s o noted e a r l i e r by Ahlers and Walden [Z] who observed t h a t the e f f e c t i v e thermal c o n d u c t i v i t y of a l a y e r of convecting f l u i d helium remained n o i s y f o r a l l Rayleigh numbers above

RC

f o r sufficiently large aspect

ratios. Our g o a l i n t h i s paper i s t o develop a t h e o r y t o d e s c r i b e t h e s e p a t t e r n s . We s t a r t with the o b s e r v a t i o n t h a t almost everywhere i n the convection f i e l d a l o c a l wavevector is d e f i n e d and v a r i e s slowly o v e r the box. the wavevector is tangent.

A t the boundaries,

Therefore we e x p e c t t h a t t h e r e e x i s t s l o c a l l y

p e r i o d i c s o l u t i o n s defined by f ( 0 ; A , R) when

f

is 2n - p e r i o d i c i n 0 and

VO = k(X, Y , T)

(1)

( V = (a/aX, a/aY)) is a slowly varying f u n c t i o n of p o s i t i o n c o o r d i n a t e s and t i m e .

X, Y, T, t h e h o r i z o n t a l

Indeed we know from the work of Busse 131 t h a t

such s o l u t i o n s a s f u n c t i o n s of 0 e x i s t and, a s we d e s c r i b e l a t e r , have c e r t a i n s t a b i l i t y properties.

I n o t h e r words, while t h e f i e l d v a r i a b l e

d

(wavevector), which t o g e t h e r with a knowledge of

f as f u n c t i o n of

0 d e s c r i b e t h e p a t t e r n , vary o v e r d i s t a n c e s of t h e s i z e of t h e box.

a s p e c t r a t i o c 2 , t h e r a t i o of t h e r o l l wavelength d dimension

L

of t h e box, is the

The Rayleigh number

RC,

R

only small

(2.

v a r i e s over

A (amplitude)

d i s t a n c e s of the o r d e r of the roll s i z e , t h e parameters and

f

The i n v e r s e

h) to the l i n e a r

parameter which e n t e r s t h e theory.

can be an o r d e r one amount above i t s c r i t i c a l value

the value a t which the p u r e l y conductive s t a t e becomes u n s t a b l e , although

i t must be less than t h e Rayleigh number a t which t h e s t r a i g h t p a r a l l e l r o l l

s o l u t i o n becomes u n s t a b l e .

The i d e a s we a r e about t o d e s c r i b e a r e c l o s e l y

r e l a t e d t o those of Whitham (41 who i n t h e l a t e s i x t i e s developed a theory t o d e s c r i b e f u l l y n o n l i n e a r , almost p e r i o d i c w a v e t r a i n s . A s a f i r s t a t t e m p t we s h a l l use model e q u a t i o n s , t h e use of which

f a c i l i t a t e s the a n a l y s i s by making c a l c u l a t i o n s e x p l i c i t b u t which c a p t u r e what

we b e l i e v e a r e some of the e s s e n t i a l f e a t u r e s of the Overbeck-Boussinesq equations.

We d e r i v e e q u a t i o n s f o r the slow v a r i a b l e s

d,

A which

( i ) show

t h a t a l l t h e s t a b i l i t y c r i t e r i a d e r i v e d by Busse and h i s c o l l e a g u e s [31 f o r

208

Alan C. N ~ W E L I . ( i i ) r e d u c e i n t h e l i m i t of small

s t r a i g h t p a r a l l e l r o l l s h o l d l o c a l l y and

R-RC

t o t h e Newell-Whitehead-Segel

[ 5 ] equations.

I n a d d i t i o n we show t h a t t h e

e f f e c t of c u r v a t u r e is t o d r i v e t h e r o l l p a t t e r n s toward a s t a t e in which t h e l o c a l wavenumber assumes a c o n s t a n t v a l u e a l m o s t e v e r y w h e r e , a r e s u l t c o n s i s t e n t w i t h a r e c e n t r e s u l t of Pomeau a n d M a n n e v i l l e [ 6 ] f o r a x i a l l y s y m m e t r i c r o l l s . T h i s is done by ( i ) p r o v i n g t h a t u n d e r c e r t a i n n a t u r a l boundary c o n d i t i o n s , t h e macroscopic e q u a t i o n s f o r t h e phase, v a l i d f o r times up to t h e h o r i z o n t a l d i f f u s i o n t i m e , are d e r i v e a b l e from a Lyapunov f u n c t i o n a l e v e n though t h e f u l l m i c r o s c o p i c e q u a t i o n s f o r t h e model n e e d n o t b e a n d ( i i )

examining t h e n a t u r e

of t h e s t a t i o n a r y s t a t e s which would be r e a c h e d on t h i s t i m e . But t h i s is n o t t h e whole s t o r y a s such p a t t e r n s i n a n d of t h e m s e l v e s c a n n o t s a t i s f y a l l t h e boundary c o n d i t i o n s .

I n between t h e p a t t e r n s ,

In

d i s l o c a t i o n s are formed and s o l u t i o n s d e s c r i b i n g t h e s e s t r u c t u r e s a r e g i v e n . l o o k i n g a t t h e s e s o l u t i o n s , i t is c l e a r t h a t t h e t i m e s c a l e which t h e t o t a l

s y s t e m would n e e d t o r e l a x to e q u i l i b r i u m is n o t s i m p l y t h e h o r i z o n t a l d i f f u s i o n time L

2

/V

b u t is t h i s time s c a l e m u l t i p l i e d by t h e a s p e c t r a t i o

L/d.

Finally,

we i n c l u d e i n t h e model a t e r m which t a k e s a c c o u n t of t h e "mean d r i f t " which o c c u r s i n s y s t e m s of low t o m o d e r a t e P r a n d t l number.

The p r e s e n c e of t h i s

e f f e c t was f i r s t p o i n t e d o u t by S i g g i a a n d Z i p p e l e u s 171, a n d c a n c a u s e marked change i n t h e b e h a v i o r of t h e s y s t e m .

I s h o u l d p o i n t o u t t h a t t h e i d e a s we d i s c u s s h e r e c a n b e e x t e n d e d t o i n c l u d e s i t u a t i o n s where t h e b a s i c f l o w

is c o n s i d e r e d t o b e a

f

is m u l t i p e r i o d i c .

2n p e r i o d i c f u n c t i o n i n e a c h of

p h a s e s 0 where 80 = $ a n d which a l s o depends on i i i p a r a m e t e r (or set of p a r a m e t e r s )

n

In t h a t case

f

n

amplitudes

Ai

and a

R.

A more comprehensive p a p e r is b e i n g w r i t t e n j o i n t l y w i t h my c o l l e a g u e Mike

C r o s s who s t a r t e d me t h i n k i n g a b o u t t h e s e problems a g a i n d u r i n g a most p l e a s a n t l e a v e s p e n t a t t h e I n s t i t u t e of T h e o r e t i c a l P h y s i c s a t t h e U n i v e r s i t y of C a l i f o r n i a i n Santa Barbara.

