Precambrian Research 222–223 (2012) 424–449
Contents lists available at ScienceDirect
Precambrian Research journal homepage: www.elsevier.com/locate/precamres
U–Pb geochronology and Hf–Nd isotopic geochemistry of the Badu Complex, Southeastern China: Implications for the Precambrian crustal evolution and paleogeography of the Cathaysia Block Jin-Hai Yu a,b,d,∗ , Suzanne Y. O’Reilly b , Mei-Fu Zhou c , W.L. Griffin b , Lijuan Wang a,b a
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China GEMOC ARC National Key Centre, Department of Earth and Planetary Sciences, Macquarie University, Sydney, NSW 2109, Australia c Department of Earth Sciences, University of Hong Kong, Hong Kong, China d State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China b
a r t i c l e
i n f o
Article history: Received 28 February 2011 Received in revised form 6 July 2011 Accepted 15 July 2011 Available online 9 September 2011 Keywords: Precambrian crustal evolution Reconstruction of Cathaysia in Columbia Zircon U–Pb–Hf isotope Badu Complex South China
a b s t r a c t The oldest rocks of the Cathaysia Block, South China, comprise the Badu Complex and Paleoproterozoic granites in the Wuyishan area (southern Zhejiang and northwestern Fujian Provinces). New zircon U–Pb ages, Hf isotopes and trace elements for metamorphic rocks from the Badu Complex, and bulk Ndisotope compositions of these rocks and granites in the Wuyishan area provide important constraints on the Precambrian crustal evolution of the Cathaysia Block. Inherited cores of zircon grains from the metamorphic rocks are of magmatic origin, predominantly formed at ca 2.5 Ga, while overgrowth rims reflect two episodes of granulite–facies metamorphism related to collisional orogeny at 1.89–1.88 Ga and 252–234 Ma. The unimodal age distribution (∼2.5 Ga) of detrital zircons and the positive εHf(t) of most Neoarchean zircons suggest that the detritus of these sedimentary protoliths of the Badu Complex came from a proximal volcanic arc, and that they were deposited in an arc basin synchronously with ∼2.5 Ga volcanism. Zircon U–Pb ages and Hf-isotopes with whole-rock Nd isotopes suggest that the juvenile crust of the eastern Cathaysia Block was generated mainly at 2.5 Ga and 2.8 Ga, and minor at 3.5–3.3 Ga with some evidence for the generation at 3.7–3.6 Ga and ∼4.0 Ga. A strong ∼1.9 Ga orogeny and the 3.3–3.0 Ga thermal event only involved the reworking of older crust material. Paleoproterozoic (1.89–1.86 Ga) granitic magmatic activity and high-grade metamorphism in the eastern Cathaysia Block were synchronous with the assembly of the Columbia supercontinent. Using integrated geochronological, Hf–Nd isotopic and petrologic data as a “barcode”, we compare the Cathaysia Block with other Paleoproterozoic orogens worldwide, and argue that its closest affinity is with the South Korean Peninsula and the Lesser Himalaya of NW India. Consequently, the eastern Cathaysia block, and the South Korean massif (as the united Cathay-South Korea terrane) was close to the Lesser Himalaya terrane in the Paleoproterozoic configuration of the Columbia supercontinent. The spatial linkage was maintained for ca 1 Ga, until the fragmentation of the Rodinia supercontinent during Neoproterozoic time. © 2011 Elsevier B.V. All rights reserved.
1. Introduction The assembly and breakup of supercontinents are currently one of the most attractive and important issues in solid – Earth geology. The supercontinent cycle is a major driving process that has provided the impetus for many of the important developments in Earth’s history (Rao and Reddy, 2002). Comparison of paleomagnetic, lithological and structural data from coeval rocks in various continents provides constraints on the reconstruction of supercontinents, especially for the younger ones such as Gondwanaland and Pangea. However, paleomagnetic information in old rocks can be
∗ Corresponding author. Tel.: +86 25 83686183; fax: +86 25 83686016. E-mail address:
[email protected] (J.-H. Yu). 0301-9268/$ – see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.precamres.2011.07.014
erased by tectonothermal overprinting. Therefore, stratigraphical, lithological, geochronological and geochemical data are increasingly used to establish former linkages between separated blocks in the Proterozoic supercontinents, such as Columbia and Rodinia (Karlstrom et al., 2001; Rogers and Santosh, 2002; Li et al., 2002, 2003; Zhao et al., 2002, 2004; Yu et al., 2008; Howard et al., 2009; Bhowmika et al., 2010). The South China Block (SCB) is an important Precambrian terrain, which is composed of the Yangtze and Cathaysia blocks (Fig. 1a). Its paleogeography in the Rodinia supercontinent has been discussed by many researchers based on the different types of geological observations (Li et al., 1995, 2002; Jiang et al., 2003; Yang et al., 2004; Zhou et al., 2002a, 2006; Wang et al., 2008; Yu et al., 2008). However, its early Precambrian evolution, especially for Cathaysia, has not been well understood, and its position
J.-H. Yu et al. / Precambrian Research 222–223 (2012) 424–449
425
Fig. 1. Sketch geological map of South China showing the study area.
in the Paleoproterozoic supercontinent Columbia and its relationship with other continental blocks have not been well constrained, due to the sparse outcrops of pre-Mesoproterozoic basement rocks and an absence of paleomagnetic data. Recently, a Paleoproterozoic orogeny has been recognized in the eastern Cathaysia Block, suggesting that South China was probably part of the supercontinent Columbia (Yu et al., 2009). This paper presents new whole-rock Nd-isotope compositions and trace-elements, U–Pb ages and Hf-isotopes of zircons from metamorphic rocks in the eastern Cathaysia Block. The new dataset helps us to unravel the early Precambrian crustal evolution of the Cathaysia Block and its relationship with other blocks within Columbia. 2. Geological background and sampling South China is composed of the Yangtze Craton to the northwest and the Cathaysia Block to the southeast (Fig. 1a). These two blocks have different histories of Precambrian crustal evolution and were brought together during early Neoproterozoic time (1000–800 Ma; Shu et al., 1994; Zhao and Cawood, 1999; Li et al., 2002, 2008, 2009; Ye et al., 2007; Wang et al., 2007, 2010a,b; Zhao et al., 2011). Neoarchean basement is widespread in the Yangtze Craton (Zheng et al., 2006; Zhang et al., 2006a; Wang et al., 2010a) and a Mesoarchean core is present in the northern part (Kongling area) (Qiu et al., 2000; Zheng et al., 2006; Jiao et al., 2009). Neoproterozoic (740–840 Ma) granitic and mafic magmatism was important around the Yangtze craton (Li, 1999; Zhou et al., 2002a, 2002b; Li et al., 2003; Wang et al., 2006, 2010a; Wu et al., 2006; Zheng et al., 2004, 2007, 2008). Minor ∼1.7 Ga volcanic rocks (Greentree and Li, 2008) and 1.1–0.9 Ga igneous rocks are exposed along the western and southeastern margins of the Yangtze Block (Greentree et al., 2006; Ye et al., 2007; Li et al., 2009). In contrast, the Cathaysia Block is characterized by voluminous Phanerozoic igneous rocks, particularly Mesozoic granitoids, and quite sparsely exposed Precambrian metamorphic basement rocks (Fig. 1). In the northern Wuyishan area, eastern part of the Cathaysia Block, Precambrian
rocks are most abundant. Most metamorphic rocks in this area were previously considered to have Paleo-Mesoproterozoic and even Neoarchean ages (Hu et al., 1991; Gan et al., 1995; Li, 1997; Zhuang et al., 2000). However, many of them have recently been demonstrated to have formed in the Neoproterozoic and even later (Li et al., 2005, 2010; Yu et al., 2005; Wan et al., 2007; Shu et al., 2011); the Archean ages obtained by the Sm-Nd isochron method are probably unreliable (Li, 1997). New zircon U–Pb dating results indicate the existence of Paleoproterozoic S-type granites and highgrade metamorphic rocks in the northern Wuyishan area (Gan et al., 1995; Li and Li, 2007; Yu et al., 2009; Liu et al., 2009), suggesting that there was a Paleoproterozoic orogeny in the Cathaysia, probably related to the assembly of the supercontinent Columbia. Precambrian sequences in the northern Wuyishan area were generally assigned as the Paleoproterozoic Badu “Group” and Mesoproterozoic Longquan Group (Hu et al., 1991). However, the Badu “Group” is not a homogeneous unit, and the mafic rocks in the Tangyuan “Formation” at the bottom of the Badu “Group” are not Paleoproterozoic (Yu et al., 1995; our unpublished data). Therefore, the Badu “Group” probably should be named as the “Badu Complex”. The Longquan Group is composed mainly of mica-quartz schist, epidote amphibolite, actinolite schist, finegrained biotite gneiss, magnetite-bearing quartzite and marble, suggesting that the protoliths were mafic volcanic rocks and pelitic–arenaceous–calcareous sedimentary rocks. Dating of some granitoids intruding the Badu Complex suggests that the complex formed before 1888 Ma (Yu et al., 2009). The Longquan Group is more likely to have formed in the Neoproterozoic, based on the similarity of its rock assemblages to the Neoproterozoic Chencai Group in northern Zhejiang Province (Yu et al., 1995; Li et al., 2010) and the Mamianshan Group in the southern part of the Wuyishan area (northern Fujian Province) (Li et al., 2005; Shu et al., 2011). These Precambrian rocks are intruded by early Paleozoic and late Mesozoic granites, or covered by Paleozoic sediments and late Mesozoic volcanic rocks (Fig. 1b), especially along the coastal area of Southeastern China.
426
J.-H. Yu et al. / Precambrian Research 222–223 (2012) 424–449
Fig. 2. Photomicrographs of sample zj06-20-1 (a) and zj06-28 (b). Mineral symbols: bt – biotite, gt – garnet, ky – kyanite, ms – muscovite, pl – plagioclase, and qz – quartz.
Three samples of metamorphic rocks (zj06-15, zj06-20-1, zj0628) from the Badu complex and six samples of Paleoproterozoic granites (zj06-22, zj06-23, zj06-31, zj06-35-1, zj06-36-1, zj06-39) intruding the complex were chosen for Sm–Nd isotopic analyses in this study. Zircons from two metamorphic rock samples (zj0620-1 and zj06-28) were used for U–Pb dating and Hf-isotope and trace-element analyses. The ages and Hf-isotope compositions of zircons from the granites have been reported by Yu et al. (2009). Sample zj06-20-1, collected in Longquan County, is the mesosome of a biotite migmatitic gneiss (Fig. 1b), and contains 45% plagioclase, 35% quartz and 15% biotite (mostly altered into muscovite) with minor K-feldspar and epidote (Fig. 2a). A quartz-rich gneiss (sample zj06-28) collected in Qingyuan County (Fig. 1b), is composed of 70% quartz, 12% biotite, 10% garnet, 5% kyanite and minor plagioclase (Fig. 2b). Field geology and petrography of other samples have been described in detail by Yu et al. (2009). The mineral assemblage and geochemistry indicates that the protoliths of these metamorphic rocks of the Badu Complex were sedimentary rocks (Yu et al., 2009).
3. Analytical methods Zircon-rich heavy mineral concentrates were obtained by conventional separation techniques. More than 100 zircon grains were hand-picked from each sample under a Leica binocular microscope, mounted in epoxy disks and polished to expose their cores. CL imaging was carried out at the State Key Laboratory of Geological Processes and Mineral Resources (GPMR), China University of Geosciences, China. Zircon U–Pb dating and Hf-isotope analyses were performed at GEMOC Key Centre, Macquarie University, Australia. U–Pb dating was carried out based on BSE/CL images and using an Agilent HP 4500 ICP-MS, attached to a Merchantek/NWR 213 mm laser ablation sampler. Each run comprised 10–12 unknown samples and four analyses of the GJ-1 zircon standard (at beginning and end). Two well-characterized zircons (91500 and Mud Tank) were also analyzed to control reproducibility and instrument stability. The same zircon standard (GJ-1) was used for the U–Pb dating of some rutiles, and yields apparently reasonable ages. The laserablation spot was ∼30 m in diameter. Operating conditions and data acquisition parameters for the LA-ICPMS are similar to those described by Jackson et al. (2004) and Griffin et al. (2004). Analysis results were reduced using the GLITTER 4.4 program (Griffin et al., 2008). U–Pb ages of some zircons decrease during laser
ablation, suggesting loss of radiogenic Pb in the outer part of the grains. Thus, the stable section of each signal was integrated to yield the age. In situ Lu-Hf isotope analyses were performed using a Nu Plasma MC-ICP-MS with a Merchantek/NWR 213 mm laser-ablation microprobe. Typical ablation time is about 80–120 s, resulting in pits with 50–60 m diameter and 40–50 m depth. Before analysis of unknown samples, 91500 and Mud Tank zircons were analyzed to check instrument reliability and stability. The analytical conditions and procedures are those described by Griffin et al. (2002, 2004). To calculate model ages (TDM ) and epsilon Hf based on a depleted mantle and chondrite sources, we have adopted the depleted mantle with 176 Hf/177 Hf = 0.28325 and 176 Lu/177 Hf = 0.0384 (Griffin et al., 2002) and chondrite with 176 Hf/177 Hf = 0.282772 and 176 Lu/177 Hf = 0.0332 (Blichert-Toft and Albar‘ede, 1997). The decay constant of 176 Lu adopted in this paper is 1.865 × 10−11 per year (Scherer et al., 2001). Two-stage “crustal” model ages (TDM C ) are calculated assuming that the parental magma of the zircon was derived from a source with an average continental crust 176 Lu/177 Hf of 0.015 (Griffin et al., 2002). In order to determine the origin of zircons in samples zj0620-1 and zj06-28, trace elements of some grains were analyzed by LA-ICP-MS at the State Key Laboratory of Geological Processes and Mineral Resources (GPMR), China. Laser sampling was performed using an excimer laser ablation system (GeoLas 2005), and an Agilent 7500a ICP-MS instrument was used to acquire ion-signal intensities. Laser sampling spot is 32 mm in diameter. USGS reference glasses GSE-1G, BHVO-2G, BIR-1G, BCR-2G were used as multiple-calibration external standards for calibration of traceelement contents without applying an internal standard (Liu et al., 2008a). Zircon 91500 was used as external standard for U–Pb dating, and was analyzed twice every six analyses. Time-dependent drift of U–Th–Pb isotopic ratios was corrected using a linear interpolation (with time) for every 6 analyses (i.e., 91500 + six zircon samples + 91500) (Liu et al., 2010). Zircon standard GJ-1 (Jackson et al., 2004) was analyzed as an unknown. The operating conditions for the laser ablation system and the ICP-MS instrument and data reduction are described in detail by Liu et al. (2008a, 2010). Ages of these grains also were obtained during this analysis procedure. These ages are mostly similar to those obtained in the GEMOC laboratories, with differences of <4% (Table 1). Nine samples, including the Paleoproterozoic granites in the study area (Yu et al., 2009) were selected for Sm–Nd isotope analysis. Seven of the nine samples were analyzed at the GEMOC National Key Centre, Macquarie University.
