Unusual AT-skew of Sinorhodeus microlepis mitogenome provides new insights into mitogenome features and phylogenetic implications of bitterling fishes

Unusual AT-skew of Sinorhodeus microlepis mitogenome provides new insights into mitogenome features and phylogenetic implications of bitterling fishes

Accepted Manuscript Unusual AT-skew of Sinorhodeus microlepis mitogenome provides new insights into mitogenome features and phylogenetic implications ...

14MB Sizes 0 Downloads 20 Views

Accepted Manuscript Unusual AT-skew of Sinorhodeus microlepis mitogenome provides new insights into mitogenome features and phylogenetic implications of bitterling fishes

Peng Yu, Li Zhou, Xiao-Ya Zhou, Wen-Tao Yang, Jun Zhang, Xiao-Juan Zhang, Yang Wang, Jian-Fang Gui PII: DOI: Reference:

S0141-8130(18)36172-5 https://doi.org/10.1016/j.ijbiomac.2019.01.200 BIOMAC 11633

To appear in:

International Journal of Biological Macromolecules

Received date: Revised date: Accepted date:

13 November 2018 17 January 2019 29 January 2019

Please cite this article as: P. Yu, L. Zhou, X.-Y. Zhou, et al., Unusual AT-skew of Sinorhodeus microlepis mitogenome provides new insights into mitogenome features and phylogenetic implications of bitterling fishes, International Journal of Biological Macromolecules, https://doi.org/10.1016/j.ijbiomac.2019.01.200

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT 1

Unusual AT-skew of Sinorhodeus microlepis mitogenome provides new insights into mitogenome features and phylogenetic implications of bitterling fishes Peng Yu 1, 2, 3, Li Zhou 1, 2,, Xiao-Ya Zhou3, Wen-Tao Yang 1, 2, Jun Zhang3, Xiao-Juan

1

PT

Zhang1, Yang Wang1, 2*, Jian-Fang Gui1, 2* State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of

RI

Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of

SC

Sciences, Wuhan 430072, China

University of Chinese Academy of Sciences, Beijing 100049, China

3

College of Animal Science and Technology, Anhui Agricultural University, Hefei

NU

2

230036, China

MA

*Corresponding authors:

D

Yang Wang ([email protected]) and Jian-Fang Gui ([email protected])

PT E

Highlights

1. The first report of complete mitochondrial genome of S. microlepis. 2. Unusual AT-skew and base compositions in S. microlepis mitogenome.

mitogenomes.

CE

3. Highly conserved overlaps and non-coding intergenic spacers among bitterling

AC

4. S. microlepis should be a sister species to the genus Rhodeu that might diverge about 13.69 Ma

ACCEPTED MANUSCRIPT 2

Abstract Sinorhodeus microlepis (S. microlepis) is recently descibed as a new species and respresents a new genus Sinorhodeu of the subfamily Acheilognathinae. In this study, we first sequenced the complete mitogenome of S. microlepis and compared with the

PT

other 29 bitterling mitogenomes. The S. microlepis mitogenome is 16,591 bp in length

RI

and contains 37 genes. Gene distribution pattern is identical among 30 bitterling

SC

mitogenomes. A significant linear correlation between A+T% and AT-skew were found among 29 bitterling mitogenomes, except S. microlepis shows unusual AT-skew

NU

with slightly negative in tRNAs and PCGs. Bitterling mitogenomes exhibit highly

MA

conserved usage bias of start codon, relative synonymous codons and amino acids, overlaps and non-coding intergenic spacers. Phylogenetic trees constructed by 13

D

PCGs strongly support the polyphyly of the genus Acheilognathus and the paraphyly

PT E

of Rhodeus and Tanakia. Together with the unusual characters of S. microlepis mitogenomes and phylogenetic trees, S. microlepis should be a sister species to the

CE

genus Rhodeu that might diverge about 13.69 Ma (95% HPD: 12.96–14.48 Ma).

AC

Keywords: Sinorhodeus microlepis; Acheilognathinae; mtDNA; AT-skew; phylogeny; divergence time

ACCEPTED MANUSCRIPT 3

Introduction The subfamily Acheilognathinae, commonly called bitterling, is small cyprinid fishes which considered as a model in evolutionary ecology owing to their unusual spawning behavior and co-evolutionary relationships with freshwater mussels [1-3]. They

PT

deposite their eggs in the gill chambers of living freshwater mussels [4]. Bitterlings

RI

comprise approximately 80 species or subspecies [5] across three genera, Tanakia,

SC

Rhodeus, and Acheilognathus [6]. They are mainly distributed in Asia, except three species (R. amarus, R. colchicus and R. meridionalis) native to Europe [6,7]. Due to

NU

their highly specialized spawning behavior, habitat loss and fragmentation, and other

MA

threats, bitterlings face an increasing extinction risk [8-12]. As well-known aquarium fishes in Asia and Europe [11,13], bitterlings possess great diversity in morphological

D

features and exhibit charming colors and patterns. The phylogenetic relationships of

PT E

bitterlings have been revealed by morphological, karyological, meristic or molecular data [14-16]. Recently, several phylogenetic trees were constructed based on

CE

mitochondrial DNA control region [17], 5S rDNA [18], mitochondrial cytochrome b

AC

(cytb) [19,20], 12SrRNA [21], or comprehensive multiple genes [11,14,22], which provide new insights into the taxonomy, phylogeny and origin of Acheilognathidae. However, the details of species relationships and the monophyly of three genera remain questionable. Mitochondrial genome (mitogenome) contains 13 protein coding genes (PCGs), two ribosomal (rRNA), 22 transfer (tRNA) RNA genes, and two noncoding regions. The longer noncoding region, named as control region (CR), possesses regulatory

ACCEPTED MANUSCRIPT 4

elements for transcription and replication, and the shorter noncoding region is the origin of L-strand replication (OL) [23-25]. Compared with nuclear genome, mitogenome is characterized by its small size, abundance in animal tissues, strict orthology of PCGs, and high nucleotide substitution rate [26-28]. Therefore, it has

PT

been extensively applied in species identification, phylogenetic reconstruction,

RI

genetic diversity, and conservation biology [29-34]. Although the arrangement of 37

SC

genes within the genome is highly conserved, the genome length, nucleotide composition, amino acid bias, gene overlaps, and non-coding intergenic spacers (IGS)

NU

are distinctive among different species [35-37]. Up to now, mitogenomes of about 40

MA

bitterlings had been reported or deposited in GenBank [39-54]. However, the conserved and exclusive characteristics of bitterling mitogenomes have not been well

PT E

based on 13PCGs are lacking.

D

documented. In addition, the phylogenetic status and divergence time of bitterlings

Recently, a highly distinctive bitterling was descibed as a new species

CE

Sinorhodeus microlepis and respresented a new genus Sinorhodeus [14]. S. microlepis

AC

is distributed only in a small area of a tributary of the Yangtze River in Chongqing City, China. During breeding season, adult males are fascinatingly colorful and have a orange-red body with bluish sheen dorsally, iris-red pelvic fins and orange-red anal fin, similar to volcanic color. In China, S. microlepis is also known as volcano bitterling and has been booming in aquarium market. Unfortunately, it was heavily fished in its original habitat. Here we sequenced and described, for the first time, the mitogenome of S. microlepis and compared it with other 29 bitterling mitogenomes.

ACCEPTED MANUSCRIPT 5

Based on the investigations, we explore the characteristics of bitterling mitogenomes, the phylogenetic relationship and the estimated divergence times for S. microlepis and other bitterlings.

2. Materials and methods

PT

2.1 Sequencing and assembly analysis

RI

The S. microlepis specimen analyzed in this study was bought from the aquarium

SC

market in Chongqing city, China, and identified through morphological analysis as described by Li et al [14].

NU

Total DNA was extracted according to the Ezup Column Animal Genomic DNA Kit

MA

technical manual (Sangon, Shanghai, China). The mitochondrial DNA fragments were amplified by PCR. PCR primers were designed based on the conserved sequences

D

between two bitterling mitogenomes: R. amarus (GenBank: AP011209.1) and T.

PT E

tanago (GenBank: AP012526.1) (Supplementary Table S1). DNA amplification and purification were performed according to Wei et al., 2016a [55] (Supplementary Table

CE

S1). The purified DNA products were ligated to pMD™18-T vector (Takara, Beijing,

AC

China) and the plasmids were chemically transfected into Trans5αcompetent cells (TransGen Biotech, Beijing, China). The positive clones were sequenced by Tianyibiotech (Beijing, China). The DNA sequences were assembled by using DNAStar (DNASTAR Inc., USA) [56]. 2.2 Gene annotations and bioinformatics analysis The 22 tRNA genes were predicted with tRNAscan-SE 1.21 [57] and MITOS [58]. All 13 PCGs and 2 rRNA genes were annotated by comparison with the homologous

ACCEPTED MANUSCRIPT 6

sequences

of

other

bitterling

(https://blast.ncbi.nlm.nih.gov/).