I am most g r a t e f u l f o t h e i r h o s p i t a l i t y a n d t o t h e

e n e r g e t i c l e a d e r s h i p of P i e r r e Hohenberg who was a c o n s t a n t s t i m u l u s .

209

Two Dimensional Convection Patterns 2.

The p r e d i c t i o n s of p r e s e n t t h e o r i e s :

Consider

w(X, Y , T )

g i v e n by

a ----w aT

on

-a)

<

X, Y

<

+

(V2

+

1)2w

-

Rw

+

w2w*

=

0

( 2)

-, The p r i n c i p a l r e a s o n f o r c h o o s i n g t h i s model is t h a t it

possesses a simple f u l l y nonlinear periodic s o l u t i o n e

io,

+ + X, X = ( X , Y ) .

+

0 = k

The " c o n d u c t i o n " s o l u t i o n

modes of t h e form

w(X,

whenever R

>

Y, T) = We

ic

(3)

2

p l a n e is g i v e n by

( R , k)

is u n s t a b l e t o

k

f i i n ( k - 1 ) 2 = 0 , which v a l u e i s r e a l i z e d when

n e u t r a l s t a b i l i t y c u r v e in t h e

w = 0

($1 R

=

k = 1.

The

We

(k2-1)2.

o b s e r v e t h e s y s t e m i s d e g e n e r a t e in t h e s e n s e t h a t any mode of t h e form ( 3 ) with

lcl

= 1 w i l l grow a t t h e same r a t e when R

>

0.

The n o n l i n e a r s a t u r a t i o n

of t h e l i n e a r l y u n s t a b l e modes i s d e s c r i b e d by t h e S t u a r t - W a t s o n [ 8 1 e q u a t i o n

- w%*

WT = Rhl

(4)

which in t h i s c a s e is a n e x a c t s o l u t i o n f o r ( 2 ) b u t which g e n e r a l l y i s o n l y t r u e f o r v a l u e s of

R

p r o p o r t i o n a l t o JR

near its c r i t i c a l value

- RC

. Because

RC

=

0

and f o r amplitudes

W

of t h e o r i e n t a t i o n a l d e g e n e r a c y , i t i s i n d e e d

n a t u r a l t o look f o r s o l u t i o n s of t h e form

a n d , in t h e small

R

limit, we c a n show

It is a n e a s y m a t t e r t o s e e t h a t t h e o n l y s t a b l e s o l u t i o n of t h i s set is t h e

single r o l l s o l u t i o n

- iZI

W1 = JR

e

k

,

w

j

= O , j # I .

(6)

Alan C. NEWELL

210

So, j u s t a s i n t h e case of the Rayleigh-Benard problem under a v e r t i c a l l y

symmetric, a p p l i e d temperature f i e l d with moderate P r a n d t l number u / K > 0 ( 1 ) , s i n g l e , p a r a l l e l r o l l s a r e p r e f e r r e d . pointed o u t , no d i r e c t i o n i s chosen a p r i o r i .

But, a s we have

Therefore when

R

is suddenly

r a i s e d from s u b c r i t i c a l t o s u p e r c r i t i c a l v a l u e s , the system a c t s a s a n o i s e A t any p a r t i c u l a r l o c a t i o n i n a l a r g e h o r i z o n t a l l a y e r , i t w i l l

amplifier.

choose among t h e wavelengths of the noise f o r one c l o s e t o n o t make any choice among d i r e c t i o n s .

kC

1

but i t

W i l l

Therefore u n l e s s the experiment i s

c a r e f u l l y c o n t r o l l e d ( a s i n t h e case of the Busse-Whitehead [ 9 1 and WhiteheadChen [ 101 e x p e r i m e n t s ) , r o l l s of approximately the c r i t i c a l wavelength b u t of d i f f e r e n t d i r e c t i o n s w i l l s p r i n g up in d i f f e r e n t p l a c e s .

This d i r e c t i o n a l

d i v e r s i t y is even more a c c e n t u a t e d due t o t h e i n f l u e n c e of a c l o s e d boundary.

(i is t h e

= 0

A t each boundary l o c t i o n ,

u n i t normal t o t h e boundary) and

t h e r e f o r e i f n i s continuous, r o l l s of a l l d i r e c t i o n s k a r e e x c i t e d .

Now, once

t h e r o l l d i r e c t i o n is chosen a t a p a r t i c u l a r l o c a t i o n , i t becomes more s t a b l e a g a i n s t l i n e a r d i s t u r b a n c e s of r o l l s of o t h e r d i r e c t i o n s t h e more i t grows So, f o r e a r l y times, one f i n d s a f l u i d l a y e r

towards i t s s a t u r a t i o n amplitude.

resembling a sea of q u a s i s t a b l e patches and somehow t h e f l u i d has t o f i n d a way t o resolve the i n c o m p a t i b i l i t i e s between them. There is a l s o a bandwidth degeneracy. f i n i t e bandwidth of wavenumbers

WT and W

+

JR

-

(k2

-

1)’

k

= (R

It i s e v i d e n t t h a t f o r R

can be e x c i t e d .

-

(k2

-

Indeed f o r

>

0, a

t 1,

- W%*

1)’)W

a s y m p t o t i c a l l y i n time.

We may t e s t t h e ( l i n e a r )

s t a b i l i t y of these s o l u t i o n s by s e t t i n g

w = eikX (W

+ b l e ILX+ IMY

+

b2e

-iLX

-

iMY

1

whereupon we f i n d a f t e r some c a l c u l a t i o n t h a t t h i s s o l u t i o n is u n s t a b l e i f

2A2(A2)’(L2~2)+”2(A2)’’(

2k2L2)+4k2L2(A2)’2 > 0

(5)

Two Dimensional Convection Patterns where A 2 = R

-

(k2

-

1)*

and

(A2)'

. The f i r s t

dA2/dk2

=

21 1 c l a s s of

i n s t a b i l i t i e s occurs f o r

L = 0,

M

f

0

2 2 ' B = (A ) ( A )

and

These correspond t o t h e zig-zag a wavevector with wavenumber k

>

0.

i n s t a b i l i t i e s discovered by Busse and a r i s e when

<

g i v e s i t s energy t o e i t h e r one of two modes ( k , f circle.

+

M = 0

>

+ k2(A2)"

2A2(A2)"k2

0) i n t e r a c t s with and

2 k ) l y i n g on the u n i t

41 -

The second c l a s s of i n s t a b i l i t i e s occur f o r A2(A2)'

>

1 (in which case ( A 2 ) '

and

0,

o r e q u i v a l e n t l y when $kB>O

-

where B = A 2 dA2/dk2 = -2(k2

1)(R

-

(k2

. This

-

(7)

is t h e Eckhaus

i n s t a b i l i t y and occurs when a r o l l has too s m a l l a wavelength.