Table 1 U–Pb dating results of zircons from samples zj06-20-1 and zj06-28 in the Badu Complex. Grain#
Isotopic ratios: 1 sigma uncertainty. 207
Pb/206 Pb
207
0.00203 0.00179 0.00176 0.00194 0.00196 0.00151 0.00144 0.00153 0.00208 0.00301 0.00223 0.00143 0.00158 0.00180 0.00152 0.00223 0.00190 0.00132 0.00186 0.00187 0.00232 0.00159 0.00289 0.00454 0.00320 0.00158 0.00129 0.00162 0.00212 0.00291 0.00181 0.00169 0.00230 0.00159 0.00141 0.00147 0.00182 0.00176 0.00123 0.00234 0.00201 0.00219 0.00253 0.00187 0.00228 0.00138 0.00233 0.00165 0.00125 0.00192 0.00190
8.64837 9.71456 9.20804 10.84951 9.75911 4.86299 4.58538 4.12360 11.37745 9.44758 10.29398 5.06854 4.50724 9.58849 4.56394 11.64329 9.76410 4.80920 9.26267 6.88261 9.96182 4.36459 19.71389 35.56048 15.73449 4.19760 4.23484 5.01386 8.06025 23.14345 10.03533 7.44927 4.16849 6.25250 5.13202 5.57164 10.24770 10.16071 5.07255 7.03534 4.93342 9.04709 5.78817 3.73004 4.76932 5.26426 8.59388 5.65743 4.95183 8.90050 10.13286
Pb/235 U
Age estimates: 1 sigma uncertainty (ma) 1
206
Pb/238 U
0.11607 0.10804 0.10576 0.12300 0.11873 0.05652 0.06354 0.05300 0.13555 0.16483 0.14118 0.05870 0.06633 0.10750 0.06301 0.15162 0.10745 0.05926 0.10247 0.09089 0.15002 0.06440 0.22251 0.49313 0.24414 0.05476 0.04879 0.06182 0.11966 0.24259 0.11275 0.08477 0.07766 0.07913 0.06098 0.05944 0.10982 0.10809 0.05300 0.09744 0.08791 0.11552 0.09376 0.06477 0.09497 0.06084 0.13405 0.06786 0.05336 0.10015 0.12297
0.39902 0.44081 0.43336 0.45661 0.42766 0.29653 0.29333 0.26000 0.48405 0.42573 0.44177 0.32121 0.29049 0.43267 0.28365 0.46637 0.43810 0.30724 0.43441 0.32634 0.45280 0.28230 0.58879 0.75088 0.53323 0.27471 0.27384 0.30523 0.39937 0.62980 0.44806 0.35554 0.26456 0.36147 0.32688 0.30576 0.45346 0.46089 0.32313 0.32760 0.30931 0.41748 0.29284 0.24402 0.30221 0.33297 0.39908 0.29437 0.31699 0.37848 0.45743
Pb/206 Pb ± 1
1
207
0.00461 0.00453 0.00456 0.00480 0.00469 0.00276 0.00358 0.00269 0.00498 0.00446 0.00513 0.00308 0.00353 0.00449 0.00337 0.00540 0.00431 0.00347 0.00409 0.00388 0.00548 0.00335 0.00577 0.00882 0.00649 0.00255 0.00286 0.00280 0.00471 0.00616 0.00470 0.00379 0.00272 0.00395 0.00329 0.00300 0.00452 0.00461 0.00321 0.00313 0.00401 0.00396 0.00306 0.00313 0.00408 0.00333 0.00497 0.00317 0.00318 0.00394 0.00503
2426 2454 2392 2581 2513 1940 1855 1881 2562 2465 2548 1871 1841 2463 1906 2663 2473 1857 2398 2380 2451 1835 3138 3679 2936 1813 1835 1943 2304 3285 2481 2368 1869 2035 1862 2127 2497 2455 1862 2411 1891 2426 2269 1814 1872 1875 2415 2220 1853 2563 2463
22 19 19 19 20 23 23 24 20 31 22 22 25 19 23 20 20 21 20 21 24 25 19 20 24 26 21 24 25 17 19 19 36 22 22 19 19 18 19 25 31 23 30 30 35 22 25 20 20 19 20
207
Pb/235 U ± 1
2165 2354 2321 2425 2295 1674 1658 1490 2545 2286 2359 1796 1644 2318 1610 2468 2342 1727 2326 1821 2408 1603 2985 3611 2755 1565 1560 1717 2166 3149 2387 1961 1513 1989 1823 1720 2411 2444 1805 1827 1737 2249 1656 1408 1702 1853 2165 1663 1775 2069 2428
21 20 21 21 21 14 18 14 22 20 23 15 18 20 17 24 19 17 18 19 24 17 23 32 27 13 14 14 22 24 21 18 14 19 16 15 20 20 16 15 20 18 15 16 20 16 23 16 16 18 22
Concordance 206
Th
U
Th/U
279 356 124 132 510 961 1419 999 160 1204 380 194 262 578 620 363 51 1154 338 885 114 1194 103 287 709 1785 2798 702 906 484 288 468 527 73 301 1454 111 84 897 1379 537 380 62 1283 925 2109 655 1089 1579 715 211
0.38 0.69 2.13 1.27 0.55 0.013 0.005 0.04 0.40 0.42 0.76 1.01 0.94 0.76 0.17 0.75 0.91 0.006 0.56 0.49 0.66 0.011 0.56 0.70 0.35 0.009 0.004 0.07 0.53 0.65 1.27 0.58 0.21 1.26 0.60 0.02 0.50 0.31 0.007 1.50 0.12 0.78 0.81 0.013 0.12 0.012 0.24 0.24 0.005 0.40 1.35
Pb/238 U ± 1
2302 2408 2359 2510 2412 1796 1747 1659 2555 2383 2462 1831 1732 2396 1743 2576 2413 1787 2364 2096 2431 1706 3077 3654 2861 1674 1681 1822 2238 3233 2438 2167 1668 2012 1841 1912 2457 2450 1832 2116 1808 2343 1945 1578 1780 1863 2296 1925 1811 2328 2447
12 10 11 11 11 10 12 11 11 16 13 10 12 10 12 12 10 10 10 12 14 12 11 14 15 11 9 10 13 10 10 10 15 11 10 9 10 10 9 12 15 12 14 14 17 10 14 10 9 10 11
89 96 97 94 91 86 89 79 99 93 93 96 89 94 84 93 95 93 97 77 98 87 95 98 94 86 85 88 94 96 96 83 81 98 98 81 97 100 97 76 92 93 73 78 91 99 90 75 96 81 99
106 246 265 168 280 13 8 42 65 511 287 195 246 438 107 271 46 7 191 433 75 14 57 201 247 16 12 52 483 316 366 269 112 92 182 25 55 26 6 2069 62 296 51 17 115 24 156 265 8 287 286
J.-H. Yu et al. / Precambrian Research 222–223 (2012) 424–449
Migmatitic gneiss zj06-20-1 0.15721 1c 2c 0.15985 3c 0.15412 4c 0.17234 6c 0.16552 8r 0.11894 10 0.11340 10* 0.11504 11c 0.17047 12 0.16090 13c 0.16902 14c 0.11443 14c* 0.11254 15c 0.16073 17r 0.11671 18c 0.18109 19c 0.16160 19r 0.11354 20c 0.15461 22 0.15298 0.15959 26c 26r 0.11215 27c 0.24273 0.34352 28c 29 0.21404 30c 0.11080 30r 0.11215 32 0.11911 33 0.14640 34c 0.26646 35c 0.16244 36 0.15197 37 0.11428 38c 0.12546 39c 0.11387 40 0.13217 0.16393 42c 43c 0.15992 43r 0.11387 44c 0.15583 44c* 0.11570 46c 0.15720 47c 0.14344 47r 0.11088 48c 0.11448 49 0.11467 0.15622 50c 51c 0.13941 52r 0.11332 0.17058 53c 54c 0.16068
1
427
428
Table 1 (Continued) Grain#
Isotopic ratios: 1 sigma uncertainty. 207
206
Pb/
Pb
235
Pb ± 1
U ± 1
1
0.07284 0.08989 0.11702 0.06175 0.06764 0.14149 0.05277 0.12296 0.10851 0.10799 0.06646 0.03848 0.07366 0.06282 0.14752 0.27747 0.13907 0.06848
0.33573 0.35835 0.41486 0.33921 0.24834 0.44178 0.30217 0.47937 0.43035 0.38776 0.32473 0.21838 0.34729 0.30618 0.50450 0.57947 0.43090 0.30635
0.00375 0.00396 0.00464 0.00334 0.00326 0.00509 0.00307 0.00458 0.00409 0.00441 0.00378 0.00201 0.00369 0.00289 0.00511 0.00532 0.00518 0.00363
1951 2357 2432 1875 1804 2502 1903 2518 2495 2502 1868 1842 2150 1871 2705 3506 2448 1861
23 20 21 22 31 23 20 20 20 19 22 23 20 26 19 19 24 24
1866 1974 2237 1883 1430 2359 1702 2525 2307 2112 1813 1273 1922 1722 2633 2947 2310 1723
18 19 21 16 17 23 15 20 18 20 18 11 18 14 22 22 23 18
1907 2168 2341 1879 1588 2436 1794 2521 2408 2316 1839 1502 2034 1790 2674 3289 2384 1786
11 11 12 10 14 13 9 10 10 11 11 9 10 11 11 11 14 12
96 84 92 100 79 94 89 100 92 84 97 69 89 92 97 84 94 93
189 79 217 6 31 120 86 26 41 823 1902 112 129 13 309 60 269 16
789 169 333 1240 5298 178 1165 59 138 2835 1321 748 206 706 576 121 426 1447
0.24 0.47 0.65 0.005 0.006 0.67 0.07 0.43 0.30 0.29 1.44 0.15 0.63 0.02 0.54 0.49 0.63 0.011
0.00222 0.00200 0.00217 0.00204 0.00143 0.00152 0.00111 0.00137 0.00362 0.00261 0.00199 0.00131 0.00127 0.00127 0.00208 0.00169 0.00189 0.00110 0.00102 0.00102 0.00129 0.00213 0.00153 0.00149 0.00127
10.51950 7.71912 10.72411 11.20294 5.55314 10.64854 5.26495 4.97103 36.91925 21.62987 10.49504 3.56745 5.19479 4.98801 9.74323 5.89304 4.51887 4.82527 5.30738 4.89962 5.88365 10.27016 3.67828 5.01681 5.07141
0.15850 0.11638 0.15156 0.15680 0.10850 0.11756 0.06043 0.08260 0.45071 0.23844 0.12777 0.10279 0.08155 0.06114 0.14022 0.07675 0.09821 0.05300 0.04955 0.05698 0.07364 0.13502 0.05202 0.08107 0.08193
0.46590 0.37638 0.46784 0.48451 0.33719 0.46795 0.32584 0.30081 0.76929 0.58268 0.45911 0.22731 0.32722 0.31968 0.44550 0.34663 0.29152 0.31553 0.34450 0.31944 0.35569 0.46080 0.24050 0.30163 0.32071
0.00377 0.00303 0.00297 0.00413 0.00479 0.00326 0.00245 0.00336 0.00607 0.00399 0.00439 0.00568 0.00381 0.00235 0.00424 0.00205 0.00362 0.00212 0.00176 0.00256 0.00274 0.00315 0.00163 0.00270 0.00376
2490 2328 2517 2532 1940 2506 1911 1950 3695 3298 2515 1853 1877 1843 2433 1994 1828 1806 1820 1811 1950 2473 1811 1958 1869
17 23 22 16 22 16 17 21 21 15 20 22 21 20 22 25 31 23 17 17 20 23 24 22 25
2482 2199 2500 2540 1909 2493 1863 1814 3691 3167 2479 1542 1852 1817 2411 1960 1734 1789 1870 1802 1959 2459 1567 1822 1831
14 14 13 13 17 10 10 14 12 11 11 23 13 10 13 11 18 9 8 10 11 12 11 14 14
2466 2059 2474 2547 1873 2475 1818 1695 3678 2960 2436 1320 1825 1788 2375 1918 1649 1768 1908 1787 1962 2443 1389 1699 1793
17 14 13 18 23 14 12 17 22 16 19 30 19 11 19 10 18 10 8 13 13 14 8 13 18
99 88 98 101 97 99 95 87 100 90 97 71 97 97 98 96 90 98 105 99 101 99 77 87 96
254 297 135 71 203 342 15 9 209 318 358 117 6 156 213 33 63 80 18 9 9 40 327 15 14
348 179 124 173 230 765 859 1195 573 526 313 857 999 188 309 874 391 1006 1827 1563 1170 100 877 1051 836
0.73 1.66 1.09 0.41 0.88 0.45 0.02 0.007 0.36 0.60 1.14 0.14 0.006 0.83 0.69 0.04 0.16 0.08 0.010 0.006 0.008 0.40 0.37 0.014 0.02
0.00220 0.00412 0.00177 0.00142 0.00678 0.00130 0.00182 0.00144 0.00146 0.00191
8.45080 0.25860 4.26400 4.00633 0.26933 4.72136 9.10224 5.32303 4.69344 10.66704
0.10704 0.02067 0.06977 0.04460 0.03507 0.05116 0.10065 0.05790 0.06526 0.13027
0.39518 0.03692 0.27174 0.25459 0.03797 0.30001 0.41784 0.33202 0.30032 0.47245
0.00344 0.00065 0.00339 0.00224 0.00084 0.00289 0.00407 0.00290 0.00363 0.00527
2403 232 1861 1866 261 1866 2434 1900 1854 2495
24 177 28 22 277 20 19 22 23 20
2281 234 1686 1636 242 1771 2348 1873 1766 2495
12 17 13 9 28 9 10 9 12 11
2147 234 1550 1462 240 1691 2251 1848 1693 2494
16 4 17 12 5 14 19 14 18 23
89 101 83 78 92 91 92 97 91 100
143 258 0.000 16 117 811 105 848 0.000 8 70 525 106 384 295 1001 109 1532 245 539
Pb/
Pb/
206
238
U ± 1
1
5.53951 7.45660 9.02682 5.36462 3.77601 10.01410 4.85317 10.96984 9.71410 8.78926 5.11429 3.39013 6.41172 4.82844 12.91948 24.50990 9.46189 4.80702
U
235
Th/U
0.00154 0.00177 0.00200 0.00139 0.00192 0.00229 0.00128 0.00203 0.00199 0.00190 0.00139 0.00141 0.00152 0.00163 0.00218 0.00388 0.00225 0.00155
Pb/
207
U
1
U
206
Th
207
Pb/
238
Concordance
206
Pb/
0.55 0.00 0.14 0.12 0.00 0.13 0.28 0.29 0.07 0.45
J.-H. Yu et al. / Precambrian Research 222–223 (2012) 424–449
55 0.11967 0.15094 56c 0.15782 57c 0.11472 57r 0.11030 57r* 0.16440 58c 59r 0.11649 60c 0.16599 60r 0.16375 62c 0.16442 63c 0.11423 0.11259 63c* 0.13391 64c 66 0.11442 67c 0.18574 68c 0.30692 69c 0.15927 0.11381 70r GPMR data 2c 0.16330 3c 0.14835 4c 0.16578 0.16739 11c 14c 0.11891 15c 0.16468 0.11701 17r 27r 0.11947 28c 0.34736 0.26872 34c 0.16568 35c 0.11334 37 0.11484 38r 0.11263 39 42c 0.15785 43r 0.12259 0.11166 44c 0.11029 48r 0.11119 49 0.11069 52 0.11948 57r 60c 0.16159 63 0.11068 0.12014 67r 0.11434 70r Gneiss zj06-28 0.15512 −1 0.05080 −2 ru 0.11378 −4 −4* 0.11414 0.05145 −5 ru 0.11415 −6 0.15800 −7 0.11628 −8 0.11335 −8* 0.16376 −10
Age estimates: 1 sigma uncertainty (ma)
207
Table 1 (Continued) Grain#
Isotopic ratios: 1 sigma uncertainty. 207
207
0.00208 0.00155 0.00162 0.00178 0.00222 0.00171 0.00129 0.00131 0.00146 0.00157 0.00164 0.00121 0.00129 0.00183 0.00180 0.00150 0.00156 0.00185 0.00241 0.00163 0.00137 0.00181 0.00203 0.00180 0.00182 0.00337 0.00069 0.00212 0.00199 0.00176 0.00136 0.00149 0.00536 0.00184 0.00247 0.00167 0.00167 0.00184 0.00153 0.00234 0.00209 0.00172 0.00162 0.00157 0.00161 0.00133 0.00152 0.00179 0.00393 0.00140 0.00122 0.00120 0.00151 0.00156 0.00128