The

mitogenomes

mtDNA

maps

were

in

GenBank drawn

using

OrganellarGenomeDRAW [59]. The secondary structure of OL and 22 tRNAs were predicted by The mfold Web Server [60] (http://unafold.rna.albany.edu/) and

PT

tRNAscan-SE 1.21 [57], respectively. The base composition and relative synonymous

RI

codon usage were calculated using MEGA 7.0 [61] and Microsoft Excel 2010.

SC

Skewness was measured using the formulas: AT-skew = (A% - T%) / (A% + T%) and GC-skew = (G% - C%) / (G% + C%) [62]. The TAS (termination associated sequence

NU

domains), GTGGG-box and CSB (conserved sequence block domains) of CR were

MA

determined by compairing with other species [63-66]. 2.4 Phylogenetic analyses

D

The phylogenetic relationships were constructed with 13 PCGs of 30 bitterlings from

PT E

S. microlepis and other three genera (Table 1). Megalobrama amblycephala (NC_010341.1) and Parabramis pekinensis (NC_022678.1) were chosen as the out

CE

groups. Each of the 13 PCG sequences from all the 30 species was separately aligned

AC

using MAFFT v7.407 [67] and then aggregated into a sequence matrix. The maximum likelihood (ML) tree was implemented in RAxML v7.7.1 [68] under the GTR-Gamma model, and node support was calculated with 1,000 bootstrap replications (random seed value 1,234,567). The Bayesian phylogenies were implemented in MrBayes version 3.1.2 [69]. The best-fit nucleotide substitution model was determined by ModelFinder in IQ-TREE v1.6.9 [70]. The bayesian inference (BI) tree was constructed with run length of 1.5 × 10

7

generations and sampling every 1,000

ACCEPTED MANUSCRIPT 7

generations. Divergence time was calibrated using the first appearance of fossil records of Rhodeinae in the early Miocene (20 ma) found in Japan [71], and estimated using BEAST v1.10.4 [72]. The tree topology was constructed based on GTR + I + G Substitution model. The Yule Process was chosen for the tree prior [73]. BEAST was

PT

run for 1.5 × 10 7 Markov chain Monte Carlo (MCMC) generations, with the trees

RI

sampled every 1,000 generations. Then the trees were checked using Tracer v1.5 [74].

SC

3 Results and discussion

3.1 General features of S. microlepis and other bitterling mitogenomes

NU

The complete mitogenome of S. microlepis (GenBank: MH190825) is a circular

MA

double-chain molecule with a length of 16,591 bp (Fig. 1). The lengths of other bitterling mitogenomes range from 16,563 bp to 16,988 bp (Table 1), and the

D

differences in length are mainly attributed by the variations of CR (Supplementary

PT E

Table S2). Similar to other bitterlings, S. microlepis mitogenome also contains 13 PCGs, 22 tRNA genes, two rRNA genes and two non-coding regions (OL and CR)

CE

(Fig. 1, Table2). Gene distribution pattern is identical among 30 bitterling

AC

mitogenomes (Fig. 1, Table2). S. microlepis mitogenome comprises 22 tRNAs with the total length of 1,561 bp, ranging from 66 bp (tRNACys(C)) to 76 bp (tRNALeu(UUR (L1)) and tRNALys(K)). All tRNAs could be folded into typical clover-leaf secondary structure, except for tRNAser(AGY)(S1) lacking dihydrouracil (DHU) arm (Fig. 2). The unusual structure of S1 is conserved among other bitterling and metazoan mitogenomes [75-77]. A total of 41 unmatched base pairs were scattered through the tRNAs, 27 of them are

ACCEPTED MANUSCRIPT 8

noncanonical matches of G-U pairs and the remaining mismatches include A-C (6), A-A (2), A-G (1), and U-U (5) (Fig. 2). The lengths of 12S rRNA and 16S rRNA are 961 bp and 1678 bp, locating between tRNAPhe(S) and tRNAVal(V), V and L1, respectively. Same to other cyprinid fish [78-80], the OL locates in the middle of the

PT

WANCY region (Fig.1 and Table 2) and displays a stable stem and loop structure,

RI

which is strengthened by three A-T and six G-C base pairs (Fig. 3A). The S.

SC

microlepis CR extends 933 bp and locates between the tRNAPro(P) and S. In bitterling fishes, the length of CR was the fastest-changing region, ranging from 901 bp (R.

NU

shitaiensis) [41] to 1129 bp (A. rhombeus) (Supplementary Table S2). The

MA

GTGGG-box and the conserved blocks such as TAS and CSB-F, CSB-E, CSB-D, CSB-1, CSB-2, and CSB-3 were found in the CR of S. microlepis mitogenome (Fig.

D

3B).

PT E

3.2 Unusual AT-skew in S. microlepis mitogenome The entire mitogenomes of S. microlepis and other bitterlings all exhibit AT bias (52.9%

CE

- 57.9%). The A+T content is the highest in CR and the lowest in rRNAs (Fig. 4A).

AC

Interestingly, the A+T contents of CR of the genus Acheilognathus clade A are higher than those of the genus of Tanakia and Rhodeus, except A. meridianuswas and A. melanogaster. The AT-skew values of whole mitogenome, PCGs, tRNAs, rRNAs and CR were calculated (Fig. 4B and Supplementary Table S2). Compared to other bitterlings, AT-skew in S. microlepis is unusual with slightly negative in tRNAs (-0.012) and PCGs (-0.014), while AT-skew values for other bitterling mitogenomes are positive in tRNAs (0.021±0.008) and strong negative in PCGs (-0.049±0.011) (Fig.

ACCEPTED MANUSCRIPT 9

4B and Supplementary Table S2). The results indicate that S. microlepis tRNAs displays an excess of T over A, whereas the tRNAs of other bitterlings are biased

towards using A not T. On the other side, the occurrence of A in PCGs of S. microlepis mitogenome is much more than those in other bitterling PCGs. CR involves in the

PT

initiation point of replication and the regulation of transcription, and its AT-skew and

RI

GC-skew might reflect the strand asymmetry [24-25, 62]. Some insects and fishes

SC

possess less A than T and less C than G on the majority strand, indicating the strand asymmetry is reversed [24, 25, 81, 82]. Although the AT-skew of CR in eight

NU

bitterlings is negative, the GC-skew of CR in the all analyzed bitterlings is minus

mitogenomes may be not reversed.

MA

(Supplementary Table S2). The results suggest that the strand asymmetry of bitterling

D

Nucleotide skews might be due to a balance between mutational and selective

PT E

pressures during replication [83-85]. The reason why do AT skews of S. microlepis tRNAs and PCGs run counter to those observed in most bitterling mitogenomes is still

CE

unknown. Recently, the atypical preference for A over T in the leading strand of

AC

Staphylococcus aureus was proved to be caused by selection rather than mutation [86,

87]. S. microlepis is distributed only in a specific tributary of the Yangtze River [14]. One possibility of the unusual AT-skew in S. microlepis is that unique selective pressures or processes might lead to the decrease A in its tRNAs and preferring A in its PCGs. However, what selective forces account for the unusual AT-skew will await further investigation. 3.3 Linear correlations between A+T % and AT-skew of bitterling mitogenomes

ACCEPTED MANUSCRIPT 10

We also analyzed the relationship between nucleotide composition (A+T %) versus AT-skew of 13 PCGs across Acheilognathinae. There is a significant linear correlation between A+T% and AT-skew (y29 = 0.0044x – 0.2952, R² = 0.3303) among 29 bitterling mitogenomes, indicating that the AT-skew becomes more negative with

PT

decreasing the A+T content (Fig. 4C). The relationships are different among three

RI

genera, Tanakia, Rhodeus, and Acheilognathus, and the strongest linear correlation is

SC

found in Rhodeus (y = 0.0047x - 0.3101, R² = 0.4329), without considering the genus Tanakia (only four species) and Sinorhodeus (one species). Within the subfamily

NU

Acheilognathinae, the only exception is S. microlepis, away from the linear

MA

relationships of subfamily Acheilognathinae and its three genera. The result also exhibits the unique character of S. microlepis PCGs in base compositions.

D

3.4 Usage bias of start and stop codon, relative synonymous codons and amino

PT E

acids in bitterling mitogenomes

Consistent with the overwhelming majority of bitterling mitogenomes, 12 PCGs of S.

