Two dimensional NMR spectroscopy for molecular characterization of soil organic matter: Application to boreal soils and litter

Two dimensional NMR spectroscopy for molecular characterization of soil organic matter: Application to boreal soils and litter

Accepted Manuscript Two dimensional NMR spectroscopy for molecular characterization of soil organic matter: Application to boreal soils and litter Lau...

1MB Sizes 1 Downloads 25 Views

Accepted Manuscript Two dimensional NMR spectroscopy for molecular characterization of soil organic matter: Application to boreal soils and litter Laure N. Soucémarianadin, Björn Erhagen, Mats B. Nilsson, Mats G. Öquist, Peter Immerzeel, Jürgen Schleucher PII: DOI: Reference:

S0146-6380(16)30308-4 http://dx.doi.org/10.1016/j.orggeochem.2017.06.019 OG 3580

To appear in:

Organic Geochemistry

Received Date: Revised Date: Accepted Date:

4 November 2016 31 May 2017 8 June 2017

Please cite this article as: Soucémarianadin, L.N., Erhagen, B., Nilsson, M.B., Öquist, M.G., Immerzeel, P., Schleucher, J., Two dimensional NMR spectroscopy for molecular characterization of soil organic matter: Application to boreal soils and litter, Organic Geochemistry (2017), doi: http://dx.doi.org/10.1016/j.orggeochem. 2017.06.019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Two dimensional NM R spect roscopy for molecular char acter izat ion of soil or ganic mat t er : Applicat ion to boreal soils and lit ter

L aur e N. Soucémar ianadin a,* ,1, Björ n Er hagen b,2, M at s B. Nilsson b, M at s G. Öquist b, Pet er I mmer zeel a, Jür gen Schleucher a

a

Depar tment of M edical Biochemistr y and Biophysics, Umeå Univer sity, SE -901

87 Umeå, Sweden b

Depar tment of For est Ecology and M anagement, SLU, SE-901 83 Umeå, Sweden

1

Cur r ent addr ess: CNRS, L abor at oir e de Géologie, Ecole Nor male Supér ieur e,

75005 Par is, Fr ance 2

Cur r ent addr ess: Depar t ment of Ecology and Envir onment al Sciences, Umeå

Univer sit y, SE-901 87 Umeå, Sweden

* Cor r espondence aut hor . Tel.: +46705494664.

E mail : soucmar i@ualber t a.ca (L aur e Soucémar ianadin).

K eywor ds: soil or ganic mat t er ; molecular char act er izat ion; DMSO-extracts; 2D NM R; H SQC; car bon input s; lignin; polysacchar ides.

1

ABSTRACT Or ganic soils in bor eal ecosyst ems and peat lands r epr esent a huge global car bon pool and t heir composit ion st r ongly affect s soil pr oper t ies. Never t heless, t he char act er izat ion of soil or ganic mat t er (SOM ) molecular composit ion, which is essent ial for elucidat ing soil car bon pr ocesses and t ur nover , is not easily achieved, and fur t her advances in t he ar ea ar e gr eat ly n eeded. Two dimensional (2D) liquid st at e 1H –13C nuclear magnet ic r esonance (NM R) spect r oscopy has been used on dimet hyl sulfoxide (DM SO) ext r act s of SOM t o achieve molecular level char act er izat ion, wit h signals fr om many ident ifiable molecular gr oups obser vable. H er e we show t hat a simple and fast sample pr epar at ion allows t o acquir e 2D 1H – 13

C NM R spect r a on ext r act s of plant lit t er and or ganic layer s in bor eal ecosyst ems,

wit h fast dat a acquisit ion. Our 2D NM R spect r a r evealed sever al differ ences in t he DM SO-ext r act s of differ ent t r ee lit t er samples, O-hor izons of for est soil, peat for ming moss (Sphagnum ) and peat . The r esult s mir r or est ablished differ ences bet ween OM in soils and lit t er of differ ent for est ecosyst ems (e.g. bet ween deciduous and conifer ous lit t er ) but also pr ovide indicat ions for r esear ch t o unt angle pr eviously conflict ing r esult s (e.g. cut in degr adat ion in soil or car bohydr at e degr adat ion in peat ). Thus, combinat ion of 2D NM R met hods can gr eat ly impr ove analysis of lit t er composit ion and SOM composit ion, t her eby facilit at ing t he elucidat ion of t heir r oles in biogeochemical and ecological pr ocesses t hat ar e cr it ical for for eseeing feedback mechanisms on SOM t ur nover as a r esult of global envir onment al change.

2

1. I nt r oduct i on Soil or ganic mat t er (SOM ) pools hold ca. 2300 Pg of car bon (C; I nt er gover nment al Panel on Climat e Change, 2007), which is appr oximat ely 3x t han for t he at mospher e (Jobbágy and Jackson, 2000). Pr edict ed war ming may change t he size and t ur nover r at e of soil C pools, pot ent i ally t r igger ing fur t her r ises in at mospher ic CO2 and war ming (Knor r et al., 2005; von L üt zow et al., 2006). Thus, it is essent ial t o elucidat e int er act ion bet ween climat ic and SOM dynamics. SOM can be r oughly divided int o act ive (labile) and passive (r ecal cit r ant ) pools for modeling but , in act ualit y, t he r esidence t imes of molecular moiet ies for m a cont inuum due t o high het er ogeneit y (Bat jes, 1996). The var iat ion in SOM composit ion st r ongly affect s it s decomposit ion and miner alizat ion, which ar e cr it ical pr ocesses for soil for mat ion, nut r ient r elease and t he net ecosyst em car bon balance (Swift et al., 1979; Tr umbor e, 2000; K leber , 2010; Schmidt et al., 2011; Er hagen et al., 2013). Thus, SOM composit ion and t ur nover ar e cr ucial ecologically, agr icult ur ally and silvicult ur ally, but t he int er act ion bet ween SOM composit ion and it s decomposit ion is not fully under st ood due t o difficult ies in char act er izing SOM in t er ms of t he moiet ies t ar get ed by t he enzymes of micr obial decomposer s, which st r ongly affect micr obi al met abolism, t ur nover r at e and associat ed ecological pr ocesses (Sollins et al., 1996). A molecular moiet y is a basic st r uct ur e par t of a mor e complex or ganic st r uct ur e, e.g. a glucose molecule in st ar ch or cellulose or a phenol unit in lignin or t annin. Even if t hese moiet ies ar e ident ical, t heir var ious chemical envir onment s make

4

t hem mor e or less accessible t o micr obial enzymes and so t hey exper ience var ied t ur nover r at e values. SOM has been mainly char act er ized using wet chemist r y met hods or var ious t echniques, including solid st at e 13C NM R nuclear magnet ic r esonance (NM R) spect r oscopy (Pr est on et al., 1989; Baldock et al., 1992; K ögel K nabner , 1997; Cook, 2004), Four ier t r ansfor m infr ar ed spect r oscopy and pyr olysis gas chr omat ogr aphy-mass spect r omet r y (Py-GC-M S; Schnit zer et al., 2006; Vancampenhout et al., 2009; Yassir and Buur man, 2012; Tivet et al., 2013). These met hods ar e eit her dest r uct ive, lack sufficient r esolut ion and/or have ot her dr awbacks. For example, secondar y r eact ions in Py-GC-M S analyses may cr eat e new pyr olysis pr oduct s, which complicat e dat a int er pr et at ion (Der enne and Nguyen Tu, 2014). Solid st at e 13C NM R spect r oscopy is not dest r uct ive but only pr ovides dat a r egar ding eight br oad st r uct ur al gr oups, each of which may include moiet ies wit h subst ant ially differ ing sensit ivit y t o degr adat ion. Thus, t hese analyt ical met hods pr ovide scant moiet y-level infor mat ion (Feng and Simpson, 2011). H owever , besides 1D cr oss-polarizat ion (CP), t he most commonly used exper iment in SOM char act er izat ion, several solid-st at e exper iment s can give deep insight s on SOM composit ion (e.g., K eeler and M aciel, 2000; M ao et al., 2002; M ao et al., 2017; Schmidt -Rohr and M ao, 2002). Solut ion st at e NM R spect r oscopy offer s shar per signals, mult idimensional analyt ical capacit y and, t hus achieve higher r esolut ion mor e easily t han solid st at e NM R. This t echnique could t her efor e pr ovide ver y useful complement ar y infor mat ion t o 13C CP exper iment s and deliver a det ailed char act er izat ion of SOM molecular moiet ies. I n t wo dimensional (2D)

5

t echniques, t he use of t wo chemical shift s, e.g. 1H and 13C, r educes signal over lap, allowing ident ificat ion of many specific moiet ies. Thus, 2D NM R has been used t o char act er ize dissolved or ganic car bon (H er t kor n et al., 2006; L am et al., 2007) and bot h t he composit ion and st r uct ur e of cell walls in var ious plant mat er ials (K im et al., 2008; K im and Ralph, 2010; Sun et al., 2012; K im and Ralph, 2014). Ext r act ions and dissolut ion of SOM in solvent like dimet hyl sulfoxide (DM SO) have been per for med in t he past t o st udy r esist ant fr act ions (e.g., Song et al., 2011). M or eover , soluble SOM , and specifically humic subst ances, have also been ext ensively char act er ized using a wide ar r ay of mult idimensional NM R exper iment s, including Diffusion Or der ed Spect r oscopy (DOSY; M or r is et al., 1999; Simpson et al., 2001b), Cor r elat ion spect r oscopy (COSY) and H et er onuclear M ult iple Quant um Coher ence (H M QC; H aiber et al., 1999), Tot al Cor r elat ion Spect r oscopy (TOCSY) and H et er onuclear Single Quant um Coher ence (HSQC; K elleher and Simpson, 2006) or TOCSY and H M QC (K inger y et al., 2000) or a combinat ion of t he above exper iment s (Simpson et al. 2002; Simpson et al., 2007), including wit h t he addit ion of H et er onuclear M ult iple Bond Cor r elat ion (H M BC; Cook et al., 2003). This also includes using H igh Resolut ion M agic Angle Spinning (H R-M AS) spect r oscopy t o st udy soil component s dissolved in DMSO (Simpson et al., 2001a; K elleher et al., 2006; Far ooq et al., 2013). To assess t he suit abilit y of 2D 1H –13C NM R for high r esol ut ion char act er izat ion of bulk OM samples, we used it t o analyze samples of plant lit t er and or ganic soil layer s fr om bor eal sit es because bor eal for est soils and peat lands hold massive C

6

st ocks (near ly 300 Pg and 500 Pg, r espect ively) and t his st or age is pot ent ially highly sensit ive t o climat e change (Yu et al., 2010; Pan et al., 2011). The purpose of t his paper and t he dat a we pr esent ed is t o illust r at e t he pot ent ial of t his met hod, applied t o bor eal soils.