It is useful t o

summarize these r e s u l t s by way of f i g u r e 2.

k8, A

I

I

I

I

I

R k Figure 2: Graphs of A , kB and R Busse Balloon

VS.

k. and t h e

212

Alan C . NEWELL

S o l u t i o n s can e x i s t f o r k

< k <

L

k

R

b u t a r e s t a b l e o n l y when kC

s h a d e d a r e a i s known a s t h e B u s s e b a l l o o n .

<

k

<$

When d e r i v e d i n t h e c o n t e x t of t h e

e q u a t i o n s i t i s somewhat more c o m p l i c a t e d .

f u l l Overbeck-Boussinesq

. The

The r i g h t

hand c u r v e which is t h e boundary w i t h t h e Eckhaus i n s t a b i l i t y i s r e p l a c e d f o r l a r g e P r a n d t l number by a boundary t o a n i n s t a b i l i t y t o r o l l s i n t h e

On t h e o t h e r h a n d , f o r s m a l l e r P r a n d t l numbers, t h e

perpendicular direction.

Eckhaus s t a b i l i t y boundary becomes l i n k e d w i t h t h e s k e w - v a r i c o s e i n s t a b i l i t y which i s a v a r i a n t of t h e f o r m e r when mean d r i f t e f f e c t s are i n c l u d e d . show how t o i n c l u d e t h e s e i n t h e model.

k

boundary need n o t remain a t

=

We w i l l

We a l s o remark t h a t t h e l e f t hand

kC = 1 b u t can bend l e f t w a r d d e p e n d i n g on

The B u s s e b a l l o o n ( o r Busse w i n d s o c k ) , t h e r e g i o n of s t a b l e

P r a n d t l number.

p a r a l l e l r o l l s i n the R, p Since f o r R

>

R

C'

-

v/K, k

p l a n e i s g i v e n in r e f e r e n c e [ 3 1 .

there i s an order JR

i n a direction parallel t o

-

$ a n d a n o r d e r 4JR

R

C

band o f a l l o w a b l e wavenumbers

- RC

band i n t h e p e r p e n d i c u l a r

d i r e c t i o n , i t i s n a t u r a l t o i n c l u d e a r i c h e r c l a s s of s o l u t i o n s which h a v e a n a l m o s t p a r a l l e l r o l l s t m c t u r e by l e t t i n g

-Y. -t ) e i x

w ( x , Y, T) = WC;,

2 4 where x = u X, y = uY, t = p T w i t h N

(8) 4

x

=

R

-

RC

<<

1. This g i v e s t h e N e w e l l -

Whitehead-Segel e q u a t i o n (51 which f o r t h e model ( 2 ) i s

aw a7

4.

(21

a+ a;

a

2

2 w 3)

=

xw - w%*

.

(9)

This e q u a t i o n i s c a n o n i c a l f o r d e s c r i b i n g s i t u a t i o n s in which t h e r o l l s a r e a l m o s t p a r a l l e l and

3.

R

i s c l o s e t o i t s c r i t i c a l value.

A new a p p r o a c h :

We w i l l now g i v e a d e s c r i p t i o n t h a t a l l o w s t h e l o c a l w a v e v e c t o r undergo o r d e r one changes c o n t i n u o u s l y b u t s l o w l y o v e r t h e box. w(X, Y , T) where

W

and

ie(X, = We

Y, T)

= VO a r e f u n c t i o n s of t h e s l o w v a r i a b l e s

to

Let ( 10)

213

Two Dimensional Convection Patterns 2

4

2

x = E X , ~ = E Y , ~ = E T

and I / E

2

is t h e a s p e c t r a t i o .

I t i s u s e f u l t o write 9 =

1 7 O(x,

y , t ) whence

E

V O = V+9 x G

T

=

x

= (m,

n)

(k cos JI, k sin J I )

=

(11)

2

2

= E B

k’

t

= E D

We w i l l a l s o f i n d i t u s e f u l t o i n t r o d u c e new c o o r d i n a t e s 9 = a(x, y ) ,

B = B(x, Y )

d e f i n e d by

ax = k Cos $

Bx = -P Sin J,

ay = k S i n JI

By = II Cos JI

The J a c o b i a n of t h e t r a n s f o r m a t i o n from (a, B )

to

( x , y)

is

kll

and

The curves a ( x , y ) = c o n s t a n t a r e . of course, t h e l o c i of c o n s t a n t phase 8 while the B c o o r d i n a t e s a r e the orthogonal t r a j e c t o r i e s and measure d i s t a n c e a l o n g t h e rolls.

by ll

The c u r v a t u r e K

$ . Tne

a

of the

a ( x , y)

=

c o n s t a n t curves is given

c u r v a t u r e of t h e c o n s t a n t curves B

is

K

B

=

-k

3.

I n t h e s e c o o r d i n a t e s , the c o m p a t i b i l i t y c o n d i t i o n s ( 1 1 ) g i v e us t h a t

and

Note t h a t

ma Aeie = e i e ( i e 2 u V 2 Aeie = eie(-k2

+

E4

&)A

+ ie2Dl +

,

r4D2)A

,

214

Alan C . NEWELL

where

a +

D ~ A=

=

2k2

=

2k

2n

+ Ak

+ a + (2+ % ) A ak

+ Akll

a$

,

,

2 aA ak 2 ae ~ + A k ~ - A k / L ~ ,

and

a2

a'

Q 2 A = 2 + 7 A

We now proceed t o determine the e q u a t i o n s s a t i s f i e d by the slow v a r i a b l e s and

the l a t t e r being t h e l e a d i n g approximation t o

A,

loss of g e n e r a l i t y , can be taken t o be r e a l .

u = a. R-A'

W

which, w i t h o u t

Let

... , = R + eS2 + ... . 0 +

E'O

+

We choose t h e sequences [ a n } , {R,) appearing i n the expansion f o r

W.

i n a manner so a s t o e l i m i n a t e s e c u l a r terms In t h i s c a s e , s e c u l a r means t h a t no s o l u t i o n

W2, W 4 e t c .

e x i s t s t o the a l g e b r a i c e q u a t i o n s f o r t h e 0 v a r i a b l e and expanded w = Aeie terms were removed, no 2ll

(20),

(21),

2 [ic a

+

c4

E2W2(o)

+

..., t h e n , u n l e s s

periodic solution f o r

( 1 6 ) , (17) i n t o ( 2 ) g i v e s

(22),

2 at +

+

(k

2

-

I f we had l e f t i n

2 2 2 i e (Dl(k - l ) * + ( k - l ) D l * )

w2

would e x i s t .

the secular Substituting

Two Dimensional Convection Patterns

+

- c4(D2(k2-l)*

-R

0

- r%, -

(k2-1)D2.

+ D12) + i E 6 ( D 1 - D 2 + D 2 * D I ) +

€k4 ....+ k 2 A W 2

What does t h i s e q u a t i o n t e l l u s ? R

0

+ W22)...](A

ic4(2AW4

At

+

215

68D 2

c?W2

+

2

...) = 0 .

O(1)

(24)

= ( k 2- 1 ) 2

and so, t o leading order, the amplitude

is d e t e r m i n e d from t h e " e i k o n a l "

A

equation A A t order

2

= R

E~

2

-

( k -1)

2

.