CE

microlepis initiate with typical start codon ATG, except for the cox1 gene utilizing

AC

GTG (Table 2). Among the 30 bitterling mitogenomes, only three exceptions were observed. The putative start codon of nd3 gene in A. typus and A. melanogaster, and nd5 gene in R. shitaiensis are all GTG (Supplementary Table S3 and Figure S1A). In the S. microlepis mitogenome, seven PCGs utilize the canonical termination codon (TAA and TAG), whereas the others end with the truncated stop codon (TA and T) (Table 2). Similar results were also found in other bitterling mitochondrial genes. All bitterling cox1 and nd4l are terminated with TAA, and cox2 and cytb are ended with a

ACCEPTED MANUSCRIPT 11

single T (Supplementary Table S3 and Figure S1B). The truncated stop codons are common in cyprinid fish mitogenomes [88] and might be converted to TAA via post-transcriptional polyadenylation [89]. In addition, the 1st positions of stop codons in bitterling mitogenomes are T, and the most of 2nd position are A. The AT-skew of

PT

the 1st codon of PCGs are positive while the 2nd codon are negative (Fig. 4B and Table

RI

3). The AT bias could selectively avoid the formation of stop codons, similar as the

SC

observation in nuclear genomes [86].

The codon usage of six bitterling mitochondrial genomes, including Sinorhodeus

NU

(S. microlepis), Rhodeus (R. shitaiensis and R. lighti), Tanakia (T. limbata), and

MA

Acheilognathus (A. meridianus and A. somjinensis) were compared. The amino acid contents are largely consistent among the six bitterling mitogenomes (Fig. 5A). The

D

three most abundant amino acids are Leu(CUN), Ala and Thr, while Cys, Ser(AGY) and

PT E

Arg are rare. Relative synonymous codon usage (RSCU) analysis also showed the similar codon usage pattern among the bitterling mitogenomes (Fig. 5B). In the 3rd

CE

position of bitterling PCGs, codons with G are very rare while codons with A are

AC

overused. Consistent with A+T-bias in whole mitogenomes (Fig. 4A), the A+T-bias is also present in the 3rd position of bitterling PCGs. For example, the codons CGG and CGC for Arginine are rare, while the synonymous codons CGA and CGT are prevalent (Fig. 5B). 3.5 Highly conserved overlaps and non-coding intergenic spacers among bitterling mitogenomes Gene overlaps are highly conserved in bitterlings. In the analyzed six bitterling

ACCEPTED MANUSCRIPT 12

mitogenomes, a total of 22 overlapping nucleotides, ranging from one to seven bp, were detected across six identical gene junctions (Supplementary Table S5). Three motifs “ATGATAR” (R=A/G), “ATGYTAA” (Y=C/T) and “TTAR” are overlapped in the junctions of atp8-atp6, nd4l-nd4, and nd5-nd6 respectively (Fig. 6). Although the

PT

numbers and the locations of gene overlaps varied, the above three motifs were

RI

recognized as a common character found in Cyprinidae fishes, such as zebrafish [80],

SC

grass carp [90] and Zacco sieboldii [43] (Fig. 6 and Supplementary Table S5). In addition to OL and CR, 10 conserved and short non-coding intergenic spacers

NU

(IGSs) were found across the six bitterling mitogenomes with a total length from 21 to

MA

26 bp (Supplementary Table S6). The longest one contains seven bp - nine bp nucleotides and locates between tRNAAsp(D) and cox2 genes. The 3’ of these IGSs are

D

conserved and mainly composed of T/A nucleotides (Supplementary Table S6). In

PT E

particular, a long spacer (with a range of 81 bp -230 bp) was found at the tRNAArg(R) and nd4l in six bitterlings, including R. notatus (83 bp), R. suigensis (81 bp) [39], R.

CE

fangi (81 bp), R. atremius atremius (81 bp), R. uyekii (230 bp) [40], and R. shitaiensis

AC

(220 bp) [41]. The long spacer is uncommon in other bitterlings and even other cyprinid fish (Supplementary Table S6). The lepidopteran IGS with a “TTAGTAT” motif at the trnS2 and nd1 junction is thought to be important for mitochondrion transcription [91] and Hymenoptera IGSs are supposed to associate with gene rearrangements [92, 93]. The “TTAGTAT” motif within IGS and gene rearrangement were not found in bitterling mitogenomes. Thus, the function of IGSs in bitterling mitogenomes is still unknown.

ACCEPTED MANUSCRIPT 13

3.6 Phylogenetic analysis and estimation of divergence time of bitterlings ML and BI phylogenetic trees constructed by 13 PCGs of 30 bitterlings and 2 outgroup taxa were largely congruent (Fig. 7). The only observed discordance was in the position of T. tanago. The subfamily Acheilognathinae was divided into two main

PT

clades: Acheilognathus clade A and a complicated Acheilognathus-Tanakia-Rhodeus

RI

clade. The Acheilognathus clade A includes nine species of Acheilognathus, while the

SC

other three species of Acheilognathus (A. intermedia, A. signifier, and A. somjinensis) are clustered with four species of Tanakia. Except the analysis by Chang et al, 2014

NU

[22], Acheilognathus was recovered to be monophyletic in the previous phylogenetic

MA

analyses owing to the limitations in taxon sampling [11, 18-21]. Our analysis is consistent with the phylogenies resolved by Chang et al, 2014 [22] and supports the

D

polyphyly of Acheilognathus.

PT E

The sampled species of Rhodeus and Tanakia forms two paraphyletic groups respectively. Different from the all previous molecular phylogenetic analyses [11,

CE

18-22], the genus Rhodeus were divided into two distinct lineages. S. microlepis is

AC

clustered with Rhodeus clade A which forms the sister-group to Rhodeus clade B (Fig. 7). However, we did not obtain the mitogenomes of “Acheilognathus” striatus, an unnamed clade which is split the genus Rhodeus and S. microlepis [14]. The unusual characters of S. microlepis mitogenome (Fig. 4B-C), together with special morphological differences [14], suggest that S. microlepis should be a sister species to the genus Rhodeu which needs further study to confirm its taxonomy and phylogeny. Based on fossil calibration, the chronogram with divergence time of bitterling

ACCEPTED MANUSCRIPT 14

lineages were estimated using a relaxed molecular clock (Fig. 8). The subfamily Acheilognathinae diversified around 20 million years ago (Ma). The most recent common

ancestor

of

Acheilognathus

clade

A

and

the

complicated

Acheilognathus-Tanakia-Rhodeus clade appeared about 12.99 Ma (95% HPD:

PT

12.32–12.67 Ma) and 14.63 Ma (95% HPD: 14.05–15.37 Ma), respectively. S.

RI

microlepis emerged in the Middle Miocene (around 13.69 Ma, 95% HPD:

SC

12.96–14.48 Ma), close to the Rhodeus clade A, while Rhodeus clade B occurred in the late Pliocene (around 13.69 Ma, 95% HPD: 4.47–5.12 Ma).

NU

In conclusion, current studies represent general and unique features of S.

MA

microlepis and other 29 bitterling mitogenomes, and reveal their phylogenetic relationship and divergence times. The phylogenetic results strongly support the

PT E

Conflicts of interest

D

polyphyly of the genus Acheilognathus and the paraphyly of Rhodeus and Tanakia.

The authors declare no conflict of interest.

CE

Acknowledgments

AC

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences [XDB3104] and the earmarked fund for Modern Agro-industry Technology Research System (NYCYTX-49).

Appendix supplementary data Supplementary Table 1. List of primers used to amplify the mitogenome of S. microlepis. Supplementary Table 2. Length, base composition and skewness of bitterlings

ACCEPTED MANUSCRIPT 15

mitogenomes. Supplementary Table 3. The start and stop codons of 13 protein-coding genes in the bitterlings mitogenomes.

PT

Supplementary Table 4. Gene overlaps in the mitogenomes of six bitterlings and other three cyprinid fish.

RI

Supplementary Table 5. Non-coding intergenic spacers in the mitogenomes of the

SC

six bitterligs and other three cyprinid fish.

NU

Supplementary Table 6. Sequences of three mainly non-coding intergenic spacers

MA

in the mitogenomes of six bitterlings and other three cyprinid fish. Supplementary Figure S1. Composition of start codons (A) and stop codons (B).

D

References

PT E

[1] S. C. Mills, J. D. Reynolds, The bitterling–mussel interaction as a test case for co–evolution, J Fish Biol 63 (2010) 84–104. http:// doi.org/10.1111/j.1095–8649.2003.00209.x. [2] M. Reichard, S. C. L. Comber,C. Smith, Sneaking from a female perspective, Anim Behav 74 (2007) 679–688. http:// doi.org/10.1016/j.anbehav.2007.03.005.

