Accepted Manuscript Unusual AT-skew of Sinorhodeus microlepis mitogenome provides new insights into mitogenome features and phylogenetic implications of bitterling fishes
Peng Yu, Li Zhou, Xiao-Ya Zhou, Wen-Tao Yang, Jun Zhang, Xiao-Juan Zhang, Yang Wang, Jian-Fang Gui PII: DOI: Reference:
S0141-8130(18)36172-5 https://doi.org/10.1016/j.ijbiomac.2019.01.200 BIOMAC 11633
To appear in:
International Journal of Biological Macromolecules
Received date: Revised date: Accepted date:
13 November 2018 17 January 2019 29 January 2019
Please cite this article as: P. Yu, L. Zhou, X.-Y. Zhou, et al., Unusual AT-skew of Sinorhodeus microlepis mitogenome provides new insights into mitogenome features and phylogenetic implications of bitterling fishes, International Journal of Biological Macromolecules, https://doi.org/10.1016/j.ijbiomac.2019.01.200
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
ACCEPTED MANUSCRIPT 1
Unusual AT-skew of Sinorhodeus microlepis mitogenome provides new insights into mitogenome features and phylogenetic implications of bitterling fishes Peng Yu 1, 2, 3, Li Zhou 1, 2,, Xiao-Ya Zhou3, Wen-Tao Yang 1, 2, Jun Zhang3, Xiao-Juan
1
PT
Zhang1, Yang Wang1, 2*, Jian-Fang Gui1, 2* State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of
RI
Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of
SC
Sciences, Wuhan 430072, China
University of Chinese Academy of Sciences, Beijing 100049, China
3
College of Animal Science and Technology, Anhui Agricultural University, Hefei
NU
2
230036, China
MA
*Corresponding authors:
D
Yang Wang (
[email protected]) and Jian-Fang Gui (
[email protected])
PT E
Highlights
1. The first report of complete mitochondrial genome of S. microlepis. 2. Unusual AT-skew and base compositions in S. microlepis mitogenome.
mitogenomes.
CE
3. Highly conserved overlaps and non-coding intergenic spacers among bitterling
AC
4. S. microlepis should be a sister species to the genus Rhodeu that might diverge about 13.69 Ma
ACCEPTED MANUSCRIPT 2
Abstract Sinorhodeus microlepis (S. microlepis) is recently descibed as a new species and respresents a new genus Sinorhodeu of the subfamily Acheilognathinae. In this study, we first sequenced the complete mitogenome of S. microlepis and compared with the
PT
other 29 bitterling mitogenomes. The S. microlepis mitogenome is 16,591 bp in length
RI
and contains 37 genes. Gene distribution pattern is identical among 30 bitterling
SC
mitogenomes. A significant linear correlation between A+T% and AT-skew were found among 29 bitterling mitogenomes, except S. microlepis shows unusual AT-skew
NU
with slightly negative in tRNAs and PCGs. Bitterling mitogenomes exhibit highly
MA
conserved usage bias of start codon, relative synonymous codons and amino acids, overlaps and non-coding intergenic spacers. Phylogenetic trees constructed by 13
D
PCGs strongly support the polyphyly of the genus Acheilognathus and the paraphyly
PT E
of Rhodeus and Tanakia. Together with the unusual characters of S. microlepis mitogenomes and phylogenetic trees, S. microlepis should be a sister species to the
CE
genus Rhodeu that might diverge about 13.69 Ma (95% HPD: 12.96–14.48 Ma).
AC
Keywords: Sinorhodeus microlepis; Acheilognathinae; mtDNA; AT-skew; phylogeny; divergence time
ACCEPTED MANUSCRIPT 3
Introduction The subfamily Acheilognathinae, commonly called bitterling, is small cyprinid fishes which considered as a model in evolutionary ecology owing to their unusual spawning behavior and co-evolutionary relationships with freshwater mussels [1-3]. They
PT
deposite their eggs in the gill chambers of living freshwater mussels [4]. Bitterlings
RI
comprise approximately 80 species or subspecies [5] across three genera, Tanakia,
SC
Rhodeus, and Acheilognathus [6]. They are mainly distributed in Asia, except three species (R. amarus, R. colchicus and R. meridionalis) native to Europe [6,7]. Due to
NU
their highly specialized spawning behavior, habitat loss and fragmentation, and other
MA
threats, bitterlings face an increasing extinction risk [8-12]. As well-known aquarium fishes in Asia and Europe [11,13], bitterlings possess great diversity in morphological
D
features and exhibit charming colors and patterns. The phylogenetic relationships of
PT E
bitterlings have been revealed by morphological, karyological, meristic or molecular data [14-16]. Recently, several phylogenetic trees were constructed based on
CE
mitochondrial DNA control region [17], 5S rDNA [18], mitochondrial cytochrome b
AC
(cytb) [19,20], 12SrRNA [21], or comprehensive multiple genes [11,14,22], which provide new insights into the taxonomy, phylogeny and origin of Acheilognathidae. However, the details of species relationships and the monophyly of three genera remain questionable. Mitochondrial genome (mitogenome) contains 13 protein coding genes (PCGs), two ribosomal (rRNA), 22 transfer (tRNA) RNA genes, and two noncoding regions. The longer noncoding region, named as control region (CR), possesses regulatory
ACCEPTED MANUSCRIPT 4
elements for transcription and replication, and the shorter noncoding region is the origin of L-strand replication (OL) [23-25]. Compared with nuclear genome, mitogenome is characterized by its small size, abundance in animal tissues, strict orthology of PCGs, and high nucleotide substitution rate [26-28]. Therefore, it has
PT
been extensively applied in species identification, phylogenetic reconstruction,
RI
genetic diversity, and conservation biology [29-34]. Although the arrangement of 37
SC
genes within the genome is highly conserved, the genome length, nucleotide composition, amino acid bias, gene overlaps, and non-coding intergenic spacers (IGS)
NU
are distinctive among different species [35-37]. Up to now, mitogenomes of about 40
MA
bitterlings had been reported or deposited in GenBank [39-54]. However, the conserved and exclusive characteristics of bitterling mitogenomes have not been well
PT E
based on 13PCGs are lacking.
D
documented. In addition, the phylogenetic status and divergence time of bitterlings
Recently, a highly distinctive bitterling was descibed as a new species
CE
Sinorhodeus microlepis and respresented a new genus Sinorhodeus [14]. S. microlepis
AC
is distributed only in a small area of a tributary of the Yangtze River in Chongqing City, China. During breeding season, adult males are fascinatingly colorful and have a orange-red body with bluish sheen dorsally, iris-red pelvic fins and orange-red anal fin, similar to volcanic color. In China, S. microlepis is also known as volcano bitterling and has been booming in aquarium market. Unfortunately, it was heavily fished in its original habitat. Here we sequenced and described, for the first time, the mitogenome of S. microlepis and compared it with other 29 bitterling mitogenomes.
ACCEPTED MANUSCRIPT 5
Based on the investigations, we explore the characteristics of bitterling mitogenomes, the phylogenetic relationship and the estimated divergence times for S. microlepis and other bitterlings.
2. Materials and methods
PT
2.1 Sequencing and assembly analysis
RI
The S. microlepis specimen analyzed in this study was bought from the aquarium
SC
market in Chongqing city, China, and identified through morphological analysis as described by Li et al [14].
NU
Total DNA was extracted according to the Ezup Column Animal Genomic DNA Kit
MA
technical manual (Sangon, Shanghai, China). The mitochondrial DNA fragments were amplified by PCR. PCR primers were designed based on the conserved sequences
D
between two bitterling mitogenomes: R. amarus (GenBank: AP011209.1) and T.
PT E
tanago (GenBank: AP012526.1) (Supplementary Table S1). DNA amplification and purification were performed according to Wei et al., 2016a [55] (Supplementary Table
CE
S1). The purified DNA products were ligated to pMD™18-T vector (Takara, Beijing,
AC
China) and the plasmids were chemically transfected into Trans5αcompetent cells (TransGen Biotech, Beijing, China). The positive clones were sequenced by Tianyibiotech (Beijing, China). The DNA sequences were assembled by using DNAStar (DNASTAR Inc., USA) [56]. 2.2 Gene annotations and bioinformatics analysis The 22 tRNA genes were predicted with tRNAscan-SE 1.21 [57] and MITOS [58]. All 13 PCGs and 2 rRNA genes were annotated by comparison with the homologous
ACCEPTED MANUSCRIPT 6
sequences
of
other
bitterling
(https://blast.ncbi.nlm.nih.gov/).