(25)

we have t h a t

+

(-Ro

(k2-1)2)W2

+ a%, =

R.H.S.

Note t h e f o l l o w i n g i n t e r e s t i n g f e a t u r e .

For

Ro = ( k 2 -

t h e r e f o r e , e v e n though

R

- RC

= 0(1),

A2

is f i n i t e and

t h e o n l y t e r m s on t h e RHS w h i c h

g i v e r i s e t o s e c u l a r b e h a v i o r a r e t h o s e which a r e p u r e l y i m a g i n a r y .

were s m a l l , we would h a v e t o remove a l l t h e terms on t h e

A2

o t h e r hand, i f

On t h e

RHS.

I n o t h e r words, t h e n u l l s p a c e of t h e l i n e a r i z e d e q u a t i o n i s c u t i n h a l f

when

A = O(1).

f o r the amplitude

What t h i s means i s t h a t i n s t e a d of h a v i n g t w o e q u a t i o n s , one

A

a n d t h e o t h e r f o r t h e p h a s e of t h e c o n v e c t i v e p a t t e r n , we

s i m p l y have a s i n g l e e q u a t i o n f o r t h e p h a s e . a l g e b r a l c a l l y from ( 2 5 ) . of small

R

-

RC

The a m p l i t u d e is d e t e r m i n e d

T h i s a l s o means, of c o u r s e , t h a t t h e l i m i t t o t h e c a s e

and small a m p l i t u d e

A

is f a i r l y s u b t l e .

[For workers i n

n o n l i n e a r wave t h e o r y , t h e r e i s a d i r e c t a n a l o g u e between t h i s l i m i t p r o c e s s and t h e l i m i t p r o c e s s one e n c o u n t e r s when one a t t e m p t s t o o b t a i n t h e n o n l i n e a r S c h r o d i n g e r e q u a t i o n from Whitham's t h e o r y . ]

We w i l l c a r r y o u t t h e p e r t u r b a t i o n

a n a l y s i s i n such a way s o a s t o f a c i l i t a t e t h i s l i m i t p r o c e s s .

What we do is t o

u s e t h e e x p a n s i o n ( 2 2 ) which i s a l s o a n a m p l i t u d e e x p a n s i o n t o r e e x p a n d n e c e s s a r y so t h a t we can s i m p l y set W t h e following equations,

2j

= 0, j

>

A

1. We f i n d d i r e c t l y f r o m

if

23)

Alan C. NEWELL

216 uA

- Dl(k2-l)A -

R-A*

(k2-1)

-

2

=

(k2-l)DIA

E4 ii ( A t -

-D$

+ E 4 (D1*D2 + D2*Dl)A = 2 (k -1)Df

+E'D~)

-

0,

(26)

2

D2(k - l ) A

.

Because of t h e s i m p l i c i t y of t h i s model, t h e s e e q u a t i o n s a r e e x a c t .

W e will

f i r s t examine t h e s e e q u a t i o n s w i t h a veiw t o making c o n t a c t w i t h known r e s u l t s a n d t h e n we w i l l discuss aome new consequences.

4.

Connections with previous t h e o r i e s . F o r v a l u e s of

and then

A

t h e phase u

of o r d e r u n i t y , we c a n n e g l e c t t h e RHS of e q u a t i o n ( 2 7 )

R

is g i v e n as f u n c t i o n of

-

k

by ( 2 5 ) .

Equation (26) tells u s about

4

8, a n d i g n o r i n g t h e O(E ) terms can be w r i t t e n as

Az Eae +

g m ~ +

an^=^,

7

or

where

B(k)

-

A2(k) dA2/dk2

.

(30)

I want t o rernark a t t h i s p o i n t t h a t t h e f a c t t h a t t h e s p a t i a l t e r m s h a v e c o n s e r v a t i o n form is n o t a c o n s e q u e n c e of t h i s p a r t i c u l a r model n o r t h e f a c t t h a t i t can be d e r i v e d from a Lyapunov f u n c t i o n a l . (a)

The Busse B a l l o o n h o l d s l o c a l l y .

E q u a t i o n ( 2 9 ) i s e l l i p t i c s t a b l e o r u n s t a b l e ( i n t i m e ) or h y p e r b o l i c u n s t a b l e d e p e n d i n g o n which one of t h e f o l l o w i n g f o u r c a s e s o b t a i n s : 1)

2)

B

<

d 0, =(kB)

B

>

d 0, =(kB)

< >

> <

d 0, x ( k B ) d 0, &kB)

3)

B

4)

B

0;

Elliptic stable

0;

E l l i p t i c unstable

<

0;

Hyperbolic unstable

>

0;

Hyperbolic unstable.

217

Two Dimensional Convection Patterns

These r e s u l t s are s i m p l y t h e same r e s u l t s which a r e d i s p l a y e d in F i g u r e 2,

x, y

e x c e p t now a l l t h e v a r i a b l e s a r e f u n c t i o n s of

and

t.

T h e r e f o r e w e can

s a y t h a t a l l t h e s t a b i l i t y f e a t u r e s we h a d f o u n d when l o o k i n g a t t h e s t a b i l i t y of s t r a i g h t p a r a l l e l r o l l s c o n t i n u e t o h o l d l o c a l l y .

Case (1) above i s t h e

Busse b a l l o o n ; c a s e ( 2 ) i n v o l v e s i n s t a b i l i t i e s which have wavenumber dependence

in b o t h t h e a l o n g a n d p e r p e n d i c u l a r t o t h e r o l l d i r e c t i o n s ; c a s e ( 3 ) i s t h e z i g zag i n s t a b i l i t y a n d c a s e ( 4 ) is t h e Eckhaus i n t a b i l i t y . by t a k i n g t h e l o c a l r o l l w a v e v e c t o r t o be

ae + xd (

A x

Hence f o r B (k, 0);

>

for B

a% +

k B ) T

ax

0, $(kB)>

<

0,

B

a% = -

0

aY

( k , 0)

T h i s can be e a s i l y s e e n

i n which c a s e ( 2 9 ) becomes

.

(32)

0, t h e i n s t a b i l i t y h a s a w a v e v e c t o r p e r p e n d i c u l a r t o

arrd kB >

0 t h e u n s t a b l e modes are p a r a l l e l t o

( k , 0).

The a d d i t i o n of t h e c 4 t e r m i n ( 2 6 ) which i n v o l v e s h i g h e r d e r i v a t i v e s o n l y s e r v e s t o c o n t r o l t h e growth of t h e i n s t a b i l i t i e s a f t e r t h e y b e g i n .

It d o e s n o t

i n h i b i t them a l t o g e t h e r nor d o e s it of i t s e l f t r i g g e r any new i n s t a b i l i t y . The r e a d e r might l i k e t o compare t h i s r e s u l t w i t h what h a p p e n s in n o n l i n e a r wavetrains.

x

and

t

T h e r e , t h e a n a l o g u e of e q u a t i o n ( 2 6 ) is a s e c o n d o r d e r s y s t e m i n and s o it i s t h e e l l i p t i c i t y o r h y p e r b o l i c i t y of t h e s e c o n d o r d e r

o p e r a t o r which d e t e r m i n e s i n s t a b i l i t y o r ( n e u t r a l ) s t a b i l i t y of t h e w a v e t r a i n .