CE

[3] M. Reichard, H. Liu,C. Smith, The co–evolutionary relationship between bitterling fishes and freshwater mussels: insights from interspecific comparisons, Evol Ecol Res 9 (2007) 239–259. [4] P. R. Wiepkema, An Ethological Analysis of the Reproductive Behaviour of the Bitterling

AC

(Rhodeus Amarus Bloch), Archives Néerlandaises De Zoologie 14 (1961) 103–199. [5] F. R,P. D, FishBase. http://www.fishbase.org. (Accessed 23th, October 2018). [6] R. Arai,Y. Akai, Acheilognathus melanogaster, a Senior Synonym of A. moriokae, with a Revision of the Genera of the Subfamily Acheilognathinae (Cypriniformes, Cyprinidae), Bulletin of the National Science Museum 14 (1988) 199–213. [7] M. Kottelat, J. Freyhof, Handbook of European Freshwater Fishes, Switzerland and Berlin, Germany, 2007. [8] C. H. Chang, W. W. Lin, Y. T. Shao, R. Arai, T. Ishinabe, T. Ueda, M. Matsuda, H. Kubota, F. Y. Wang,N. H. Jang–Liaw, Molecular phylogeny and genetic differentiation of Tanakia himantegus complex (Teleostei: Cyprinidae) in Taiwan and mainland China, Zool Stud 49 (2010) 283–284. [9] H. Kubota, K. Watanabe, N. Suguro, M. Tabe, K. Umezawa,S. Watanabe, Genetic population structure and management units of the endangered Tokyo bitterling, Tanakia tanago

ACCEPTED MANUSCRIPT 16

(Cyprinidae), Conserv Genet 11 (2010) 2343–2355. [10] N. Onikura, J. Nakajima, T. Miyake, K. Kawamura,S. Fukuda, Predicting distributions of seven bitterling fishes in northern Kyushu, Japan, Ichthyol Res 59 (2012) 124–133. [11] P. Cheng, D. Yu, S. Liu, Q. Tang,H. Liu, Molecular phylogeny and conservation priorities of the subfamily Acheilognathinae (Teleostei: Cyprinidae), Zool Sci 31 (2014) 300–308. http:// doi.org/10.2108/zs130069. [12] Katano K, Mori S, The present and future of endangered freshwater fishes: scenario of fruitful conservation. Shinzansha, Tokyo, 2005. [13] S. Zheng, Q. Wu, L. He,Z. Zhang, Native ornamental fish of China, illustrated book, science press,

PT

Beijing, China 2015.

[14] F. Li, T. Y. Liao, R. Arai,L. Zhao, Sinorhodeus microlepis, a new genus and species of bitterling

RI

from China (Teleostei: Cyprinidae: Acheilognathinae), Zootaxa 4353 (2017) 69–88. http:// doi.org/10.11646/zootaxa.4353.1.4.

SC

[15] A. Libertini, L. Sola, M. Rampin, A. R. Rossi, K. Iijima,T. Ueda, Classical and molecular cytogenetic characterization of allochthonous European bitterling Rhodeus amarus (Cyprinidae, Acheilognathinae) from Northern Italy, Genes Genet Syst 83 (2008) 417–422.

NU

[16] J. Kim, J. Y. Moon, W. J. Kim, D. G. Kim, B. H. Nam, Y. O. Kim, J. Y. Park, C. M. An,H. J. Kong, Molecular and Functional Characterization of Thioredoxin 1 from Korean Rose Bitterling

(Rhodeus

uyekii),

Int

J

Mol

MA

doi.org/10.3390/ijms160819433.

Sci

16

(2015)

19433–19446.

http://

[17] X. L. Liu, X. Y. Li, F. F. Jiang, Z. W. Wang, Z. Li, X. J. Zhang, L. Zhou, J. F. Gui, Numerous mitochondrial DNA haplotypes reveal multiple independent polyploidy origins of hexaploids in

Carassius

species

complex,

Evol

7

(2017)

10604–10615.

http://

D

doi.org/10.1002/ece3.3462.

Ecol

[18] M. Fujiwara, J. Inafuku, A. Takeda, A. Watanabe, A. Fujiwara, S. Kohno,S. Kubota, Molecular

PT E

organization of 5S rDNA in bitterlings (Cyprinidae), Genetica 135 (2009) 355–365. http:// doi.org/10.1007/s10709–008–9294–2. [19] Q. Yang, Y. Zhu, B. Xiong,H. Liu, Acheilognathus changtingensis sp. nov., a new species of the cyprinid genus Acheilognathus (Teleostei: Cyprinidae) from Southeastern China based on and

CE

morphological

molecular

evidence,

Zool

Sci

28

(2011)

158–167.

http://

doi.org/10.2108/zsj.28.158. [20] K. Kawamura, T. Ueda, R. Arai,C. Smith, Phylogenetic relationships of bitterling fishes (Teleostei:

AC

Cypriniformes: Acheilognathinae), inferred from mitochondrial cytochrome B sequences, Zool Sci 31 (2014) 321–329. http:// doi.org/10.2108/zs130233. [21] M. Okazaki, K. Naruse, A. Shima,R. Arai, Phylogenetic relationships of bitterlings based on mitochondrial 12S ribosomal DNA sequences, J Fish Biol 58 (2001) 89–106. http:// doi.org/10.1111/j.1095–8649.2001.tb00501.x. [22] C. H. Chang, F. Li, K. T. Shao, Y. S. Lin, T. Morosawa, S. Kim, H. Koo, W. Kim, J. S. Lee, S. He, C. Smith, M. Reichard, M. Miya, T. Sado, K. Uehara, S. Lavoue, W. J. Chen,R. L. Mayden, Phylogenetic relationships of Acheilognathidae (Cypriniformes: Cyprinoidea) as revealed from evidence of both nuclear and mitochondrial gene sequence variation: evidence for necessary taxonomic revision in the family and the identification of cryptic species, Mol Phylogenet Evol 81 (2014) 182–194. http:// doi.org/10.1016/j.ympev.2014.08.026. [23] P. Yu, S. Ding, Q. Yang, X. Li,Q. Wan, The complete mitochondrial genome of Sinibotia robusta

ACCEPTED MANUSCRIPT 17

(Cypriniformes: Cobitidae), Mitochondrial DNA A 27 (2016) 3471–3472. http:// doi.org/10.3109/19401736.2015.1066353. [24] S. J. Wei, M. Shi, X. X. Chen, M. J. Sharkey, C. van Achterberg, G. Y. Ye,J. H. He, New views on strand asymmetry in insect mitochondrial genomes, PloS one 5 (2010) e12708. http:// doi:10.1371/journal.pone.0012708. [25] S. J. Wei, M. Shi, M. J. Sharkey, C. van Achterberg,X. X. Chen, Comparative mitogenomics of Braconidae (Insecta: Hymenoptera) and the phylogenetic utility of mitochondrial genomes with special reference to Holometabolous insects, BMC genomics 11 (2010) 371. http:// doi:10.1186/1471-2164-11-371. the

case?,

Trends

in

genetics

:

TIG

PT

[26] J. L. Elson,R. N. Lightowlers, Mitochondrial DNA clonality in the dock: can surveillance swing 22

(2006)

http://

RI

doi.org/10.1016/j.tig.2006.09.004.

603–607.

[27] C. Gissi, F. Iannelli,G. Pesole, Evolution of the mitochondrial genome of Metazoa as exemplified

SC

by comparison of congeneric species, Heredity 101 (2008) 301–320.

[28] S. L. Cameron, Insect mitochondrial genomics: implications for evolution and phylogeny, Annu Rev Entomol 59 (2014) 95–117.

NU

[29] H. Yang, J. Xia, J. E. Zhang, J. Yang, H. Zhao, Q. Wang, J. Sun, H. Xue, Y. Wu, J. Chen, J. Huang,L. Liu, Characterization of the Complete Mitochondrial Genome Sequences of Three Croakers (Perciformes, Sciaenidae) and Novel Insights into the Phylogenetics, Int J Mol Sci

MA

19 (2018). http:// doi.org/10.3390/ijms19061741.

[30] A. Min–Shan Ko, Y. Zhang, M. A. Yang, Y. Hu, P. Cao, X. Feng, L. Zhang, F. Wei,Q. Fu, Mitochondrial genome of a 22,000–year–old giant panda from southern China reveals a new panda lineage, Curr Biol 28 (2018) 693–R694. http:// doi.org/10.1016/j.cub.2018.05.008.