The
mitogenomes
mtDNA
maps
were
in
GenBank drawn
using
OrganellarGenomeDRAW [59]. The secondary structure of OL and 22 tRNAs were predicted by The mfold Web Server [60] (http://unafold.rna.albany.edu/) and
PT
tRNAscan-SE 1.21 [57], respectively. The base composition and relative synonymous
RI
codon usage were calculated using MEGA 7.0 [61] and Microsoft Excel 2010.
SC
Skewness was measured using the formulas: AT-skew = (A% - T%) / (A% + T%) and GC-skew = (G% - C%) / (G% + C%) [62]. The TAS (termination associated sequence
NU
domains), GTGGG-box and CSB (conserved sequence block domains) of CR were
MA
determined by compairing with other species [63-66]. 2.4 Phylogenetic analyses
D
The phylogenetic relationships were constructed with 13 PCGs of 30 bitterlings from
PT E
S. microlepis and other three genera (Table 1). Megalobrama amblycephala (NC_010341.1) and Parabramis pekinensis (NC_022678.1) were chosen as the out
CE
groups. Each of the 13 PCG sequences from all the 30 species was separately aligned
AC
using MAFFT v7.407 [67] and then aggregated into a sequence matrix. The maximum likelihood (ML) tree was implemented in RAxML v7.7.1 [68] under the GTR-Gamma model, and node support was calculated with 1,000 bootstrap replications (random seed value 1,234,567). The Bayesian phylogenies were implemented in MrBayes version 3.1.2 [69]. The best-fit nucleotide substitution model was determined by ModelFinder in IQ-TREE v1.6.9 [70]. The bayesian inference (BI) tree was constructed with run length of 1.5 × 10
7
generations and sampling every 1,000
ACCEPTED MANUSCRIPT 7
generations. Divergence time was calibrated using the first appearance of fossil records of Rhodeinae in the early Miocene (20 ma) found in Japan [71], and estimated using BEAST v1.10.4 [72]. The tree topology was constructed based on GTR + I + G Substitution model. The Yule Process was chosen for the tree prior [73]. BEAST was
PT
run for 1.5 × 10 7 Markov chain Monte Carlo (MCMC) generations, with the trees
RI
sampled every 1,000 generations. Then the trees were checked using Tracer v1.5 [74].
SC
3 Results and discussion
3.1 General features of S. microlepis and other bitterling mitogenomes
NU
The complete mitogenome of S. microlepis (GenBank: MH190825) is a circular
MA
double-chain molecule with a length of 16,591 bp (Fig. 1). The lengths of other bitterling mitogenomes range from 16,563 bp to 16,988 bp (Table 1), and the
D
differences in length are mainly attributed by the variations of CR (Supplementary
PT E
Table S2). Similar to other bitterlings, S. microlepis mitogenome also contains 13 PCGs, 22 tRNA genes, two rRNA genes and two non-coding regions (OL and CR)
CE
(Fig. 1, Table2). Gene distribution pattern is identical among 30 bitterling
AC
mitogenomes (Fig. 1, Table2). S. microlepis mitogenome comprises 22 tRNAs with the total length of 1,561 bp, ranging from 66 bp (tRNACys(C)) to 76 bp (tRNALeu(UUR (L1)) and tRNALys(K)). All tRNAs could be folded into typical clover-leaf secondary structure, except for tRNAser(AGY)(S1) lacking dihydrouracil (DHU) arm (Fig. 2). The unusual structure of S1 is conserved among other bitterling and metazoan mitogenomes [75-77]. A total of 41 unmatched base pairs were scattered through the tRNAs, 27 of them are
ACCEPTED MANUSCRIPT 8
noncanonical matches of G-U pairs and the remaining mismatches include A-C (6), A-A (2), A-G (1), and U-U (5) (Fig. 2). The lengths of 12S rRNA and 16S rRNA are 961 bp and 1678 bp, locating between tRNAPhe(S) and tRNAVal(V), V and L1, respectively. Same to other cyprinid fish [78-80], the OL locates in the middle of the
PT
WANCY region (Fig.1 and Table 2) and displays a stable stem and loop structure,
RI
which is strengthened by three A-T and six G-C base pairs (Fig. 3A). The S.
SC
microlepis CR extends 933 bp and locates between the tRNAPro(P) and S. In bitterling fishes, the length of CR was the fastest-changing region, ranging from 901 bp (R.
NU
shitaiensis) [41] to 1129 bp (A. rhombeus) (Supplementary Table S2). The
MA
GTGGG-box and the conserved blocks such as TAS and CSB-F, CSB-E, CSB-D, CSB-1, CSB-2, and CSB-3 were found in the CR of S. microlepis mitogenome (Fig.
D
3B).
PT E
3.2 Unusual AT-skew in S. microlepis mitogenome The entire mitogenomes of S. microlepis and other bitterlings all exhibit AT bias (52.9%
CE
- 57.9%). The A+T content is the highest in CR and the lowest in rRNAs (Fig. 4A).
AC
Interestingly, the A+T contents of CR of the genus Acheilognathus clade A are higher than those of the genus of Tanakia and Rhodeus, except A. meridianuswas and A. melanogaster. The AT-skew values of whole mitogenome, PCGs, tRNAs, rRNAs and CR were calculated (Fig. 4B and Supplementary Table S2). Compared to other bitterlings, AT-skew in S. microlepis is unusual with slightly negative in tRNAs (-0.012) and PCGs (-0.014), while AT-skew values for other bitterling mitogenomes are positive in tRNAs (0.021±0.008) and strong negative in PCGs (-0.049±0.011) (Fig.
ACCEPTED MANUSCRIPT 9
4B and Supplementary Table S2). The results indicate that S. microlepis tRNAs displays an excess of T over A, whereas the tRNAs of other bitterlings are biased
towards using A not T. On the other side, the occurrence of A in PCGs of S. microlepis mitogenome is much more than those in other bitterling PCGs. CR involves in the
PT
initiation point of replication and the regulation of transcription, and its AT-skew and
RI
GC-skew might reflect the strand asymmetry [24-25, 62]. Some insects and fishes
SC
possess less A than T and less C than G on the majority strand, indicating the strand asymmetry is reversed [24, 25, 81, 82]. Although the AT-skew of CR in eight
NU
bitterlings is negative, the GC-skew of CR in the all analyzed bitterlings is minus
mitogenomes may be not reversed.
MA
(Supplementary Table S2). The results suggest that the strand asymmetry of bitterling
D
Nucleotide skews might be due to a balance between mutational and selective
PT E
pressures during replication [83-85]. The reason why do AT skews of S. microlepis tRNAs and PCGs run counter to those observed in most bitterling mitogenomes is still
CE
unknown. Recently, the atypical preference for A over T in the leading strand of
AC
Staphylococcus aureus was proved to be caused by selection rather than mutation [86,
87]. S. microlepis is distributed only in a specific tributary of the Yangtze River [14]. One possibility of the unusual AT-skew in S. microlepis is that unique selective pressures or processes might lead to the decrease A in its tRNAs and preferring A in its PCGs. However, what selective forces account for the unusual AT-skew will await further investigation. 3.3 Linear correlations between A+T % and AT-skew of bitterling mitogenomes
ACCEPTED MANUSCRIPT 10
We also analyzed the relationship between nucleotide composition (A+T %) versus AT-skew of 13 PCGs across Acheilognathinae. There is a significant linear correlation between A+T% and AT-skew (y29 = 0.0044x – 0.2952, R² = 0.3303) among 29 bitterling mitogenomes, indicating that the AT-skew becomes more negative with
PT
decreasing the A+T content (Fig. 4C). The relationships are different among three
RI
genera, Tanakia, Rhodeus, and Acheilognathus, and the strongest linear correlation is
SC
found in Rhodeus (y = 0.0047x - 0.3101, R² = 0.4329), without considering the genus Tanakia (only four species) and Sinorhodeus (one species). Within the subfamily
NU
Acheilognathinae, the only exception is S. microlepis, away from the linear
MA
relationships of subfamily Acheilognathinae and its three genera. The result also exhibits the unique character of S. microlepis PCGs in base compositions.
D
3.4 Usage bias of start and stop codon, relative synonymous codons and amino
PT E
acids in bitterling mitogenomes
Consistent with the overwhelming majority of bitterling mitogenomes, 12 PCGs of S.