For example, f o r a t r a i n of g r a v i t y waves on t h e sea s u r f a c e , t h e h y p e r b o l i c n a t u r e of ( 2 6 ) c h a n g e s t o e l l i p t i c when t h e r a t i o of d e p t h t o w a v e l e n g t h is l e s s t h a n 1.36. (b)

The Newell-klhitehead-Segel

limit.

To t h i s p o i n t , we have t a k e n v a r i a t i o n s i n t h e d i r e c t i v e s p a r a l l e l t o and

p e r p e n d i c u l a r t o t h e l o c a l r o l l t o be of t h e same o r d e r of m a g n i t u d e .

It i s

c l e a r t h a t i f f o r some r e a s o n t h e l o c a l wavenumber is f o r c e d t o s t a y a p p r o x i m a t e l y c o n s t a n t , t h e v a r i a t i o n s in wavenumber of o r d e r IJ p a r a l l e l

-

to (e.g.

a r e accompanied by v a r i a t i o n s of o r d e r J p i n t h e p e r p e n d i c u l a r d i r e c t i o n (kc

+ pL) 2 +

-

2

( J I J M ) = kc

2

)

.

Near k = 1,

we f i n d t h a t v a r i a t i o n s

p e r p e n d i c u l a r t o t h e r o l l a r e of a n o r d e r of magnitude g r e a t e r t h a n t h o s e p a r a l l e l t o t h e r o l l a n d t h i s l e a d s t o a b a l a n c e between t h e t e r m

1

V

+

k B and

218

Alan C . N F W LII

some of t h e

E~

terms i n th e phase e q u a tio n ( 2 6 ) .

T h i s s i t u a t i o n c e r t a i n l y o b t a i n s when

i s s u f f i c i e n t l y small, f o r t h e n

R

-

( s e e F i g u r e 2) t h e bandwidth of wavenumbers p a r a l l e l t o t h e r o l l i s O(JR) a n d

4 -

t h e bandwidth p e r p e n d i c u l a r t o t h e r o l l i s O( JR). A s we h a v e m e n t i o n e d , i n t h i s l i m i t t h e a m p l i t u d e n o l o n g e r f o l l o w s t h e p h a s e g r a d i e n t a s i n (25) b u t t h e

terms on t h e RHS of t h e a m p l i t u d e e q u a t i o n (27) became e q u a l l y i m p o r t a n t t o T h i s b a l a n c e i s a c h i e v e d when R =

t h e s e on t h e L.H.S.

E

4

x.

For r o l l s which a r e

and

e

a =

where x = direction.

E

2

=

x

+

E

2

7)

+(x,

X a s before and

(34) = y/s =

EY, t h e new s c a l i n g i n t h e p e r p e n d i c u l a r

It is now e a s y t o show from (11) t h a t

kaa

=

ax + $_a_ ,

La8

=

Y Y

K,

=

kq8 =

+yy

and

K

e

=

-kqa

1 / ;a~

=

,

-~+,;j-

(I

= at =

E+-$-

Y

E

2

$t

(35)

w'

where we have u s e d s u b s c r i p t s i n o r d e r t o d e n o t e p a r t i a l d e r i v a t i v e s . S u b s t i t u t i o n of (35) i n t o (26) a n d d i v i d i n g by

E

2

g i v e s (we d r o p t h e t i l d e on

Y)

A$t

-

1

2

2(+x + '2 6 y ) ( 2 a x

+

+

+yy)A

-

2(2ax

+

+(zax + q Y a y + $ y y ) ~ y , ,+ ay 2(2ax + z$ a + + y y ) ~= o Y Y

+

.

tJYY)(OX

+

1

2

7 $y)A

(36)

I t i s r e a d i l y shown t h a t , i f W = Aei$ i n ( 9 ) , e q u a t i o n (36) i s p r e c i s e l y t h e i m a g i n a r y p a r t of e q u a t i o n (9).

C a r r y i n g out t h e same c a l c u l a t i o n on ( 2 7 )

219

Two Dimensional Convection Patterns (recall A

+

2

A) g i v e s t h e r e a l p a r t of e q u a t i o n ( 9 ) .

E

T h e r e f o r e t h e e q u a t i o n s ( 2 6 ) , ( 2 7 ) c o n t a i n a l l t h a t was p r e v i o u s l y known about r o l l solutions.

5.

They a l s o c o n t a i n some new i n f o r m a t i o n .

New r e s u l t s ; some a n s w e r s , more q u e s t i o n s . I n what f o l l o w s we s h a l l t a k e

R

t o be of o r d e r one a n d t h e r e f o r e ( 2 7 ) can

be r e p l a c e d by ( 2 5 ) a l m o s t e v e r y w h e r e .

The e x c e p t i o n s a r e t h o s e r e g i o n s

where V = O ( E - ~ ) b u t t h e s e p o i n t s a r e i s o l a t e d .

We w i l l c o n c e n t r a t e on t h e

phase e q u a t i o n (26),

A

ae + si;1 V at

+

+

(kB)

E

4

( D 1 * D 2 + D2*D1)A

= 0

which may b e r e w r i t t e n i n a v a r i e t y of ways.

a

V(+kB) = k

+

kB

kBII

,

(37)

I n p a r t i c u l a r we may w r i t e

2

o r i n a more r e v e a l i n g way a s V(
applying k

= k2

a i

-aa-A ,

ak a t + k -(aa

a kB -aa L

.

(39)

a i 2 - - t o ( 3 7 ) g i v e s u s two e q u a t i o n s f o r ag A

ai A z a k ~ kkB B + ~+ e~~k~ G ): [ D l * D 2

k

and

+ D2*D1)A

J,

= 0

, (40)

and

For t h e f i r s t s t e p , l e t u s assume t h a t a l l d e r i v a t i v e s a r e of o r d e r one a n d consequently ignore the

E~

t h e Busse b a l l o o n 1 = kC

<

terms. k

<

W e w i l l assume t h a t e v e r y w h e r e

kE(R) a n d prove t h a t i n a r e g i o n

k R

belongs t o

with c e r t a i n

c o n d i t i o n s on t h e b o u n d a r y a R , t h e s y s t e m r e l a x e s t o a s t a t i o n a r y s t a t e w i t h wavenumber

k

t a k i n g on t h e v a l u e which makes

B = 0.

T h i s r e s u l t does n o t

depend c r i t i c a l l y on t h e f a c t t h a t t h e p r e s e n t model i s d e r i v e a b l e from a Lyapunov f u n c t i o n ; i n d e e d i t i s a l s o v a l i d f o r s y s t e m s which do n o t h a v e t h i s property.