D

[31] P. Yu, S. Ding, Q. Yang, Z. Bi, L. Chen, X. Liu, X. Song,Q. Wan, Complete sequence and characterization of the paradise fish Macropodus erythropterus (Perciformes: Macropodusinae) genome,

Mitochondrial

PT E

mitochondrial

DNA

B

1

(2016)

54–55.

http://

doi.org/10.1080/23802359.2015.1137820. [32] T. Su,A. Liang, Characterization of the complete mitochondrial genome of Phymatostetha huangshanensis (Hemiptera: Cercopidae) and phylogenetic analysis, Int J Biol Macromol 119

CE

(2018) 60–69. http:// doi.org/10.1016/j.ijbiomac.2018.07.135. [33] Y. Wang, Y. Shen, C. Feng, K. Zhao, Z. Song, Y. Zhang, L. Yang,S. He, Mitogenomic perspectives on the origin of Tibetan loaches and their adaptation to high altitude, Sci Rep-UK

AC

6 (2016) 29690. http:// doi.org/10.1038/srep29690. [34] G. C. Gibb, F. L. Condamine, M. Kuch, J. Enk, N. Moraes–Barros, M. Superina, H. N. Poinar,F. Delsuc, Shotgun Mitogenomics Provides a Reference Phylogenetic Framework and Timescale for

Living

Xenarthrans,

Mol

Biol

Evol

33

(2016)

621–642.

http://

doi.org/10.1093/molbev/msv250. [35] Y. Huang, Y. Liu, X. Y. Zhu, Z. Z. Xin, H. B. Zhang, D. Z. Zhang, J. L. Wang, B. P. Tang, C. L. Zhou, Q. N. Liu,L. S. Dai, Comparative mitochondrial genome analysis of Grammodes geometrica and other noctuid insects reveals conserved mitochondrial genome organization and phylogeny, Int J Biol Macromol (2018). http:// doi.org/10.1016/j.ijbiomac.2018.09.104. [36] V. C. Seixas, C. A. Russo,P. C. Paiva, Mitochondrial genome of the Christmas tree worm Spirobranchus giganteus (Annelida: Serpulidae) reveals a high substitution rate among annelids, Gene 605 (2017) 43–53. http:// doi.org/10.1016/j.gene.2016.12.024.

ACCEPTED MANUSCRIPT 18

[37] C. Du, L. Zhang, T. Lu, J. Ma, C. Zeng, B. Yue,X. Zhang, Mitochondrial genomes of blister beetles (Coleoptera, Meloidae) and two large intergenic spacers in Hycleus genera, BMC genomics 18 (2017) 698. http:// doi.org/10.1186/s12864–017–4102–y. [38] S. Baron, N. A. van der Merwe,C. Maritz–Olivier, The genetic relationship between R. microplus and R. decoloratus ticks in South Africa and their population structure, Mol Phylogenet Evol 129 (2018) 60–69. http:// doi.org/10.1016/j.ympev.2018.08.003. [39] D. S. Hwang, W. O. Lee,J. S. Lee, Complete mitochondrial genome of the freshwater fish, Rhodeus suigensis (Cypriniformes, Cyprinidae), Mitochondrial DNA 25 (2014) 5–6. http:// doi.org/10.3109/19401736.2013.775262.

PT

[40] B. C. Kim, T. W. Kang, M. S. Kim,C. B. Kim, The complete mitogenome of Rhodeus uyekii (Cypriniformes, Cyprinidae), DNA sequence 17 (2006) 181–186.

RI

[41] F. Li, K. T. Shao, Y. S. Lin,C. H. Chang, The complete mitochondrial genome of the Rhodeus shitaiensis (Teleostei, Cypriniformes, Acheilognathidae), Mitochondrial DNA 26 (2015)

SC

301–302. http:// doi.org/10.3109/19401736.2013.825785.

[42] B. Wang, S. Wang, M. Hu,F. Wang, Complete mitochondrial genome of Rhodeus lighti (Cypriniformes: Cyprinidae), Mitochondrial DNA A 27 (2016) 1497–1498. http://

NU

doi.org/10.3109/19401736.2014.953109.

[43] K. Saitoh, T. Sado, R. L. Mayden, N. Hanzawa, K. Nakamura, M. Nishida,M. Miya, Mitogenomic evolution and interrelationships of the Cypriniformes (Actinopterygii: Ostariophysi): the first

MA

evidence toward resolution of higher–level relationships of the world's largest freshwater fish clade based on 59 whole mitogenome sequences, J Mol Evol 63 (2006) 826–841. http:// doi.org/10.1007/s00239–005–0293–y.

[44] S. He, X. Gu, R. L. Mayden, W. J. Chen, K. W. Conway,Y. Chen, Phylogenetic position of the genus

mitochondrial

Psilorhynchus

genome,

(Ostariophysi:

D

enigmatic

Mol

Phylogenet

Cypriniformes): Evol

47

evidence

(2008)

from

419–425.

the

http://

PT E

doi.org/10.1016/j.ympev.2007.10.012. [45] M. Miya, Y. Sato, T. Fukunaga, T. Sado, J. Y. Poulsen, K. Sato, T. Minamoto, S. Yamamoto, H. Yamanaka, H. Araki, M. Kondoh,W. Iwasaki, MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical

CE

marine species, R Soc Open Sci 2 (2015) 150088. http:// doi.org/10.1098/rsos.150088. [46] X. Xu, X. Cao,Y. Zhu, The complete mitochondrial genome of Tanakia lanceolata (Cypriniformes: Cyprinidae),

Mitochondrial

DNA

A

27

(2016)

867–868.

http://

AC

doi.org/10.3109/19401736.2014.919480. [47] Y. Cheng,W. Tao, The complete mitogenome of Tanakia himantegus (Cypriniformes; Cyprinidae), Mitochondrial

DNA

A

27

(2016)

4144–4145.

http://

doi.org/10.3109/19401736.2014.1003883. [48] Y. Luo, X. Cao,Y. Zhu, The complete mitochondrial genome of Tanakia limbata (Cypriniformes: Cyprinidae),

Mitochondrial

DNA

A

27

(2016)

1713–1714.

http://

doi.org/10.3109/19401736.2014.961135. [49] D. S. Hwang, H. K. Byeon,J. S. Lee, Complete mitochondrial genome of the freshwater fish, Acheilognathus somjinensis (Cypriniformes, Cyprinidae), Mitochondrial DNA 25 (2014) 13–14. http:// doi.org/10.3109/19401736.2013.775266. [50] D. S. Hwang, W. O. Lee,J. S. Lee, Complete mitochondrial genome of the Korean bitterling Acheilognathus koreensis (Cypriniformes; Cyprinidae), Mitochondrial DNA 24 (2013)

ACCEPTED MANUSCRIPT 19

414–415. http:// doi.org/10.3109/19401736.2013.766178. [51] D. S. Hwang, W. O. Lee,J. S. Lee, Complete mitochondrial genome of the striped bittering Acheilognathus yamatsutae (Cypriniformes; Cyprinidae), Mitochondrial DNA 24 (2013) 676–677. http:// doi.org/10.3109/19401736.2013.773988. [52] W. Tao,L. Sun, The complete mitogenome of Acheilognathus barbatus (Cypriniformes; Cyprinidae),

Mitochondrial

DNA

A

27

(2016)

2274–2275.

http://

doi.org/10.3109/19401736.2014.984177. [53] D. S. Hwang, W. O. Lee,J. S. Lee, Complete mitochondrial genome of the freshwater fish, Acanthorhodeus macropterus (Cypriniformes, Cyprinidae), Mitochondrial DNA 25 (2014)

PT

11–12. http:// doi.org/10.3109/19401736.2013.775265.

[54] X. Zhang, W. Song, Y. Wang, R. Du,W. Wang, The complete nucleotide sequence of white Amur 361–362. http:// doi.org/10.3109/19401736.2013.803094.

RI

bream (Parabramis pekinensis) mitochondrial genome, Mitochondrial DNA 25 (2014)

SC

[55] M. Wei, Y. Liu, H. Guo, F. Zhao,S. Chen, Characterization of the complete mitochondrial genome of Cynoglossus gracilis and a comparative analysis with other Cynoglossinae fishes, Gene 591 (2016) 369–375. http:// doi.org/10.1016/j.gene.2016.06.023. 71–91.

NU

[56] T. G. Burland, DNASTAR's Lasergene sequence analysis software, Methods Mol Biol 132 (2000) [57] T. M. Lowe,P. P. Chan, tRNAscan–SE On–line: integrating search and context for analysis of RNA

genes,

Nucleic

acids

research

MA

transfer

doi.org/10.1093/nar/gkw413.