CE
microlepis initiate with typical start codon ATG, except for the cox1 gene utilizing
AC
GTG (Table 2). Among the 30 bitterling mitogenomes, only three exceptions were observed. The putative start codon of nd3 gene in A. typus and A. melanogaster, and nd5 gene in R. shitaiensis are all GTG (Supplementary Table S3 and Figure S1A). In the S. microlepis mitogenome, seven PCGs utilize the canonical termination codon (TAA and TAG), whereas the others end with the truncated stop codon (TA and T) (Table 2). Similar results were also found in other bitterling mitochondrial genes. All bitterling cox1 and nd4l are terminated with TAA, and cox2 and cytb are ended with a
ACCEPTED MANUSCRIPT 11
single T (Supplementary Table S3 and Figure S1B). The truncated stop codons are common in cyprinid fish mitogenomes [88] and might be converted to TAA via post-transcriptional polyadenylation [89]. In addition, the 1st positions of stop codons in bitterling mitogenomes are T, and the most of 2nd position are A. The AT-skew of
PT
the 1st codon of PCGs are positive while the 2nd codon are negative (Fig. 4B and Table
RI
3). The AT bias could selectively avoid the formation of stop codons, similar as the
SC
observation in nuclear genomes [86].
The codon usage of six bitterling mitochondrial genomes, including Sinorhodeus
NU
(S. microlepis), Rhodeus (R. shitaiensis and R. lighti), Tanakia (T. limbata), and
MA
Acheilognathus (A. meridianus and A. somjinensis) were compared. The amino acid contents are largely consistent among the six bitterling mitogenomes (Fig. 5A). The
D
three most abundant amino acids are Leu(CUN), Ala and Thr, while Cys, Ser(AGY) and
PT E
Arg are rare. Relative synonymous codon usage (RSCU) analysis also showed the similar codon usage pattern among the bitterling mitogenomes (Fig. 5B). In the 3rd
CE
position of bitterling PCGs, codons with G are very rare while codons with A are
AC
overused. Consistent with A+T-bias in whole mitogenomes (Fig. 4A), the A+T-bias is also present in the 3rd position of bitterling PCGs. For example, the codons CGG and CGC for Arginine are rare, while the synonymous codons CGA and CGT are prevalent (Fig. 5B). 3.5 Highly conserved overlaps and non-coding intergenic spacers among bitterling mitogenomes Gene overlaps are highly conserved in bitterlings. In the analyzed six bitterling
ACCEPTED MANUSCRIPT 12
mitogenomes, a total of 22 overlapping nucleotides, ranging from one to seven bp, were detected across six identical gene junctions (Supplementary Table S5). Three motifs “ATGATAR” (R=A/G), “ATGYTAA” (Y=C/T) and “TTAR” are overlapped in the junctions of atp8-atp6, nd4l-nd4, and nd5-nd6 respectively (Fig. 6). Although the
PT
numbers and the locations of gene overlaps varied, the above three motifs were
RI
recognized as a common character found in Cyprinidae fishes, such as zebrafish [80],
SC
grass carp [90] and Zacco sieboldii [43] (Fig. 6 and Supplementary Table S5). In addition to OL and CR, 10 conserved and short non-coding intergenic spacers
NU
(IGSs) were found across the six bitterling mitogenomes with a total length from 21 to
MA
26 bp (Supplementary Table S6). The longest one contains seven bp - nine bp nucleotides and locates between tRNAAsp(D) and cox2 genes. The 3’ of these IGSs are
D
conserved and mainly composed of T/A nucleotides (Supplementary Table S6). In
PT E
particular, a long spacer (with a range of 81 bp -230 bp) was found at the tRNAArg(R) and nd4l in six bitterlings, including R. notatus (83 bp), R. suigensis (81 bp) [39], R.
CE
fangi (81 bp), R. atremius atremius (81 bp), R. uyekii (230 bp) [40], and R. shitaiensis
AC
(220 bp) [41]. The long spacer is uncommon in other bitterlings and even other cyprinid fish (Supplementary Table S6). The lepidopteran IGS with a “TTAGTAT” motif at the trnS2 and nd1 junction is thought to be important for mitochondrion transcription [91] and Hymenoptera IGSs are supposed to associate with gene rearrangements [92, 93]. The “TTAGTAT” motif within IGS and gene rearrangement were not found in bitterling mitogenomes. Thus, the function of IGSs in bitterling mitogenomes is still unknown.
ACCEPTED MANUSCRIPT 13
3.6 Phylogenetic analysis and estimation of divergence time of bitterlings ML and BI phylogenetic trees constructed by 13 PCGs of 30 bitterlings and 2 outgroup taxa were largely congruent (Fig. 7). The only observed discordance was in the position of T. tanago. The subfamily Acheilognathinae was divided into two main
PT
clades: Acheilognathus clade A and a complicated Acheilognathus-Tanakia-Rhodeus
RI
clade. The Acheilognathus clade A includes nine species of Acheilognathus, while the
SC
other three species of Acheilognathus (A. intermedia, A. signifier, and A. somjinensis) are clustered with four species of Tanakia. Except the analysis by Chang et al, 2014
NU
[22], Acheilognathus was recovered to be monophyletic in the previous phylogenetic
MA
analyses owing to the limitations in taxon sampling [11, 18-21]. Our analysis is consistent with the phylogenies resolved by Chang et al, 2014 [22] and supports the
D
polyphyly of Acheilognathus.
PT E
The sampled species of Rhodeus and Tanakia forms two paraphyletic groups respectively. Different from the all previous molecular phylogenetic analyses [11,
CE
18-22], the genus Rhodeus were divided into two distinct lineages. S. microlepis is
AC
clustered with Rhodeus clade A which forms the sister-group to Rhodeus clade B (Fig. 7). However, we did not obtain the mitogenomes of “Acheilognathus” striatus, an unnamed clade which is split the genus Rhodeus and S. microlepis [14]. The unusual characters of S. microlepis mitogenome (Fig. 4B-C), together with special morphological differences [14], suggest that S. microlepis should be a sister species to the genus Rhodeu which needs further study to confirm its taxonomy and phylogeny. Based on fossil calibration, the chronogram with divergence time of bitterling
ACCEPTED MANUSCRIPT 14
lineages were estimated using a relaxed molecular clock (Fig. 8). The subfamily Acheilognathinae diversified around 20 million years ago (Ma). The most recent common
ancestor
of
Acheilognathus
clade
A
and
the
complicated
Acheilognathus-Tanakia-Rhodeus clade appeared about 12.99 Ma (95% HPD:
PT
12.32–12.67 Ma) and 14.63 Ma (95% HPD: 14.05–15.37 Ma), respectively. S.
RI
microlepis emerged in the Middle Miocene (around 13.69 Ma, 95% HPD:
SC
12.96–14.48 Ma), close to the Rhodeus clade A, while Rhodeus clade B occurred in the late Pliocene (around 13.69 Ma, 95% HPD: 4.47–5.12 Ma).
NU
In conclusion, current studies represent general and unique features of S.
MA
microlepis and other 29 bitterling mitogenomes, and reveal their phylogenetic relationship and divergence times. The phylogenetic results strongly support the
PT E
Conflicts of interest
D
polyphyly of the genus Acheilognathus and the paraphyly of Rhodeus and Tanakia.
The authors declare no conflict of interest.
CE
Acknowledgments
AC
This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences [XDB3104] and the earmarked fund for Modern Agro-industry Technology Research System (NYCYTX-49).
Appendix supplementary data Supplementary Table 1. List of primers used to amplify the mitogenome of S. microlepis. Supplementary Table 2. Length, base composition and skewness of bitterlings
ACCEPTED MANUSCRIPT 15
mitogenomes. Supplementary Table 3. The start and stop codons of 13 protein-coding genes in the bitterlings mitogenomes.
PT
Supplementary Table 4. Gene overlaps in the mitogenomes of six bitterlings and other three cyprinid fish.
RI
Supplementary Table 5. Non-coding intergenic spacers in the mitogenomes of the
SC
six bitterligs and other three cyprinid fish.
NU
Supplementary Table 6. Sequences of three mainly non-coding intergenic spacers
MA
in the mitogenomes of six bitterlings and other three cyprinid fish. Supplementary Figure S1. Composition of start codons (A) and stop codons (B).
D
References
PT E
[1] S. C. Mills, J. D. Reynolds, The bitterling–mussel interaction as a test case for co–evolution, J Fish Biol 63 (2010) 84–104. http:// doi.org/10.1111/j.1095–8649.2003.00209.x. [2] M. Reichard, S. C. L. Comber,C. Smith, Sneaking from a female perspective, Anim Behav 74 (2007) 679–688. http:// doi.org/10.1016/j.anbehav.2007.03.005.