9.55507 7.35030 8.05265 9.32219 3.21698 3.50921 4.87124 5.18436 4.96676 3.39015 4.35532 4.60320 5.94435 10.32421 5.65867 7.15160 7.78045 7.89243 7.05668 5.13447 4.45393 6.65439 9.46827 8.74409 9.36820 0.26727 0.27103 9.87295 4.54641 3.17025 5.06322 4.17892 0.28164 8.44906 18.38802 9.18196 6.18644 7.23648 5.77416 7.01281 6.19125 8.51058 8.11603 4.13174 3.41410 4.76651 4.17240 6.36337 33.51138 4.91389 4.85947 4.17715 4.53669 5.91466 4.91125
Pb/235 U
Age estimates: 1 sigma uncertainty (ma) 1
206
0.13423 0.07634 0.08873 0.10673 0.06021 0.04836 0.05326 0.05831 0.06480 0.04395 0.06488 0.04815 0.05957 0.11063 0.08348 0.07537 0.08169 0.10699 0.11679 0.07596 0.04922 0.08698 0.12345 0.09132 0.11305 0.01738 0.00377 0.13118 0.08239 0.04826 0.06090 0.04935 0.02913 0.10836 0.19096 0.09704 0.08007 0.10189 0.07093 0.10739 0.07638 0.09578 0.09084 0.05056 0.05227 0.05576 0.04982 0.07583 0.40754 0.06247 0.05004 0.04192 0.05265 0.07427 0.05039
0.43788 0.37716 0.39956 0.43321 0.19153 0.22274 0.31293 0.32886 0.31495 0.19808 0.27805 0.29655 0.34920 0.45481 0.31966 0.38040 0.39516 0.40112 0.33553 0.32322 0.28799 0.34757 0.43879 0.42398 0.43753 0.03797 0.03856 0.44418 0.29214 0.21026 0.32179 0.26907 0.03994 0.42173 0.58580 0.43979 0.33802 0.38836 0.34294 0.35482 0.29926 0.39854 0.40883 0.26624 0.22411 0.30303 0.27042 0.34865 0.73384 0.31350 0.31062 0.26842 0.28749 0.33720 0.31252
Pb/238 U
Pb/206 Pb ± 1
1
207
0.00530 0.00365 0.00409 0.00454 0.00259 0.00218 0.00309 0.00334 0.00351 0.00220 0.00331 0.00296 0.00340 0.00455 0.00393 0.00376 0.00389 0.00464 0.00432 0.00387 0.00263 0.00382 0.00481 0.00368 0.00482 0.00057 0.00044 0.00495 0.00386 0.00222 0.00344 0.00238 0.00079 0.00471 0.00574 0.00433 0.00379 0.00456 0.00363 0.00378 0.00267 0.00422 0.00426 0.00231 0.00279 0.00321 0.00238 0.00305 0.00803 0.00353 0.00303 0.00257 0.00252 0.00371 0.00289
2437 2244 2302 2414 1983 1868 1847 1870 1870 2017 1858 1842 2007 2504 2076 2182 2262 2260 2375 1883 1835 2213 2418 2341 2405 243 240 2469 1846 1789 1866 1842 248 2292 3036 2362 2135 2166 1988 2268 2346 2401 2276 1841 1808 1866 1831 2130 3623 1859 1856 1846 1871 2060 1864
22 19 19 19 32 27 20 21 23 22 26 19 18 19 25 19 19 22 27 25 22 22 22 20 20 145 31 22 32 29 21 24 224 22 17 19 22 24 22 28 24 19 19 25 26 21 24 24 18 22 19 19 24 22 20
207
Pb/235 U ± 1
2393 2155 2237 2370 1461 1529 1797 1850 1814 1502 1704 1750 1968 2464 1925 2131 2206 2219 2119 1842 1722 2067 2385 2312 2375 241 244 2423 1740 1450 1830 1670 252 2281 3010 2356 2003 2141 1943 2113 2003 2287 2244 1661 1508 1779 1669 2027 3596 1805 1795 1670 1738 1963 1804
13 9 10 11 15 11 9 10 11 10 12 9 9 10 13 9 9 12 15 13 9 12 12 10 11 14 3 12 15 12 10 10 23 12 10 10 11 13 11 14 11 10 10 10 12 10 10 10 12 11 9 8 10 11 9
Concordance 206
Th
U
Th/U
776 207 510 255 286 239 242 739 267 1624 412 565 1928 127 193 129 340 1687 337 2097 1285 162 252 138 307 18 1441 484 385 305 751 1143 12 133 396 387 1097 237 86 189 310 262 241 657 599 370 362 269 497 294 292 1142 463 653 200
0.58 0.81 0.43 0.63 0.23 0.13 0.31 0.72 0.38 0.44 0.30 0.02 0.50 0.85 0.56 1.01 0.49 0.61 0.58 0.20 0.18 0.57 1.07 0.51 1.84 0.00 0.006 0.61 0.29 0.39 0.04 0.04 0.00 0.44 0.37 0.57 0.12 0.65 0.87 0.93 0.35 0.57 0.55 0.08 0.05 0.33 0.08 0.30 1.06 0.41 0.34 0.06 0.04 0.76 0.42
Pb/238 U ± 1
2341 2063 2167 2320 1130 1296 1755 1833 1765 1165 1582 1674 1931 2417 1788 2078 2147 2174 1865 1806 1632 1923 2345 2279 2340 240 244 2369 1652 1230 1799 1536 252 2268 2972 2350 1877 2115 1901 1958 1688 2162 2210 1522 1304 1706 1543 1928 3548 1758 1744 1533 1629 1873 1753
24 17 19 20 14 11 15 16 17 12 17 15 16 20 19 18 18 21 21 19 13 18 22 17 22 4 3 22 19 12 17 12 5 21 23 19 18 21 17 18 13 19 19 12 15 16 12 15 30 17 15 13 13 18 14
96 92 94 96 57 69 95 98 94 58 85 91 96 97 86 95 95 96 79 96 89 87 97 97 97 99 102 96 89 69 96 83 102 99 98 99 88 98 96 86 72 90 97 83 72 91 84 91 98 95 94 83 87 91 94
447 166 220 160 66 31 76 533 102 722 122 13 965 108 108 131 166 1037 195 422 227 92 270 70 563 0.000 8.603 296 113 118 30 50 0.000 59 147 221 130 154 75 175 108 150 132 54 29 123 28 80 525 120 99 70 20 496 83
429
0.15827 0.14135 0.14617 0.15608 0.12182 0.11426 0.11290 0.11434 0.11438 0.12414 0.11361 0.11259 0.12347 0.16465 0.12840 0.13636 0.14281 0.14272 0.15255 0.11522 0.11218 0.13887 0.15651 0.14958 0.15530 0.05105 0.05098 0.16122 0.11288 0.10937 0.11413 0.11264 0.05115 0.14531 0.22768 0.15143 0.13275 0.13515 0.12213 0.14338 0.15004 0.15490 0.14399 0.11254 0.11052 0.11410 0.11191 0.13239 0.33124 0.11369 0.11347 0.11287 0.11446 0.12722 0.11399
1
J.-H. Yu et al. / Precambrian Research 222–223 (2012) 424–449
−10-1 −11 −12 −14 −17 −18 −19 −20 −20* −21 −22 −23 −24 −26 −27 −28 −29 −30 −31c −32 −32* s-1 s-2 s-3 s-5 s-6-1 ru s-10r s-14 s-15 s-15* s-19 s-19* s-21 ru s-22 s-24 s-26 s-26r s-27 s-28 s-28-1 s-29 s-30 s-30-1 s-31r s-32 s-36 s-36* s-38 s-39 s-41 s-41* s-45r s-46 s-47 s-48
Pb/206 Pb
430
Table 1 (Continued) Grain#
Isotopic ratios: 1 sigma uncertainty. 207
Age estimates: 1 sigma uncertainty (ma) Pb ± 1
1
10.25824 3.46282 3.76763 10.69494 10.50504 8.32404 10.73279 9.71023 9.06505 5.49318 10.80775 4.98334 6.55214 8.51124 9.85413 6.89362 10.52345 5.85081 8.92046 6.31201 9.20662 4.38810 3.72656 3.31596 7.87990 4.56635 4.81002 3.61720 9.01368 9.77557 7.00391 7.20979 10.55710 10.76565 4.56352 4.54026 6.26425 8.44171 9.23897 5.41145 5.02165 7.35135 4.99340 5.04766 4.09919 12.09597 4.93945
0.12944 0.03783 0.04865 0.20277 0.12680 0.08775 0.15018 0.12368 0.13097 0.05897 0.11275 0.07614 0.09582 0.09031 0.10511 0.07983 0.11567 0.06915 0.08631 0.07540 0.11346 0.05953 0.04651 0.04732 0.10305 0.07244 0.06303 0.07183 0.11962 0.14062 0.08442 0.07732 0.13294 0.12432 0.05157 0.10032 0.10167 0.14927 0.18924 0.07331 0.08563 0.07437 0.07238 0.07460 0.04897 0.12485 0.05261
0.44887 0.22165 0.23803 0.45909 0.46265 0.41189 0.46737 0.43830 0.40788 0.32669 0.48169 0.31021 0.33359 0.41566 0.42052 0.34681 0.46870 0.34810 0.41185 0.35845 0.42455 0.27994 0.24117 0.21752 0.39606 0.29400 0.30301 0.23455 0.41132 0.43942 0.37411 0.38577 0.45403 0.46438 0.29189 0.29251 0.33598 0.41215 0.41429 0.29373 0.31663 0.39646 0.31340 0.32243 0.26396 0.48853 0.31253
0.00496 0.00212 0.00233 0.00622 0.00506 0.00405 0.00552 0.00488 0.00490 0.00326 0.00462 0.00375 0.00392 0.00400 0.00395 0.00369 0.00436 0.00304 0.00370 0.00387 0.00469 0.00254 0.00212 0.00258 0.00445 0.00366 0.00272 0.00322 0.00373 0.00507 0.00385 0.00367 0.00471 0.00451 0.00277 0.00385 0.00300 0.00485 0.00533 0.00349 0.00422 0.00381 0.00384 0.00396 0.00237 0.00472 0.00310
2515 1853 1877 2547 2505 2307 2523 2463 2468 1985 2484 1903 2257 2329 2557 2278 2486 1985 2425 2067 2427 1860 1834 1809 2280 1843 1882 1830 2445 2470 2174 2171 2544 2539 1855 1841 2168 2329 2474 2146 1880 2158 1889 1857 1843 2649 1874
21 21 25 31 20 19 22 21 23 20 19 26 24 19 19 20 20 24 18 21 20 27 25 25 22 27 26 35 25 23 21 20 21 20 21 39 30 29 34 22 29 19 24 25 24 18 20
2458 1519 1586 2497 2480 2267 2500 2408 2345 1900 2507 1817 2053 2287 2421 2098 2482 1954 2330 2020 2359 1710 1577 1485 2217 1743 1787 1553 2339 2414 2112 2138 2485 2503 1743 1738 2014 2280 2362 1887 1823 2155 1818 1827 1654 2612 1809
12 9 10 18 11 10 13 12 13 9 10 13 13 10 10 10 10 10 9 10 11 11 10 11 12 13 11 16 12 13 11 10 12 11 9 18 14 16 19 12 14 9 12 13 10 10 9
2390 1291 1377 2436 2451 2224 2472 2343 2205 1822 2535 1742 1856 2241 2263 1919 2478 1926 2223 1975 2281 1591 1393 1269 2151 1662 1706 1358 2221 2348 2049 2103 2413 2459 1651 1654 1867 2225 2235 1660 1773 2153 1757 1802 1510 2564 1753
22 11 12 27 22 18 24 22 22 16 20 18 19 18 18 18 19 15 17 18 21 13 11 14 21 18 13 17 17 23 18 17 21 20 14 19 14 22 24 17 21 18 19 19 12 20 15
95 70 73 96 98 96 98 95 89 92 102 92 82 96 88 84 100 97 92 96 94 86 76 70 94 90 91 74 91 95 94 97 95 97 89 90 86 96 90 77 94 100 93 97 82 97 94
95 73 77 117 187 233 122 156 47 250 75 60 67 59 103 180 115 49 192 256 34 13 74 72 151 461 63 91 31 330 54 91 94 21 9 14 79 107 12 483 116 126 100 67 49 58 163
237 178 781 320 455 506 171 184 95 453 251 310 395 132 158 614 194 161 250 415 276 254 467 254 322 729 216 249 133 647 191 387 328 63 417 764 437 454 41 325 228 177 640 1757 896 122 297
0.40 0.41 0.10 0.36 0.41 0.46 0.71 0.85 0.49 0.55 0.30 0.19 0.17 0.45 0.65 0.29 0.59 0.30 0.77 0.62 0.12 0.05 0.16 0.28 0.47 0.63 0.29 0.37 0.23 0.51 0.28 0.24 0.29 0.34 0.02 0.02 0.18 0.24 0.28 1.49 0.51 0.71 0.16 0.04 0.06 0.47 0.55
0.11224 0.11358 0.14963 0.16120 0.13980 0.15494 0.12880
0.00125 0.00156 0.00163 0.00190 0.00205 0.00163 0.00161
4.41886 4.66803 8.13532 10.23574 7.26356 8.84309 4.13620
0.05484 0.07515 0.11664 0.13763 0.13409 0.10051 0.06151
0.28456 0.29713 0.39336 0.45961 0.37604 0.41318 0.23221
0.00223 0.00345 0.00357 0.00317 0.00415 0.00216 0.00171
1836 1858 2343 2468 2225 2401 2083
20 25 19 19 25 19 21
1716 1762 2246 2456 2144 2322 1661
10 13 13 12 16 10 12
1614 1677 2138 2438 2058 2229 1346
11 17 17 14 19 10 9
88 90 91 99 92 93 65
80 58 115 175 259 285 107
623 379 391 323 244 439 235
0.13 0.15 0.29 0.54 1.06 0.65 0.45
U
Pb/
Pb/
206
238
U ± 1
1
0.00205 0.00133 0.00158 0.00314 0.00192 0.00161 0.00223 0.00199 0.00226 0.00135 0.00180 0.00172 0.00202 0.00167 0.00196 0.00164 0.00197 0.00165 0.00170 0.00150 0.00189 0.00173 0.00158 0.00153 0.00185 0.00172 0.00169 0.00219 0.00236 0.00222 0.00165 0.00153 0.00213 0.00204 0.00135 0.00243 0.00237 0.00257 0.00329 0.00171 0.00186 0.00144 0.00157 0.00158 0.00150 0.00196 0.00126
Pb/
235
U ± 1
1
U
207
Th/U
0.16576 0.11332 0.11480 0.16897 0.16470 0.14659 0.16655 0.16069 0.16119 0.12196 0.16274 0.11650 0.14246 0.14851 0.16996 0.14418 0.16285 0.12193 0.15711 0.12773 0.15729 0.11371 0.11209 0.11057 0.14431 0.11265 0.11515 0.11186 0.15896 0.16136 0.13579 0.13556 0.16866 0.16815 0.11340 0.11258 0.13527 0.14856 0.16176 0.13362 0.11502 0.13449 0.11555 0.11354 0.11266 0.17959 0.11464
Pb/
206
U
207
Pb
238
Th
206
Pb/
235
Concordance
207
Pb/
J.-H. Yu et al. / Precambrian Research 222–223 (2012) 424–449
s-48-1 s-49-1 s-52 s-54 s-55 s-57 s-59 s-60 s-61c s-61r s-62 s-63 s-64 s-65 s-69 s-69-1 s-72 s-72-1 s-73 s-76 s-78c s-78r s-79 s-79* s-80 s-82 s-83 s-83* s-91 s-92 s-93 s-94 s-95 s-96 s-97 s-98 s-101 s-103 s-105 s-106 s-107 s-108 s-113 s-114 s-114* s-115 s-118 GPMR data −4 −6 −7 −10 −11 −14 −17
206
Table 1 (Continued) Grain#
Isotopic ratios: 1 sigma uncertainty. 207
0.11592 0.11013 0.10869 0.11118 0.11726 0.12429 0.16006 0.13263 0.14424 0.15588 0.05268 0.16159 0.11204 0.11318 0.11393 0.11250 0.13027 0.11358 0.11661 0.11455 0.13219 0.32446 0.13309 0.15599 0.11284 0.12602 0.11074 0.11232 0.12220 0.13286 0.11222 0.10970 0.11234 0.11157
1
207
0.00182 0.00167 0.00140 0.00155 0.00136 0.00148 0.00195 0.00145 0.00173 0.00162 0.00089 0.00189 0.00122 0.00159 0.00148 0.00127 0.00181 0.00132 0.00122 0.00151 0.00164 0.00369 0.00140 0.00168 0.00132 0.00195 0.00132 0.00144 0.00139 0.00219 0.00131 0.00171 0.00150 0.00123