The r e a d e r might l i k e t o v e r i f y t h a t t h e model

a (m

2 2 (V - l ) ) ( V -1)'w

+

( R - ww

*

* 2

2

- ww V ) V w

=

0 ,

which does n o t d e r i v e from Lyapunov f u n c t i o n a l , g i v e s t h e p h a s e e q u a t i o n

(k2

+

1)2A2etk2(1

-

vk2)

+

V*CB

+

O ( E ~ )= 0

(43)

220

Alan C . N E W E L L

-

.

4 2 2 k (1-uk ) a n d A 2 = R

- ( k 2 -t 1)3 I t is c r u c i a l , however, dk2 k2 t h a t t h e o r d e r one s p a t i a l d e r i v a t i v e t e r m s i n t h e phase e q u a t i o n h a v e

where B

A2

c o n s e r v a t i o n form a n d a l t h o u g h I h a v e n o t y e t c a t e g o r i z e d t h e c l a s s , t h i s We now prove o u r r e s u l t .

happens f o r a l a r g e c l a s s of problems.

For p o s i t i v e

J ~ ,l e t J

2

et + v

o

*(CB) =

(44)

and c o n s i d e r

F =

//

G(g) dxdy

(45)

R

where

2 G = -1/2,fk B ( k 2 ) d k 2

i s p o s i t i v e a s we i n s i s t

k

>

0

<

b e l o n g s t o t h e Busse b a l l o o n i n which B

0.

Then,

dF

- =

dt

n

-/

aR

Bt h . n

ds

- // R

2

J Bt

2

dxdy,

(47)

t h e outward u n i t normal t o t h e boundary a R , where we h a v e u s e d t h e f a c t

that V G =

i:

-b.T h e r e f o r e ,

if on a R e i t h e r (i) $*n = 0 ( t h e r o l l a x e s are

p e r p e n d i c u l a r t o t h e f i x e d b o u n d a r y ) o r (ii) B

fluid boundary where

of

G

k

decreases. f o r which

model ( 4 2 ) ,

0 ( a p o r t i o n of aR may b e a

B = O),

-dF
-

But

is minimum o n l y when

G

dA2/dk2 = 0.

+

B = 0

or

k = kC

For model ( 2 ) t h i s is t h e point

kC l i e s t o t h e l e f t of

The f a c t t h a t k

I

k

-

1

the value

k = 1; f o r

by a n amount d e p e n d i n g on v

.

kC on a f r e e boundary on p o r t i o n s of aR i s c o n s i s t e n t

w i t h t h e a n a l y s i s of t h e s t a t i o n a r y e q u a t i o n ,

This mans that the quantity 2 kB/e = -H ( 8 )

(49)

i s c o n s t a n t a l o n g t h e o r t h o g o n a l t r a j e c t o r i e s of t h e c o n s t a n t phase c o n t o u r s . R e c a l l in t h e i n t e r v a l 1

<

k

<

kE, kB

<

0. T h i s in t u r n means t h a t i f

t h e 6 c o n t o u r s c o n v e r g e , which t h e y w i l l do in p a t c h e s where t h e c u r v a t u r e of

22 1

Two Dimensional Convection Patterns t he phase contours i n c r e a s e s torwards a c e n t e r , L i n c r e a s e s .

h

t h e f l u x of

I t a l s o means t h a t

between two 6 c o n t o u r s is i n d e p e n d e n t o f a. I t may be u s e f u l f o r

t h e r e a d e r t o keep i n mind t h e a x i a l l y s y m m e t r i c c a s e where a = I k ( r ) d r ,

r

6

the r a d i a l coordinate,

c o o r d i n a t e , whence L =

. Now

=

JI

=

Q,

4 the azimuthal

i n o r d e r f o r t h e s o l u t i o n t o remain s t a b l e we

must have t h a t l < k < k E which imp Les t h a t 0

where IkB

i s t h e a b s o l u t e v a l u e of

0

<

LH2(6)

and t h e r e f o r e a s L

< +

-

before the aa

2

0

H (5) = kB

(E

E

c4

-2

K(B)

<

lkBIE T h e r e f o r e we must have t h a t

kE B(kE).

(50)

along a

6

8

contour,

H2(6) m u s t tend t o zero.

Since i t

c o n t o u r s , i t must become a s small a s i t c a n

terms i n ( 3 7 ) e n t e r t h e p i c t u r e , which t h e y w i l l do when and

)

2

lkBl

lkBIE

is c o n s t a n t a l o n g c o n s t a n t

a = -

<

L = O(E-’).

a n d hence

is small only n e a r

Thus, in o r d e r t h a t t h e i n e q u a l i t y (50) h o l d s , kB = O(E 2) e v e r y w h e r e t h a t

kc = 1,

we must have

k

=

1

L = O(1).

+

But, s i n c e

2 O ( E ). Near t h e s i n k , we

can f i n d s o l u t i o n s of ( 3 7 ) i t e r a t i v e l y in t h e form 2 2 2 k = 1 += + , ,-+ =- 3y + 1 where y 2 =

4R

L

..

2 r + ~ ~ 4v K ( B ) , which i n d i c a t e s t h a t a s r

v a l u e somewhere b e t w e e n

kC = 1

and

e2, k

+

g o e s from

kC = 1

to a

kE.

Thus o u r f i r s t p r e d i c t i o n i s t h a t on t h e time s c a l e

E - ~

,

the horizontal

d i f f u s i o n t i m e , p a t c h e s form which s a t i s f y t h e boundary c o n d i t i o n s a l o n g p o r t i o n s of t h e box b o u n d a r y , a n d in which

k

+

kc

k’

n = 0

almost everywhere.

Examine t h e n u m e r i c a l e x p e r i m e n t s of G r e e n s i d e , Coughran a n d S c h r y e r [ 111 ( f i g u r e 3 ) c a r r i e d o u t on e q u a t i o n ( 2 ) f o r r e a l b r g e [121 ( f i g u r e 4 ) .

J,

a n d t h e real e x p e r i m e n t s of

Alan C . NtwEl

222

F i g . 3:

Fig.

4:

I_

-

Numerical I n t e g r a t i o n of ( 2 ) , J, R e a l H o r i z o n t a l D i f f u s i o n Time F o r Time

.

From a n e x p e r i m e n t of P. Berge Contours of C o n s t a n t Downward V e l o c i t y . A s p e c t R a t i o of 1 6 . R 2Rc.

-

223

Two Dimensional Convection Patterns Note i n t h e r e c t a n g u l a r geometry of f i g u r e 3 , t h a t p a t c h e s w i t h c i r c u l a r symmetry form a b o u t t h e c o r n e r s A a n d C.

I n t h e c i r c u l a r geometry o f

Berge ' s r e a l e x p e r i m e n t , one a g a i n s e e s c i r c u l a r p a t c h e s f o r m i n g a b o u t s i n k s which a r e a t t a c h e d t o t h e boundary.

Moreover, i t i s a b u n d a n t l y c l e a r from t h e s e

f i g u r e s t h a t t h e box c a n n o t be t i l e d w i t h t h e s e p a t c h e s .