2. M at er i al and M et hods

2.1. Sample selection We sampled 0–3 cm (“super ficial”) and 5–10 cm (“deep”) layer s of or ganic hor izons and leaf or needle lit t er fr om t he dominant t r ee species at four bor eal sit es in nor t her n Sweden, which had been descr ibed and designat ed as sit es 2, 4, 6 and 7 (Table A.1; Er hagen et al., 2013). Sit es 2, 4 and 6 suppor t ed a mixed conifer ous st and of Nor way spr uce (Picea abies, L .) and Scot s pine (Pinus sylvestr is, L .), a Nor way spr uce st and, and a deciduous st and of silver bir ch ( Betula pendula, Rot h), r espect ively. Sit e 7 was r ecent ly clear -cut and cover ed by hair y gr ass [ Deschampsia flexuosa (L .) Tr in.]. Samples fr om sit es 4 and 6 ar e r efer r ed t o as “spruce” and “bir ch” lit t er and soil, r espect ively. Samples of t he peat moss (Sphagnum fuscum L .) wer e collect ed at an oligot r ophi c miner ogenic mir e, a major t ype of high lat it ude mir e (Nilsson et al., 2008), and t wo peat samples wer e t aken fr om cor es (at 150–155 and 205–210 cm dept h) fr om a lawn communit y in anot her oligot r ophic miner ogenic mir e in t he same ar ea (Table A.1).

7

2.2. 2D NM R spectr oscopy 2.2.1. Sample pr epar ation Samples wer e pr epar ed using a pr ocedur e developed for char act er izing plant cell walls (K im et al., 2008; K im and Ralph, 2014). Br iefly, 200 mg of mat er ial was gr ound in a Pulver iset t e 7 Planet ar y ball mill (Fr it sch, I dar -Ober st ein, Ger many) for 5 × 10 min at 500 r pm wit h 10 min br eaks. The gr ound mat er ial (40 mg) fr om each sample was t r ansfer r ed t o an NM R t ube and dissolved in 500 μl fully deut er at ed dimet hyl sulfoxide (DM SO-d6). Samples wer e vor t ex-mixed t hor oughly befor e analysis t o maximize dissolut ion.

2.2.2. HSQC experiments 1

13

The t echnique applied was H – C het er onuclear single quant um coher ence (H SQC), which cor r elat es chemical shift s (in par t s per million, ppm) of pr ot ons ( 1H at oms) wit h t heir dir ect ly bonded 13C at oms using t he one-bond J coupling bet ween 13

C and 1H . Regions and specific cr oss peaks ar e designat ed as δ C/δ H ppm. Spect r a

wer e acquir ed wit h a 600 M H z Br uker Avance I I I H D spect r omet er equipped wit h a t r iple r esonance cr yopr obe, cooled wit h heli um, using t he hsqcet gpsisp2.2 pulse sequence (Schleucher et al., 1994) fr om t he Br uker pulse sequence libr ar y. Spect r a wer e collect ed at r oom t emper at ur e (300 K ) wit h 20 (lit t er ) t o 36 (soil) t r ansient s and 16 dummy scans. The r ecycle delay was 1 s. The complex dat a point s collect ed in t he dir ect (1H ; F2) and indir ect (13C; F1) dimensions number ed 1486 and 320 wit h spect r al widt h of 12 ppm (7211 H z) and 180 ppm (27166 H z), r espect ively.

8

The exper iment s wer e opt imized for a one-bond pr ot on-car bon coupling const ant of 145 H z. Spect r al pr ocessing included zer o filling (1024 and 512 complex dat a point s in F2 and F1, r espect ively) and squar ed sine-bell apodizat ion in F2 and F1 (bot h shift ed by π/2) befor e Four ier t r ansfor mat ion. Spect r a wer e manually phase- and baselinecor r ect ed, and r efer enced using t he DMSO peak at 39.50/2.49 ppm. Dat a wer e pr ocessed wit h Topspin 3.2 (Bruker BioSpin Cor por at ion, Biller ica, USA). When compar ing H SQC spect r a of t he DM SO-ext r act s, we only displayed cont our levels wit h high (t ypi cally > 1.0% of maximum) int ensit y for visibilit y r easons, but signals as low as 0.1% of t he maximum int ensit y could be det ect ed. H ence, t he r esult s r eflect only t he var iat ion in t he st r ongest signals. I n mult iple displays, t he spect r a wer e scaled, t aking int o account t he r espect ive number of scans, t ot al int egr als, amount (%) of sample dissolved and car bon cont ent of sample. For each compar ison pr esent ed her eaft er , we specified t he scaling fact or t o account for all t hese par amet er s.

2.3. Dissolution efficiency Even aft er car eful gr inding, t he samples could not be dissolved complet ely in DM SO and a pellet r emained. To est imat e t he ext r act ion efficiency and assess possible fr act ionat ion dur ing dissolut ion, we pr epar ed r eplicat e samples t o det er mine t he dissolved mat er ial and undissolved pellet mass, followed by compar ison of t he composit ion of t he pellet s wit h t he “or iginal” SOM samples (i.e.

9

dir ect ly aft er milling) fr om quant ifiable dir ect polar izat ion 13C NM R spect r a in a fir st subset of samples (set 1, n = 12; Table A.1). For a second subset , we compar ed t he composit ion of t he or iginal SOM sample wit h t he dissolved fr act ion using PyGC-M S) (set 2, n = 6; Table A.1). We scaled up t he dissolut ion st ep by st ar t ing wit h 400 mg lit t er or soil sample dissolved in 5 ml DMSO in a Falcon t ube. For set 1, t he pellet (undissolved mat er ial aft er adding DM SO) was isolat ed using cent r ifugat ion, followed by vacuum filt r at ion and r emoval of as much DM SO as possible by r insing wit h M e2CO (3x) and Et OH (3x). Then, t he pellet was oven dr ied at 60 °C unt il no change in mass could be measur ed. For set 2, pellet s and dissolved samples wer e r epeat edly suspended in wat er and fr eeze-dr ied unt il no change in mass could be measur ed. For each subset , t he mass of t he pellet was r ecor ded.

2.3.1. NM R exper iments 13

Solid st at e C NM R spect r a wit h dir ect polar izat ion and magic angle spinning (DP/M AS) wer e acquir ed using a Br uker 500 M H z Avance I I I spect r omet er equipped wit h a M AS pr obe. Spect r a wer e acquir ed at r oom t emper at ur e wit h samples packed in a 4 mm zir conia r ot or and spun at 10 kH z. Scans (7200 + 4 dummy scans) wer e acquir ed using a 50 s r ecycle delay and a 90° 13C pulse wit h a 4 μs dur at ion at a fr equency of 125.8 M H z. Chemical shift s wer e ext er nally r efer enced t o t he high-fr equency peak of adamant ane at 38.56 ppm. Spect r a wer e pr ocessed using 20–30 H z line-br oadening and baseline cor r ect ion.

10

Bot h t he pellet s and cor r esponding or iginal samples wer e analyzed wit h solid st at e 13

C DP/M AS NM R under similar condit ions. Because we wer e compar ing pair s of

spect r a, we assumed t hat t he backgr ound signal or iginat ing fr om t he r ot or and coil in t he DP exper iment s would be t he same for all spect r a and t hus did not cor r ect t he acquir ed spect r a by subt r act ing t he spect r um of an empt y r ot or . Typical spect r al r egions wer e used t o t est differ ences in composit ion bet ween each pellet and cor r esponding or iginal sample (K ögel -Knabner , 1997): alkyl C (0–45 ppm), N alkyl C and met hoxy C (45–60 ppm), O-alkyl C (60–90 ppm), di -O-alkyl C (90–110 ppm), ar omat ic C (110–160 ppm), and car boxyl C (160–220 ppm). We used t he r egions wit h high chemical shift (250–190 ppm) t o cor r ect for t he spinning sidebands (e.g., Smer nik et al., 2008).

2.3.2. Py-GC-M S The dissolved fr act ions and cor r esponding or iginal samples wer e analyzed wit h PyGC-M S under similar condit ions. Tr iplicat es of 80 ± 10 µg of each sample wer e weighed and t r ansfer r ed t o aut osampler cont ainer s. We used similar Py-GC-M S set t ings t o t hose descr ibed by Ger ber et al. (2012). Br iefly, samples wer e pyr olyzed for 20 s at 450 °C in a pyr olyzer wit h an aut osampler (PY-2020iD and AS-1020E, Fr ont ier L abs, Japan) connect ed t o a GC-MS syst em (Agilent 7890A/5975C, Agilent Technologies AB, Sweden). The Py-GC int erface and GC inject or wer e bot h at 320 °C. The inject or had a split r at io of 16:1 and H e was t he car r ier gas. The pyr olysat e was separ at ed on a DB-5M S column (30 m × 0.25 mm i.d., 0.25 µm film t hickness; J& W, Agilent Technologies AB, Sweden). The GC t emper at ur e pr ogr am was: 40 °C

11

t o 100 °C at 32 °C/min, t o 120 °C at 6 °C/min, t o 250 °C at 15 °C/min and finally t o 320 °C (held 3 min) at 32 °C/min. The t ot al r un t ime was ca. 19 min. The mass spect r omet er was oper at ed at unit mass r esolut ion, and scanning fr om m/z 35–250 at 6.2 scan/s. For each sample, a t ot al of 88 peaks wer e int egr at ed on t he pyr ogr ams and assigned t o t he following classes: car bohydr at e or igin; guaiacyl; syr ingyl; p-hydr oxyphenol; gener ic phenolic; unknown (Ger ber et al., 2012).