44

(2016)

54–57.

http://

[58] M. Bernt, A. Donath, F. Juhling, F. Externbrink, C. Florentz, G. Fritzsch, J. Putz, M. Middendorf,P. F. Stadler, MITOS: improved de novo metazoan mitochondrial genome Mol

Phylogenet

Evol

69

(2013)

313–319.

http://

D

annotation,

doi.org/10.1016/j.ympev.2012.08.023.

PT E

[59] M. Lohse, O. Drechsel, S. Kahlau,R. Bock, OrganellarGenomeDRAW––a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets, Nucleic Acids Res 41 (2013) W575–581. http:// doi.org/10.1093/nar/gkt289. [60] M. Zuker, Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids

CE

Res 31 (2003) 3406–3415.

[61] S. Kumar, G. Stecher,K. Tamura, MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for

Bigger

Datasets,

Mol

Biol

Evol

33

(2016)

1870–1874.

http://

AC

doi.org/10.1093/molbev/msw054. [62] N. T. Perna,T. D. Kocher, Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes, J Mol Evol 41 (1995) 353–358. [63] Z. Cui, Y. Liu, C. P. Li, F. You,K. H. Chu, The complete mitochondrial genome of the large yellow croaker, Larimichthys crocea (Perciformes, Sciaenidae): unusual features of its control region and the phylogenetic position of the Sciaenidae, Gene 432 (2009) 33–43. http:// doi:10.1016/j.gene.2008.11.024. [64] J. Cheng, G. Q. Ma, Z. Q. Miao, B. N. Shui,T. X. Gao, Complete mitochondrial genome sequence of the spinyhead croaker Collichthys lucidus (Perciformes, Sciaenidae) with phylogenetic considerations, Mol Biol Rep 39 (2012) 4249–4259. http:// doi:10.1007/s11033-011-1211-6. [65] R. Lalitha,V. R. Chandavar, Intraspecific variations in Cyt b and D-loop sequences of Testudine species, Lissemys punctata from south Karnataka, J Adv Res 9 (2018) 87–95. http://

ACCEPTED MANUSCRIPT 20

doi:10.1016/j.jare.2017.10.007. [66] J. Yan, L. Liu, S. Liu, X. Guo,Y. Liu, Comparative analysis of mitochondrial control region in polyploid hybrids of red crucian carp (Carassius auratus) x blunt snout bream (Megalobrama amblycephala),

Fish

Physiol

Biochem

36

(2010)

263–272.

http://

doi:10.1007/s10695-008-9251-0. [67] K. Katoh, K. Misawa, K. Kuma,T. Miyata, MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform, Nucleic Acids Res 30 (2002) 3059-3066. [68] A. Stamatakis, RAxML version 8: a tool for phylogenetic analysis and post–analysis of large phylogenies,

Bioinformatics

30

(2014)

1312–1313.

http://

PT

doi.org/10.1093/bioinformatics/btu033.

[69] S. Pang, R. J. Stones, M. M. Ren, X. G. Liu, G. Wang, H. J. Xia, H. Y. Wu, Y. Liu,Q. Xie, GPU

RI

MrBayes V3.1: MrBayes on Graphics Processing Units for Protein Sequence Data, Mol Biol Evol 32 (2015) 2496–2497. http:// doi.org/10.1093/molbev/msv129.

SC

[70] S. Kalyaanamoorthy, B. Q. Minh, T. K. F. Wong, A. von Haeseler,L. S. Jermiin, ModelFinder: fast model selection for accurate phylogenetic estimates, Nat Methods 14 (2017) 587-589. http:// doi:10.1038/nmeth.4285.

NU

[71] T. Yasuno. Fossil pharyngeal teeth of the Rhodeinae fish from the Miocene Katabira Formation of the Kani Group, Gifu Prefecture, Japan, 1984.

[72] W. L. Li,A. J. Drummond, Model averaging and Bayes factor calculation of relaxed molecular in

Bayesian

phylogenetics,

doi:10.1093/molbev/msr232.

Mol

Biol

Evol

29

(2012)

751-761.

http://

MA

clocks

[73] T. Gernhard, The conditioned reconstructed process, J Theor Biol 253 (2008) 769-778. http:// doi:10.1016/j.jtbi.2008.04.005.

D

[74] A. Rambaut, A. J. Drummond, D. Xie, G. Baele,M. A. Suchard, Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7, Syst Biol 67 (2018) 901-904. http://

PT E

doi:10.1093/sysbio/syy032.

[75] Q. Zhao, J. Wang, M. Q. Wang, B. Cai, H. F. Zhang,J. F. Wei, Complete Mitochondrial Genome of Dinorhynchus dybowskyi (Hemiptera: Pentatomidae: Asopinae) and Phylogenetic Analysis of Pentatomomorpha Species, J Insect Sci 18 (2018). http:// doi.org/10.1093/jisesa/iey031.

CE

[76] D. V. Lavrov,W. M. Brown, Trichinella spiralis mtDNA: a nematode mitochondrial genome that encodes a putative ATP8 and normally structured tRNAS and has a gene arrangement relatable to those of coelomate metazoans, Genetics 157 (2001) 621–637.

AC

[77] R. Okimoto,D. R. Wolstenholme. A set of tRNAs that lack either the T psi C arm or the dihydrouridine arm: towards a minimal tRNA adaptor, EMBO J 9 (1990) 3405–3411. [78] M. Wei, P. Yu, Y. Yang,Q. Wan, The complete mitochondrial genome of Parabotia fasciata (Cypriniformes: Cobitidae), Mitochondrial DNA A 27 (2016) 1831–1832. http:// doi.org/10.3109/19401736.2014.971246. [79] M. Wei, P. Yu, Y. Yang,Q. Wan, The complete mitochondrial genome of Leptobotia taeniaps (Cypriniformes: Cobitidae), Mitochondrial DNA A 27 (2016) 1707–1708. http:// doi.org/10.3109/19401736.2014.961132. [80] R. E. Broughton, J. E. Milam,B. A. Roe, The complete sequence of the zebrafish (Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA, Genome Res 11 (2001) 1958–1967. http:// doi.org/10.1101/gr.156801. [81] M. M. Fonseca, D. Posada,D. J. Harris, Inverted replication of vertebrate mitochondria, Mol Biol

ACCEPTED MANUSCRIPT 21

Evol 25 (2008) 805-808. http:// doi:10.1093/molbev/msn050. [82] X. Wang, J. Wang, S. He,R. L. Mayden, The complete mitochondrial genome of the Chinese hook snout carp Opsariichthys bidens (Actinopterygii: Cypriniformes) and an alternative pattern of mitogenomic

evolution

in

vertebrate,

Gene

399

(2007)

11-19.

http://

doi:10.1016/j.gene.2007.04.019. [83] M. P. Francino,H. Ochman, Strand asymmetries in DNA evolution, Trends in genetics : TIG 13 (1997) 240-245. http:// doi:10.1016/S0168-9525(97)01118-9. [84] A. C. Frank,J. R. Lobry, Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms, Gene 238 (1999) 65-77.

PT

[85] C. Nikolaou,Y. Almirantis, A study on the correlation of nucleotide skews and the positioning of the origin of replication: different modes of replication in bacterial species, Nucleic Acids Res

RI

33 (2005) 6816-6822. http:// doi:10.1093/nar/gki988.

[86] C. A. Charneski, F. Honti, J. M. Bryant, L. D. Hurst,E. J. Feil, Atypical AT Skew in Firmicute

SC

Genomes Results from Selection and Not from Mutation, Plos Genet 7 (2011). http:// doi.org/ 10.1371/journal.pgen.1002283.

[87] M. Bulmer, The selection–mutation–drift theory of synonymous codon usage, Genetics 129 (1991)

NU

897–907.

[88] D. Bej, L. Sahoo, S. P. Das, S. Swain, P. Jayasankar, P. C. Das, P. Routray, S. K. Swain, J. K. Jena,P. Das, Complete mitochondrial genome sequence of Catla catla and its phylogenetic Mol

Biol

Rep

39

(2012)

10347–10354.

http://

MA

consideration,

doi.org/10.1007/s11033–012–1912–5.

[89] D. Ojala, J. Montoya,G. Attardi, tRNA punctuation model of RNA processing in human mitochondria, Nature 290 (1981) 470–474.