CE
[3] M. Reichard, H. Liu,C. Smith, The co–evolutionary relationship between bitterling fishes and freshwater mussels: insights from interspecific comparisons, Evol Ecol Res 9 (2007) 239–259. [4] P. R. Wiepkema, An Ethological Analysis of the Reproductive Behaviour of the Bitterling
AC
(Rhodeus Amarus Bloch), Archives Néerlandaises De Zoologie 14 (1961) 103–199. [5] F. R,P. D, FishBase. http://www.fishbase.org. (Accessed 23th, October 2018). [6] R. Arai,Y. Akai, Acheilognathus melanogaster, a Senior Synonym of A. moriokae, with a Revision of the Genera of the Subfamily Acheilognathinae (Cypriniformes, Cyprinidae), Bulletin of the National Science Museum 14 (1988) 199–213. [7] M. Kottelat, J. Freyhof, Handbook of European Freshwater Fishes, Switzerland and Berlin, Germany, 2007. [8] C. H. Chang, W. W. Lin, Y. T. Shao, R. Arai, T. Ishinabe, T. Ueda, M. Matsuda, H. Kubota, F. Y. Wang,N. H. Jang–Liaw, Molecular phylogeny and genetic differentiation of Tanakia himantegus complex (Teleostei: Cyprinidae) in Taiwan and mainland China, Zool Stud 49 (2010) 283–284. [9] H. Kubota, K. Watanabe, N. Suguro, M. Tabe, K. Umezawa,S. Watanabe, Genetic population structure and management units of the endangered Tokyo bitterling, Tanakia tanago
ACCEPTED MANUSCRIPT 16
(Cyprinidae), Conserv Genet 11 (2010) 2343–2355. [10] N. Onikura, J. Nakajima, T. Miyake, K. Kawamura,S. Fukuda, Predicting distributions of seven bitterling fishes in northern Kyushu, Japan, Ichthyol Res 59 (2012) 124–133. [11] P. Cheng, D. Yu, S. Liu, Q. Tang,H. Liu, Molecular phylogeny and conservation priorities of the subfamily Acheilognathinae (Teleostei: Cyprinidae), Zool Sci 31 (2014) 300–308. http:// doi.org/10.2108/zs130069. [12] Katano K, Mori S, The present and future of endangered freshwater fishes: scenario of fruitful conservation. Shinzansha, Tokyo, 2005. [13] S. Zheng, Q. Wu, L. He,Z. Zhang, Native ornamental fish of China, illustrated book, science press,
PT
Beijing, China 2015.
[14] F. Li, T. Y. Liao, R. Arai,L. Zhao, Sinorhodeus microlepis, a new genus and species of bitterling
RI
from China (Teleostei: Cyprinidae: Acheilognathinae), Zootaxa 4353 (2017) 69–88. http:// doi.org/10.11646/zootaxa.4353.1.4.
SC
[15] A. Libertini, L. Sola, M. Rampin, A. R. Rossi, K. Iijima,T. Ueda, Classical and molecular cytogenetic characterization of allochthonous European bitterling Rhodeus amarus (Cyprinidae, Acheilognathinae) from Northern Italy, Genes Genet Syst 83 (2008) 417–422.
NU
[16] J. Kim, J. Y. Moon, W. J. Kim, D. G. Kim, B. H. Nam, Y. O. Kim, J. Y. Park, C. M. An,H. J. Kong, Molecular and Functional Characterization of Thioredoxin 1 from Korean Rose Bitterling
(Rhodeus
uyekii),
Int
J
Mol
MA
doi.org/10.3390/ijms160819433.
Sci
16
(2015)
19433–19446.
http://
[17] X. L. Liu, X. Y. Li, F. F. Jiang, Z. W. Wang, Z. Li, X. J. Zhang, L. Zhou, J. F. Gui, Numerous mitochondrial DNA haplotypes reveal multiple independent polyploidy origins of hexaploids in
Carassius
species
complex,
Evol
7
(2017)
10604–10615.
http://
D
doi.org/10.1002/ece3.3462.
Ecol
[18] M. Fujiwara, J. Inafuku, A. Takeda, A. Watanabe, A. Fujiwara, S. Kohno,S. Kubota, Molecular
PT E
organization of 5S rDNA in bitterlings (Cyprinidae), Genetica 135 (2009) 355–365. http:// doi.org/10.1007/s10709–008–9294–2. [19] Q. Yang, Y. Zhu, B. Xiong,H. Liu, Acheilognathus changtingensis sp. nov., a new species of the cyprinid genus Acheilognathus (Teleostei: Cyprinidae) from Southeastern China based on and
CE
morphological
molecular
evidence,
Zool
Sci
28
(2011)
158–167.
http://
doi.org/10.2108/zsj.28.158. [20] K. Kawamura, T. Ueda, R. Arai,C. Smith, Phylogenetic relationships of bitterling fishes (Teleostei:
AC
Cypriniformes: Acheilognathinae), inferred from mitochondrial cytochrome B sequences, Zool Sci 31 (2014) 321–329. http:// doi.org/10.2108/zs130233. [21] M. Okazaki, K. Naruse, A. Shima,R. Arai, Phylogenetic relationships of bitterlings based on mitochondrial 12S ribosomal DNA sequences, J Fish Biol 58 (2001) 89–106. http:// doi.org/10.1111/j.1095–8649.2001.tb00501.x. [22] C. H. Chang, F. Li, K. T. Shao, Y. S. Lin, T. Morosawa, S. Kim, H. Koo, W. Kim, J. S. Lee, S. He, C. Smith, M. Reichard, M. Miya, T. Sado, K. Uehara, S. Lavoue, W. J. Chen,R. L. Mayden, Phylogenetic relationships of Acheilognathidae (Cypriniformes: Cyprinoidea) as revealed from evidence of both nuclear and mitochondrial gene sequence variation: evidence for necessary taxonomic revision in the family and the identification of cryptic species, Mol Phylogenet Evol 81 (2014) 182–194. http:// doi.org/10.1016/j.ympev.2014.08.026. [23] P. Yu, S. Ding, Q. Yang, X. Li,Q. Wan, The complete mitochondrial genome of Sinibotia robusta
ACCEPTED MANUSCRIPT 17
(Cypriniformes: Cobitidae), Mitochondrial DNA A 27 (2016) 3471–3472. http:// doi.org/10.3109/19401736.2015.1066353. [24] S. J. Wei, M. Shi, X. X. Chen, M. J. Sharkey, C. van Achterberg, G. Y. Ye,J. H. He, New views on strand asymmetry in insect mitochondrial genomes, PloS one 5 (2010) e12708. http:// doi:10.1371/journal.pone.0012708. [25] S. J. Wei, M. Shi, M. J. Sharkey, C. van Achterberg,X. X. Chen, Comparative mitogenomics of Braconidae (Insecta: Hymenoptera) and the phylogenetic utility of mitochondrial genomes with special reference to Holometabolous insects, BMC genomics 11 (2010) 371. http:// doi:10.1186/1471-2164-11-371. the
case?,
Trends
in
genetics
:
TIG
PT
[26] J. L. Elson,R. N. Lightowlers, Mitochondrial DNA clonality in the dock: can surveillance swing 22
(2006)
http://
RI
doi.org/10.1016/j.tig.2006.09.004.
603–607.
[27] C. Gissi, F. Iannelli,G. Pesole, Evolution of the mitochondrial genome of Metazoa as exemplified
SC
by comparison of congeneric species, Heredity 101 (2008) 301–320.
[28] S. L. Cameron, Insect mitochondrial genomics: implications for evolution and phylogeny, Annu Rev Entomol 59 (2014) 95–117.
NU
[29] H. Yang, J. Xia, J. E. Zhang, J. Yang, H. Zhao, Q. Wang, J. Sun, H. Xue, Y. Wu, J. Chen, J. Huang,L. Liu, Characterization of the Complete Mitochondrial Genome Sequences of Three Croakers (Perciformes, Sciaenidae) and Novel Insights into the Phylogenetics, Int J Mol Sci
MA
19 (2018). http:// doi.org/10.3390/ijms19061741.
[30] A. Min–Shan Ko, Y. Zhang, M. A. Yang, Y. Hu, P. Cao, X. Feng, L. Zhang, F. Wei,Q. Fu, Mitochondrial genome of a 22,000–year–old giant panda from southern China reveals a new panda lineage, Curr Biol 28 (2018) 693–R694. http:// doi.org/10.1016/j.cub.2018.05.008.