2.3.3. Statistical analysis I n t he fir st subset (13C NM R), t o t est for possible differ ences in t he r elat ive int ensit ies bet ween pellet s and t he cor r esponding or iginal samples, t hese samples wer e compar ed in each spect r al r egion using pair ed t -t est s. No spr uce deep soil (sit e 4) sample was included as t he NM R spect r um of it s pellet pr esent ed evidence of r esidual DM SO (t ot al n = 11). A cor r elat ion t est bet ween t he pellet cont r ibut ion and SOM cont ent of t he sample was per formed t o t est if dissolut ion efficiency might be syst emat ically influenced by SOM cont ent . All st at ist ical analysis was per for med wit h M ATL AB 8.2 (R2013b; M at hWor ks, Nat ick, M assachuset t s, USA) wit h an  value of 0.01. A pr incipal component analysis (PCA) of t he 88 cent er ed and scaled Py-GC-M S par amet er s (peak intensit y) was per for med t o summar ize t he var iance in SOM composit ion in t he second subset of samples (or iginal samples and t heir dissolved fr act ion; n = 6) on a single fact or ial map. The PCA was per for med wit h t he R envir onment soft war e v.3.2.0 (R Cor e Team, 2016) using t he fact oext r a R package (Kassambar a and M undt , 2016).

12

3. Resul t s and di scussi on

3.1. Dissolution efficiency and method limitations We det er mined t he fr act ion of each pellet r elat ive t o t he cor r esponding or iginal sample. The pellet s account ed for ca. 50–81% of t he mass of t he samples (Table A.1). For t he soil samples, t he SOM cont ent was not r elat ed t o pellet cont r ibut ion (r = −0.33; p = 0.58), indicat ing t hat t r aces of miner al soil did not seem t o significant ly incr ease t he pr opor t ion of t he pellet . Compar ison of t he 1D NM R M AS DP spect r a of t he pellet s and t heir cor r esponding or iginal samples showed no differ ence in t he dist r ibut ion of t ot al int ensit y among t he var ious spect r al r egions (Table B.1) except for t he alkyl r egion (Fig. B.1). Ther e was a small (13%) r elat i ve decr ease in alkyl signal int ensit y in t he pellet vs. t he or iginal sample (Table B.1). This pr esumably r eflect ed t he high solubility of aliphat ic compounds (such as lipids and waxes) in DM SO, while solid component s would be par t ly shielded fr om dissolut i on. The pr efer ent ial dissolut ion of aliphat ic compounds was expect ed, but fr act ionat ion among aliphat ic compounds is unlikely, and t he lower dissolut ion of ot her component s pr obably r eflect ed lar ger sample gr ains simply being physically pr ot ect ed fr om dissolut ion. We focused t he Py-GC-M S analysis on t he car bohydr at es and lignin component s t o ver ify whet her fr act ionat ion affect ed t he molecular fr agment s in t hese macr omolecules; fr act ionat ion of aliphat ic compounds could be consider ed unlikely because t hese ar e t he most soluble. No significant differ ences in t he molecular fr agment s could be det ect ed bet ween t he or iginal and dissolved fr act ion samples, as shown by t he r esult s of t he PCA (Fig.

13

B.2; Table B.2). On t he biplot s pr esent ing t he fir st four PCs, which cumulat ively explained 75.7% of t he var iance, t he ellipses, indicat ing wher e 98% of samples in t he same cat egor y wer e expect ed t o occur , significant ly over lap for t he t wo gr oups of samples. I t is impor t ant t o highlight t hat only 88 peaks wer e obt ained in t he pyr ogr ams and t hey likely do not cover all t he moiet ies pr esent in t hese OM samples. M or eover because only par t of t he samples dissolved in DM SO, t he dissolved par t may not be fully r epr esent at ive of t he t ot al sample. Ther efor e t he r esult s have t o be int er pr et ed wit h car e. This should be consider ed as a semi -quant it at ive met hod, and conclusions can be dr awn only in t er ms of t he DM SO-ext r act s composit ion.

3.2 Enhanced str uctur al infor mation in 2D H SQC spectr a The 1D 13C spect r um of t he spr uce needles displayed 7–8 br oad signal envelopes (Fig. 1). I nt egr als of 0–45, 45–60, 60-90, 90–110, 110–160 and 160–220 ppm envelopes, r espect ively, indicat e t he alkyl C, N -alkyl C and met hoxy C, O-alkyl C, di-O-alkyl C, ar omat ic C and car boxyl/car bonyl cont ent (K ögel-Knabner , 1997). Unlike 1D NM R, t he 2D spect r um r esolved signals fr om numer ous moiet ies wit hin t hese envelopes (Fig. 1). The 2D spect r um displays 1H and 13C chemical shift s along t he hor izont al and ver t ical axes, r espect ively. “Cr oss peaks” r epr esent ing CH gr oups can be displayed by cont our lines, and t he volume (int egr al) of each signal r eflect s t he amount of t he cor r esponding moiet y in t he sample. The H SQC spect r um could be divided int o t he following r egions (Fig. 1): alkyl C (δ C/δ H 10–

14

50/0.5–3.0 ppm); car bohydr at es (50–110/2.5–5.5 ppm); and ar omat ic C (105– 150/6.0–8.5 ppm). H er e, we r efer t o t he over lapping 1D met hoxy, N -alkyl and Oalkyl spect r al r egions as t he non-anomer ic car bohydr at e r egion (50–90/2.5–5.5 ppm) and t he 1D di -O-alkyl r egion as t he anomer ic car bohydr at e r egion (90– 110/4–5.5 ppm; Fig. 1). Wit hin each of t hese spect r al r egions in t he H SQC spect r um, dozens of individual cr oss peaks could be isolat ed, each r eflect ing one or mor e moiet ies (Fig. 1). H SQC NM R analysis cannot det ect quat er nar y car bons (e.g. car boxyl gr oups), but some moiet ies car r ying quat er nar y car bons can st ill be ident ified fr om t heir r espect ive CH gr oups (e.g. lignin unit s). H owever , t he pr esence of par amagnet ic ions in miner al soil samples would br oaden t he NM R signals, r educing sensit ivit y and r esolut ion. Ther efor e, soil samples r ich in heavy met als would r equir e pr e-t r eat ment .

3.3. Signal assignments I n conjunct ion wit h r epor t ed dat a for plant macr omolecules (e.g. lipids, hemicelluloses, cellulose, and lignin fr agment s), many signals in t he 2D H SQC spect r a wer e t ent at ively assigned t o specific molecular moiet ies, as illust r at ed for t he super ficial spr uce soil sample in Fig. 2. All assignment s ar e compiled in Table 1. The alkyl r egion was dominat ed by signals fr om CH 2 unit s of molecular fr agment s fr om lipids, pept ides, fr ee fat t y acids, waxes and st er oids (Table 1; Fig. 2a). I n addit ion, t wo ot her t ypes of signal wer e det ect ed as follows: acet yl gr oups fr om hemicelluloses and lignin, and non-specific t er minal met hyls. Signals fr om

15

fr agment s assigned t o var ious polysacchar ides (most ly cellulose and hemicelluloses) wer e found in t he car bohydrat e r egions (Table 1; Fig. 2b,c). For t hese polysacchar ides, given t he r esolut ion, it is possible t o det er mine glycosidic linkage t ypes and t he posit ions of t he sugar unit s, i.e. int er nal, r educing end (R) or non-r educing end (NR). I n t he ar omat ic r egion, signals likely or iginat ing fr om lignin, suber in or t annin monomer s and unsat ur at ed compounds could be r esolved. These cr oss peaks wer e t ent at ively assigned t o C2/H 2, C5/H5, and C6/H6 of t he guaiacyl unit , C3/H 3 + C5/H 5 and C8/H 8 of t he p-coumar yl unit , and C2/H 2 + C6/H 6 of t he p-hydr oxyphenyl unit (Table 1; Fig. 2d). The definit e assignment of specific cr oss-peaks in var ious OM samples would r equir e complement ar y (2D) exper iment s like TOCSY, COSY, and H M BC. Once t his is done, infor mat ion in t he 2D spect r a can be used t o t r ack specific molecular moiet ies in SOM and follow t heir incor por at ion int o var ious polymer s t hat may have differ ing pr oper t ies for soil dynamics (for mat ion and degr adat ion).

3.4 Compar ison of DM SO-extr acts of bir ch leaf litter and spruce needle li tter To account for t he differ ences in dissolut ion efficiency (Table A.1) and C cont ent bet ween t he bir ch leaf lit t er and spr uce needle lit t er , t he spect r um of t he bir ch leaf lit t er ext r act was scaled down by a fact or 0.941 for t he compar ison (Fig. 3). The 2D spect r a r evealed numer ous differ ences bet ween t hese ext r act s in specific moiet ies (Fig. 3). For example, t he 2D spect r um of t he spr uce needles ext r act included signals assigned t o side chains of hemicelluloses and lignin (Fig. 3a) t hat wer e not

16

pr esent in t he spect r um of t he bir ch lit t er ext r act . Bir ch lignin is known t o cont ain fewer β-5 linkages t han spruce lignin (Adler, 1977), t his mat ches our obser vat ion of weaker signals fr om β-5 linkages in phenylcoumar an moiet ies in t he bir ch lit t er ext r act (Fig. 3a). Ot her est ablished differ ences bet ween t hese t wo lit t er t ypes like t he lower lignin cont ent and var iabilit y in lignin moiet ies in t he deciduous lit t er vs. t he conifer ous (Nur mi, 1993; Nur mi, 1997; K ang et al., 2009) explain some of t he cont r ast ed signals we obser ved in our spect r a compar ison. I n t he ar omat ic r egion, signals associat ed wit h lignin wer e gener ally less int ense in t he spect r um of bir ch leaf ext r act t han in t he spect r um of spr uce needle ext r act (Fig. 3b). Specifically, t he spect r um of bir ch leaf ext r act showed weaker signals fr om guaiacyl unit s (t he cr oss peaks assigned t o C2/H 2 and C6/H 6 wer e ver y weak) and much weaker cont r ibut ions fr om p-hydr oxybenzoat e and p-hydr oxyphenyl unit s (Fig. 3b).