5.22281 4.32581 4.06834 3.88572 5.19196 5.85159 9.19352 8.80852 8.71309 10.14030 0.27553 10.62531 3.86986 4.04964 4.70925 4.02989 5.86304 4.00944 4.81818 4.06401 6.03079 31.38055 6.37078 9.33972 4.57424 7.69666 3.89079 4.65721 5.69162 6.65145 3.99328 3.21486 4.63506 3.85701
Pb/235 U
Age estimates: 1 sigma uncertainty (ma) 1
206
0.08631 0.07712 0.10192 0.06638 0.05945 0.08770 0.11824 0.10579 0.14978 0.12375 0.00496 0.11869 0.04166 0.08031 0.06264 0.04583 0.11598 0.04654 0.05991 0.11610 0.07405 0.37768 0.07030 0.13061 0.07424 0.25372 0.04607 0.06140 0.08074 0.17371 0.07070 0.06807 0.06158 0.04622
0.32507 0.28367 0.27026 0.25239 0.31975 0.34016 0.41508 0.47963 0.43753 0.47062 0.03786 0.47536 0.24976 0.25899 0.29881 0.25902 0.32376 0.25519 0.29843 0.25426 0.32960 0.69840 0.34642 0.43306 0.29315 0.43938 0.25436 0.30013 0.33651 0.36270 0.25718 0.21203 0.29808 0.24984
Pb/238 U
Pb/206 Pb ± 1
1
207
0.00300 0.00311 0.00611 0.00308 0.00185 0.00398 0.00288 0.00306 0.00642 0.00375 0.00040 0.00234 0.00118 0.00457 0.00169 0.00124 0.00357 0.00121 0.00223 0.00595 0.00195 0.00466 0.00199 0.00440 0.00349 0.01107 0.00171 0.00172 0.00243 0.00799 0.00347 0.00363 0.00178 0.00181
1894 1811 1777 1820 1917 2020 2457 2133 2280 2413 322 2473 1833 1851 1863 1840 2102 1857 1906 1873 2128 3591 2139 2413 1856 2043 1813 1839 1989 2136 1836 1794 1839 1825
29 27 29 25 21 21 21 20 20 18 39 19 21 25 24 20 24 22 19 24 22 17 19 18 21 27 21 24 21 29 21 34 24 25
207
Pb/235 U ± 1
1856 1698 1648 1611 1851 1954 2357 2318 2308 2448 247 2491 1607 1644 1769 1640 1956 1636 1788 1647 1980 3531 2028 2372 1745 2196 1612 1760 1930 2066 1633 1461 1756 1605
14 15 20 14 10 13 12 11 16 11 4 10 9 16 11 9 17 9 10 23 11 12 10 13 14 30 10 11 12 23 14 16 11 10
Concordance 206
Th
U
Th/U
215 216 534 434 1522 1285 125 286 282 308 1874 387 462 342 465 478 627 517 421 208 160 345 339 460 208 198 503 504 1726 86 433 272 216 472
0.19 0.50 0.053 0.08 0.05 0.48 0.82 0.22 0.46 1.59 0.006 0.58 0.05 0.04 0.14 0.06 0.28 0.06 0.04 0.54 0.44 1.07 0.35 0.44 0.43 0.25 0.03 0.20 0.12 0.71 0.05 0.52 0.50 0.05
Pb/238 U ± 1
1814 1610 1542 1451 1789 1887 2238 2526 2340 2486 240 2507 1437 1485 1685 1485 1808 1465 1684 1460 1836 3415 1918 2320 1657 2348 1461 1692 1870 1995 1475 1240 1682 1438
15 16 31 16 9 19 13 13 29 16 3 10 6 23 8 6 17 6 11 31 9 18 10 20 17 50 9 9 12 38 18 19 9 9
96 89 87 80 93 93 91 118 103 103 74 101 78 80 90 81 86 79 88 78 86 95 90 96 89 115 81 92 94 93 80 69 91 79
40 107 28 33 72 623 103 64 129 488 11 224 25 13 66 27 178 33 17 112 70 370 119 202 88 50 17 100 213 61 20 142 108 26
J.-H. Yu et al. / Precambrian Research 222–223 (2012) 424–449
−18 −19 −19r −20r −22 −24 −26 −28 s-3 s-5 s-10r s-14 s-15r s-19r s-31c s-31r s-32 s-33r s-34r s-35c s-38 s-39 s-41 s-44 s-48 s-59c s-59r s-63 s-69-1 s-72-1 s-73r s-79c s-83c s-83r
Pb/206 Pb
c: core, r: rim, ru: rutile, *: outer section of zircon without core–mantle structure having more Pb loss (see Yu et al. (2009) for details).
431
432
J.-H. Yu et al. / Precambrian Research 222–223 (2012) 424–449
Isotopic compositions were measured on a Finnigan Triton thermal ionization mass spectrometer (TIMS). Sr and Nd compositions were measured in static multi-collection mode with relay matrix rotation (the “virtual amplifier” of Finnigan) on a single Re and double Re filament, respectively. A single analysis typically consists of 200 cycles (10 blocks of 20) to allow a full rotation of the virtual amplifier. The data were corrected for mass fractionation using 86 Sr/88 Sr = 0.1194 and 146 Nd/144 Nd = 0.7219, respectively. The accuracy and precision of the measurements are demonstrated by analyses of the NIST SRM 987 Sr standard (87 Sr/86 Sr = 0.710257 ± 35 (2sd; n = 13)) and JMC Nd standard (143 Nd/144 Nd = 0.511106 ± 10 (2sd; n = 19)), made over a period of 2 years. USGS reference material BHVO-2 was processed with the samples analyzed in this study and gave values of 87 Sr/86 Sr = 0. 703482 ± 35 (2se, n = 4) and 143 Nd/144 Nd = 0.512970 ± 12 (2se, n = 4). These values are within the long-term average values produced at GEMOC: 87 Sr/86 Sr = 0.703490 ± 28 (2sd; n = 17) and 143 Nd/144 Nd = 0.512967 ± 28 (2sd; n = 13). 147 Sm/144 Nd values are calculated using Sm/Nd ratios determined by ICPMS at the State Key Laboratory for Mineral Deposits Research (SKLMDR), Nanjing University, China (for detailed analytical procedure see Yu et al. (2009)). The other two samples (zj06-22, zj06-36-1) were analyzed at the Isotopic Geochronological Laboratory of the Geological Institute of the Chinese Academy of Geosciences (Beijing). Sm and Nd contents were analyzed using isotope dilution, and isotopic analyses were carried out using a Finnigan MAT 262 muticollector mass spectrometer. Nd isotopic ratios were normalized to 146 Nd/144 Nd = 0.7219. The detailed experimental procedures are similar to those described by Zhang et al. (1994).
4. Analytical results 4.1. Zircon U–Pb ages The zircons of two metamorphic samples (zj06-20-1 and zj0628) were selected for U–Pb age dating and analysis of trace elements and Hf isotopes. Zircons in the migmatitic gneiss sample zj06-20-1 are euhedral to subhedral (Fig. 3). CL images show that many zircons have inherited cores, which have subhedral to anhedral crystal shapes and stronger CL brightness with or without oscillatory compositional zoning. Overgrowths on zircons typically show stronger compositional zoning. Zircons in sample zj06-28 generally exhibit stubby prismatic or ellipsoidal morphology; a few have prismatic shapes (Fig. 3). Many zircons also have core–mantle structures, and the cores have irregular or angular shapes, suggesting a clastic origin. The overgrowth rims have blurry CL zoning (Fig. 3), indicating a metamorphic origin. Dating results for 167 zircon grains show that the zircon cores in these two samples have a large age range, spanning from 3679 Ma to 1862 Ma for sample zj06-20-1, and 3623 to 1843 Ma for sample zj06-28 (Table 1). Zircon rims from sample zj06-20-1 have ages of 1943-1804 Ma, while the ages of rims on zircons in sample zj06-28 define two groups: most rims have ages of 1877-1808 Ma, and one (s-10r) gives a 206 Pb/238 U age of 244 Ma, similar to the U–Pb ages of 4 rutile grains (252–234 Ma) (Table 1). In the Concordia diagram, most analyses of zircons from these two samples plot between two discordia lines with upper intercepts of ∼2500 Ma and ∼1900 Ma and a lower intercept of ∼240 Ma (Fig. 4). All analyses for rims and cores with younger ages lie on the discordia with an upper intercept of ∼1900 Ma. For sample zj0620-1, the discordia gives an upper intercept of 1887 ± 26 Ma and a lower intercept of ca 240 Ma, while for sample zj06-28, it yields an upper intercept age of 1885 ± 9 Ma and a lower intercept age of 243 ± 8 Ma (Fig. 4). If the later parts of the U–Pb analytical signals, representing the outer portions of grains with more Pb loss, are
included in the regression, these two discordia lines yield more precise intercept ages, 1886 ± 22 Ma and 235 ± 190 Ma (MSWD = 1.6) for zj06-20-1, 1882 ± 8 Ma and 243 ± 8 Ma (MSWD = 0.54) for sample zj06-28, respectively. These upper and lower intercept ages are identical to those previously reported for magmatic and metamorphic zircons in Paleoproterozoic meta-S-type granites in the area (Yu et al., 2009). The ages of most zircon cores in both samples cluster at ca 2500 Ma (Figs. 4 and 5), and the two oldest grains have Paleoarchean ages of 3678–3623 Ma, similar to the age of a detrital zircon from a Neoproterozoic metasedimentary rock in northern Fujian Province, south of the study area (Wan et al., 2007). 4.2. Trace elements of zircon The inherited cores of zircons in sample zj06-20-1 have variable trace-element concentrations, but exhibit similar traceelement patterns with higher Th, LREE, LREE/HREE (denoted as Sm/Lu in Table 2), Ce/Ce*, Eu/Eu*, Th/U and lower U and P than the overgrowth rims (Table 2 and Fig. 6a). The cores generally have Th/U > 0.3, while rims have Th/U < 0.1. Although some cores have younger ages of ∼1.9 Ga, similar to the rims, they exhibit REE patterns and high Th/U similar to those older inherited cores (Fig. 6a), suggesting that these younger ages probably result from recrystallization of older zircons or resetting of their U–Pb isotopic systems during Paleoproterozoic thermal events. The two oldest zircon cores have the highest REE contents. The cores of zircons from sample zj06-28 have REE, Th, and U contents and Th/U ratios similar to those from sample zj06-20-1. The oldest core also has the highest REE contents (Fig. 6b). However, the rims of zircons from sample zj06-28 have much lower REE (especially HREE), Th, Nb and Ta, and higher U contents and Sm/Lu ratios, than the cores and thus are significantly different from zircon rims in sample zj06-20-1. They display REE patterns with moderately positive Ce anomalies, negative Eu anomalies and flat HREE (Fig. 6b). The morphology, Th/U ratios (<0.06) and REE patterns of the zircon rims suggest that the rims are of metamorphic origin. The different REE patterns in their overgrowth rims suggest that these two samples had different mineral assemblages during the high-grade metamorphism. REE patterns with low and flat HREE suggest that the rims of zircons in sample zj06-28 grew in equilibrium with garnet at relatively high-pressure conditions, while the metamorphic mineral assemblage of sample zj06-20-1 probably did not contain garnet. A young rim with an age of 244 Ma from sample zj06-28 has the lowest REE, Y, Th, Nb, Ta and P contents and the lowest Th/U (0.006), the highest U and the weakest Ce and Eu anomalies, although it has a REE pattern similar to those of other rims (Fig. 6b). 4.3. Hf isotopes of zircon On the whole, zircons from these two samples show similar Hf-isotope compositions (Table 3 and Fig. 7), but ∼1.88 Ga zircons in migmatite zj06-20-1 have a larger range of 176 Hf/177 Hf than those in gneiss zj06-28. ∼1.88 Ga zircons from gneiss zj06-28 have similar 176 Hf/177 Hf ratios, ranging from 0.28134 to 0.28160. Their Hf model ages (Tc DM ) cluster at ca. 2.8 Ga (Fig. 8), similar to the zircons from Paleoproterozoic granitoids in the area (Yu et al., 2009). The 244 Ma overgrowth rim (28s-10r) has the highest Hf-isotope ratio (0.281879), but has Tc DM identical to those of Paleoproterozoic rims. The ∼1.88 Ga rims of zircons in migmatite zj06-20-1 have 176 Hf/177 Hf ratios of 0.28138–0.28169, similar to those in sample zj06-28, while ∼1.88 Ga zircon cores have lower 176 Hf/177 Hf ratios ranging from 0.28096 to 0.28149, similar
Table 2 Trace element compositions of zircons from the Badu Complex.