D
[31] P. Yu, S. Ding, Q. Yang, Z. Bi, L. Chen, X. Liu, X. Song,Q. Wan, Complete sequence and characterization of the paradise fish Macropodus erythropterus (Perciformes: Macropodusinae) genome,
Mitochondrial
PT E
mitochondrial
DNA
B
1
(2016)
54–55.
http://
doi.org/10.1080/23802359.2015.1137820. [32] T. Su,A. Liang, Characterization of the complete mitochondrial genome of Phymatostetha huangshanensis (Hemiptera: Cercopidae) and phylogenetic analysis, Int J Biol Macromol 119
CE
(2018) 60–69. http:// doi.org/10.1016/j.ijbiomac.2018.07.135. [33] Y. Wang, Y. Shen, C. Feng, K. Zhao, Z. Song, Y. Zhang, L. Yang,S. He, Mitogenomic perspectives on the origin of Tibetan loaches and their adaptation to high altitude, Sci Rep-UK
AC
6 (2016) 29690. http:// doi.org/10.1038/srep29690. [34] G. C. Gibb, F. L. Condamine, M. Kuch, J. Enk, N. Moraes–Barros, M. Superina, H. N. Poinar,F. Delsuc, Shotgun Mitogenomics Provides a Reference Phylogenetic Framework and Timescale for
Living
Xenarthrans,
Mol
Biol
Evol
33
(2016)
621–642.
http://
doi.org/10.1093/molbev/msv250. [35] Y. Huang, Y. Liu, X. Y. Zhu, Z. Z. Xin, H. B. Zhang, D. Z. Zhang, J. L. Wang, B. P. Tang, C. L. Zhou, Q. N. Liu,L. S. Dai, Comparative mitochondrial genome analysis of Grammodes geometrica and other noctuid insects reveals conserved mitochondrial genome organization and phylogeny, Int J Biol Macromol (2018). http:// doi.org/10.1016/j.ijbiomac.2018.09.104. [36] V. C. Seixas, C. A. Russo,P. C. Paiva, Mitochondrial genome of the Christmas tree worm Spirobranchus giganteus (Annelida: Serpulidae) reveals a high substitution rate among annelids, Gene 605 (2017) 43–53. http:// doi.org/10.1016/j.gene.2016.12.024.
ACCEPTED MANUSCRIPT 18
[37] C. Du, L. Zhang, T. Lu, J. Ma, C. Zeng, B. Yue,X. Zhang, Mitochondrial genomes of blister beetles (Coleoptera, Meloidae) and two large intergenic spacers in Hycleus genera, BMC genomics 18 (2017) 698. http:// doi.org/10.1186/s12864–017–4102–y. [38] S. Baron, N. A. van der Merwe,C. Maritz–Olivier, The genetic relationship between R. microplus and R. decoloratus ticks in South Africa and their population structure, Mol Phylogenet Evol 129 (2018) 60–69. http:// doi.org/10.1016/j.ympev.2018.08.003. [39] D. S. Hwang, W. O. Lee,J. S. Lee, Complete mitochondrial genome of the freshwater fish, Rhodeus suigensis (Cypriniformes, Cyprinidae), Mitochondrial DNA 25 (2014) 5–6. http:// doi.org/10.3109/19401736.2013.775262.
PT
[40] B. C. Kim, T. W. Kang, M. S. Kim,C. B. Kim, The complete mitogenome of Rhodeus uyekii (Cypriniformes, Cyprinidae), DNA sequence 17 (2006) 181–186.
RI
[41] F. Li, K. T. Shao, Y. S. Lin,C. H. Chang, The complete mitochondrial genome of the Rhodeus shitaiensis (Teleostei, Cypriniformes, Acheilognathidae), Mitochondrial DNA 26 (2015)
SC
301–302. http:// doi.org/10.3109/19401736.2013.825785.
[42] B. Wang, S. Wang, M. Hu,F. Wang, Complete mitochondrial genome of Rhodeus lighti (Cypriniformes: Cyprinidae), Mitochondrial DNA A 27 (2016) 1497–1498. http://
NU
doi.org/10.3109/19401736.2014.953109.
[43] K. Saitoh, T. Sado, R. L. Mayden, N. Hanzawa, K. Nakamura, M. Nishida,M. Miya, Mitogenomic evolution and interrelationships of the Cypriniformes (Actinopterygii: Ostariophysi): the first
MA
evidence toward resolution of higher–level relationships of the world's largest freshwater fish clade based on 59 whole mitogenome sequences, J Mol Evol 63 (2006) 826–841. http:// doi.org/10.1007/s00239–005–0293–y.
[44] S. He, X. Gu, R. L. Mayden, W. J. Chen, K. W. Conway,Y. Chen, Phylogenetic position of the genus
mitochondrial
Psilorhynchus
genome,
(Ostariophysi:
D
enigmatic
Mol
Phylogenet
Cypriniformes): Evol
47
evidence
(2008)
from
419–425.
the
http://
PT E
doi.org/10.1016/j.ympev.2007.10.012. [45] M. Miya, Y. Sato, T. Fukunaga, T. Sado, J. Y. Poulsen, K. Sato, T. Minamoto, S. Yamamoto, H. Yamanaka, H. Araki, M. Kondoh,W. Iwasaki, MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical
CE
marine species, R Soc Open Sci 2 (2015) 150088. http:// doi.org/10.1098/rsos.150088. [46] X. Xu, X. Cao,Y. Zhu, The complete mitochondrial genome of Tanakia lanceolata (Cypriniformes: Cyprinidae),
Mitochondrial
DNA
A
27
(2016)
867–868.
http://
AC
doi.org/10.3109/19401736.2014.919480. [47] Y. Cheng,W. Tao, The complete mitogenome of Tanakia himantegus (Cypriniformes; Cyprinidae), Mitochondrial
DNA
A
27
(2016)
4144–4145.
http://
doi.org/10.3109/19401736.2014.1003883. [48] Y. Luo, X. Cao,Y. Zhu, The complete mitochondrial genome of Tanakia limbata (Cypriniformes: Cyprinidae),
Mitochondrial
DNA
A
27
(2016)
1713–1714.
http://
doi.org/10.3109/19401736.2014.961135. [49] D. S. Hwang, H. K. Byeon,J. S. Lee, Complete mitochondrial genome of the freshwater fish, Acheilognathus somjinensis (Cypriniformes, Cyprinidae), Mitochondrial DNA 25 (2014) 13–14. http:// doi.org/10.3109/19401736.2013.775266. [50] D. S. Hwang, W. O. Lee,J. S. Lee, Complete mitochondrial genome of the Korean bitterling Acheilognathus koreensis (Cypriniformes; Cyprinidae), Mitochondrial DNA 24 (2013)
ACCEPTED MANUSCRIPT 19
414–415. http:// doi.org/10.3109/19401736.2013.766178. [51] D. S. Hwang, W. O. Lee,J. S. Lee, Complete mitochondrial genome of the striped bittering Acheilognathus yamatsutae (Cypriniformes; Cyprinidae), Mitochondrial DNA 24 (2013) 676–677. http:// doi.org/10.3109/19401736.2013.773988. [52] W. Tao,L. Sun, The complete mitogenome of Acheilognathus barbatus (Cypriniformes; Cyprinidae),
Mitochondrial
DNA
A
27
(2016)
2274–2275.
http://
doi.org/10.3109/19401736.2014.984177. [53] D. S. Hwang, W. O. Lee,J. S. Lee, Complete mitochondrial genome of the freshwater fish, Acanthorhodeus macropterus (Cypriniformes, Cyprinidae), Mitochondrial DNA 25 (2014)
PT
11–12. http:// doi.org/10.3109/19401736.2013.775265.
[54] X. Zhang, W. Song, Y. Wang, R. Du,W. Wang, The complete nucleotide sequence of white Amur 361–362. http:// doi.org/10.3109/19401736.2013.803094.
RI
bream (Parabramis pekinensis) mitochondrial genome, Mitochondrial DNA 25 (2014)
SC
[55] M. Wei, Y. Liu, H. Guo, F. Zhao,S. Chen, Characterization of the complete mitochondrial genome of Cynoglossus gracilis and a comparative analysis with other Cynoglossinae fishes, Gene 591 (2016) 369–375. http:// doi.org/10.1016/j.gene.2016.06.023. 71–91.
NU
[56] T. G. Burland, DNASTAR's Lasergene sequence analysis software, Methods Mol Biol 132 (2000) [57] T. M. Lowe,P. P. Chan, tRNAscan–SE On–line: integrating search and context for analysis of RNA
genes,
Nucleic
acids
research
MA
transfer
doi.org/10.1093/nar/gkw413.