3.5. Chemical differ ences in OM extr acts at differ ent depths of the or ganic hor izon As leaf and needle lit t er pr ovides a k ey C input for soil, st r ongly influencing SOM composit ion, we compar ed needle lit t er and soil samples fr om a spr uce dominat ed sit e. To account for t he differ ences in dissolut ion efficiency (Table A.1) and C cont ent bet ween t he t wo samples, t he soil ext r act spect r um was scaled up by a fact or 1.269 for t he compar ison (Fig. 4). I n the 2D spect r a, most of t he major st r uct ur es pr esent in t he lit t er ext r act wer e also det ect ed in t he soil ext r act (Fig. 4), but some wer e missing. Par t icular ly, t he int ensit ies of lignin signals (guaiacyl,

17

p-hydr oxybenzoat e, p-hydr oxyphenyl) wer e weaker in t he soil ext r act spect r um (Fig. 4a). L ignin degr adat ion involves side chain oxidat ion and demet hylat ion/demet hoxylat ion (Feng et al., 2008): t his explains t hat signals fr om lignin side chains in t he non-anomer ic C r egion wer e weaker in t he soil ext r act spect r um, and signals fr om met hoxy gr oups and acet yl gr oups in t he alkyl r egion wer e slight ly weaker (dat a not shown). M oreover , t he signals pr esent in t he soil ext r act , but not in t he lit t er ext r act (Fig. 4a), mat ched t hose of oxidized lignin unit s (Azar pir a et al., 2014), cor r obor at ing t he par t ial degr adat ion of t he lignin unit s or iginally pr esent in t he spr uce needles. Car bohydr at e signals in t he anomer ic r egion wer e qualit at ively similar but t her e wer e fewer signals in t he spect r um of t he soil ext r act t han in t hat of t he lit t er ext r act (Fig. 4b). Fur t her mor e, t he signal r at io of hexoses (glucose, mannose and galact ose) t o xylose was higher in t he spect r um of t he soil ext r act , in accor d wit h r epor t s t hat hemicelluloses ar e degr aded mor e r apidly t han cellulose dur ing lit t er decomposit ion (Ber g and M cClaugher t y, 2013). H owever , secondar y for mat ion of hexoses in t he soil also cont r ibut es (Baldock et al., 1990), as indicat ed by signals associat ed wit h fungal st r uct ur es pr esent in t he spect r um of t he soil ext r act (Fig. 4b), specifically st r uct ur es cont aining glycosidic linkages in fungal β-glucans (K im et al., 2000; L owman et al., 2011; Rut hes et al., 2013) and (put at ively) t he chit in N acet yl gr oup (Fig. 2a). An incr ease in galact ose and mannose (β-D-Galp, α-D and βD-M anp moiet ies) compar ed wit h xylan signals in t he soil ext r act (Fig. 4b) cor r obor at es r epor t s t hat micr obes cont r ibut e t o SOM dynamics by degr ading plant

18

mat er ial and synt hesizing new biomass and pr oduct s t hat play key r oles in st able C pools (Baldock et al., 1990, 1992; Six et al., 2006; Der r ien et al., 2007). I n t he spect r um of t he soil ext r act , while t he G5, G2 and G6 signals of t he guaiacyl unit s ar e expect ed t o have a cer t ain r at io, t he r elat ive int egr al r at ios of t hese signals appear ed t o be skewed in favor of G5 her e (Fig. 4a), indicat ing t hat signals fr om anot her moiet y wer e over lapping. This could be due t o an incr ease in p-coumar yl unit s (pCA3/5; pCA8) linked t o t he pr esence of fungal melanin (Sjöber g et al., 2004). This highlight s anot her advant age of 2D spect r a, namely t hat t he pr esence of sever al signals for individual moiet ies enables t heir det ect ion despit e par t ial over lap. Finally, plant r oot s, which ar e abundant in t he or ganic layer s, ar e char act er ized by a high suber in cont ent (K ögel -K nabner , 2002), t his could explain t hat signals assigned t o suber in (vinylic gr oups and glycer ol; Table 1) wer e found in t he spect r um of t he soil ext r act but not in t he lit t er ext r act . The r esult s collect ively show t hat full elucidat ion of t he chemical composit ion of SOM r equir es analysis of not only above-gr ound lit t er but all significant OM input s, not ably woody mat er ial, r oot s and micr obial biomass (Baldock et al., 1990; von Lüt zow et al., 2007). The following examples illust r at e how 2D NM R can pr ovide addit ional infor mat ion t o r esolve conflict ing r esult s and/or unr esolved obser vat ions. Cut in signals wer e st r onger in lit t er t han in soil ext r act s (Fig. 4a; Table 1). Pot ent ial degr adat ion of cut in has been r epor t ed (H illi et al., 2012), but wit h t he appr opr iat e samples, t hese conflict ing obser vat ions could be easily set t led using a 2D NM R exper iment . The

19

2D spect r a of t he t wo peat ext r act s wer e ver y similar (not shown), which agr ees wit h pr evious r esult s t hat showed t hat t he decomposit ion of bulk mat er ial was ver y limit ed over 700–1000 yr (cor r esponding t o t he 50 cm dept h differ ence; L ar sson et al., 2016). Even t he chemical differ ences bet ween t he ext r act s of t he

Sphagnum fuscum moss and t he fir st peat layer (150 cm dept h) appear ed t o be limit ed. To account for t he differ ences in dissolut ion efficiency (Table A.1) and C cont ent bet ween t he t wo samples, t he peat ext r act spect r um was scaled down by a fact or 0.652 for t he compar ison (Fig. 5). H owever , t he 2D spect r a r esolved specific changes. I n t he non-anomer ic car bohydr at e r egion, signal int ensit ies wer e lower in t he peat ext r act spect r um t han in t he Sphagnum moss ext r act spect r um (Fig. 5; Table 1). I n t he anomer ic car bohydr at e r egion, t her e was also a gener al r educt ion in signal int ensit y, and signals assigned t o some st r uct ur es (α- and β-L ar abinofur anosyl r esidues and oligomer s of bot h α-glucose and β-Dgalact opyr anose) (Fig. 5) had disappear ed. This pr ovides oppor t unit ies t o addr ess challenging issues, par t icular ly why car bohydr at e polymer s ar e gener ally easily degr adable under anoxic condit ions (Ber gman et al., 1999) but t hose of Sphagnum ar e highly r esist ant t o micr obial degr adat ion and accumulat e in peat (Bohlin et al., 1989; Hájek et al., 2011). Not ably, 2D NM R met hods could be used t o follow changes in car bohydr at e polymer s wit h dept h in peat lands, t her eby helping t o explain t he pr esence and accumulat ion of supposedly easily degr adable car bohydr at es at consider able soil dept hs (Dungait et al., 2012) and t o elucidat e humificat ion and peat for mat ion pr ocesses. Complement ar y NM R t echniques, such

20

as CM P-NM R (Cour t ier -M ur ias et al., 2012) which have been r ecent ly applied t o whole soil by M asoom et al. (2016), will aid t he under st anding of complex int er act ions bet ween wat er and SOM , fur t her compr ehension of SOM dynamics, as well as pr ovide addit ional det ailed st r uct ur al i nfor mat ion in-situ .

4. Concl usi ons The met hod combines simple sample pr epar at ion, r easonable dat a acquisit ion t imes, r elat ively simple dat a analysis and spect r al compar ison. Wit h 2D NM R spect r oscopy, a wide r ange of st r uct ur al component s can be ident ified in SOM . The higher r esolut ion pr ovided by (2D) 1H –13C N M R r evealed det ailed species-r elat ed chemical differ ences bet ween t he DMSO-extr act s of lit t er s. H ence, it has gr eat pot ent ial t o compar e SOM in differ ent ecosyst ems or under differ ent exper iment al t r eat ment s, facilit at ing effor t s t o elucidat e lit t er and SOM decomposit ion dynamics under nat ur al and exper iment al condit ions (e.g., Talbot et al., 2012). Twodimensional NM R spect r oscopy also moves beyond t he shor t comings of many ot her t echniques by pr ovi ding t he r esolut ion r equir ed for mechanist ic st udies of SOM t ur nover . Using H R-M AS spect r oscopy, 2D exper iment s have for inst ance allowed t o follow t he evolut ion of t he molecular composit ion of SOM t hr ough decomposit ion (K elleher et al. 2006). Using specific monomer s and linkage t ypes as biomar ker s, it can indeed non-dest r uct ively det ect newly for med polymer s, and t her efor e ident ify biochemical pr ocesses r esponsible for SOM for mat ion and t ur nover . Thus, it is a pot ent t ool for det er mining and t r acking st r uct ur al moiet ies of micr obial or igin, i.e.

21

bact er ial and fungal input s, in soil and peat samples wher e fungi cont r ibut e t o t he decomposit ion pr oduct s (K ļ avi ņš et al., 2008). Similar ly, using H R-M AS spect r oscopy, Spence et al. (2011) car r ied 2D exper iment s on 13C and 15N labeled soil micr obial biomass and leachat e t o t r ack t heir degr adat ion over t ime. Thus, 2D NM R can r elat e var iat ion in miner alizat ion r at e t o differ ences in molecular composit ion. Using chr onosequences, it could also be applied t o unr avel SOM t ur nover over t ime. Anot her possible applicat ion is t o follow pollut ant s/cont aminant s in soils and t heir int er act ions wit h SOM similar ly t o what was done by M asoom et al. (2016). I n conclusion, because st r uct ur al moiet ies ar e t he unit s r ecognized by enzymes involved in br eakdown, 2D NM R spect r oscopy is suit able t o ident ify compounds and biochemical pat hways as well as t o unr avel ecologically r elevant quest ions, such as t he r esponse of SOM t o climat e change. Or ganic soils r epr esent a huge C pool wit h a significant cont r ibut ion t o t he global C cycle, specifically in t he cont ext of climat e change. H er e we pr ovided an example of t he t echnique’s applicat ions and fur t her st udies should be r un t o ensur e t hat it could be used in a quant it at ive way, specifically for miner al -r ich samples.