Grain#
−2c
−3c
−4c
−11c
−14c
−15c
−17r
−26r
−27r
−28c
−34c
−35c
−38r
−39c
−42c
−43r
−44c
−44c*
−48r
−49
−52r
−57r
−60c
−63
−67r
−70r
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu P Ti Y Nb Hf Ta Th U REE Sm/Lu Ce/Ce* Eu/Eu* Th/U
0.048 59.54 0.29 4.00 5.96 1.29 21.24 5.85 62.1 19.62 90.1 17.45 174.1 31.10 317 11.94 632 2.85 9588 0.59 254 348 493 0.192 122 0.35 0.73
0.099 50.34 0.77 10.01 11.75 3.52 36.84 9.22 94.3 28.28 125.5 22.14 205.5 34.78 230 25.49 895 2.14 8950 0.77 297 179 633 0.338 44 0.52 1.66
0.012 19.02 0.13 2.94 5.78 0.81 23.60 6.79 73.8 23.83 106.2 19.40 181.5 30.09 250 5.16 732 2.43 9260 0.64 135 124 494 0.192 116 0.21 1.09
0.008 5.05 0.09 1.52 3.71 1.52 24.36 8.60 116.6 43.34 220.7 43.15 439.7 81.04 255 4.65 1392 1.84 8138 0.76 71 173 989 0.046 46 0.49 0.41
0.158 8.62 0.69 10.46 13.38 0.91 41.71 10.51 110.0 33.38 146.0 25.85 240.1 39.78 340 11.30 1027 1.56 9705 0.57 203 230 682 0.336 6.3 0.12 0.88
2.382 20.48 0.94 4.80 2.55 0.28 12.56 4.31 62.7 25.67 146.8 32.72 354.7 67.81 897 8.32 871 3.43 11441 1.90 342 765 739 0.038 3.3 0.15 0.448
0.045 0.47 0.02 0.23 0.98 0.08 8.50 4.64 77.3 29.04 157.5 34.65 376.7 67.47 809 5.99 1019 0.71 12864 0.94 15 859 758 0.014 3.5 0.08 0.017
0.416 24.63 0.13 3.59 5.51 0.95 23.73 6.48 72.5 24.18 112.1 21.44 210.4 39.01 220 6.69 747 2.18 7284 0.69 61 145 545 0.141 26 0.25 0.42
0.031 0.79 0.02 0.18 0.60 0.13 6.39 3.87 68.3 25.84 139.7 29.70 315.2 55.11 791 9.89 948 0.78 13280 0.98 9 1195 646 0.011 7.7 0.20 0.007
0.033 9.34 0.24 3.57 7.29 1.25 43.94 14.60 185.7 67.26 330.5 60.98 583.1 100.13 334 18.30 2036 8.79 11157 5.30 209 573 1408 0.073 25 0.21 0.36
0.174 22.18 0.50 6.53 11.74 0.90 67.22 22.45 289.9 105.26 496.3 87.13 795.8 131.16 467 84.08 3083 11.40 9746 4.64 318 526 2037 0.090 18 0.10 0.60
0.067 24.41 0.82 13.03 13.60 2.01 42.32 11.22 119.0 39.40 182.2 33.71 320.4 55.19 194 15.79 1212 0.74 8991 0.41 358 313 857 0.246 25 0.26 1.14
0.072 0.40 0.03 0.39 0.66 0.06 7.38 4.54 86.5 36.84 217.4 48.40 519.1 90.50 1000 3.34 1278 0.50 13162 0.98 6 999 1012 0.007 2.1 0.09 0.006
0.126 7.73 0.45 6.02 8.39 0.78 28.63 7.49 81.2 25.52 111.2 20.53 195.1 32.93 371 15.63 784 1.84 9355 0.65 156 188 526 0.255 7.8 0.15 0.83
0.004 23.22 0.06 1.07 2.03 0.74 8.26 2.82 37.3 13.78 74.9 16.99 194.8 38.43 124 3.80 483 1.11 10124 0.48 213 309 414 0.053 365 0.55 0.69
0.014 2.54 0.03 0.24 0.91 0.02 6.50 3.67 64.1 25.78 133.7 27.95 284.3 49.35 678 5.62 898 2.52 12873 2.17 33 874 599 0.018 30 0.03 0.04
0.091 18.14 0.08 0.69 1.49 0.45 11.05 4.06 54.5 21.66 122.1 29.34 379.6 94.18 278 10.61 812 15.78 14333 7.24 408 1415 737 0.016 50 0.34 0.29
0.209 2.43 0.23 2.63 3.84 0.36 21.32 7.55 94.5 33.59 166.6 33.15 341.6 61.30 646 5.84 1086 0.77 11657 0.68 63 391 769 0.063 2.7 0.12 0.16
0.026 2.55 0.02 0.34 0.96 0.07 7.05 2.94 44.0 17.20 90.0 19.17 204.0 36.21 387 3.51 582 1.31 12676 1.03 80 1006 425 0.026 25 0.09 0.08
0.041 0.32 0.03 0.48 1.78 0.09 17.48 10.65 201.0 93.04 583.1 142.97 1631.4 303.67 2557 6.08 3043 1.88 12408 3.27 18 1827 2986 0.006 2.2 0.05 0.01
0.034 0.38 0.02 0.31 0.86 0.11 8.13 4.87 93.6 43.39 269.4 67.78 792.7 148.65 1366 8.25 1442 1.54 13447 2.10 9 1563 1430 0.006 3.6 0.13 0.01
0.230 1.38 0.20 1.43 1.16 0.16 8.19 4.80 85.2 35.45 197.5 42.96 428.5 71.72 990 11.32 1265 0.98 13142 1.39 11 1313 879 0.016 1.5 0.16 0.01
0.026 25.76 0.26 4.18 7.25 0.57 33.76 11.76 152.7 53.71 265.4 52.25 492.6 80.29 744 31.83 1672 16.08 9402 3.58 40 100 1181 0.090 75 0.11 0.40
0.133 28.14 0.58 7.15 9.51 2.87 34.10 9.96 111.6 36.56 168.6 32.77 337.2 57.57 578 12.81 1172 2.08 11161 0.93 327 877 837 0.165 24 0.49 0.37
0.026 0.74 0.02 0.27 0.56 0.11 6.37 3.74 64.4 28.19 167.9 38.67 430.3 80.37 696 6.09 965 2.50 13567 2.56 15 1051 822 0.007 7.1 0.18 0.01
0.153 0.77 0.08 0.64 1.32 0.39 9.35 4.48 68.6 28.25 158.1 35.26 386.8 68.65 698 4.78 963 0.79 12797 0.87 14 836 763 0.019 1.6 0.34 0.02
Sample
gneiss zj06-28
Grain#
−4
−6
−28c
s-3c
s-5c
s-10r
s-14c
s-15r
s-19r
s-31c
s-31r
s-32c
s-33r
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu P Ti Y Nb Hf Ta Th U
0.131 1.37 0.13 1.52 4.52 0.30 33.5 13.61 181.0 62.66 294.9 55.29 521.0 88.8 1551 8.28 1966 0.87 11944 0.57 79.7 623
0.020 0.83 0.050 1.42 3.70 0.08 29.6 12.26 169.7 59.95 287.3 54.30 515.2 87.8 1377 8.58 1867 0.78 11721 0.49 57.2 376
4.68 0.033 0.42 1.00 0.31 8.5 3.02 44.5 17.12 89.0 18.70 196.9 39.5 148 4.98 548 1.67 11184 0.73 64.2 285
0.008 13.77 0.08 1.28 3.47 0.27 23.5 8.25 107.8 39.82 188.1 36.33 325.3 55.3 242 5.89 1183 4.77 8244 1.54 60.4 164
0.062 82.62 0.67 11.34 15.88 4.06 56.5 14.89 154.1 48.28 212.2 40.56 389.8 68.8 345 11.01 1519 2.43 8222 0.93 487.6 308
0.108 0.68 0.039 0.55 2.41 1.58 16.6 4.49 34.6 7.11 21.1 3.00 23.1 3.1 134 7.21 251 0.38 13629 0.30 11.2 1874
0.238 29.43 0.086 2.05 3.42 0.92 16.1 5.50 70.5 27.31 138.5 29.62 324.3 64.2 209 8.13 919 1.72 8355 0.74 223.8 387
0.041 1.14 0.051 0.94 2.94 0.30 18.6 5.19 41.6 8.83 27.9 4.18 32.9 4.9 264 6.52 291 0.49 12619 0.39 25.4 462
0.026 0.65 0.020 0.63 2.01 0.30 17.6 6.46 50.1 9.80 30.8 4.56 35.9 5.8 306 8.70 340 0.38 13173 0.49 13.1 342
0.031 1.31 0.059 1.56 3.75 0.13 22.7 9.63 136.5 54.90 275.8 57.98 556.7 96.2 986 6.21 1710 0.93 11287 0.67 66.1 465
0.033 1.30 0.039 0.73 3.18 0.33 19.6 5.56 44.9 10.25 32.3 4.90 38.1 6.0 281 19.52 330 0.58 12610 0.47 26.7 478
0.003 6.86 0.092 1.48 3.93 0.36 23.4 7.96 99.8 36.45 174.6 38.65 389.5 71.1 501 28.28 1120 2.16 11699 1.33 178.2 627
0.031 0.86 0.051 0.77 2.68 0.21 18.3 4.97 40.7 9.20 28.7 4.54 39.6 6.0 259 17.13 298 0.59 12726 0.41 32.8 517
−7c
−10c
−11c
−14c
−17c
−18c
−19c
−19r
−20c
−22c
−24c
−26c
11.36 0.005 0.33 1.06 0.05 6.4 2.61 37.3 15.1 81.0 17.0 173.8 32.3 370 6.45 490 3.69 11171 2.07 114.8 391
0.019 10.17 0.066 1.58 2.94 0.78 17.3 6.19 78.8 30.5 154.8 32.4 324.1 62.5 401 12.54 993 1.16 9875 0.63 174.9 323
0.020 15.17 0.15 3.26 6.54 0.23 28.4 9.30 114.3 42.48 198.4 38.04 361.8 63.1 632 6.40 1270 2.73 9415 1.03 259.0 244
0.011 32.06 0.069 1.49 3.78 0.29 21.4 7.46 90.1 31.1 140.4 25.5 229.8 39.7 595 10.80 966 4.39 10984 1.67 285.4 439
0.031 7.18 0.10 1.95 3.36 0.08 17.4 5.57 67.0 24.0 113.0 21.0 194.7 34.1 379 9.09 734 2.75 9921 1.28 106.7 235
0.008 5.42 0.021 0.38 0.92 0.18 6.1 2.33 33.6 13.38 71.2 15.21 160.2 30.3 321 10.88 466 0.56 10169 0.40 40.2 214
0.007 2.15 0.109 1.69 5.01 0.13 30.0 10.03 126.2 45.89 213.3 39.82 380.3 66.2 751 11.59 1359 0.92 10460 0.48 107.8 216
0.016 1.62 0.014 0.85 3.40 0.42 22.0 6.02 49.0 10.60 33.8 4.90 38.8 5.7 328 5.19 350 0.64 12879 0.53 28.1 529
0.125 3.95 0.111 1.47 3.50 0.26 19.9 6.07 70.8 23.52 112.1 23.11 231.5 41.1 493 6.98 727 1.30 12181 1.21 144.6 697
0.085 1.93 0.095 0.78 1.45 0.13 9.7 4.36 68.8 29.81 170.5 39.92 441.6 82.3 635 10.91 964 4.23 13320 4.54 61.2 965
0.034 5.56 0.22 2.83 4.03 1.58 21.9 7.51 96.6 36.98 190.8 42.24 461.4 92.5 231 11.78 1213 0.47 8414 0.44 622.8 1284
0.007 24.28 0.062 0.94 2.59 0.45 12.4 4.01 49.7 18.09 89.4 18.66 187.0 35.3 380 19.94 584 2.47 10428 0.84 102.8 125
433
Migmatitic gneiss zj06-20-1
J.-H. Yu et al. / Precambrian Research 222–223 (2012) 424–449
Sample
434
Table 2 (Continued) Sample
gneiss zj06-28
Grain#
−4
−6
−7c
REE Sm/Lu Ce/Ce* Eu/Eu* Th/U
1259 0.05 2.5 0.074 0.13
1222 0.04 6.3 0.024 0.15
378 0.03
Gneiss zj06-28
Grain#
s-34r
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu P Ti Y Nb Hf Ta Th U REE Sm/Lu Ce/Ce* Eu/Eu* Th/U *
−11c
−14c
−17c
−18c
−19c
−19r
−20c
−22c
−24c
−26c
−28c
s-3c
s-5c
s-10r
s-14c
s-15r
s-19r
s-31c
s-31r
s-32c
s-33r
722 0.05 69.4 0.064 0.336 0.29 0.54
881 0.10 65.8 0.052 1.06
623 0.10 277.2 0.100 0.65
490 0.10 31.0 0.034 0.45
339 0.03 98.9 0.227 0.19
921 0.08 18.5 0.032 0.50
177 0.60 26.1 0.148 0.05
538 0.09 8.1 0.096 0.21
851 0.02 5.2 0.104 0.06
964 0.04 15.3 0.515 0.48
443 0.07 274.4 0.241 0.82
424 0.03
803 0.06 128.4 0.090 0.37
1100 0.23 97.4 0.414 1.59
118 0.77 2.5 0.766 0.01
712 0.05 49.6 0.382 0.58
149 0.60 6.0 0.125 0.05
165 0.35 6.9 0.155 0.04
1217 0.04 7.4 0.042 0.14
167 0.53 8.8 0.127 0.06
854 0.06 100.4 0.115 0.28
157 0.45 5.2 0.093 0.06
s-35c
s-38c
0.020 0.018 0.006 1.06 17.99 9.17 0.042 0.102 0.056 0.78 1.23 0.98 2.39 2.13 2.33 0.35 0.31 0.11 11.9 14.1 19.3 5.54 3.96 4.97 43.8 47.9 64.1 9.08 16.45 24.12 26.9 75.0 118.3 3.92 14.97 24.24 30.6 145.8 238.5 25.8 42.5 4.6 301 219 269 8.67 10.61 9.15 299 508 752 0.47 2.56 4.52 12694 10253 10202 0.39 0.92 1.60 17.4 112.4 70.0 421 208 160 148 364 543 0.09 0.05 0.50 8.8 100.2 116.4 0.159 0.178 0.062 0.04 0.54 0.44
s-39c
s-41c
s-44c
s-48c
0.103 0.016 0.009 0.053 88.51 11.48 15.86 1.97 1.063 0.031 0.056 0.096 18.64 0.57 1.90 1.33 29.23 1.14 3.51 3.48 12.83 0.23 0.51 0.13 119.6 6.4 21.5 22.9 32.63 2.10 7.34 8.00 350.5 29.3 93.7 104.9 115.13 11.84 34.53 39.04 509.5 67.1 168.3 185.5 98.77 16.69 34.54 36.86 948.2 201.4 333.9 351.5 172.4 44.8 62.0 63.2 1020 211 240 609 19.29 24.00 7.88 306.64 3542 421 1091 1194 5.69 1.76 1.52 1.79 7512 12056 10560 10648 1.08 0.69 1.00 0.52 370.1 118.9 202.1 88.3 345 339 460 208 2497 393 778 819 0.17 0.03 0.06 0.06 64.2 125.7 169.7 6.7 0.664 0.260 0.180 0.043 1.07 0.35 0.44 0.43
Is the outer section of grain 44c of sample zj06-20-1 (see footnote in Table 1 for details).