44
(2016)
54–57.
http://
[58] M. Bernt, A. Donath, F. Juhling, F. Externbrink, C. Florentz, G. Fritzsch, J. Putz, M. Middendorf,P. F. Stadler, MITOS: improved de novo metazoan mitochondrial genome Mol
Phylogenet
Evol
69
(2013)
313–319.
http://
D
annotation,
doi.org/10.1016/j.ympev.2012.08.023.
PT E
[59] M. Lohse, O. Drechsel, S. Kahlau,R. Bock, OrganellarGenomeDRAW––a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets, Nucleic Acids Res 41 (2013) W575–581. http:// doi.org/10.1093/nar/gkt289. [60] M. Zuker, Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids
CE
Res 31 (2003) 3406–3415.
[61] S. Kumar, G. Stecher,K. Tamura, MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for
Bigger
Datasets,
Mol
Biol
Evol
33
(2016)
1870–1874.
http://
AC
doi.org/10.1093/molbev/msw054. [62] N. T. Perna,T. D. Kocher, Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes, J Mol Evol 41 (1995) 353–358. [63] Z. Cui, Y. Liu, C. P. Li, F. You,K. H. Chu, The complete mitochondrial genome of the large yellow croaker, Larimichthys crocea (Perciformes, Sciaenidae): unusual features of its control region and the phylogenetic position of the Sciaenidae, Gene 432 (2009) 33–43. http:// doi:10.1016/j.gene.2008.11.024. [64] J. Cheng, G. Q. Ma, Z. Q. Miao, B. N. Shui,T. X. Gao, Complete mitochondrial genome sequence of the spinyhead croaker Collichthys lucidus (Perciformes, Sciaenidae) with phylogenetic considerations, Mol Biol Rep 39 (2012) 4249–4259. http:// doi:10.1007/s11033-011-1211-6. [65] R. Lalitha,V. R. Chandavar, Intraspecific variations in Cyt b and D-loop sequences of Testudine species, Lissemys punctata from south Karnataka, J Adv Res 9 (2018) 87–95. http://
ACCEPTED MANUSCRIPT 20
doi:10.1016/j.jare.2017.10.007. [66] J. Yan, L. Liu, S. Liu, X. Guo,Y. Liu, Comparative analysis of mitochondrial control region in polyploid hybrids of red crucian carp (Carassius auratus) x blunt snout bream (Megalobrama amblycephala),
Fish
Physiol
Biochem
36
(2010)
263–272.
http://
doi:10.1007/s10695-008-9251-0. [67] K. Katoh, K. Misawa, K. Kuma,T. Miyata, MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform, Nucleic Acids Res 30 (2002) 3059-3066. [68] A. Stamatakis, RAxML version 8: a tool for phylogenetic analysis and post–analysis of large phylogenies,
Bioinformatics
30
(2014)
1312–1313.
http://
PT
doi.org/10.1093/bioinformatics/btu033.
[69] S. Pang, R. J. Stones, M. M. Ren, X. G. Liu, G. Wang, H. J. Xia, H. Y. Wu, Y. Liu,Q. Xie, GPU
RI
MrBayes V3.1: MrBayes on Graphics Processing Units for Protein Sequence Data, Mol Biol Evol 32 (2015) 2496–2497. http:// doi.org/10.1093/molbev/msv129.
SC
[70] S. Kalyaanamoorthy, B. Q. Minh, T. K. F. Wong, A. von Haeseler,L. S. Jermiin, ModelFinder: fast model selection for accurate phylogenetic estimates, Nat Methods 14 (2017) 587-589. http:// doi:10.1038/nmeth.4285.
NU
[71] T. Yasuno. Fossil pharyngeal teeth of the Rhodeinae fish from the Miocene Katabira Formation of the Kani Group, Gifu Prefecture, Japan, 1984.
[72] W. L. Li,A. J. Drummond, Model averaging and Bayes factor calculation of relaxed molecular in
Bayesian
phylogenetics,
doi:10.1093/molbev/msr232.
Mol
Biol
Evol
29
(2012)
751-761.
http://
MA
clocks
[73] T. Gernhard, The conditioned reconstructed process, J Theor Biol 253 (2008) 769-778. http:// doi:10.1016/j.jtbi.2008.04.005.
D
[74] A. Rambaut, A. J. Drummond, D. Xie, G. Baele,M. A. Suchard, Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7, Syst Biol 67 (2018) 901-904. http://
PT E
doi:10.1093/sysbio/syy032.
[75] Q. Zhao, J. Wang, M. Q. Wang, B. Cai, H. F. Zhang,J. F. Wei, Complete Mitochondrial Genome of Dinorhynchus dybowskyi (Hemiptera: Pentatomidae: Asopinae) and Phylogenetic Analysis of Pentatomomorpha Species, J Insect Sci 18 (2018). http:// doi.org/10.1093/jisesa/iey031.
CE
[76] D. V. Lavrov,W. M. Brown, Trichinella spiralis mtDNA: a nematode mitochondrial genome that encodes a putative ATP8 and normally structured tRNAS and has a gene arrangement relatable to those of coelomate metazoans, Genetics 157 (2001) 621–637.
AC
[77] R. Okimoto,D. R. Wolstenholme. A set of tRNAs that lack either the T psi C arm or the dihydrouridine arm: towards a minimal tRNA adaptor, EMBO J 9 (1990) 3405–3411. [78] M. Wei, P. Yu, Y. Yang,Q. Wan, The complete mitochondrial genome of Parabotia fasciata (Cypriniformes: Cobitidae), Mitochondrial DNA A 27 (2016) 1831–1832. http:// doi.org/10.3109/19401736.2014.971246. [79] M. Wei, P. Yu, Y. Yang,Q. Wan, The complete mitochondrial genome of Leptobotia taeniaps (Cypriniformes: Cobitidae), Mitochondrial DNA A 27 (2016) 1707–1708. http:// doi.org/10.3109/19401736.2014.961132. [80] R. E. Broughton, J. E. Milam,B. A. Roe, The complete sequence of the zebrafish (Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA, Genome Res 11 (2001) 1958–1967. http:// doi.org/10.1101/gr.156801. [81] M. M. Fonseca, D. Posada,D. J. Harris, Inverted replication of vertebrate mitochondria, Mol Biol
ACCEPTED MANUSCRIPT 21
Evol 25 (2008) 805-808. http:// doi:10.1093/molbev/msn050. [82] X. Wang, J. Wang, S. He,R. L. Mayden, The complete mitochondrial genome of the Chinese hook snout carp Opsariichthys bidens (Actinopterygii: Cypriniformes) and an alternative pattern of mitogenomic
evolution
in
vertebrate,
Gene
399
(2007)
11-19.
http://
doi:10.1016/j.gene.2007.04.019. [83] M. P. Francino,H. Ochman, Strand asymmetries in DNA evolution, Trends in genetics : TIG 13 (1997) 240-245. http:// doi:10.1016/S0168-9525(97)01118-9. [84] A. C. Frank,J. R. Lobry, Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms, Gene 238 (1999) 65-77.
PT
[85] C. Nikolaou,Y. Almirantis, A study on the correlation of nucleotide skews and the positioning of the origin of replication: different modes of replication in bacterial species, Nucleic Acids Res
RI
33 (2005) 6816-6822. http:// doi:10.1093/nar/gki988.
[86] C. A. Charneski, F. Honti, J. M. Bryant, L. D. Hurst,E. J. Feil, Atypical AT Skew in Firmicute
SC
Genomes Results from Selection and Not from Mutation, Plos Genet 7 (2011). http:// doi.org/ 10.1371/journal.pgen.1002283.
[87] M. Bulmer, The selection–mutation–drift theory of synonymous codon usage, Genetics 129 (1991)
NU
897–907.
[88] D. Bej, L. Sahoo, S. P. Das, S. Swain, P. Jayasankar, P. C. Das, P. Routray, S. K. Swain, J. K. Jena,P. Das, Complete mitochondrial genome sequence of Catla catla and its phylogenetic Mol
Biol
Rep
39
(2012)
10347–10354.
http://
MA
consideration,
doi.org/10.1007/s11033–012–1912–5.
[89] D. Ojala, J. Montoya,G. Attardi, tRNA punctuation model of RNA processing in human mitochondria, Nature 290 (1981) 470–474.