Certain areas, f o r

example t h e c o r n e r B a n d D i n f i g u r e 3 , a r e q u i t e i n c o m p a t i b l e . compensate f o r t h e s e mismatches,

the

In order to

terms of t h e phase e q u a t i o n ( 3 7 ) must

E~

be i n c o r p o r a t e d i n t he a n a l y s i s . One way i s t o t a k e a / a a , 3 / 3 8 t o the microscopic theory.

t o be

O(E-')

b u t t h i s simply b r i n g s u s back

A n o t h e r way, which r e t a i n s t h e f u n d a m e n t a l i d e a t h a t

t h e c o n v e c t i o n f i e l d c a n b e d e s c r i b e d by a s l o w l y v a r y i n g w a v e v e c t o r

c,

is t o

.

This

recognize t h a t t h e terms

can b a l a n c e when t h e

B

derivatives are

r e d u c e s b o t h terms i n ( 5 3 ) t o

O(E-')

and

k = 1

+

O ( E ~ ) a n d s i n c e w e saw t h a t t h e main e f f e c t of

t h e dynamics on t h e h o r i z o n t a l d i f f u s i o n time s c a l e i s t o d r i v e kc, if

t h i s approximation is not a t a l l unreasonable. R = 0(1),

k = 1

+

2

O(E )

O ( E ~ ) , then

A

is

k

towards

A l i t t l e a l g e b r a shows t h a t

fi t o w i t h i n

O ( E ~ )a n d t h e

s t a t i o n a r y p a t t e r n s which one might e x p e c t t o r e a c h on t h e c-6 t i m e s c a l e (which i s t h e h o r i z o n t a l d i f f u s i o n time s c a l e m u l t i p l i e d by t h e a s p e c t r a t i o

g i v e n by

and t h e c o m p a t i b i l i t y c o n d i t i o n s ( 1 1 ) a r e

c-')

are

224

Alan C. NEWELL

E q u a t i o n s (54), (55) show i t s e l f i s of o r d e r straight.

US

that

is a t most o r d e r o n e a n d t h e r e f o r e

JI

For t h e s e s o l u t i o n s , t h e n , t h e r o l l s a r e l o c a l l y a l m o s t

E.

S i n c e we a r e now working i n d i s t a n c e s of o r d e r

E

( a s measured in box

i n r o l l w a v e l e n g t h u n i t s ) we c a n make t h e f o l l o w i n g l o c a l u n i t s ; I/E a p p r o x i m a t i o n s , which a r e v e r y s i m i l a r t o t h o s e made when we were d e r i v i n g t h e Newell-Whitehead-Segel

equations (36).

Let

( 6 , ~ ) be l o c a l l y t h e ' a c r o s s a n d

along' r o l l cordinates and

a sa = - - i a E

as

1

a n d e q u a t i o n (53) i s ( u s i n g s u b s c r i p t s f o r p a r t i a l d e r i v a t i v e s )

which is p r e c i s e l y t h e Newell-Whitehead-Segel amplitude A h e l d constant.

equation ( 3 6 ) and (9) with

We a r e now g o i n g t o d i s c u s s s o l u t i o n s of t h i s

e q u a t i o n which l e n d some i n s i g h t i n t o F i g u r e 5 which is t h e a s e q u e l t o F i g u r e

3

225

Two Dimensional Convection Patterns

B

C

A

Figure 5:

Numerical I n t e g r a t i o n of (z), $J real For Time >> H o r i z o n t a l D i f f u s i o n Time.

Notice t h a t i n o r d e r t o compensate f o r t h e i n c o m p a t i b i l i t i e s i n t h e c o r n e r B of Figure 3, the c i r c u l a r r o l l s emanating from AD have undergone a change and have R o l l number 7, counting from A a l o n g

i n t r o d u c e d d i s l o c a t i o n s along t h e w a l l AB.

AD, doubles i n width a s i t approaches t h e s i d e AB and undergoes a d i s l o c a t i o n . Roll number 9 detaches from AB a l t o g e t h e r and forms a series of d i s l o c a t i o n s along AB (which we c a l l a g r a i n boundary) and then a t t a c h e s i t s e l f t o the upper

wall

BC.

R o l l s 10 through 25 t a k e on an

S

shape i n which t h e approximate

d i s t a n c e o v e r which s i g n i f i c a n t changes occur i s t h e square r o o t of the box dimension, o r the 'along the r o l l ' s c a l i n g in e q u a t i o n (58).

226

Alan

c. N E W E l 1

Figure 6:

Dislocation

W e f i r s t n o t e t h a t a property of t h i s e q u a t i o n is t h a t i f

$ ( 5 , 1 ; ) solves

Also observe t h a t

o

=

(581,

0 = ~

5 + e(c,s),

-

6

so does

-@(-L,T,).

(59)

~i s 9g i v e n by

= E

2?

5.

The shapes of the phase contours near d i s l o c a t i o n s s u g g e s t that w e search f o r s e l f s i m i l a r s o l u t i o n s of the form

227

Two Dimensional Convection Patterns

F(z)

s a t i s f i e s the equation,

F' =

which i s r e a l l y a n e q u a t i o n f o r

G

=

dz

'

F'.

It h a s t h e symmetry p r o p e r t y t h a t i f

s o l v e s ( 6 3 ) , s o does

( F ( z ) , G(z))

E q u a t i o n ( 6 3 ) h a s a one p a r a m e t e r f a m i l y of s o l u t i o n s F ( C ; z ) w i t h d e r i v a t i v e s 2 G(C,z) which decay as Ce-' a s z + -This can b e s e e n by l i n e a r i z i n g ( 6 3 )

.

which t h e n h a s e r r o r f u n c t i o n s o l u t i o n s .

For

C

v e r y small, t h e s e s o l u t i o n s

behave v e r y much l i k e t h e e r r o r f u n c t i o n s o l u t i o n s ; t h e y a r e s y m m e t r i c a b o u t z = 0

and l e a d t o a jump i n

nonlinear and the bigger (actually

F

-

F(z)

Iln

F

Co

of

C,

F

approaches its pole s o l u t i o n s

1 2-zo

(65) and 6 F f 2 F " .

Thus t h e r e i s a c r i t i c a l

which from n u m e r i c a l c a l c u l a t i o n s i s a p p r o x i m a t e l y . 5 6 4 ,

above which t h e s o l u t i o n s do n o t e x i s t o v e r t h e l i n e approaches

Co from below,

( z n)

v a l u e of 3.14 F(z),

Y(z)

for C =

0 =

5

However ( 6 3 ) i s

= 6 C .

has a logarithmic s i n g u l a r i t y )

r e p r e s e n t i n g a b a l a n c e between F"" value

AF = F(m) - F(-)

g e t s the c l o s e r

C

has the pole;

G

of

TI

at

AF

-m

<

z

<

i s very s e n s i t i v e to changes i n

C = .54 t o 7.93 a t C = .565.

m

.