s-59c
s-59r
0.324 0.22
s-63c
0.126 0.004 0.022 19.58 0.81 2.20 0.32 0.029 5.49 0.64 0.95 6.77 2.09 3.47 1.75 0.35 0.10 28.3 16.8 20.2 7.97 5.67 6.68 90.0 54.6 86.5 32.52 13.35 31.01 153.3 43.2 148.8 31.19 6.87 29.49 314.0 57.0 279.8 59.9 8.8 51.5 1255 300 484 6.87 8.54 14.41 1002 434 981 0.97 0.50 1.12 9078 13069 11275 0.66 0.59 0.98 50.1 16.8 99.7 198 503 504 751 210 661 0.11 0.24 0.07 23.3 20.7 0.387 0.179 0.035 0.25 0.03 0.20
s-69-1c
s-69-1r
0.430 0.005 9.40 0.91 0.37 0.062 2.90 0.21 5.35 3.14 0.96 0.58 34.4 21.0 12.40 5.70 157.9 47.6 54.95 9.59 255.6 26.9 52.59 3.87 511.6 27.7 91.4 4.3 808 259 10.46 6.34 1714 307 2.33 0.45 12503 13508 1.44 0.38 213.2 21.2 1726 449 1190 152 0.06 0.73 5.6 12.8 0.217 0.219 0.12 0.05
s-72-1c
s-73r
s-79c
s-83c
s-83r
0.043 0.027 0.052 0.020 0.079 16.80 0.97 3.49 2.35 1.09 0.076 0.038 0.13 0.086 0.032 1.22 0.68 1.78 1.63 0.76 2.71 2.31 4.61 3.80 3.00 0.44 0.43 0.11 0.13 0.25 14.0 18.5 25.7 25.1 18.9 4.60 5.45 9.32 8.37 5.06 57.2 42.8 117.9 108.3 38.7 20.84 9.27 43.55 39.53 8.14 101.2 30.9 197.9 184.0 23.8 20.75 4.92 39.02 35.88 3.40 204.6 39.4 366.6 337.4 26.0 37.9 6.5 63.8 60.6 3.9 355 301 545 527 254 6.84 6.38 315.54 11.41 9.28 664 315 1289 1190 263 2.46 0.42 1.93 0.91 0.46 9559 12680 10762 10732 12933 0.93 0.33 0.84 0.54 0.35 61.2 19.9 141.9 108.4 25.5 86 433 272 216 472 482 162 874 807 133 0.07 0.36 0.07 0.06 0.78 71.3 7.2 10.2 13.7 5.2 0.216 0.201 0.031 0.040 0.102 0.71 0.05 0.52 0.50 0.05
J.-H. Yu et al. / Precambrian Research 222–223 (2012) 424–449
Sample
−10c
Table 3 Lu–Hf isotopic compositions of zircons from the Badu Complex. 176
Hf/177 Hf
1
176
Lu/177 Hf
1
176
Yb/177 Hf
1
Age (Ma)
Hf i
εHf(t)
T(DM) (Ga)
T(DM) C (Ga)
0.000013 0.000016 0.000015 0.000016 0.000014 0.000021 0.000011 0.000014 0.000013 0.000019 0.000016 0.000018 0.000015 0.000013 0.000021 0.000015 0.000020 0.000025 0.000015 0.000014 0.000011 0.000012 0.000017 0.000012 0.000009 0.000010 0.000014 0.000014 0.000015 0.000026 0.000009 0.000023 0.000008 0.000013 0.000019 0.000011 0.000010 0.000015 0.000016 0.000012 0.000009 0.000011 0.000013 0.000014 0.000013 0.000017
0.000478 0.000949 0.000404 0.000507 0.000429 0.001603 0.000783 0.000582 0.000561 0.000629 0.000604 0.000713 0.000677 0.000974 0.000733 0.001237 0.001113 0.001210 0.000808 0.000813 0.000297 0.000575 0.001225 0.000703 0.000474 0.000624 0.000964 0.000727 0.000717 0.001424 0.003498 0.000456 0.001497 0.000710 0.000486 0.000230 0.000831 0.000775 0.001120 0.000457 0.000982 0.000952 0.001384 0.000965 0.001092 0.000703
0.000033 0.000094 0.000006 0.000016 0.000037 0.000100 0.000010 0.000004 0.000016 0.000010 0.000019 0.000028 0.000019 0.000022 0.000009 0.000041 0.000018 0.000040 0.000036 0.000015 0.000009 0.000013 0.000022 0.000028 0.000002 0.000012 0.000017 0.000025 0.000016 0.000064 0.000091 0.000029 0.000040 0.000017 0.000016 0.000018 0.000014 0.000024 0.000003 0.000017 0.000061 0.000016 0.000022 0.000047 0.000014 0.000005
0.01423 0.03432 0.01637 0.01693 0.01416 0.05103 0.02276 0.02205 0.02243 0.02260 0.02250 0.02655 0.02459 0.03656 0.02655 0.04534 0.04212 0.05566 0.02917 0.03117 0.00943 0.02078 0.03253 0.02390 0.01722 0.02252 0.02981 0.02431 0.02265 0.04867 0.12771 0.01755 0.05079 0.02736 0.01857 0.00921 0.03259 0.03107 0.04765 0.01565 0.03345 0.03505 0.05531 0.03678 0.04462 0.02903
0.00092 0.00250 0.00038 0.00066 0.00110 0.00270 0.00024 0.00030 0.00063 0.00050 0.00077 0.00100 0.00066 0.00090 0.00020 0.00093 0.00090 0.00230 0.00210 0.00056 0.00013 0.00053 0.00043 0.00080 0.00017 0.00033 0.00039 0.00091 0.00100 0.00210 0.00320 0.00120 0.00061 0.00066 0.00090 0.00054 0.00073 0.00110 0.00017 0.00062 0.00260 0.00093 0.00130 0.00190 0.00082 0.00044
2454 2392 2581 2513 1855 2465 2548 1871 1957 2663 2473 1857 2398 2451 3138 3679 2936 1850 3285 2481 2035 1862 2127 2497 2455 1862 1891 2426 1814 1872 1875 2415 1853 2463 1951 2432 2502 1903 2518 2547 1868 2006 2705 3506 2448 1861
0.281273 0.281299 0.280939 0.281423 0.281434 0.281087 0.281179 0.281472 0.281433 0.281164 0.281163 0.281396 0.281194 0.281353 0.280797 0.280378 0.280899 0.281640 0.280797 0.281397 0.281212 0.281438 0.281248 0.281350 0.281124 0.281410 0.281259 0.281278 0.281352 0.280913 0.281564 0.281327 0.281446 0.281409 0.281287 0.280975 0.280989 0.281385 0.281115 0.281002 0.281444 0.281520 0.281086 0.280403 0.281147 0.281473
2.0 1.5 −7.0 8.7 −6.0 −4.4 0.8 −4.3 −3.7 2.9 −1.5 −7.3 −2.1 4.8 0.9 −1.3 −0.1 1.2 4.4 7.0 −9.8 −5.7 −6.4 5.7 −3.3 −6.7 −11.4 1.5 −9.8 −24.1 −1.0 3.0 −5.6 7.0 −9.0 −9.1 −7.0 −6.7 −2.2 −5.5 −5.4 0.5 1.1 −4.5 −2.6 −4.5
2.70 2.67 3.14 2.49 2.49 2.96 2.82 2.44 2.49 2.84 2.84 2.54 2.81 2.59 3.33 3.87 3.19 2.22 3.32 2.53 2.78 2.48 2.75 2.59 2.90 2.52 2.73 2.69 2.60 3.22 2.35 2.62 2.49 2.51 2.68 3.09 3.08 2.56 2.91 3.06 2.48 2.37 2.95 3.85 2.87 2.44
2.84 2.83 3.48 2.48 2.87 3.24 2.99 2.78 2.81 2.95 3.07 2.95 3.05 2.67 3.44 3.99 3.35 2.43 3.34 2.56 3.24 2.86 3.10 2.65 3.17 2.92 3.23 2.85 3.08 3.98 2.58 2.75 2.85 2.54 3.13 3.50 3.43 2.95 3.15 3.37 2.84 2.59 3.09 4.05 3.12 2.78
zj06-28 7c 10c 10-1 11c 12 14c 19r 23
0.281104 0.280998 0.281322 0.281320 0.281323 0.280957 0.281532 0.281586
0.000010 0.000014 0.000010 0.000011 0.000013 0.000013 0.000009 0.000009
0.000380 0.000807 0.000621 0.001116 0.001017 0.000513 0.000505 0.001460
0.000010 0.000014 0.000013 0.000011 0.000018 0.000005 0.000044 0.000054
0.01467 0.03042 0.02227 0.04609 0.03973 0.02080 0.01897 0.05182
0.00033 0.00071 0.00080 0.00061 0.00055 0.00013 0.00170 0.00100
2434 2495 2437 2244 2302 2414 1847 1842
0.281086 0.280960 0.281293 0.281272 0.281278 0.280933 0.281514 0.281535
−5.1 −8.2 2.3 −2.9 −1.3 −11.0 −3.3 −2.7
2.95 3.12 2.67 2.71 2.70 3.15 2.38 2.36
3.26 3.49 2.81 2.98 2.93 3.60 2.70 2.66
435
0.281295 0.281342 0.280959 0.281447 0.281449 0.281162 0.281217 0.281493 0.281454 0.281196 0.281192 0.281421 0.281225 0.281399 0.280841 0.280466 0.280962 0.281682 0.280848 0.281435 0.281223 0.281458 0.281298 0.281384 0.281146 0.281432 0.281294 0.281312 0.281377 0.280964 0.281688 0.281348 0.281499 0.281442 0.281305 0.280986 0.281029 0.281413 0.281169 0.281024 0.281479 0.281556 0.281158 0.280468 0.281198 0.281498
J.-H. Yu et al. / Precambrian Research 222–223 (2012) 424–449
zj06-20-1 2c 3c 4c 6c 10 12 13c 14c 17r 18c 19c 19r 20c 26c 27c 28c 29 33-1 34c 35c 38c 39c 40 42c 43c 43r 44c 46c 47c 48c 49 50c 52r 54c 55 57c 58c 59r 60c 62c 63c 66 67c 68c 69c 70r
436
Table 3 (Continued) 176
0.281558 0.281341 0.281498 0.281500 0.281280 0.281428 0.281373 0.281285 0.281879 0.281395 0.281534 0.281484 0.280982 0.281307 0.281374 0.281285 0.281169 0.281348 0.281547 0.280639 0.281391 0.281418 0.281457 0.281576 0.281133 0.281340 0.281116 0.281377 0.281447 0.281413 0.281238 0.281242 0.281405 0.281180 0.281571 0.281235 0.280846 0.281193 0.281317 0.281552 0.281204 0.281404 0.281585 0.281373 0.281516 0.281317 0.281346 0.281603 0.281396 0.281300 0.281541 0.281517 0.281381 0.281528 0.280895 0.281508 0.281099
1
176
Lu/177 Hf
0.000010 0.000017 0.000013 0.000011 0.000018 0.000010 0.000013 0.000015 0.000014 0.000013 0.000012 0.000019 0.000009 0.000016 0.000015 0.000013 0.000015 0.000009 0.000010 0.000018 0.000018 0.000011 0.000011 0.000011 0.000024 0.000010 0.000012 0.000012 0.000015 0.000013 0.000014 0.000015 0.000027 0.000014 0.000011 0.000018 0.000012 0.000016 0.000012 0.000010 0.000014 0.000015 0.000017 0.000014 0.000013 0.000011 0.000014 0.000013 0.000012 0.000017 0.000013 0.000010 0.000013 0.000017 0.000013 0.000010 0.000015
0.001595 0.000429 0.000621 0.000126 0.000440 0.000903 0.001496 0.000784 0.000029 0.001009 0.001443 0.001137 0.001119 0.001158 0.000541 0.000241 0.000338 0.000786 0.000723 0.001359 0.000711 0.000634 0.000945 0.000769 0.000365 0.000791 0.000756 0.000763 0.001418 0.000886 0.000918 0.000671 0.000622 0.000726 0.000632 0.000454 0.000293 0.000552 0.000473 0.001284 0.000352 0.001265 0.000517 0.000677 0.000703 0.001008 0.000542 0.000845 0.000638 0.000768 0.000653 0.001014 0.000824 0.000962 0.000297 0.000787 0.000670
1
176
Yb/177 Hf
0.000011 0.000008 0.000020 0.000008 0.000022 0.000055 0.000028 0.000006 0.000001 0.000031 0.000079 0.000018 0.000008 0.000041 0.000008 0.000014 0.000003 0.000023 0.000030 0.000086 0.000009 0.000041 0.000014 0.000021 0.000012 0.000022 0.000036 0.000032 0.000048 0.000041 0.000039 0.000012 0.000012 0.000010 0.000022 0.000010 0.000010 0.000021 0.000004 0.000033 0.000012 0.000057 0.000036 0.000015 0.000073 0.000057 0.000018 0.000023 0.000091 0.000009 0.000019 0.000017 0.000027 0.000062 0.000016 0.000011 0.000007
0.05001 0.01568 0.02173 0.00757 0.01805 0.02891 0.07172 0.03333 0.00155 0.03733 0.05970 0.03882 0.05353 0.04375 0.02408 0.01069 0.01435 0.03179 0.03050 0.04878 0.02693 0.02044 0.03618 0.02882 0.01342 0.02682 0.03026 0.03245 0.06211 0.03516 0.03748 0.02553 0.01978 0.02955 0.02594 0.01778 0.01206 0.02228 0.01905 0.05634 0.01631 0.05571 0.01728 0.02690 0.03073 0.03888 0.02236 0.03706 0.02676 0.03046 0.02692 0.04142 0.03050 0.03248 0.01036 0.03160 0.02558
1
Age (Ma)
Hf i
0.00043 0.00047 0.00087 0.00048 0.00110 0.00180 0.00100 0.00042 0.00007 0.00200 0.00310 0.00034 0.00028 0.00068 0.00062 0.00071 0.00012 0.00100 0.00120 0.00390 0.00040 0.00160 0.00064 0.00069 0.00043 0.00082 0.00140 0.00130 0.00250 0.00170 0.00190 0.00041 0.00008 0.00034 0.00083 0.00046 0.00045 0.00100 0.00014 0.00150 0.00056 0.00230 0.00120 0.00074 0.00340 0.00220 0.00084 0.00110 0.00370 0.00036 0.00097 0.00080 0.00130 0.00190 0.00062 0.00034 0.00042
2007 2504 2182 1883 2213 2418 2341 2405 244 2469 1866 2292 3036 2362 2166 1988 2401 2276 1866 3623 1859 1871 2060 1864 2515 1877 2547 2505 2307 2523 2463 2468 1985 2484 1903 2329 2557 2486 2425 2067 2427 2280 1843 2470 2174 2544 2539 1855 1841 2329 1880 2158 1889 1857 2649 1874 2500
0.281497 0.281321 0.281472 0.281496 0.281261 0.281386 0.281306 0.281249 0.281879 0.281347 0.281483 0.281434 0.280917 0.281255 0.281352 0.281276 0.281154 0.281314 0.281521 0.280544 0.281366 0.281395 0.281420 0.281549 0.281115 0.281312 0.281079 0.281341 0.281385 0.281370 0.281195 0.281210 0.281382 0.281146 0.281548 0.281215 0.280832 0.281167 0.281295 0.281502 0.281188 0.281349 0.281567 0.281341 0.281487 0.281268 0.281320 0.281573 0.281374 0.281266 0.281518 0.281475 0.281351 0.281494 0.280880 0.281480 0.281067
εHf(t) −0.3 4.8 2.8 −3.2 −4.0 5.2 0.6 0.0 −26.2 5.0 −4.0 4.0 2.8 −0.8 −1.8 −8.6 −3.5 −0.7 −2.7 3.3 −8.3 −7.0 −1.8 −1.7 −2.2 −9.9 −2.8 5.5 2.6 7.0 −0.6 0.1 −4.9 −1.8 −0.9 −3.0 −11.3 −1.1 2.1 1.2 −1.7 0.7 −1.6 4.8 3.2 3.9 5.6 −1.1 −8.5 −1.1 −2.5 2.4 −8.2 −3.8 −7.5 −3.9 −4.3
T(DM) (Ga)
T(DM) C (Ga)
2.41 2.63 2.43 2.40 2.71 2.55 2.66 2.73 1.88 2.60 2.43 2.48 3.17 2.73 2.59 2.69 2.86 2.65 2.37 3.65 2.58 2.54 2.51 2.34 2.91 2.66 2.96 2.61 2.55 2.56 2.81 2.78 2.56 2.87 2.33 2.78 3.28 2.84 2.67 2.40 2.81 2.60 2.31 2.61 2.41 2.70 2.63 2.30 2.57 2.71 2.38 2.43 2.60 2.41 3.22 2.43 2.97
2.64 2.71 2.58 2.72 3.02 2.62 2.84 2.93 2.90 2.67 2.76 2.60 3.24 2.94 2.86 3.13 3.14 2.87 2.68 3.67 3.02 2.95 2.77 2.62 3.15 3.12 3.20 2.66 2.69 2.59 3.01 2.97 2.91 3.10 2.59 3.05 3.73 3.05 2.81 2.59 3.05 2.79 2.59 2.69 2.56 2.80 2.69 2.57 3.01 2.94 2.67 2.59 3.03 2.74 3.57 2.76 3.26
J.-H. Yu et al. / Precambrian Research 222–223 (2012) 424–449
24c 26c 28c 32 s-1 s-2 s-3c s-5c s-10r s-14c s-19r s-22 s-24 s-26 s-27 s-28 s-30 s-30-1 s-36 s-39c s-41c s-46 s-47 s-48c s-48-1 s-52 s-54 s-55 s-57 s-59c s-60 s-61c s-61r s-62 s-63c s-65 s-69 s-72c s-73 s-76 s-78 s-80 s-82 s-92 s-93 s-95 s-96 s-97 s-98 s-103 s-107 s-108 s-113 s-114 s-115 s-118 s-99
Hf/177 Hf
J.-H. Yu et al. / Precambrian Research 222–223 (2012) 424–449
437
Fig. 3. CL images of zircons.
to the Neoarchean zircon cores (Fig. 7 and Table 3). These Paleoproterozoic cores probably have retained their primary Hfisotope compositions even though the U–Pb isotopic system has been reset. Neoarchean zircon cores have a larger range of Hfisotope variation, from very high values (similar to depleted mantle) down to very low values, characteristic of old continental crust. Zircon cores with ages between 2.5 Ga and 1.9 Ga exhibit Hf-isotope characteristics similar to those of some Neoarchean zircon cores. Four Mesoarchean zircons have positive εHf(t) and Tc DM of ∼3.3 Ga, probably indicating a ∼3.3 Ga crustal source. Three Paleoarchean zircons have variable Hf-isotope compositions, suggesting that their host magmas have been derived from 3.7–4.0 Ga crust.