D
[90] C. Wang, Q. Chen, G. Lu, J. Xu, Q. Yang,S. Li, Complete mitochondrial genome of the grass carp (Ctenopharyngodon idella, Teleostei): insight into its phylogenic position within Cyprinidae,
PT E
Gene 424 (2008) 96–101. http:// doi.org/10.1016/j.gene.2008.07.011. [91] J. W. Taanman, The mitochondrial genome: structure, transcription, translation and replication, Biochim Biophys Acta 1410 (1999) 103–123. [92] M. Mao, A. Valerio, A. D. Austin, M. Dowton,N. F. Johnson, The first mitochondrial genome for
CE
the wasp superfamily Platygastroidea: the egg parasitoid Trissolcus basalis, Genome 55 (2012) 194–204. http:// doi.org/10.1139/g2012–005. [93] M. Rodovalho Cde, M. L. Lyra, M. Ferro,M. Bacci, Jr., The mitochondrial genome of the
AC
leaf–cutter ant Atta laevigata: a mitogenome with a large number of intergenic spacers, PloS one 9 (2014) e97117. http:// doi.org/10.1371/journal.pone.0097117.
ACCEPTED MANUSCRIPT 22
Lists of tables and figures Table 1 The genus, species, GenBank accession number and length of fish
PT
mitogenomes analyzed in this study Table 2 Annotation of the S. microlepis mitogenome.
RI
Table 3 Base composition and skewness of the mitogenomes in S. microlepis and
SC
other five bitterlings.
NU
Fig. 1 Circular sketch map of the S. microlepis mitogenome. Different colors represent different gene blocks.
MA
Fig. 2 Predicted secondary structure of tRNAs in S. microlepis. The tRNAs are labeled with their corresponding amino acids. Dashes (–) indicate Watson–Crick
PT E
D
bonds, and dots (·) indicate mispaired nucleotide bonds. Fig. 3 Putative secondary structure of OL (A) and complete nucleotide sequence of
CE
mtDNA CR of S. microlepis (B). TAS, GT-GGG box, CSB-1, CSB-2, CSB-3, CSB-D, CSB-E and CSB-F are underlined.
AC
Fig. 4 Unusual AT-skew and base compositions in S. microlepis mitogenome. A. A+T contents of different regions in 30 bitterling mitogenomes. B. AT-skew of different regions in 30 bitterling mitogenomes. C. The Linear correlations between A+T% and AT-skew in 13PCGs of 30 bitterling mitogenomes. Fig. 5 Codon distribution (A) and relative synonymous codon usage (B) of PCGs in S. microlepis and other five bitterling mitogenomes. CDspT=codon per thousand codons.
ACCEPTED MANUSCRIPT 23
Fig. 6 Alignment of overlapping region of three PCGs pairs across six bitterlings and other three cyprinid fish. A. atp8 vs atp6; B. nd4l vs nd4; C. nd5 vs nd6. Fig. 7 Phylogenetic tree constructed by BI methods (A) and ML methods (B), based on the nucleotide sequences of all 13 PCGs of S. microlepis and other 29 bitterlings.
PT
M. amblycephala and P. pekinensis were chosen as outgroups. Node numbers
RI
represent the values of posterior probability.
SC
Fig.8 The divergence times (million years ago) of bitterlings. The ranges of 95% HPD
AC
CE
PT E
D
MA
NU
intervals are represented by the blue bars.
ACCEPTED MANUSCRIPT 24
Table 1. The genus, species, GenBank accession number and length of fish mitogenome analyzed in this study Sequence length
Genus
Species
Accession ID
Reference
1
Sinorhodeus
Sinorhodeus microlepis
MH190825
16591
this study
2
Rhodeus
Rhodeus notatus
KU291171.1
16735
Unpublished
3
Rhodeus
Rhodeus suigensis
EF483934.1
16733
Hwang et al., 2014
4
Rhodeus
Rhodeus fangi
KF980890.1
16733
Unpublished
5
Rhodeus
Rhodeus atremius atremius
AP011255.1
16734
Unpublished
6
Rhodeus
Rhodeus uyekii
DQ155662.1
16817
Kim et al., 2006
7
Rhodeus
Rhodeus shitaiensis
KF176560.1
16774
Li et al., 2015
8
Rhodeus
Rhodeus pseudosericeus
KF425517.1
16574
Unpublished
16581
Unpublished
16607
Unpublished
RI
PT
(bp)
Rhodeus
Rhodeus sericeus
NC_025326.1
Rhodeus
Rhodeus amarus
AP011209.1
11
Rhodeus
Rhodeus lighti
KM232987
16677
Wang et al., 2016a
12
Rhodeus
Rhodeus ocellatus kurumeus
AB070205.1
16674
Saitoh et al., 2006
13
Rhodeus
Rhodeus ocellatus
NC_011211.1
16680
He et al., 2008
14
Rhodeus
Rhodeus sinensis
KF533721.1
16677
Unpublished
15
Tanakia
Tanakia tanago
NC_027665.1
16584
Miya et al., 2015
16
Tanakia
Tanakia lanceolata
KJ589418.1
16607
Xu et al., 2016
17
Tanakia
Tanakia himantegus
KP231201.1
16575
Cheng and Tao, 2016
18
Tanakia
Tanakia limbata
KM386633.1
16565
Luo et al., 2016
19
Acheilognathus
Acheilognathus somjinensis
NC_014882
16569
Hwang et al., 2014b
20
Acheilognathus
Acheilognathus signifer
EF483930
16566
Unpublished
21
Acheilognathus
Acheilognathus koreensis
NC_013704.1
16563
Hwang et al., 2013a
22
Acheilognathus
Acheilognathus melanogaster
AP012985.1
16563
Unpublished
23
Acheilognathus
Acheilognathus meridianus
KT692966.1
16563
Unpublished
24
Acheilognathus
Acheilognathus yamatsutae
EF483936.1
16703
Hwang et al., 2013b
25
Acheilognathus
Acheilognathus tabira
AP013343.1
16765
Unpublished
26
Acheilognathus
Acheilognathus omeiensis
MG783572.1
16774
Unpublished
27
Acheilognathus
Acheilognathus rhombeus
KT601094.1
16780
Unpublished
28
Acheilognathus
Acheilognathus typus
AB239602.1
16778
Saitoh et al., 2006
29
Acheilognathus
Acheilognathus barbatus
KP067832.1
16770
Tao and Sun, 2016
30
Acheilognathus
Acheilognathus macropterus
EF483935.1
16774
Hwang et al., 2014c
31
Megalobrama
Megalobrama amblycephala
NC_010341.1
16623
Unpublished
32
Parabramis
Parabramis pekinensis
NC_022678.1
16622
Zhang et al., 2014
33
Danio
Danio rerio
NC_002333
16596
Broughton et al., 2001
34
Ctenopharyngodon
Ctenopharyngodon idella
EU391390.1
16609
Wang et al., 2008
35
Nipponocypris
Zacco sieboldii
AB218898.1
16616
Saitoh et al., 2006
NU
MA
D
PT E
CE
AC
SC
9 10
ACCEPTED MANUSCRIPT 25
Table 2. Annotation of the S. microlepis mitogenome Gene/Element
Position
Nucleotide
Start
Stop
Amino
Anti-
Intergenic
size (bp)
codon
codon
acid
codon
nucleotidea
GAA
0
H
0
H
0
H
0
H
0
H
4
H
tRNAPhe (S)
1-69
69
12SrRNA
70-1030
961
1031-1102
72
16SrRNA
1103-2780
1678
Leu(UUR)
2781-2856
76
nd1
2857-3831
975
Ile
tRNA (I)
3836-3907
72
GAT
-2
H
tRNAGln (Q)
3906-3976
71
TTG
1
L
CAT
0
H
0
H
TCA
1
H
TGC
1
L
GTT
0
L
3978-4046
69
4047-5091
1045
(W)
5092-5162
71
tRNAAla (A)
5164-5232
69
tRNA
Trp
5234-5306
73
L-strand replication origin (OL)
5307-5337
31
tRNACys (C)
5338-5403
66
tRNATyr (Y)
5404-5474
71
cox1
5476-7026
1551
tRNASer(UCN) (S2)
7027-7097
71
tRNA
Asp
(N)
(D)
7100-7169
cox2 tRNA
Lys
7179-7869 (K)
7870-7945 7947-8111
atp6
8105-8788
cox3
8788-9571 (G)
9572-9642
PT E
tRNA
Gly
D
atp8
nd3 tRNA
Arg
9643-9991
(R)
nd4l
348
TAA
0 GCA
0
L
GTA
1
L
516
0
H
TGA
2
L
GTC
9
H
0
H
ATG
T
230
1
H
165
ATG
TAG
54
-7
H
684
ATG
TAA
227
-1
H
784
ATG
T
261
0
H
0
H
ATG
T
116
0
H
76
TTT
71 349
TCC
9992-10061
70 297
ATG
TAA
98
TCG
10352-11733
1382
ATG
TA
460
11734-11802
69
0
H
-7
H
0
H
GTG
0
H
(S1)
11803-11871
69
GCT
1
H
tRNALeu(CUN) (L2)
11873-11945
73
TAG
0
H
nd5
11946-13781
1836
ATG
TAG
611
-4
H
13778-14299
522
ATA
TAG
173
0
L
ATG
T
380
AC
tRNA
Ser(AGY)
691
T
324
10062-10358
CE
nd4 tRNAHis (H)
70
GTG
MA
tRNA
Asn
ATG
TAA
RI
(M)
nd2
TAA ATG
SC
tRNA
Met
(L1)
TAC
NU
tRNA
(V)
PT
tRNA
Val
Strandb
nd6 tRNA
Glu
14300-14368
69
cytb
(E)
14375-15515
1141
tRNAThr (T)
15516-15589
74
tRNAPro (P)
15589-15658
70
Control region (CR)
15659-16591
933
TTC
6
L
0
H
TGT
-1
H
TGG
0
L
a, negative value indicates the overlapping sequences between adjacent genes b, H: heavy strand; L: light strand
0
ACCEPTED MANUSCRIPT 26
Table 3. Base composition and skewness of the mitogenomes in S. microlepis and other five bitterlings Si
Si T(
Speci
ze
A
es
(b
%
A+ C
G
%
%
U)
T
%
%
G+ C %
ATske w
GC -ske
T( (b
%
C
G
%
%
U)
w
%
A+
G+
AT-
GC
T
C
ske
-ske
%
%
w
w
56.