Ack nowl edgment s The aut hor s acknowledge assist ance fr om M . H edenst r öm and T. Spar r man in t he acquisit ion of t he NM R spect r a, t he “NM R for L ife” infrast r uct ur e suppor t ed by t he 22

Wallenber g foundat ions, t he K empe foundat ion for financially suppor t ing L .S., and t he Swedish Resear ch Council for suppor t ing J.S. and M .N.. L ast ly, t he aut hor s acknowledge t wo anonymous r eviewer s for their t ime and valuable comment s on t he manuscr ipt . Refer ences Adler , E., 1977. L ignin chemist r y: past , pr esent and fut ur e. Wood Science and Technology 11, 169-218. Azar pir a, A., Ralph, J., L u, F., 2014. Cat alyt ic alkaline oxidat ion of lignin and it s model compounds: a pat hway t o ar omat ic biochemicals. BioEner gy Resear ch 7, 7886. Baldock, J.A., Oades, J.M ., Vassallo, A.M ., Wilson, M .A., 1990. Significance of micr obial act ivit y in soils as demonst r at ed by solid-st at e 13C NM R. Envir onment al Science & Technology 24, 527-530. Baldock, J.A., Oades, J.M ., Wat er s, A.G., Peng, X., Vassallo, A.M ., Wilson, M .A., 1992. Aspect s of t he chemical st r uct ur e of soil or ganic mat er ials as r evealed by solid-st at e 13C NM R spect r oscopy. Biogeochemist r y 16, 1-42. Bat jes, N.H ., 1996. Tot al car bon and nit r ogen in t he soils of t he world. Eur opean Jour nal of Soil Science 47, 151-163. Ber g, B., M cClaugher t y, C., 2013. Plant L it t er : Decomposit ion, H umus For mat ion, Car bon Sequest r at ion, 3r d Edit ion. Spr inger , Ber lin, Ger many.

23

Ber gman, I ., L undber g, P., Nilsson, M .B., 1999. M icr obial car bon miner alisat ion in an acid sur face peat : effect s of envir onment al fact or s in labor at or y incubat ions. Soil Biology and Biochemist r y 31, 1867-1877. Bohlin, E., H ämäläinen, M ., Sundén, T., 1989. Bot anical and chemical char act er izat ion of peat using mult ivar iat e met hods. Soil Science 147, 252-263. Bubb, W.A., 2003. NM R spect r oscopy in t he st udy of car bohydr at es: Char act er izing t he st r uct ur al complexit y. Concept s in M agnet ic Resonance Par t A 19A, 1-19. Çet inkol, Ö.P., Smit h-M or it z, A.M ., Cheng, G., L ao, J., Geor ge, A., H ong, K ., H enr y, R., Simmons, B.A., H eazlewood, J.L ., H olmes, B.M ., 2012. St r uct ur al and chemical char act er izat ion of har dwood fr om t r ee species wit h applicat ions as bioener gy feedst ocks. PL oS ONE 7, e52820. Chefet z, B., Chen, Y., Clapp, C.E., H at cher , P.G., 2000. Char act er izat ion of or ganic mat t er in soils by t her mochemolysis using tet r amet hylammonium hydr oxide (TM AH ). Soil Science Societ y of Amer ica Jour nal 64, 583-589. Cheng, K ., Sor ek, H ., Zimmer mann, H ., Wemmer , D.E., Pauly, M ., 2013. Solut ion st at e 2D NM R spect r oscopy of plant cell walls enabled by a dimet hylsulfoxide-d6/1Et hyl -3-met hylimidazolium acet at e solvent . Analyt ical Chemist r y 85, 3213-3221. Dais, P., Spyr os, A., 2012. Chapt er 4 - Nuclear M agnet ic Resonance. I n: Picó, Y., (Eds.), Chemical Analysis of Food: Techniques and Applicat ions. Academic Pr ess, Bost on, M A, 91-115. Cook, R.L ., 2004. Coupling NM R t o NOM . Analyt ical and Bioanalyt ical Chemist r y 378, 1484-1503.

24

Cook, R.L ., M cI nt yr e, D.D., L angfor d, C.H ., Vogel, H .J., 2003. A compr ehensive liquid-st at e het er onuclear and mult idimensional NM R st udy of L aur ent ian fulvic acid. Envir onment al science & t echnology 37, 3935-3944. Der enne, S., Nguyen Tu, T.T., 2014. Char act er izing t he molecular st r uct ur e of or ganic mat t er fr om nat ur al envir onment s: An analyt ical challenge. Compt es Rendus Geoscience 346, 53-63. Der r ien, D., M ar ol, C., Balesdent , J., 2007. M icr obial biosynt heses of individual neut r al sugar s among set s of subst r at es and soils. Geoder ma 139, 190-198. Deshmukh, A.P., Simpson, A.J., Hat cher , P.G., 2003. Evidence for cr oss-linking in t omat o cut in using H R-M AS NM R spect r oscopy. Phyt ochemist r y 64, 1163-1170. Dungait , J.A.J., H opkins, D.W., Gr egor y, A.S., Whit mor e, A.P., 2012. Soil or ganic mat t er t ur nover is gover ned by accessibilit y not r ecalcit r ance. Global Change Biology 18, 1781-1796. Er hagen, B., Öquist , M ., Spar r man, T., H aei, M ., I lst edt , U., H edenst r öm, M ., Schleucher , J., Nilsson, M .B., 2013. Temper at ur e r esponse of lit t er and soil or ganic mat t er decomposit ion is det er mined by chemical composit ion of or ganic mat er ial. Global Change Biology 19, 3858-3871. Fang, X., Qiu, F., Yan, B., Wang, H ., M or t , A.J., St ar k, R.E., 2001. NM R st udies of molecular st r uct ur e in fr uit cut icle polyest er s. Phyt ochemist r y 57, 1035-1042. Far ooq, H ., Cour t ier -M ur ias, D., Soong, R., Ber mel, W., K inger y, W.M ., Simpson, A. J., 2013. H R-M AS NM R spect r oscopy: A pr act ical guide for nat ural samples. Cur r ent Or ganic Chemist r y 17, 3013-3031.

25

Feng, X., Simpson, A.J., Wilson, K .P., Williams, D.D., Simpson, M .J., 2008. I ncr eased cut icular car bon sequest r at ion and ligni n oxidat ion in r esponse t o soil war ming. Nat ur e Geoscience 1, 836-839. Feng, X., Simpson, M .J., 2011. M olecular -level met hods for monit or ing soil or ganic mat t er r esponses t o global climat e change. Jour nal of Envir onment al M onit or ing 13, 1246-1254. Fer r eir a, R., Gar cia, H ., Sousa, A.F., Pet kovic, M ., L amosa, P., Fr eir e, C.S.R., Silvest r e, A.J.D., Rebelo, L .P.N., Per eir a, C.S., 2012. Suber in isolat ion fr om cor k using ionic liquids: char act er isat ion of ensuing pr oduct s. New Jour nal of Chemist r y 36, 2014-2024. Ger ber , L ., Eliasson, M ., Tr ygg, J., M or it z, T., Sundber g, B., 2012. Mult ivar iat e cur ve r esolut ion pr ovides a high-t hr oughput dat a pr ocessing pipeline for pyr olysisgas chr omat ogr aphy/mass spect r omet r y. Jour nal of Analyt ical and Applied Pyr olysis 95, 95-100. H aiber , S., Bur ba, P., H er zog, H., L amber t , J., 1999. Elucidat ion of aquat ic humic par t ial st r uct ur es by mult ist age ult r afilt r at ion and t wo-dimensional nuclear magnet ic r esonance spect r omet r y. Fr esenius' jour nal of analyt ical chemist r y 364, 215-218. H ájek, T., Ballance, S., L impens, J., Zijlst r a, M ., Ver hoeven, J.A., 2011. Cell -wall polysacchar ides play an impor t ant r ole in decay r esist ance of Sphagnum and act ively depr essed decomposit ion in vit r o. Biogeochemist r y 103, 45-57.

26

H edenst r öm, M ., Wiklund-L indst r öm, S., Öman, T., L u, F., Ger ber , L ., Schat z, P., Sundber g, B., Ralph, J., 2009. I dent ificat ion of lignin and polysacchar ide modificat ions in Populus wood by chemomet r ic analysis of 2D NM R spect r a fr om dissolved cell walls. M olecular Plant 2, 933-942. H er t kor n, N., Per min, A., Per minova, I ., K ovalevskii, D., Yudov, M ., Pet r osyan, V., K et t r up, A., 2002. Compar at ive analysis of par t ial st r uct ur es of a peat humic and fulvic acid using one- and t wo-dimensional nuclear magnet ic r esonance spect r oscopy. Jour nal of envir onment al qualit y 31, 375-387. H er t kor n, N., Benner , R., Fr ommber ger , M ., Schmit t -K opplin, P., Wit t , M ., K aiser , K ., K et t r up, A., H edges, J.I ., 2006. Char act er izat ion of a major r efr act or y component of mar ine dissolved or ganic mat t er . Geochimica et Cosmochimica Act a 70, 2990-3010. H illi, S., St ar k, S., Willför , S., Smeds, A., Reunanen, M ., H aut ajär vi, R., 2012. What is t he composit ion of AI R? Pyr olysis-GC/M S char act er izat ion of acidinsoluble r esidue fr om fr esh lit t er and or ganic hor izon s under bor eal for est s in sout her n Finland. Geoder ma 179-180, 63-72. I nt er gover nment al Panel on Climat e Change, 2007. Climat e Change 2007: The Physical Science Basis, Cont r ibut ion of Working Gr oup I t o t he Four t h Assessment Repor t of t he I PCC, Cambr idge Univer sit y Pr ess, Cambr idge, UK . Jobbágy, E.G., Jackson, R.B., 2000. The vert ical dist r ibut ion of soil or ganic car bon and it s r elat ion t o climat e and veget at ion. Ecological Applicat ions 10, 423-436.

27

K ang, H., Ber g, B., L iu, C., West man, C., 2009. Var iat ion i n mass-loss r at e of foliar lit t er in r elat ion t o climat e and lit t er quality in Eur asian for est s: differ ences among funct ional gr oups of lit t er . Silva Fennica 43, 549-575. K assambar a, A., M undt , F., 2016. fact oext r a: Ext r act and Visualize t he Result s of M ul t ivar iat e Dat a Analyses. K eeler , C., M aciel, G.E., 2000. 13C NM R spect r al edit ing of humic mat er ial. Jour nal of M olecular St r uct ur e 550–551, 297-305. K elleher , B.P., Simpson, A.J., 2006. Humic subst ances in soils: ar e t hey r eally chemically dist inct ? Envi r onment al science & t echnology 40, 4605-4611. K elleher , B. P., Simpson, M . J., Simpson, A. J., 2006. Assessing t he fat e and t r ansfor mat ions of plant r esidues in t he t er r est r ial envir onment using H R-M AS NM R spect r oscopy. Geochimica et Cosmochimica Act a 70, 4080-4094. K im, H ., Ralph, J., Akiyama, T., 2008. Solut ion -st at e 2D NM R of ball-milled plant cell wall gels in DM SO-d6. BioEner gy Resear ch 1, 56-66. K im, H ., Ralph, J., 2010. Solut ion-st at e 2D NM R of ball-milled plant cell wall gels in DM SO-d6/pyr idine-d5. Or ganic & Biomolecular Chemist r y 8, 576-591. K im, H ., Ralph, J., 2014. A gel -st at e 2D-NM R met hod for plant cell wall pr ofiling and analysis: a model st udy wit h t he amor phous cellulose and xylan fr om ball milled cot t on lint er s. RSC Advances 4, 7549-7560. K im, Y., K im, E., Cheong, C., Williams, D.L ., K im, C., L im, S., 2000. St r uct ur al char act er izat ion of β-d-(1→3, 1→6)--linked glucans using NM R spect r oscopy. Car bohydr at e r esear ch 328, 331-341.