D

[90] C. Wang, Q. Chen, G. Lu, J. Xu, Q. Yang,S. Li, Complete mitochondrial genome of the grass carp (Ctenopharyngodon idella, Teleostei): insight into its phylogenic position within Cyprinidae,

PT E

Gene 424 (2008) 96–101. http:// doi.org/10.1016/j.gene.2008.07.011. [91] J. W. Taanman, The mitochondrial genome: structure, transcription, translation and replication, Biochim Biophys Acta 1410 (1999) 103–123. [92] M. Mao, A. Valerio, A. D. Austin, M. Dowton,N. F. Johnson, The first mitochondrial genome for

CE

the wasp superfamily Platygastroidea: the egg parasitoid Trissolcus basalis, Genome 55 (2012) 194–204. http:// doi.org/10.1139/g2012–005. [93] M. Rodovalho Cde, M. L. Lyra, M. Ferro,M. Bacci, Jr., The mitochondrial genome of the

AC

leaf–cutter ant Atta laevigata: a mitogenome with a large number of intergenic spacers, PloS one 9 (2014) e97117. http:// doi.org/10.1371/journal.pone.0097117.

ACCEPTED MANUSCRIPT 22

Lists of tables and figures Table 1 The genus, species, GenBank accession number and length of fish

PT

mitogenomes analyzed in this study Table 2 Annotation of the S. microlepis mitogenome.

RI

Table 3 Base composition and skewness of the mitogenomes in S. microlepis and

SC

other five bitterlings.

NU

Fig. 1 Circular sketch map of the S. microlepis mitogenome. Different colors represent different gene blocks.

MA

Fig. 2 Predicted secondary structure of tRNAs in S. microlepis. The tRNAs are labeled with their corresponding amino acids. Dashes (–) indicate Watson–Crick

PT E

D

bonds, and dots (·) indicate mispaired nucleotide bonds. Fig. 3 Putative secondary structure of OL (A) and complete nucleotide sequence of

CE

mtDNA CR of S. microlepis (B). TAS, GT-GGG box, CSB-1, CSB-2, CSB-3, CSB-D, CSB-E and CSB-F are underlined.

AC

Fig. 4 Unusual AT-skew and base compositions in S. microlepis mitogenome. A. A+T contents of different regions in 30 bitterling mitogenomes. B. AT-skew of different regions in 30 bitterling mitogenomes. C. The Linear correlations between A+T% and AT-skew in 13PCGs of 30 bitterling mitogenomes. Fig. 5 Codon distribution (A) and relative synonymous codon usage (B) of PCGs in S. microlepis and other five bitterling mitogenomes. CDspT=codon per thousand codons.

ACCEPTED MANUSCRIPT 23

Fig. 6 Alignment of overlapping region of three PCGs pairs across six bitterlings and other three cyprinid fish. A. atp8 vs atp6; B. nd4l vs nd4; C. nd5 vs nd6. Fig. 7 Phylogenetic tree constructed by BI methods (A) and ML methods (B), based on the nucleotide sequences of all 13 PCGs of S. microlepis and other 29 bitterlings.

PT

M. amblycephala and P. pekinensis were chosen as outgroups. Node numbers

RI

represent the values of posterior probability.

SC

Fig.8 The divergence times (million years ago) of bitterlings. The ranges of 95% HPD

AC

CE

PT E

D

MA

NU

intervals are represented by the blue bars.

ACCEPTED MANUSCRIPT 24

Table 1. The genus, species, GenBank accession number and length of fish mitogenome analyzed in this study Sequence length

Genus

Species

Accession ID

Reference

1

Sinorhodeus

Sinorhodeus microlepis

MH190825

16591

this study

2

Rhodeus

Rhodeus notatus

KU291171.1

16735

Unpublished

3

Rhodeus

Rhodeus suigensis

EF483934.1

16733

Hwang et al., 2014

4

Rhodeus

Rhodeus fangi

KF980890.1

16733

Unpublished

5

Rhodeus

Rhodeus atremius atremius

AP011255.1

16734

Unpublished

6

Rhodeus

Rhodeus uyekii

DQ155662.1

16817

Kim et al., 2006

7

Rhodeus

Rhodeus shitaiensis

KF176560.1

16774

Li et al., 2015

8

Rhodeus

Rhodeus pseudosericeus

KF425517.1

16574

Unpublished

16581

Unpublished

16607

Unpublished

RI

PT

(bp)

Rhodeus

Rhodeus sericeus

NC_025326.1

Rhodeus

Rhodeus amarus

AP011209.1

11

Rhodeus

Rhodeus lighti

KM232987

16677

Wang et al., 2016a

12

Rhodeus

Rhodeus ocellatus kurumeus

AB070205.1

16674

Saitoh et al., 2006

13

Rhodeus

Rhodeus ocellatus

NC_011211.1

16680

He et al., 2008

14

Rhodeus

Rhodeus sinensis

KF533721.1

16677

Unpublished

15

Tanakia

Tanakia tanago

NC_027665.1

16584

Miya et al., 2015

16

Tanakia

Tanakia lanceolata

KJ589418.1

16607

Xu et al., 2016

17

Tanakia

Tanakia himantegus

KP231201.1

16575

Cheng and Tao, 2016

18

Tanakia

Tanakia limbata

KM386633.1

16565

Luo et al., 2016

19

Acheilognathus

Acheilognathus somjinensis

NC_014882

16569

Hwang et al., 2014b

20

Acheilognathus

Acheilognathus signifer

EF483930

16566

Unpublished

21

Acheilognathus

Acheilognathus koreensis

NC_013704.1

16563

Hwang et al., 2013a

22

Acheilognathus

Acheilognathus melanogaster

AP012985.1

16563

Unpublished

23

Acheilognathus

Acheilognathus meridianus

KT692966.1

16563

Unpublished

24

Acheilognathus

Acheilognathus yamatsutae

EF483936.1

16703

Hwang et al., 2013b

25

Acheilognathus

Acheilognathus tabira

AP013343.1

16765

Unpublished

26

Acheilognathus

Acheilognathus omeiensis

MG783572.1

16774

Unpublished

27

Acheilognathus

Acheilognathus rhombeus

KT601094.1

16780

Unpublished

28

Acheilognathus

Acheilognathus typus

AB239602.1

16778

Saitoh et al., 2006

29

Acheilognathus

Acheilognathus barbatus

KP067832.1

16770

Tao and Sun, 2016

30

Acheilognathus

Acheilognathus macropterus

EF483935.1

16774

Hwang et al., 2014c

31

Megalobrama

Megalobrama amblycephala

NC_010341.1

16623

Unpublished

32

Parabramis

Parabramis pekinensis

NC_022678.1

16622

Zhang et al., 2014

33

Danio

Danio rerio

NC_002333

16596

Broughton et al., 2001

34

Ctenopharyngodon

Ctenopharyngodon idella

EU391390.1

16609

Wang et al., 2008

35

Nipponocypris

Zacco sieboldii

AB218898.1

16616

Saitoh et al., 2006

NU

MA

D

PT E

CE

AC

SC

9 10

ACCEPTED MANUSCRIPT 25

Table 2. Annotation of the S. microlepis mitogenome Gene/Element

Position

Nucleotide

Start

Stop

Amino

Anti-

Intergenic

size (bp)

codon

codon

acid

codon

nucleotidea

GAA

0

H

0

H

0

H

0

H

0

H

4

H

tRNAPhe (S)

1-69

69

12SrRNA

70-1030

961

1031-1102

72

16SrRNA

1103-2780

1678

Leu(UUR)

2781-2856

76

nd1

2857-3831

975

Ile

tRNA (I)

3836-3907

72

GAT

-2

H

tRNAGln (Q)

3906-3976

71

TTG

1

L

CAT

0

H

0

H

TCA

1

H

TGC

1

L

GTT

0

L

3978-4046

69

4047-5091

1045

(W)

5092-5162

71

tRNAAla (A)

5164-5232

69

tRNA

Trp

5234-5306

73

L-strand replication origin (OL)

5307-5337

31

tRNACys (C)

5338-5403

66

tRNATyr (Y)

5404-5474

71

cox1

5476-7026

1551

tRNASer(UCN) (S2)

7027-7097

71

tRNA

Asp

(N)

(D)

7100-7169

cox2 tRNA

Lys

7179-7869 (K)

7870-7945 7947-8111

atp6

8105-8788

cox3

8788-9571 (G)

9572-9642

PT E

tRNA

Gly

D

atp8

nd3 tRNA

Arg

9643-9991

(R)

nd4l

348

TAA

0 GCA

0

L

GTA

1

L

516

0

H

TGA

2

L

GTC

9

H

0

H

ATG

T

230

1

H

165

ATG

TAG

54

-7

H

684

ATG

TAA

227

-1

H

784

ATG

T

261

0

H

0

H

ATG

T

116

0

H

76

TTT

71 349

TCC

9992-10061

70 297

ATG

TAA

98

TCG

10352-11733

1382

ATG

TA

460

11734-11802

69

0

H

-7

H

0

H

GTG

0

H

(S1)