As

C

C , g o i n g from a

I n f i g u r e 7, w e g r a p h

a n d i n F i g u r e 8 , we draw t h e c o n t o u r of c o n s t a n t p h a s e 0

- + P (%T)

.

228

Alan C. NEWELL

I

/---

-F(T,z),

Figure 7 :

Graphs of

Figure 8:

Constant Phase Contours

F(n,z).

0

.

Two Dimensional Convection Patterns

229

F o r v a l u e s of 0 s l i g h t l y g r e a t e r t h a n n, t h e c o n t o u r s are d e f i n e d f o r a l l values l e s s than

For

<

TI.

t h e phase c o n t o u r s i n t e r s e c t t h e

'5

7. For

= 0 a x i s a t the o r i g i n .

0, we u s e t h e symmetry p r o p e r t y (60) t o i n f e r t h a t t h e p h a s e c o n t o u r s i n

t h i s r e g i o n a r e s i m p l y a r e f l e c t i o n of t h o s e f o r

>

0 i n the

= 0 axis.

These

s o l u t i o n s seem t o g i v e a f a i r l y a c c u r a t e p i c t u r e of t h e r e a l d i s l o c a t i o n s seen i n experiments. F i n a l l y , w e i n d i c a t e how t o i n c l u d e mean d r i f t terms i n t h e model. Consider

$ + (V2+1) 2w where

-

Rw

+ w2w* + u

vw = 0

u = Vx TZ (z i s t h e u n i t v e c t o r p e r p e n d i c u l a r t o

X,Y)

and

F o l l o w i n g t h e p r e v i o u s a n a l y s i s , we f i n d t h a t t h e s l o w e q u a t i o n f o r t h e phase is

+

kt a kB -A % 3-

+ Akll 3aTT +

O(c4) = 0

where

2 a a uL p V ~ = k t = k l l ~

(70)

In (68), t h e p a r a m e t e r l i p mimics t h e e f f e c t of low P r a n d t l number s i t u a t i o n s where mean d r i f t i s c a u s e d by t h e n o n l i n e a r a d v e c t i o n t e r m s i n t h e momentum equations.

I n (70),

V

refers

t o t h e slow d e r i v a t i v e s wi t h r e s p e c t t o

6. SUMMARY. I n t h i s p a p e r we have p r e s e a t e d a m a t h e m a t i c a l framework f o r d e s c r i b i n g

230

Alan C. NEWELI

c o n v e c t i o n p a t t e r n s which i n c l u d e s a l l p r e v i o u s t h e o r i e s a n d from i t we have

In

made s e v e r a l p r e d i c t i o n s a b o u t t h e manner in which t h e p a t t e r n s e v o l v e . p a r t i c u l a r , we s u g g e s t t h a t on t h e h o r i z o n t a l d i f f u s i o n time s c a l e

TH, t h e

c o n v e c t i o n f i e l d d e v e l o p s p a t c h e s , o f t e n of a c i r c u l a r n a t u r e s u r r o u n d i n g a s i n k , i n which t h e wavenumber is c o n s t a n t .

The i n c o m p a t i b i l i t y of t h e s e p a t c h e s

is i r o n e d o u t o v e r t h e l o n g e r t i m e scale of t h e a s p e c t r a t i o t i m e s

TH

and the

p r o c e s s i n v o l v e s a g l i d i n g motion (compare F i g u r e s 3 a n d 5) i n which r o l l d i s l o c a t i o n s move i n a d i r e c t i o n p e r p e n d i c u l a r t o t h e r o l l a x i s .

The c l i m b

m o t i o n , where t h e d i s l o c a t i o n s move a l o n g t h e r o l l a x i s , o c c u r on t h e s c a l e TH

c2

as t h e i r r o l e is t o a d j u s t w a v e l e n g t h , a l t h o u g h small a d j u s t m e n t s of o r d e r w i l l be made on t h e

E-%'~

scale.

While we b e l i e v e w e h a v e made a s t a r t , many q u e s t i o n s s t i l l remain open. Some of t h e s e are. 1.

F o r what c l a s s of models i s t h e f l o w on t h e h o r i z o n t a l d i f f u s i o n time s c a l e a g r a d i e n t o n e ; e q u i v a l e n t l y , f o r which models does ( 4 4 ) o b t a i n ?

2.

What is t h e e f f e c t of t h e mean d r i f t term?

What p a r a l l e l c o n c l u s i o n s can we

draw?

3.

Do t h e p a t t e r n s e v e r s e t t l e down o r do t h e y a l w a y s remain n o i s y ?

If the

f o r m e r is t h e c a s e , i s i t a consequence of geometry where t h e d i s l o c a t i o n s g e t stuck i n corners?

I n a c i r c u l a r g e o m e t r y , one m i g h t a r g u e t h a t t h e

g l i d e motion n e v e r s t o p s .

I f t h e l a t t e r is t h e c a s e , d o e s t h e r e s u l t i n g

c h a o t i c motion l i e on a low d i m e n s i o n a l s t r a n g e a t t r a c t o r , one w h i c h , f o r example, mimics t h e v e r y g e n t l e h e a v i n g of t h e g l i d e m o t i o n as i t r o t a t e s a r o u n d t h e box?

23 1

Two Dimensional Convection Patterns REFERENCES 1.

G o l l u b , I. P. a n d McCarriar A. R.

2.

A h l e r s G. a n d Walden R. W.

3.

Busse F. H. turbulence. Verlag

4.

Whitham G. B.

5.

N e w e l 1 A. C. a n d W hi t head J. A . 1969 J. F l u i d Mech. 203.

6.

Pomeau Y. a n d M a n n e v i l l e P.

7.

S i g g i a E. a n d Z i p p e l i u s A.

8.

S t u a r t J. T. 1960. 371-389. Mech.

9.

Busse F. H. a n d W hi t ehead J. A.

10.

Chen M. M. a n d Whi t ehead J. A .

11.

G r e e n s i d e H.

12.

Ekrge , P. 1980. S p r i n g e r - Ve r la g

.

1982.

Phys. Rev. A

1980 Phys Rev. T a t t .

44, -

z,347O.

445.

1980 Hydrodynamic i n s t a b i l i t i e s a n d t h e t r a n s i t i o n t o 97-136. Eds. H. L. Swinney a n d J. P. G ollub. Publ. S p r i n g e r -

1970.

J. F l u i d Mech

1969.

2,

9,

3, 373.

1981. 1982.

Phys. Lett

S e g e l , L. A .

40,1067.

J. F l u i d Mech. t o a p p e a r .

J. F l u i d Mech. 9 , 353-370. 1971. 1968.

Watson J.

J. F l u i d Mech.

1960.

J. F l u i d

47, 305-320.

J. F l u i d Mech.

S . , Coughran W . M. a n d S c h r y e r N . L.

.

38, 279.

J. F l u i d Mech.

2,1.

1982. P r e p r i n t .

Chaos a n d Order i n N a t u r e pp, 14-24.

Ed. H. Haken.

Publ.