4.4. Bulk rock Nd-isotope compositions The nine samples have similar Nd isotope compositions with εNd(t) values ranging from −3.8 to −6.4 (Fig. 9a and Table 4), although they have variable 147 Sm/144 Nd. These analyses are also similar to published Nd-isotope data for two metamorphic rocks from the Budu Complex, one from the Tianjingping Formation and three Huaqiao granites (Hu et al., 1991; Wang et al., 1992; Wan et al., 2007). The Nd-isotope data from these samples yield two-stage Nd model ages (Tc DM ) spanning from 2.87 Ga to 2.65 Ga with an average of ca 2.8 Ga (Fig. 9b and Table 4), similar to the Hf model ages of the Paleoproterozoic zircons in this study (Fig. 8). The similarity of Nd- and Hf model ages between the S-type
438
J.-H. Yu et al. / Precambrian Research 222–223 (2012) 424–449
Fig. 4. U–Pb Concordia plots for zircons from samples zj06-20-1 and zj06-28.
Fig. 5. Probability diagram and histogram of zircon U–Pb ages.
J.-H. Yu et al. / Precambrian Research 222–223 (2012) 424–449
439
Fig. 6. REE patterns showing differences between cores and rims of zircons.
Paleoproterozoic granitoids and the metamorphic rocks of the Badu Complex further documents their petrogenetic relationship (Yu et al., 2009).
5. Discussion 5.1. Protolithic and metamorphic ages of the Badu Complex The Badu Complex is generally considered to be a series of Paleoproterozoic strata (Hu et al., 1991), but there have been few reliable geochronological constraints. In this study, precise in situ U–Pb dating of metamorphic rims on zircons and rutiles from two rock samples with different lithologic characters shows that the Badu Complex underwent at least two stages of high-grade metamorphism, at 1886–1882 Ma and 252–234 Ma.
Evidently, the ∼1.89 Ga metamorphism was a major event and resulted in the formation of a large volume of new zircon (overgrowths) and significant non-zero Pb-loss from older inherited zircons. This metamorphism was almost synchronous with the generation of syn-orogenic S-type granites that intruded the Badu Complex (Yu et al., 2009). Thus it can be concluded that the protolith of the Badu complex was deposited at some time before ca 1.89 Ga. Late metamorphism (252–234 Ma) not only led to Pb-loss from Paleoproterozoic metamorphic zircons and older (Archean) inherited cores, but also produced minor zircon rims and rutiles. Coupled with the presence of antiperthite and the absence of primary muscovite, the formation of new zircon and rutile suggests that both phases of metamorphism probably reached granulite facies. However, the strong early-Paleozoic (450–400 Ma) orogeny, which caused widespread granitic magmatism, low- to high-grade metamorphism and deformation
Fig. 7. Initial 176 Hf/177 Hf ratios vs. U–Pb ages of the Badu Complex zircons. Other data sources: Lesser Himalaya: Wangtu gneiss, Jutogh Group and Rampur Formation in inner Lesser Himalaya (Richards et al., 2005); Korean Peninsula: modern river sands of North Korea (Wu et al., 2007); Yangtze Craton: the Quanyishang granite (Xiong et al., 2009).
440
Fig. 8. Hf “crustal” model ages of zircons. Data source: eastern Cathaysia (this study; Yu et al., 2009), Yangtze Craton (Liu et al., 2008b; Xiong et al., 2009), others are the same as Fig. 7. Sample No
Lithology
Locations
Sm (g/g)
Nd (g/g)
147
ZJ06-15-1 ZJ06-22a ZJ06-23-2 ZJ06-31 ZJ06-39 ZJ06-35-1 ZJ06-36-1a ZJ06-20-1 ZJ06-28 ZJ06-20-1 ZJ06-28 S1-w S2-w S3-w
bt Gneiss Gneissic granite Gneissic granite Gneissic granite Gneissic granite Gneissic granite Gneissic granite Migmatitic gneiss gt–ky Gneiss Migmatitic gneiss gt–ky Gneiss qz-Monzonite qz-Monzonite qz-Monzonite bt Gneiss bt Gneiss bt Gneiss
Longyou Danzhu Danzhu Xiaji Songyang Tianhou Tianhou Wangyu Xiaji Wangyu Xiaji Huaqiao Huaqiao Huaqiao Longquan Longquan Tianjingping
16.53 18.805 19.75 3.38 10.39 13.04 18.132 5.86 11.04 5.86 11.04 16.5 7.25 20.09 20.09 16.92 4.778
120.37 112.22 119.76 17.61 58.49 66.75 95.375 33.12 59.64 33.12 59.64 90.8 38.88 116.5 113.5 90.3 25.34
0.0831 0.1014 0.0998 0.1162 0.1075 0.1182 0.1150 0.1071 0.1120 0.1071 0.1120 0.11054 0.11284 0.10453 0.1045 0.1133 0.114
FJ0107 a
Sm/144 Nd
143
Nd/144 Nd
0.511048 0.511202 0.511201 0.511314 0.511318 0.511352 0.511358 0.511278 0.511328 0.511278 0.511328 0.511352 0.511374 0.511275 0.511275 0.511328 0.511351
±2
Age (Ma)
INd
εNd(0)
εNd(t)
TDM (Ga)
Tc DM (Ga)
Data source
2 7 4 3 3 2 5 3 3 3 3 9 12 13
1868 1855 1855 1890 1875 1856 1856 1886 1882 2500 2500 1860 1860 1860 1890 1890 1800
0.510027 0.509964 0.509984 0.509870 0.509992 0.509909 0.509954 0.509949 0.509941 0.509512 0.509482 0.509999 0.509993 0.509996 0.509975 0.509919 0.510001
−31.01 −28.01 −28.03 −25.82 −25.75 −25.09 −24.97 −26.53 −25.55 −26.53 −25.55 −25.09 −24.66 −26.59 −26.59 −25.55 −25.1
−3.79 −5.35 −4.97 −6.31 −4.29 −6.41 −5.53 −4.86 −5.11 2.29 1.70 −4.54 −4.66 −4.60 −4.24 −5.35 −6.03
2.44 2.63 2.60 2.86 2.62 2.86 2.76 2.67 2.72 2.67 2.72 2.65 2.67 2.61 2.61 2.75 2.74
2.65 2.77 2.74 2.87 2.70 2.85 2.78 2.75 2.77 2.69 2.73 2.71 2.72 2.71 2.71 2.80 2.78
This study This study This study This study This study This study This study This study This study This study This study Wang et al. (1992) Wang et al. (1992) Wang et al. (1992) Hu et al. (1991) Hu et al. (1991) Wan et al. (2007)
10
These two samples were analyzed at the Isotopic Geochronological Laboratory of Geological Institute of Chinese Academy of Geosciences, and others at GEMOC National Key Centre of Macquarie University.
J.-H. Yu et al. / Precambrian Research 222–223 (2012) 424–449
Table 4 Sm–Nd isotopic compositions of the Badu Complex and Paleoproterozoic granites in the Wuyishan area.
J.-H. Yu et al. / Precambrian Research 222–223 (2012) 424–449
across the Cathaysia Block, did not significantly affect the study area. REE patterns with low and flat HREE contents (especially for sample zj06-28) indicate that the zircon rims grew probably in equilibrium with garnet during both episodes of granulite–facies metamorphism, implying a higher-pressure metamorphic environment related to crustal thickening brought about by the collisional orogeny. The two samples of metamorphic rocks contain many inherited zircons with ages of 3679–1843 Ma (Table 1). Because the protoliths of these metamorphic rocks are sedimentary rocks, based on their chemistry (Yu et al., 2009) and the shape and age spectra of the inherited zircon cores (Figs. 2 and 5), the ages of the youngest detrital zircons could constrain the maximum deposition time. Although some Paleoproterozoic detrital/inherited zircon cores have ages as young as the metamorphic overgrowths, the similarity in trace-element compositions and Th/U ratios between these young cores and old cores, and the significant difference between young cores and the overgrowth rims, suggest that these “young” cores were produced by the recrystallization of old detrital/inherited zircons, and suffered from resetting of the U–Pb isotope system during Paleoproterozoic high-grade metamorphism. The similarity of Hf-isotope compositions between these Paleoproterozoic zircons and their Neoarchean cores (e.g., sample zj06-20-1, Fig. 7) supports this inference. On the other hand, if ∼1.9 Ga ages represent the real crystallization of these young cores, it is difficult to explain why the deposition of the sediments was almost coeval with, and even later than, its high-grade metamorphism (a discordia of only these young cores gives upper intercept ages of 1869 Ma and 1877 Ma for zj06-20-1 and zj06-28 respectively). Some inherited zircons have ages ranging from 2.5 to 1.9 Ga (Fig. 4). These ages could date: (1) the crystallization of the zircons, (2) mixing of ∼2.5 Ga and ∼1.9 Ga zircon by overlap of the beam across cores and rims during LAM analysis, or (3) the result of non-zero Pb loss from ∼2.5 Ga zircons. According to their distribution in the Concordia plot, and their similarity in traceelement and Hf-isotope compositions to the ∼2.5 Ga zircon cores (Figs. 4, 6 and 7), these Paleoproterozoic zircons are more likely to be formed through the third mechanism, and their real ages probably are ca 2.5 Ga or earlier. Thus, the high proportion of 1.9–2.5 Ga zircons in sample zj06-28 could be related to more extensive Pb-loss from 2.5 Ga zircons, caused by higher metamorphic conditions in zj06-28; this is consistent with the high proportion of new zircon in the sample zj06-28 (e.g., 28–4, 28–6; Fig. 3). Consequently, the protoliths of the metamorphic rocks could have been deposited at some time between 2.5 Ga and 1.9 Ga. The large single-age peak (∼2.5 Ga) of detrital zircons in these meta-sedimentary rocks suggests that their provenance probably was simple and proximal. This unimodal age spectrum and their positive εHf(t) suggest that these zircons represent the formation of juvenile crust, and we suggest that they were probably deposited in an arc basin. The sediments would be derived from contemporaneous arc-related igneous rocks and their depositional age would be indistinguishable from the arc magmatism, as is seen in Neoproterozoic sediments around the margin of the Yangtze craton (Li, 1999; Li et al., 2003; Zhou et al., 2002b, 2009; Wang et al., 2006, 2007, 2010a), the Paleoproterozoic Leverburgh metasupracrustal belt in the Lewisian of the northern Outer Hebrides, Scotland (Whitehouse and Bridgwater, 2001), Cretaceous sequences along the southern Lhasa terrane, Himalayas (Wu et al., 2010) and the 1864 Ma turbiditic sandstone of the Stubbins Formation in Western Australia (Bagas et al., 2008). Therefore, we conclude that the Badu Complex probably was deposited at ca 2.5 Ga.
441
5.2. Early Precambrian crustal evolution The combination of U–Pb ages and Hf-isotope compositions of zircons has been proven to be a powerful tool to unravel Precambrian crustal evolution (Griffin et al., 2002, 2004; Kemp et al., 2006; Yu et al., 2010). Four major Precambrian events in the eastern Cathaysia Block have been identified: ∼1.9 Ga, 2.5 Ga, 3.0–3.3 Ga and 3.6–3.7 Ga (Figs. 4, 5 and 7). Of these, two important tectonothermal episodes at ∼1.9 Ga and ∼2.5 Ga are consistent with the age spectrum of detrital/inherited zircons from Neoproterozoic meta-sediments and volcanic rocks in the northern part of Fujian Province, south of the present study area (Wan et al., 2007). Zircons with ages of ∼1.9 Ga have negative εHf(t) and lie along an Archean crustal – evolution line (176 Lu/177 Hf = 0.015), suggesting that their host magmas were mainly originated by partial melting of Neoarchean and even older crustal material (Fig. 7), represented by the metasedimentary host rocks. The Hf model ages of these zircons cluster at ca 2.8 Ga (Fig. 8), similar to the Nd model ages of the whole-rock samples (Fig. 9), suggesting an important episode of juvenile crust growth at 2.8 Ga. Zircons with ages of ∼2.5 Ga exhibit large Hf-isotope variations, indicating that the Neoarchean event involved both reworking of old crust and juvenile crust growth. Four Mesoarchean zircons have high εHf(t), similar to some Neoarchean zircons (Fig. 7), showing the input of juvenile crust at 3.5–3.3 Ga. A Paleoarchean zircon has a Hf model age identical to its U–Pb age, suggesting that its host magma also was derived from juvenile crust. Neoarchean zircons with the lowest εHf(t) have Hf model ages similar to this Paleoarchean zircon (Fig. 7), demonstrating juvenile crust growth at 3.7–3.6 Ga. However, another two Paleoarchean zircons have negative εHf(t) and Hf model ages of ∼4.0 Ga, significantly older than their crystallization ages, indicating that their parental magmas were derived from the recycling of older (ca 4.0 Ga) crust. Coupled with the Nd-isotope compositions of the Paleoproterozoic granites and metamorphic rocks and the Hf-isotope compositions of zircons from Paleoproterozoic granites (Yu et al., 2009), the combination of U–Pb ages and Hf-isotope compositions of zircons from the metamorphic rocks of the Badu Complex suggests that juvenile crust generation in the eastern Cathaysia mainly took place at 3.7–3.6 Ga, 3.5–3.3 Ga, ∼2.8 Ga and ∼2.5 Ga, with a minor addition at 4.0 Ga. The large Hf-isotope variations and high Th/U ratios of ∼2.5 Ga zircons suggest that the Neoarchean thermal event was characterized by magmatism closely associated with both significant juvenile crust growth and the reworking of old crust. This magmatism probably occurred in a continentarc (i.e., old crust-new crust) collisional setting, implying that the eastern Cathaysia Block was a part of the margin of a continental plate during the Neoarchean orogeny. The important ∼1.9 Ga tectonothermal event was associated with intense magmatism and high-grade metamorphism, which only involved the recycling of Archean crust without notable juvenile crust addition. This suggests that the Paleoproterozoic orogeny was intracratonic, or took place in a continent–continent collisional setting. 5.3. Paleo-position of Cathaysia in the Columbia supercontinent Reconstructions of supercontinents in the earth’s history are largely based on global-scale collisional orogenies (e.g., Mesoproterozoic Grenvillian and Phanerozoic Pan-African) that resulted from the amalgamation of ancient continental fragments to form supercontinents (Hoffman, 1991; Dalziel et al., 2000; Zhao et al., 2002). Paleoproterozoic collisional orogens are widespread in many cratons, such as the Trans-North China Orogen (TNCO) in North China, the Central Indian Tectonic Zone in India, the Capricorn Orogen in West Australia, the Limpopo Belt in southern Africa and the Trans-Hudson, Taltson–Thelon and Torngat
442
J.-H. Yu et al. / Precambrian Research 222–223 (2012) 424–449
Fig. 9. Comparison of Nd-isotope data for Paleoproterozoic basement rocks. Data sources: eastern Cathaysia (this study; Wang et al., 1992; Hu et al., 1991; Wan et al., 2007); Yangtze Craton (Zhang et al., 2006b; Sun et al., 2008); Lesser Himalaya (Parrish and Hodges, 1996; Whittington et al., 1999; Ahmad et al., 2000; Miller et al., 2000; Robinson et al., 2001; Richards et al., 2005, 2006; Chambers et al., 2008); South Korea (Lee et al., 2000; Cheong et al., 2000; Kim and Cho, 2003; Sagong et al., 2003).