11803-11871

69

GCT

1

H

tRNALeu(CUN) (L2)

11873-11945

73

TAG

0

H

nd5

11946-13781

1836

ATG

TAG

611

-4

H

13778-14299

522

ATA

TAG

173

0

L

ATG

T

380

AC

tRNA

Ser(AGY)

691

T

324

10062-10358

CE

nd4 tRNAHis (H)

70

GTG

MA

tRNA

Asn

ATG

TAA

RI

(M)

nd2

TAA ATG

SC

tRNA

Met

(L1)

TAC

NU

tRNA

(V)

PT

tRNA

Val

Strandb

nd6 tRNA

Glu

14300-14368

69

cytb

(E)

14375-15515

1141

tRNAThr (T)

15516-15589

74

tRNAPro (P)

15589-15658

70

Control region (CR)

15659-16591

933

TTC

6

L

0

H

TGT

-1

H

TGG

0

L

a, negative value indicates the overlapping sequences between adjacent genes b, H: heavy strand; L: light strand

0

ACCEPTED MANUSCRIPT 26

Table 3. Base composition and skewness of the mitogenomes in S. microlepis and other five bitterlings Si

Si T(

Speci

ze

A

es

(b

%

A+ C

G

%

%

U)

T

%

%

G+ C %

ATske w

GC -ske

T( (b

%

C

G

%

%

U)

w

%

A+

G+

AT-

GC

T

C

ske

-ske

%

%

w

w

56.

43. 44. 2 44. 9 46. 0 41. 1 45. 8

-0.0 -0.0 14 -0.0 49 -0.0 53 -0.0 56 -0.0 44

-0.2

55. 8 56. 1 53. 0 58. 9 55. 2 0 48.

0 51.

46 0.0

28 0.0

48. 9 48. 4 47. 0 49. 6 48. 8 4 59.

51. 1 52. 6 52. 0 50. 4 51. 2 6 40.

0.0 93 0.0 96 0.0 81 0.0 88 0.0 94 97 -0.3

0.0 20 0.0 07 0.0 21 0.0 20 0.0 25 23 -0.3

58. 1 58. 8 58. 9 59. 7 59. 3 0 62.

41. 9 41. 2 41. 1 40. 3 41. 7 1 37.

-0.3 83 -0.3 80 -0.3 86 -0.3 87 -0.3 79 84 0.1

-0.3 37 -0.3 50 -0.3 32 -0.3 32 -0.3 43 37 -0.4

57. 2 60. 7 55. 9 65. 1 57. 1 5

42. 8 39. 3 44. 1 34. 9 42. 9 6

0.1 57 0.1 66 0.1 60 0.1 73 0.1 55 78

-0.4 50 -0.4 51 -0.3 68 -0.5 95 -0.4 29 29

p)

26. 4 27. 5 26. 2 27. 3 26. 7

nensis R. microl R. shitai epis T. lighti ensis A. limbat A. meridi a somji anus S. nensis R. microl R. shitai epis T. lighti ensis A. limbat A. meridi a somji anus S. nensis R. microl R. shitai epis T. lighti ensis A. limbat A. meridi a somji anus nensis

9 15 61 15 59 15 61 15 61 15 59 61 26

8 2 7. 2 8. 9 2 8. 0 2 8. 7 2 9. 3 8. 3 3 8 3 3. 3 2. 9 3 3. 9 3 3. 6 3 4. 9 4. 5 3 1 3 2. 3 2. 8 3 1. 2 3 1. 2 3 2. 8 2. 9 5

26. 6 27. 9 27. 5 27. 1 27. 7 4 20.

6 28.

20. 6 19. 1 20. 4 20. 0 20. 6 0 31.

S.

11

2

28.

55. 9 56. 2 54. 1 57. 5 55. 9

44. 1 43. 8 45. 9 42. 5 44. 1

0.0 37 0.0 40 0.0 30 0.0 34 0.0 42

-0.2 10 -0.2 21 -0.2 08 -0.2 08 -0.2 24

R. microle R. lighti shitaien pis T.

6 43.

17 0.0

55. 4 56. 0 55. 2 57. 4 56. 0 2 54.

45. 6 43. 0 44. 8 43. 6 43. 0 8 45.

41 -0.0 0.0 12 0.0 20 0.0 22 0.0 22 0.0 28 26 0.2

0.0 21 0.0 57 0.0 58 0.0 43 0.0 45 41 -0.0

somjine nus S. nsis R. microle R. lighti shitaien pis T.

2 8. 2 6. 02 6. 22 5. 52 7. 5 6. 82

28. 8 29. 9 28. 5 30. 5 28. 4

4 56.

11 42 11 42 2 11 42 5 11 41 2 11 42 9 42 2 37 3 37 98 37 99 37 98 37 97 37 98 98 37

21. 2 22. 9 21. 0 22. 7 21. 6 8 40.

53. 5 53. 1 53. 0 55. 9 54. 1 1 64.

46. 5 47. 9 46. 0 44. 1 46. 9 0 35.

0.2 43 0.2 41 0.2 68 0.2 58 0.2 52 60 0.0

-0.0 62 -0.0 57 -0.0 63 -0.0 71 -0.0 63 72 -0.1

64. 1 65. 3 63. 2 64. 5 64. 1 0

35. 9 34. 7 36. 8 35. 6 36. 9 0

0.0 23 -0.0 02 0.0 42 0.0 03 0.0 26 15

-0.1 70 -0.2 99 -0.2 01 -0.1 19 -0.2 62 32

22 6. 2 6. 72 5. 52 5. 92 7. 9 6. 31 51 8. 1 8. 21 8. 21 8. 11 8. 0 8. 34 23 6. 3 3. 03 5. 73 2. 33 7. 3 3. 6 8

AC

CE

32. 3 34. 1 31. 0 31. 6 31. 2 5

2 1 6. 7. 2 1 7. 7. 1 0 2 1 6. 7. 4 4 2 1 7. 8. 5 4 2 1 5. 6. 5 tRNAs 0 7. 7. 8 3 2 2 1 5 2 2 1. 2. 2 2 1. 3. 3 2 2 2 0. 3. 2 8 2 2 1. 3. 6 2 2 2 0. 2. 3rRNAs 3 1. 2. 5 5 2 2 0 8 2 2 4. 1. 2 2 4. 2. 2 3 2 2 5. 2. 8 1 2 2 4. 1. 0 0 2 2 3. 1. 7 CR4 4. 1. 8 0 2 1 6 3 2 1 1. 4. 2 1 1. 4. 0 9 2 1 0. 3. 4 3 2 1 2. 4. 9 9 2 1 0. 5. 3 3 2. 3. 9 1 2 8

-0.2

sis A. limbata A. meridia

sis A. limbata A. meridia somjine nus S. nsis R. microle R. lighti shitaien pis T. sis A. limbata A. meridia somjine nus S. nsis R. microle R. lighti shitaien pis T. sis A. limbata A. meridia somjine nus nsis

37 98 37 99 37 98 37 97 37 98 98 37 37 98 37 99 37 98 37 97 37 98 98

PCGs 2 1 2 1 7. 5. 2 1 8. 7. 32 19 7. 6. 02 01 8. 8. 12 91 6. 5. 1 0 1rd of PCGs 7. 7. 12 72 26 24 5. 6. 2 2 5. 6. 02 02 5. 6. 62 02 5. 6. 52 62 4. 5. 7 7 2rd of PCGs 5. 6. 52 71 22 14 7. 3. 2 1 7. 3. 42 61 7. 3. 82 41 7. 3. 42 71 7. 3. 5 8 3rd of PCGs 7. 3. 23 13 43 61 7. 0. 2 1 0. 1. 43 41 8. 0. 72 6 8. 1. 3. 73 41 6. 2 3 6 0. 2. 6 4 1

PT

2 9. 2 8. 5 2 8. 7 3 8. 9 2 0. 2 8. 2 2

0.0

8 22.

RI

16 59 16 77 1 16 67 4 16 56 7 16 56 5 56 3 15

43.

SC

R. microl R. shitai epis T. lighti ensis A. limbat A. meridi a somji anus S.

all mtDNA 2 1 56.

NU

27.

MA

2

D

16

PT E

S.

90 3 10 1 91 15 91 1 91 0 1

A

Species

p)

26 39 26 33 26 44 26 40 26 38 40 93

ze

40. 9 40. 6 40. 8 40. 7 40. 9 8 26. 24. 3 25. 1 22. 6 27. 8 23. 5 6

-0.2 65 -0.2 45 -0.2 33 -0.2 19 -0.2 48

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9