43. 44. 2 44. 9 46. 0 41. 1 45. 8
-0.0 -0.0 14 -0.0 49 -0.0 53 -0.0 56 -0.0 44
-0.2
55. 8 56. 1 53. 0 58. 9 55. 2 0 48.
0 51.
46 0.0
28 0.0
48. 9 48. 4 47. 0 49. 6 48. 8 4 59.
51. 1 52. 6 52. 0 50. 4 51. 2 6 40.
0.0 93 0.0 96 0.0 81 0.0 88 0.0 94 97 -0.3
0.0 20 0.0 07 0.0 21 0.0 20 0.0 25 23 -0.3
58. 1 58. 8 58. 9 59. 7 59. 3 0 62.
41. 9 41. 2 41. 1 40. 3 41. 7 1 37.
-0.3 83 -0.3 80 -0.3 86 -0.3 87 -0.3 79 84 0.1
-0.3 37 -0.3 50 -0.3 32 -0.3 32 -0.3 43 37 -0.4
57. 2 60. 7 55. 9 65. 1 57. 1 5
42. 8 39. 3 44. 1 34. 9 42. 9 6
0.1 57 0.1 66 0.1 60 0.1 73 0.1 55 78
-0.4 50 -0.4 51 -0.3 68 -0.5 95 -0.4 29 29
p)
26. 4 27. 5 26. 2 27. 3 26. 7
nensis R. microl R. shitai epis T. lighti ensis A. limbat A. meridi a somji anus S. nensis R. microl R. shitai epis T. lighti ensis A. limbat A. meridi a somji anus S. nensis R. microl R. shitai epis T. lighti ensis A. limbat A. meridi a somji anus nensis
9 15 61 15 59 15 61 15 61 15 59 61 26
8 2 7. 2 8. 9 2 8. 0 2 8. 7 2 9. 3 8. 3 3 8 3 3. 3 2. 9 3 3. 9 3 3. 6 3 4. 9 4. 5 3 1 3 2. 3 2. 8 3 1. 2 3 1. 2 3 2. 8 2. 9 5
26. 6 27. 9 27. 5 27. 1 27. 7 4 20.
6 28.
20. 6 19. 1 20. 4 20. 0 20. 6 0 31.
S.
11
2
28.
55. 9 56. 2 54. 1 57. 5 55. 9
44. 1 43. 8 45. 9 42. 5 44. 1
0.0 37 0.0 40 0.0 30 0.0 34 0.0 42
-0.2 10 -0.2 21 -0.2 08 -0.2 08 -0.2 24
R. microle R. lighti shitaien pis T.
6 43.
17 0.0
55. 4 56. 0 55. 2 57. 4 56. 0 2 54.
45. 6 43. 0 44. 8 43. 6 43. 0 8 45.
41 -0.0 0.0 12 0.0 20 0.0 22 0.0 22 0.0 28 26 0.2
0.0 21 0.0 57 0.0 58 0.0 43 0.0 45 41 -0.0
somjine nus S. nsis R. microle R. lighti shitaien pis T.
2 8. 2 6. 02 6. 22 5. 52 7. 5 6. 82
28. 8 29. 9 28. 5 30. 5 28. 4
4 56.
11 42 11 42 2 11 42 5 11 41 2 11 42 9 42 2 37 3 37 98 37 99 37 98 37 97 37 98 98 37
21. 2 22. 9 21. 0 22. 7 21. 6 8 40.
53. 5 53. 1 53. 0 55. 9 54. 1 1 64.
46. 5 47. 9 46. 0 44. 1 46. 9 0 35.
0.2 43 0.2 41 0.2 68 0.2 58 0.2 52 60 0.0
-0.0 62 -0.0 57 -0.0 63 -0.0 71 -0.0 63 72 -0.1
64. 1 65. 3 63. 2 64. 5 64. 1 0
35. 9 34. 7 36. 8 35. 6 36. 9 0
0.0 23 -0.0 02 0.0 42 0.0 03 0.0 26 15
-0.1 70 -0.2 99 -0.2 01 -0.1 19 -0.2 62 32
22 6. 2 6. 72 5. 52 5. 92 7. 9 6. 31 51 8. 1 8. 21 8. 21 8. 11 8. 0 8. 34 23 6. 3 3. 03 5. 73 2. 33 7. 3 3. 6 8
AC
CE
32. 3 34. 1 31. 0 31. 6 31. 2 5
2 1 6. 7. 2 1 7. 7. 1 0 2 1 6. 7. 4 4 2 1 7. 8. 5 4 2 1 5. 6. 5 tRNAs 0 7. 7. 8 3 2 2 1 5 2 2 1. 2. 2 2 1. 3. 3 2 2 2 0. 3. 2 8 2 2 1. 3. 6 2 2 2 0. 2. 3rRNAs 3 1. 2. 5 5 2 2 0 8 2 2 4. 1. 2 2 4. 2. 2 3 2 2 5. 2. 8 1 2 2 4. 1. 0 0 2 2 3. 1. 7 CR4 4. 1. 8 0 2 1 6 3 2 1 1. 4. 2 1 1. 4. 0 9 2 1 0. 3. 4 3 2 1 2. 4. 9 9 2 1 0. 5. 3 3 2. 3. 9 1 2 8
-0.2
sis A. limbata A. meridia
sis A. limbata A. meridia somjine nus S. nsis R. microle R. lighti shitaien pis T. sis A. limbata A. meridia somjine nus S. nsis R. microle R. lighti shitaien pis T. sis A. limbata A. meridia somjine nus nsis
37 98 37 99 37 98 37 97 37 98 98 37 37 98 37 99 37 98 37 97 37 98 98
PCGs 2 1 2 1 7. 5. 2 1 8. 7. 32 19 7. 6. 02 01 8. 8. 12 91 6. 5. 1 0 1rd of PCGs 7. 7. 12 72 26 24 5. 6. 2 2 5. 6. 02 02 5. 6. 62 02 5. 6. 52 62 4. 5. 7 7 2rd of PCGs 5. 6. 52 71 22 14 7. 3. 2 1 7. 3. 42 61 7. 3. 82 41 7. 3. 42 71 7. 3. 5 8 3rd of PCGs 7. 3. 23 13 43 61 7. 0. 2 1 0. 1. 43 41 8. 0. 72 6 8. 1. 3. 73 41 6. 2 3 6 0. 2. 6 4 1
PT
2 9. 2 8. 5 2 8. 7 3 8. 9 2 0. 2 8. 2 2
0.0
8 22.
RI
16 59 16 77 1 16 67 4 16 56 7 16 56 5 56 3 15
43.
SC
R. microl R. shitai epis T. lighti ensis A. limbat A. meridi a somji anus S.
all mtDNA 2 1 56.
NU
27.
MA
2
D
16
PT E
S.
90 3 10 1 91 15 91 1 91 0 1
A
Species
p)
26 39 26 33 26 44 26 40 26 38 40 93
ze
40. 9 40. 6 40. 8 40. 7 40. 9 8 26. 24. 3 25. 1 22. 6 27. 8 23. 5 6
-0.2 65 -0.2 45 -0.2 33 -0.2 19 -0.2 48
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9