28

K inger y, W.L ., Simpson, A.J., H ayes, M .H .B., L ocke, M .A., H icks, R.P., 2000. The applicat ion of mult idimensional NM R t o t he st udy of soil humic subst ances. Soil Science 165, 483-494. K ļ aviņš, M ., Sir e, J., Pur malis, O., M elecis, V., 2008. Appr oaches t o est imat ing humificat ion indicat or s for peat . M ir es and Peat 3, 1-17. K leber , M ., 2010. What is r ecalcit r ant soil or ganic mat t er ? Envir onment al Chemist r y 7, 320-332. K nor r , W., Pr ent ice, I .C., H ouse, J.I ., H olland, E.A., 2005. L ong-t er m sensit ivit y of soil car bon t ur nover t o war ming. Nat ur e 433, 298-301. K ögel -K nabner , I ., 1997. 13C and 15N NM R spect r oscopy as a t ool in soil or ganic mat t er st udies. Geoder ma; NM R in Soil Science 80, 243-270. K ögel -K nabner , I ., 2002. The macr omolecular or ganic composit ion of plant and micr obial r esidues as input s t o soil or ganic mat t er . Soil Biology and Biochemist r y 34, 139-162. L am, B., Baer , A., Alaee, M ., L efebvr e, B., M oser , A., Williams, A., Simpson, A.J., 2007. M ajor st r uct ur al component s in fr eshwat er dissolved or ganic mat t er . Envir onment al science & t echnology 41, 8240-8247. L ar sson, A., Seger st r öm, U., L audon, H ., Nilsson, M .B., 2016. H olocene car bon and nit r ogen accumulat ion r at es in a bor eal oligot r ophic fen. The H olocene 0959683616675936.

29

L opes, M .H ., Net o, C.P., Bar r os, A.S., Rut ledge, D., Delgadillo, I ., Gil, A.M ., 2000. Quant it at ion of aliphat ic suber in in Quer cus suber L . cor k by FTI R spect r oscopy and solid-st at e 13C-NM R spect r oscopy. Biopolymer s 57, 344-351. L owman, D.W., West , L .J., Bear den, D.W., Wempe, M .F., Power , T.D., Ensley, H .E., H aynes, K ., Williams, D.L ., K ruppa, M .D., 2011. New insight s int o t he st r uct ur e of (1→3,1→6)-β-D-glucan side chains in t he Candida glabr ata cell wall. PL oS ONE 6, e27614. M ao, J., Hu, W., Ding, G., Schmidt -Rohr , K ., Davies, G., Ghabbour , E., Xing, B., 2002. Suit abilit y of differ ent 13C solid-st at e NM R t echniques in t he char act er izat ion of humic acids. I nt er nat ional jour nal of envir onment al analyt ical chemist r y 82, 183-196. M ao, J., Zhang, X., L i, M ., Xu, F., 2013. Effect of biological pr et r eat ment wit h whit e-r ot fungus Tr ametes hir suta C7784 on lignin st r uct ur e in Car ex meyer iana

K unth . BioResour ces 8, 3869-3883. M ao, J., Cao, X., Olk, D.C., Chu, W., Schmidt -Rohr , K ., Advanced solid-st at e NM R spect r oscopy of nat ur al or ganic mat t er . Pr ogr ess in Nuclear M agnet ic Resonance Spect r oscopy (in pr ess). M ar t ínez, A.T., Rencor et , J., Niet o, L ., Jiménez-Bar ber o, J., Gut iér r ez, A., del Río, J.C., 2011. Select ive lignin and polysacchar ide r emoval in nat ur al fungal decay of wood as evidenced by in sit u st r uct ur al analyses. Envir onment al micr obiology 13, 96-107.

30

M asoom, H ., Cour t ier -M ur ias, D., Far ooq, H., Soong, R., K elleher , B.P., Zhang, C., M aas, W.E., Fey, M ., K umar , R., M onet t e, M ., St r onk s, H .J., Simpson, M .J., Simpson, A.J., 2016. Soil or ganic mat t er in it s nat ive st at e: Unr avelling t he most complex biomat er ial on Ear t h. Envir onmental science & t echnology 50, 1670-1680. M at t inen, M ., Filpponen, I ., Jär vinen, R., L i, B., K allio, H ., L eht in en, P., Ar gyr opoulos, D., 2009. St r uct ur e of t he polyphenolic component of suber in isolat ed fr om pot at o (Solanum tuber osum var . Nikola). Jour nal of Agr icult ur al and Food Chemist r y 57, 9747-9753. M oon, B., L ee, Y., Shin, C., L im, Y., 2005. Complet e assignment s of t he 1H and 13C NM R dat a of flavone der ivat ives. Bullet in Of The K or ean Chemical Societ y 26, 603-608. M or r is, K .F., Cut ak, B.J., Dixon, A.M ., L ar ive, C.K ., 1999. Analysis of diffusion coefficient dist r ibut ions in humic and fulvic acids by means of di ffusion or der ed NM R spect r oscopy. Analyt ical Chemist r y 71, 5315-5321. Nilsson, M .B., Sager for s, J., Buffam, I ., L audon, H ., Er iksson, T., Gr elle, A., K lemedt sson, L ., Weslien, P., L indr ot h, A., 2008. Cont empor ar y car bon accumulat ion in a bor eal oligot r ophic minerogenic mir e - a significant sink aft er account ing for all C-fluxes. Global Change Biology 14, 2317-2332. Nur mi, J., 1993. H eat ing values of t he above gr ound biomass of small -sized t r ees. Act a For est alia Fennica 236, 1-30. Nur mi, J., 1997. H eat ing values of mat ur e t r ees. Act a For est alia Fennica 256, 128.

31

Pan, Y., Bir dsey, R.A., Fang, J., H ought on, R.A., K auppi, P.E., Kur z, W.A., Phillips, O.L ., Shvidenko, A.Z., L ewis, S.L ., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., M cGuir e, A.D., Piao, S., Raut iainen, A., Sit ch, S., H ayes, D., 2011. A lar ge and per sist ent car bon sink in t he wor ld's for est s. Science 333, 988-993. Pr est on, C.M ., Axelson, D.E., L évesque, M ., M at hur , S.P., Dinel, H ., Dudley, R.L ., 1989. Car bon-13 NM R and chemical char act er izat ion of par t icle-size separ at es of peat s differ ing in degr ee of decomposit ion. Or ganic Geochemist r y 14, 393-403. R Cor e Team, 2016. R: A L anguage and Envir onment for St at ist ical Comput ing. Rut hes, A.C., Car boner o, E.R., Cór dova, M .M ., Baggio, C.H ., Sant os, A.R.S., Sassaki, G.L ., Cipr iani, T.R., Gor in, P.A.J., I acomini, M ., 2013. Lactar ius r ufus (1→3),(1→6)-β-d-glucans: St r uct ur e, ant inocicept ive and ant i -inflammat or y effect s. Car bohydr at e Polymer s 94, 129-136. Samuel, R., Fost on, M ., Jaing, N., Cao, S., Allison, L ., St uder , M ., Wyman, C., Ragauskas, A.J., 2011. HSQC (het er onuclear single quant um coher ence) 13C-1H cor r elat ion spect r a of whole biomass in perdeut er at ed pyr idinium chlor ide-DMSO syst em: An effect ive t ool for evaluat ing pr et r eat ment . Fuel 90, 2836-2842. Samuel, R., Fost on, M ., Jiang, N., Allison, L., Ragauskas, A.J., 2011. St r uct ur al changes in swit chgr ass lignin and hemicelluloses dur ing pr et r eat ment s by NM R analysis. Polymer Degr adat ion and St ability 96, 2002-2009. Schleucher , J., Schwendinger , M ., Sat t ler , M ., Schmidt , P., Schedlet zky, O., Glaser , S.J., Sør ensen, O.W., Gr iesinger , C., 1994. A gener al enhancement scheme in

32

het er onuclear mult idimensional NM R employing pulsed field gr adient s. Jour nal of Biomolecular NM R 4, 301-306. Schmidt , M .W.I ., Tor n, M .S., Abiven, S., Dit t mar , T., Guggenber ger , G., Janssens, I .A., K leber , M ., K ögel-K nabner , I ., L ehmann, J., M anning, D.A.C., Nannipier i, P., Rasse, D.P., Weiner , S., Tr umbor e, S.E., 2011. Per sist ence of soil or ganic mat t er as an ecosyst em pr oper t y. Nat ur e 478, 49-56. Schmidt -Rohr , K ., M ao, J., 2002. Efficient CH -gr oup select ion and ident ificat ion in 13

C solid-st at e NM R by dipolar DEPT and 1H chemical -shift filt er ing. Jour nal of t he

Amer ican Chemical Societ y 124, 13938-13948. Schnit zer , M ., M cAr t hur , D.F.E., Schult en, H .-., K ozak, L .M ., Huang, P.M ., 2006. L ong-t er m cult ivat ion effect s on t he quant it y and qualit y of or ganic mat t er in select ed Canadian pr air ie soils. Geoder ma 130, 141-156. Six, J., Fr ey, S.D., Thiet , R.K ., Bat t en, K .M ., 2006. Bact er ial and fungal cont r ibut ions t o car bon sequest r at ion in agroecosyst ems. Soil Science Societ y of Amer ica Jour nal 70, 555-569. Simpson, A.J., 2002. Det er mining t he molecular weight , aggr egat ion, st r uct ur es and int er act ions of nat ural or ganic mat t er using diffusion or der ed spect r oscopy. M agnet ic Resonance in Chemist r y 40, S72-S82. Simpson, A.J, K inger y, W.L , Shaw, D.R, Spr aul, M , Humpfer , E, Dvor t sak, P, 2001a. The applicat ion of 1H H R-M AS NM R spect r oscopy for t he st udy of st r uct ur es and associat ions of or ganic component s at t he solid-aqueous int er face of a whole soil. Envir onment al Science & Technology 35, 3321-3325.

33

Simpson, A.J., K inger y, W.L ., Spr aul, M ., Humpfer , E., Dvor t sak, P., K er ssebaum, R., 2001b. Separ at ion of st r uct ur al component s in soil or ganic mat t er by diffusion or der ed spect r oscopy. Envir onment al science & t echnology 35, 4421-4425. Simpson, A.J., Sall oum, M .J., K inger y, W.L ., H at cher , P.G., 2002. I mpr ovement s in t he t wo-dimensional nuclear magnet ic r esonance spect r oscopy of humic subst ances. Jour nal of envir onment al quality 31, 388-392. Simpson, A.J., K inger y, W.L ., H at cher , P.G., 2003. The ident ificat ion of plant der ived st r uct ur es in humic mat er ials using t hr ee-dimensional NM R spect r oscopy. Envir onment al science & t echnology 37, 337-342. Simpson, A.J., Song, G., Smit h, E., L am, B., Novot ny, E.H ., H ayes, M .H .B., 2007. Unr aveling t he st r uct ur al component s of soil humin by use of solut ion-st at e nuclear magnet ic r esonance spect r oscopy. Envir onment al science & t echnology 41, 876-883. Sjöber g, G., Nilsson, S.I ., Per sson, T., K ar lsson, P., 2004. Degr adat ion of hemicellulose, cellulose and lignin in decomposi ng spruce needle lit t er in r elat ion t o N. Soil Biology and Biochemist r y 36, 1761-1768. Smer nik, R.J., Eckmeier , E., Schmidt , M .W.I ., 2008. Compar ison of solid-st at e 13C NM R spect r a of soil or ganic mat t er fr om an exper iment al burning sit e acquir ed at t wo fi eld st r engt hs. Aust r alian Jour nal of Soil Resear ch 46, 122-127. Sollins, P., H omann, P., Caldwell, B.A., 1996. St abilizat ion and dest abilizat ion of soil or ganic mat t er : mechanisms and cont r ols. Geoder ma 74, 65-105.

34

Song, G., H ayes, M .H .B., Novot ny, E.H ., Simpson, A.J., 2011. I solat ion and fr act ionat ion of soil humin using alkaline urea and dimet hylsulphoxide plus sulphur ic acid. Nat ur wissenschaft en 98, 7-13. Sun, S.N., Yuan, T.Q., L i, M .F., Cao, X.F., Xu, F., L iu, Q.Y., 2012. St r uct ur al char act er izat ion of hemicelluloses fr om bamboo culms ( Neosinocalamus affinis). Cellulose Chemist r y and Technology 46, 165-176. Swift , M .J., H eal, O.W., Ander son, J.M ., 1979. Decomposit ion in t er r est r ial ecosyst ems, Blackwell, Oxfor d. Talbot , J.M ., Yelle, D.J., Nowick, J., Tr eseder , K .K ., 2012. L it t er decay r at es ar e det er mined by lignin chemist r y. Biogeochemist r y 108, 279-295. Tivet , F., de M or aes Sá, J.C., L al, R., M ilor i, D.M .B.P., Br iedis, C., L et our my, P., Pinheir o, L .A., Bor szowskei, P.R., da Cr uz H ar t man, D., 2013. Assessing humificat ion and or ganic C compounds by laser -induced fluor escence and FTI R spect r oscopies under convent ional and no-t ill management in Br azilian Oxisols. Geoder ma 207-208, 71-81. Tr umbor e, S., 2000. Age of soil or ganic mat t er and soil r espir at ion: r adiocar bon const r aint s on belowgr ound C dynamics. Ecological Applicat ions 10, 399-411. Vancampenhout , K ., Wout er s, K ., De Vos, B., Buur man, P., Swennen, R., Decker s, J., 2009. Differ ences in chemical composit ion of soil or ganic mat t er in nat ur al ecosyst ems fr om differ ent climat ic r egions - A pyr olysis-GC/M S st udy. Soil Biology and Biochemist r y 41, 568-579.

35

von L üt zow, M ., K ögel-K nabner , I ., Ekschmit t , K ., M at zner , E., Guggenber ger , G., M ar schner , B., Flessa, H ., 2006. St abilizat ion of or ganic mat t er in t emper at e soils: mechanisms and t heir r elevance under differ ent soil condit ions - a r eview. Eur opean Jour nal of Soil Science 57, 426-445. von L üt zow, M ., K ögel-K nabner , I ., Ekschmit t , K ., Flessa, H ., Guggenber ger , G., M at zner , E., M ar schner , B., 2007. SOM fr act ionat ion met hods: Relevance t o funct ional pools and t o st abilizat ion mechanisms. Soil Biology and Biochemist r y 39, 2183-2207. Wishar t , D.S., Bigam, C.G., H olm, A., H odges, R.S., Sykes, B.D., 1995. 1H , 13C and 15N r andom coil NM R chemical shift s of t he common amino acids. I . I nvest igat ions of near est -neighbor effect s. Jour nal of Biomolecular NM R 5, 67-81. Yassir , I ., Buur man, P., 2012. Soil or ganic mat t er chemist r y changes upon secondar y succession in I mper ata Gr asslands, I ndonesia: A pyr olysis-GC/M S st udy. Geoder ma 173-174, 94-103. Yu, Z., L oisel, J., Br osseau, D.P., Beilman, D.W., H unt , S.J., 2010. Global peat land dynamics since t he L ast Glacial M aximum. Geophysical Resear ch L et t er s 37, L 13402. Zhong, J., Sleight er , R.L ., Salmon, E., M cK ee, G.A., H at ch er , P.G., 2011. Combining advanced NM R t echniques wit h ult r ahigh r esolut ion mass spect r omet r y: A new st r at egy for molecular scale char act er izat ion of macr omolecular component s of soil and sediment ar y or ganic mat t er . Or ganic

36

Geochemist r y; Applicat ions and development s of magnet ic r esonance t echniques in Geosciences 42, 903-916.

Fi gur e capt i ons

Fi g. 1. 2D 1H -13C HSQC spect r um of DM SO-ext r act of a super ficial spr uce soil and cor r esponding solid st at e 1D 13C CP spect r um of t he soil (see Er hagen et al., 2013 for det ails). The common spect r al r egions consider ed in 13C NM R spect r a (K ögel K nabner , 1997) ar e indicat ed on t he left , and t he four common 2D spect r al r egions ar e indicat ed by r ect angles. I t is impor t ant t o emphasize t hat solid-st at e NM R and H SQC do not obser ve exact ly t he same component s: 1H-13C HSQC shows only pr ot onat ed car bons and only t he fr act ion br ought int o solut ion. The over lay is simply t o demonst r at e t he higher r esolut ion t hat can be obt ained fr om HSQC vs solid-st at e N M R and t o show how t he t echnique could significant ly cont r ibut e t o t he field.

Fi g. 2. Signal assignment s for t he four spect r al r egions (see Fig. 1) of t he H SQC spect r um of t he super ficial spr uce soil DM SO-ext r act . R, r educing end; NR, nonr educing end uni t s; see Table 1 for ot her abbr eviat ions. Assignment s labeled in gr ay ar e t ent at ive.

37

Fi g. 3. Expansion of (a) non-anomer ic car bohydr at e and (b) ar omat ic r egions of t he H SQC spect r a of spr uce needle (black) lit t er and bir ch leaf (r ed) lit t er DM SOext r act s. See Table 1 for abbr eviat ions. Assignment s labeled in gr ay ar e t ent at ive.

Fi g. 4. Expansions of (a) ar omat ic and (b) car bohydr at e r egions of t he HSQC spect r a of spr uce needle lit t er (black) and super ficial spr uce soil (r ed) DM SOext r act s fr om sit e 4. See Table 1 for abbr eviat ions. Assignment s labeled in gr ay ar e t ent at ive; t hose labeled in bold indicat e st r uct ur es of fungal or igin.

Fi g. 5. Det ails of car bohydr at e r egion of t he H SQC spect r a of DMSO-ext r act s of

Sphagnum fuscum (in black) and peat (150–155 cm; in r ed). See Table 1 for abbr eviat ions.

38

39

40

41

42

43

Table 1 Tentative assignments of HSQC signals to moieties in litter, soil and peat samples. Abbreviation DMSO

δC (ppm) 39.5

δH (ppm) 2.49

Referencesa

Acetyl groups

20.4

2.02

25.7

2.00

Methylene units α

31.4–31.6 33.2

1.91–1.97 2.18–2.25

Methylene units in aliphatic chains β to acid or ester

Methylene units β

23.2–24.2 22.9

1.49 1.62

Methylene units in aliphatic chains γ to acid or ester Methylene β in a primary alcohol chain in waxes Methylene β in mid-chain alcohols in waxes

Methylene units γ

18.2

1.05

31.9–33.2

1.37–1.43

36.8

1.27

Terminal methyl groups (unspecific)

Terminal CH3

13.6

0.85

Methyl groups from amino acids in peptides / proteins, fatty acids, lipids, hemicelluloses Methyl groups in waxes

CH3 from peptides + lipids

19.1–22.1

0.81–0.84

(Simpson et al., 2007; Kim & Ralph, 2010) (Dais & Spyros, 2012) (Fang et al., 2001; Simpson et al., 2003; Simpson et al., 2007; Dais & Spyros, 2012) (Deshmukh et al., 2003; Simpson et al., 2003; Simpson et al., 2007; Kim & Ralph, 2010) (Simpson et al., 2007) (Deshmukh et al., 2003) (Deshmukh et al., 2003; Simpson et al., 2003) (Samuel et al., 2011a; Dais & Spyros, 2012) (Simpson et al., 2007)

11.2

0.82

Methylene and methine groups in aliphatic chains: polymethylene chains mainly from lipids/fatty acids and waxes

(CH2)n and CH in aliphatic chains

21.8–37.0

1.23–1.25

Moiety Dimethyl sulfoxide (solvent)b Alkyl region Acetyl groups of hemicellulose and lignin (N-acetyl group from peptidoglycan) Methylene units adjacent to alkene Methylene units α to carboxyl acid or carbonyl of an ester

44

(Kim et al., 2008)

(Fang et al., 2001) (Fang et al., 2001; Simpson et al., 2003; Simpson et al., 2007; Zhong et

al., 2011; Dais & Spyros, 2012)

Non-anomeric C C2/H2 of cellulose

Cellulose Cellulose C2/H2

C2/H2 of reducing end (β) of cellulose C5/H5 of cellulose C3/H3 of internal cellulose

72.3

3.24

Cellulose Rβ C2/H2 Cellulose C5/H5

74.3

3.13

76.1

3.35

74.1

3.57

77.0

3.65

69.9

3.21

C6/H6 of glucan

Cellulose int. C3/H3 Cellulose int. C4/H4 Cellulose NR C4/H4 Cellulose int. C6/H6 Glucan C6/H6

60.4 60.5 59.5

3.45 3.63 3.53

C2/H2 of α-arabinofuranose

Hemicelluloses α-L-Araf C2/H2 80.1

3.97

C5/H5 of α-arabinofuranose

α-L-Araf C5/H5

61.4

3.50; 3.56

Methoxy group of 4-O-methyl-αD-glucuronic acid C4/H4 of internal 4-O-methyl-αD-glucuronic acid linked O-2 to (1→4)-α-D- xylopyranose C2/H2 of xylan ((1→4)-β-Dxylopyranose) C3/H3 of non-reducing end xylan

4-O-MeGlcA (methoxy) Xmga int. C4/H4

58.7

3.32

77.3

3.63

Xylan C2/H2

71.9

3.04

Xylan NR C3/H3

75.5

3.25

C3/H3 of internal xylan

Xylan int. C3/H3

73.4

3.35

C4/H4 of non-reducing end xylan

Xylan NR C4/H4

69.3

3.37

C4/H4 of internal xylan

Xylan int. C4/H4

75.2

3.56

C5/H5 of internal xylan

Xylan int. C5/H5

C2/H2 of 2-O-acetylated xylopyranose

2-O-Ac-β-D-Xylp C2/H2

63.1 63.5 73.6

3.37 3.97 4.58

C2/H2 of 2-O-acetylated

2-O-Ac-β-D-

70.4–70.5

5.26–5.27

C4/H4 of internal cellulose C4/H4 of non-reducing end of cellulose C6/H6 of internal cellulose

45

(Kim & Ralph, 2014) (Kim & Ralph, 2014) (Kim & Ralph, 2014) (Kim & Ralph, 2014) (Kim & Ralph, 2014) (Kim & Ralph, 2014) (Kim & Ralph, 2014) (Çetinkol et al., 2012) (Sun et al., 2012) (Sun et al., 2012) (Sun et al., 2012) (Kim & Ralph, 2014) (Çetinkol et al., 2012) (Kim & Ralph, 2014) (Kim & Ralph, 2014) (Kim & Ralph, 2014) (Çetinkol et al., 2012; Kim & Ralph, 2014) (Çetinkol et al., 2012) (Martínez et al., 2011; Samuel et al., 2011b) (Martínez et al., 2011)

mannopyranose C2/H2 of the β-Dgalactopyranose C3/H3 of the β-Dgalactopyranose β-aryl ether linkages of the lignin units (α = Cα/Hα) β-aryl ether linkages of the lignin units (γ = Cγ/Hγ) Phenylcoumaran (Cβ/Hβ)

Methoxy group of the lignin units

Methylene α in a primary alcohol chain Methylene directly attached to singly bonded ester O Methine group α in mid-chain alcohols Glycerol

Methoxy

Manp C2/H2 β-D-Galp C2/H2

70.1

3.54

(Bubb, 2003)

β-D-Galp C3/H3

72.2

3.63

(Bubb, 2003)

Lignin β-O-4’ (α)

71.0

4.72

β-O-4’ (γ)

59.7

3.74

β-5

51.9 (51.4) 3.62

Methoxy (lignin)

55.6

(Martínez et al., 2011) (Martínez et al., 2011) (Hedenström et al., 2009; Cheng et al., 2013) (Hedenström et al., 2009; Kim & Ralph, 2010; Samuel et al., 2011a; Mao et al., 2013)

Cutin and suberin CH2 α to OH 60.4 (primary chain) CH2OCOR 63.3 CH α to OH (mid- 70.6 chain) 65.4 65.5 74.9 55.6

3.72–3.76

3.37 3.98 3.33

(Deshmukh et al., 2003) (Deshmukh et al., 2003) (Deshmukh et al., 2003) (Ferreira et al., 2012)

3.55 3.64 3.77 3.72–3.76 (Ferreira et al., 2012)

Cα/Hα in amino acids

Proteins/amino acids 51.9/54 Cα/Hα in amino 57.7–57.8 acids

Anomeric C Reducing-end of (1→4)-α-Dgalactopyranose and (1→4)-αD-xylopyranose

α-D-Galp(R) + αD-Xylp(R)

Reducing-end of (1→4)-β-Dgalactopyranose and (1→4)-βD-xylopyranose Reducing-end of β-D-

4.28/4.43 4.12–4.21

(Wishart et al., 1995; Hertkorn et al., 2002)

91.9–92.3

4.90

β-D-Galp(R) + βD-Xylp(R)

96.5–96.8

4.25–4.27

β-D-Glcp(R)

97.2

4.78

(Kim & Ralph, 2010; Çetinkol et al., 2012; Cheng et al., 2013) (Kim & Ralph, 2010; Çetinkol et al., 2012; Cheng et al., 2013) (Hertkorn et al., 2006)

46

glucopyranose Reducing-end of α-Dmannopyranose (1→4)-β-D-mannopyranose

α-D-Manp(R)

93.2

4.88

β-D-Manp

100.1

4.55

Mannans

100.8

4.67

Starch

99.4

5.11

C1/H1 of β-D-galactopyranose α-L-fucopyranosyl

β-D-Galp C1/H1 α-L-fucop

102.5 100.1

4.43 5.10

C1/H1 of cellulose

Cellulose Cellulose C1/H1

102.4

4.32 4.24

C1/H1 of xylans

cellulose (NR) 103.0 C1/H1 Hemicelluloses xylans C1/H1 102.1

C1/H1 of 4-O-methyl-α-Dglucuronic acid

4-O-MeGlcA C1/H1

97.1

5.08

C1/H1 of α-arabinofuranosyl residues with glycosidic linkages to xylose units β-L-arabinofuranose

α-L-Araf 1+2

107.7 106.6

4.77 4.91

β-L-Araf

102.9

5.14

2-O-acetylated mannopyranose

2-O-Ac-β-DManp

98.2

4.71

3-O-acetylated mannopyranose

99.1

4.72

2-O-acetylated xylopyranose

3-O-Ac-β-DManp 2-O-Ac-β-D-Xylp

99.4

4.59

3-O-acetylated xylopyranose

3-O-Ac-β-D-Xylp

101.9

4.25

C1/H1 of non-reducing end of cellulose

Reducing terminal C1/H1 units in α of (1→3, 1→6)-linked β-Dglucans Internal C1/H1 units in α of (1→3, 1→6)-linked β-Dglucans Glycosidic linkages of glucans in 3-O- and 3,6-di-O-substituted residues (C1/H1)

Fungal signals α-C1/H1 (β93.5 glucans)

4.29

(Kim & Ralph, 2010) (Martínez et al., 2011; Cheng et al., 2013) (Kim & Ralph, 2010) (Cheng et al., 2013) (Bubb, 2003) (Kim & Ralph, 2010) (Kim & Ralph, 2010) (Kim & Ralph, 2010) (Sun et al., 2012) (Martínez et al., 2011; Çetinkol et al., 2012) (Kim & Ralph, 2010; Cheng et al., 2013) (Kim & Ralph, 2010) (Kim & Ralph, 2010; Çetinkol et al., 2012) (Kim & Ralph, 2010) (Kim & Ralph, 2010) (Çetinkol et al., 2012)

4.87

(Kim et al., 2000)

internal C1/H1 (β-glucans)

103.0

4.48

(Kim et al., 2000)

3-O- and 3,6-diO-substituted residues (β-

102.9

4.52

(Ruthes et al., 2013)

47

glucans) Aromatic region C2 of guaiacyl unit (L+S)

Lignin (L), tannin (T) and suberin (S) G2 110.7

6.97

C5 of guaiacyl unit (L+S)

G5

115.2

6.58–6.93

C6 of guaiacyl unit (L+S)

G6

118.6

6.76

C3/C5 of p-coumaryl unit (L) C8 of p-coumaryl unit (L) C2/C6 of p-hydroxyphenyl unit (L+S+T)

pCA3/5 pCA8 H2/6

116.0 114.2 128.9

6.61; 6.75 6.51 7.24

C2/C6 of p-hydroxybenzoate unit (L) Oxidized lignin units (L)

PB2/6

130.3

7.82

Vinylic groups (S)

(not shown)

121.7 116.4 114.0 110.5 129.4

7.26 7.32 7.21 7.38 5.31

a

(Lopes et al., 2000; Mattinen et al., 2009; Kim & Ralph, 2010; Martínez et al., 2011; Samuel et al., 2011a; Cheng et al., 2013) (Lopes et al., 2000; Mattinen et al., 2009; Martínez et al., 2011; Samuel et al., 2011a; Cheng et al., 2013) (Lopes et al., 2000; Mattinen et al., 2009; Martínez et al., 2011; Samuel et al., 2011a; Cheng et al., 2013; Mao et al., 2013) (Moon et al., 2005; Mattinen et al., 2009; Kim & Ralph, 2010; Samuel et al., 2011a; Cheng et al., 2013; Mao et al., 2013) (Hedenström et al., 2009) (Azarpira et al., 2014)

(Ferreira et al., 2012)

Spectra of some of these references acquired with a different solvent from DMSO; b used as a

reference for spectra alignment. 48

49

H i ghl i ght s • 2D NM R allowed r eady char act er izat ion of composit ion of or ganic soils ext r act s.• High r esolut ion allowed a wide r ange of st r uct ur al component s t o be obser ved.• Composit ion differ ences due t o var ying above and below gr ound input wer e obser ved.• 2D NM R can help det er mine sour ce and t ur nover of individual molecular moiet ies.