Orogens in North America (Zhao et al., 2002, 2004 and references therein). These orogens are considered to be the important ligaments welding global Archean-Paleoproterozoic cratons together into a pre-Rodinia supercontinent, Columbia (Nuna) (Zhao et al., 2002, 2004). In the absence of reliable paleomagnetic data for old cratonic blocks, the comparison of geochronological data between these orogens and the cratonic blocks they bound has become essential to determining former linkages between these orogenic belts and blocks (Rogers and Santosh, 2002; Zhao et al., 2002, 2003, 2004; Singh et al., 2009). However, zircon age data alone are not enough to strictly constrain the relationships of separated continental fragments. Some additional information is necessary for the interpretation of the geochronological data. In particular, Sm–Nd isotopes of whole-rock samples and Lu–Hf isotopic data from zircons can provide important additional constraints (Hartmann, 2002; Yu et al., 2008; Howard et al., 2009). In addition, tectonic setting and related rock associations also could be an important fingerprint to link various orogenic belts (e.g., Zhao et al., 2004; Hou et al., 2008). For example, strong volcanism (especially basaltic magmas) and extensional settings cannot be correlated with the granitic magmatism and highgrade metamorphism of a collision belt, even though they are
coeval. The integration of these factors may provide a more rigorous “barcode” to match the signatures of various continental blocks. On the basis of the geochronological, lithostratigraphic, tectonothermal and paleomagnetic data, connections among the global Paleoproterozoic orogens and the configuration of the supercontinents have been proposed (Rogers and Santosh, 2002; Zhao et al., 2002, 2004; Hou et al., 2008). However, the position of South China in the proposed Columbia supercontinent is poorly constrained. A Paleoproterozoic (1.89–1.85 Ga) orogeny, coincident with the global collisional events that led to the assembly of Columbia, has been identified in the Wuyishan terrane of eastern Cathaysia (Li and Li, 2007; Yu et al., 2009; this study). Therefore, it is most likely that the eastern Cathaysia was a component of the Columbia supercontinent, and connected with some other cratonic blocks. The Paleoproterozoic orogeny in eastern Cathaysia was characterized by strong granitic magmatism and high-grade metamorphism and developed on a ∼2.5 Ga Neoarchean basement which has zircon Hf model ages and wholerock Nd model ages of ∼2.8 Ga. This basement also includes remnants of 3.3–3.0 Ga and 3.7–3.6 Ga crust. After the orogeny, eastern Cathaysia experienced intraplate rifting, leading to mafic magmatism at 1.80–1.76 Ga (Li, 1997; Wan et al., 2007; Li et al., 2010).
J.-H. Yu et al. / Precambrian Research 222–223 (2012) 424–449
In South China, Paleoproterozoic orogeny has also been recognized in the northern part of the Yangtze Craton. However, this orogeny mainly occurred at 1.97–2.04 Ga and is distinguished by high-grade (granulite–facies) metamorphism (Zhang et al., 2006b; Chen et al., 2006; Wu et al., 2008; Sun et al., 2008). Moreover, many ∼2.0 Ga xenocrystic and detrital zircons have been found in a lamprophyre (Zheng et al., 2006) and Neoproterozoic sediments in the northern Yangtze Craton (Liu et al., 2008b) (Fig. 10). 1.9–1.8 Ga granitoids are unknown in the Yangtze Craton, except for the Quanyishang granite which was recently dated at 1854 Ma (Xiong et al., 2009). However, the zircons from the Quanyishang granite have much lower Hf-isotope compositions (176 Hf/177 Hf = 0.28092–0.28116) and higher “crustal” model ages (4.2–3.6 Ga) than those from the eastern part of Cathaysia (Figs. 7 and 8). Moreover, both the Nd model ages of high-grade metamorphic rocks and the Hf model ages of the zircons from ∼2.0 Ga granulites are older than the granites and metamorphic rocks in the eastern Cathaysia (Yu et al., 2009 and Figs. 8 and 9). Therefore, the Paleoproterozoic orogen in the northern part of the Yangtze Craton is unlikely to be linked with that of the eastern Cathaysia Block. In fact, the Yangtze Block and the Cathaysia Block did not converge until the early Neoproterozoic (Shu et al., 1994; Ye et al., 2007; Li et al., 2008, 2009). Although eastern Cathaysia and the TNCO in the North China Craton underwent simultaneous Paleoproterozoic orogeny, and have similar Neoarchean (2.5 Ga) basement, their respective Paleoproterozoic events have different characters. The TNCO is characterized by metamorphism up to granulite facies with little coeval granitoid magmatism (Wilde and Zhao, 2005; Liu et al., 2006; Zhang et al., 2006; Zhao et al., 2006, 2008; Wang et al., 2010b). Intensive arc-related magmatism in the TNCO mainly occurred at 2.3-2.0 Ga (Liu et al., 2000; Kröner et al., 2005; Faure et al., 2007; Zhao et al., 2008; Wang et al., 2010b). Likewise, the Jiao–Liao–Ji Paleoproterozoic orogenic belt in the Eastern Block of the North China Craton is characterized by strong 2.2–2.0 Ga granitoid magmatism and 1.95–1.90 Ga high-pressure granulite–facies metamorphism, minor post-tectonic or anorogenic granites, and syenites and metamorphic rocks with ages of 1870–1800 Ma (Li et al., 2004; Luo et al., 2004, 2008; Lu et al., 2006, 2008; Li and Zhao, 2007; Tam et al., 2010), while the orogenic event of the eastwest-trending Khondalite belt in the Western Block occurred at 1.95–1.92 Ga (Xia et al., 2006a, 2006b, 2008; Santosh et al., 2007; Yin et al., 2009, 2011; Zhao et al., 2010). The age spectra of detrital zircons from modern river sands also indicate the complicated evolution of Paleoproterozoic orogens in the North China Craton (Fig. 10). Therefore, the Paleoproterozoic orogen in the Wuyishan terrane in the eastern Cathaysia is unlikely to be connected with those preserved in the North China Craton. The Paleoproterozoic orogeny in West Africa and South America mainly took place from 2.25 Ga to 2.05 Ga (Hartmann, 2002; Lerouge et al., 2006; Noce et al., 2007; Heilbron et al., 2010), significantly earlier than in our study area (Fig. 10). Moreover, all the granitoids show juvenile features, with mantle-derived initial Sr-isotope compositions and positive εNd(t) values (Doumbia et al., 1998), much different from the Paleoproterozoic granites in the present study area. These two continents also have similar Archean–Paleoproterozoic structures and thermal events, and therefore they have been thought of as a single continent before the breakup (Zhao et al., 2002; Lerouge et al., 2006; Noce et al., 2007; Heilbron et al., 2010). Evidently, the eastern Cathaysia Block may have not been contiguous with these continents during the assembly of the Columbia supercontinent. There are several Paleoproterozoic orogens in the northern and western parts of Australia. The well-known Capricorn Orogen between the Pilbara and Yilgarn Cratons in Western Australia experienced multi-phase tectonothermal events, including the ca
443
Fig. 10. Comparison of tectonothermal histories of some Paleoproterozoic orogens worldwide. Data sources: eastern Cathaysia (Yu et al., 2009 and this study); Lesser Himalaya (DeCelles et al., 2000, 2004; Parrish and Hodges, 1996; Richards et al., 2005, 2006; McQuarrie et al., 2008); Yangtze Craton (Liu et al., 2008b); North China Craton (Yang et al., 2009); South America (Rino et al., 2004); Trans-Hudson Orogen (Orrell et al., 1999; Breemen et al., 2007; Whalen et al., 2010); Pine Creek Orogen (Worden et al., 2008); Tanami region (Cross and Crispe, 2007); Capricorn Orogen (Nelson, 2001). Only data with >80% concordance were used in all plots.
444
J.-H. Yu et al. / Precambrian Research 222–223 (2012) 424–449
2.2 Ga Ophthalmian Orogeny, the 2.0–1.96 Ga Glenburgh Orogeny, the 1.83–1.78 Ga Capricorn Orogeny, the 1.79–1.76 Ga Yapungku Orogeny and the 1.68–1.62 Ga Mangaroon Orogeny (Cawood and Korsch, 2008 and therein references). Moreover, the Archean basement in the Pilbara and Yilgarn cratons mainly formed at ca 2.8–2.6 Ga (Nelson, 2001; Griffin et al., 2004), and zircons from the Mesoproterozoic sediments of the Bangemall Supergroup show prominent 1.85–1.60 Ga and 2.78–2.45 Ga age modes, consistent with the southern Pilbara Craton (Martin et al., 2008). The age spectrum of this orogen differs from that of the eastern Cathaysia Block (Fig. 10). Paleoproterozoic orogens in the North Australia Craton are in the Pine Creek, Hall’s Creek, Tanami and Arunta regions. They exhibit extensive 1.87–1.80 Ga magmatism and ∼2.5 Ga basement components (Cross and Crispe, 2007; Crispe et al., 2007; Bagas et al., 2008; Worden et al., 2008; Hollis et al., 2009). However, all these orogens show polyphase tectonic evolution and early Paleoproterozoic magmatism related to extensional settings. For example, the Pine Creek Orogen is distinguished by strong volcanism at 1.87–1.86 Ga and 2.03–2.02 Ga and related development of extensional (continental rifting) basin (Worden et al., 2008) (Fig. 10). Granulite–facies low-P metamorphism at ca 1855 Ma is thought to be due to conductive and advective thermal input within a thinned lithosphere during intra-crustal extension and rifting (Carson et al., 2008). The Hooper and Lamboo Complexes in the Hall’s Creek Orogen contain 1865–1850 Ma high-K I-type granites, high-level porphyry intrusions, and felsic volcanic rocks with minor coeval gabbros (Griffin et al., 2000). They were formed in the extensional setting related to the subduction of ocean plate under the Kimberley Craton, similar to late Mesozoic tectonic setting of Southeastern China (Zhou and Li, 2000). The collision of the Kimberley Craton and North Australia Craton has commenced at around 1835 Ma, and completed by 1805 Ma (Crispe et al., 2007). Furthermore, these Paleoproterozoic igneous rocks in the Hall’s Creek Orogen have lower Nd model ages of 2.55–2.66 Ga than those in eastern Cathaysia (Griffin et al., 2000; this study). The Granites–Tanami belt is younger than that in our study area, and shows no high-grade metamorphism. Magmatism is characterized by volcanic rocks and basalts, and several coeval sedimentary basins (Crispe et al., 2007) suggest an extensional context. Consequently, the 1.88–1.85 Ga tectonic setting in the North Australia Craton seems to be incompatible with that of eastern Cathaysia (Yu et al., 2009, this study). In Laurentia, several Paleoproterozoic orogens surround the Archean Superior, Hearne, Rae, Slave and North Atlantic (Nain) Cratons; these include the Trans-Hudson Orogen, Taltson–Thelon Orogen and Torngat Orogen. All these orogens developed on Archean basement that is much older (2.6–2.7 Ga to 3.8 Ga) than the eastern Cathaysia Block (ca 2.5 Ga), and underwent complex pre-orogenic evolution (Ketchum et al., 2001; Ashton et al., 2009). In the Taltson Orogen, early granitic plutonism and metamorphism related to the 2.5–2.3 Ga Arrowsmith Orogen was followed by the 1.99–1.90 Ga Taltson orogeny and emplacement of extensive mafic dykes at 1.82 Ga (Ashton et al., 2009). The Trans-Hudson orogenic belt developed through the closure of the Manikewan Ocean, which initially opened at about 2.1 Ga by rifting of a postulated Neoarchean supercontinent (Ansdell, 2005). The oldest oceanic arc rocks indicate that subduction was ongoing by 1.92 Ga. The intense ∼1.88 Ga Molson magmatism in the Manitoba area, which is characterized by extensive mafic and ultramafic rocks with MORB-like chemical and Nd-isotope compositions, was probably formed in a back-arc extensional tectonic setting during convergence and subduction of Manikewan oceanic crust under the Superior Craton (Heaman et al., 2009). Convergent- margin arc magmatism and arc accretion occurred between 1.91 and 1.83 Ga ago (Bickford et al., 1990), and the terminal collision within the Trans-Hudson Orogen occurred between 1.83 and 1.80 Ga (Gordon et al., 1990; Ansdell,
2005; Breemen et al., 2007; Schneider et al., 2007), later than in eastern Cathaysia. A late-collisional metamorphic episode occurred at ca 1.77 Ga (Schneider et al., 2007). The Torngat Orogen developed over a period of 130 my. The early stages of arc magmatism were at 1.91–1.88 Ga (Scott, 1998; Rawlings-Hinchey et al., 2003 and therein references) and collision of the Rae and Nain Cratons took place at 1.87–1.84 Ga. Metamorphism up to granulite–facies developed in the terminal stages of collision before 1.82 Ga, and cooling continued to 1.80–1.74 Ga (Rawlings-Hinchey et al., 2003). Therefore, the eastern Cathaysia Block probably is not a fragment of the Paleoproterozoic orogens in Laurentia. The South China Block has been suggested to have been adjacent to India and East Antarctica, on the northern margin of East Gondwanaland, during the Neoproterozoic breakup of Rodinia (Jiang et al., 2003; Zhou et al., 2002a, 2006; Yu et al., 2008; Wang et al., 2010a). The present study shows that Paleoproterozoic orogeny in the Wuyishan terrane is also quite similar to that in the NW Himalayas (India). In the Lesser Himalaya and the Main Central Thrust zone, there are many 1.90–1.84 Ga felsic igneous rocks and ca 1.80 Ga metabasalts (Sharma and Rashid, 2001; Miller et al., 2000; Richards et al., 2005; Singh et al., 2009; and therein references). The granitoids are enriched in potassium; some are S-type with high SiO2 and A/CNK and others are A-type with low SiO2 and high Zn, Zr, Nb and LREE (Miller et al., 2000; Chambers et al., 2008; Singh et al., 2009). Metabasalts show trace-element signatures typical of continental tholeiites, implying an extensional tectonic setting. The rock assemblage, geochemical features and formation ages are quite similar to those in the Wuyishan terrane (Yu et al., 2009; Li, 1997; this study). Moreover, 1.89–1.85 Ga zircons from the Wangtu orthogneiss and Rampur Formation in the Inner Lesser Himalaya have 176 Hf/177 Hf ratios of 0.28144–0.28153 (Richards et al., 2005), identical to those of zircons with the same age from the Wuyishan terrane (Figs. 7 and 8). In addition, metasedimentary rocks in the Lesser Himalaya exhibit detrital-zircon age spectra and whole-rock Nd model ages similar to those of the Badu Complex metamorphic rocks and the Paleoproterozoic granites in the study area (Figs. 9 and 10). These similarities suggest that the Wuyishan terrane is most similar to the Lesser Himalaya of NW India. Generally the sediments in the Lesser Himalaya have been thought to be derived from northern India (DeCelles et al., 2000, 2004), such as the Delhi Fold Belt in the Aravilli Craton. However, granites in the Delhi Fold Belt have intrusive ages of 1.78–1.70 Ga (Biju-Sekhar et al., 2003; Kaur et al., 2011); granulite–facies metamorphism and magmatism of the Banded Gneiss Complex in the central Aravalli area were synchronous at 1.73–1.70 Ga (Buick et al., 2006; Bhowmika et al., 2010), and rift-related A-type magmatism took place at 1.71–1.66 Ga (Kaur et al., 2007). In Bangladesh, the eastward extension of the Delhi Fold Belt contains basement rocks (tonalite and diorite) that also formed at 1.72 Ga and 1.73 Ga (Ameen et al., 2007; Hossain et al., 2007). In addition, the collisional events in the Central India Tectonic Zone (CITZ), which marked the amalgamation between the North India craton and South India craton, mainly occurred between 1.70 and 1.50 Ga (Roy and Prasad, 2003). Therefore, the detritus of metasedimentary rocks in the Lesser Himalaya probably came from the Wuyishan terrane of eastern Cathaysia or from the Lesser Himalaya itself, rather than north India. It has been documented that the southern part of the Korean Peninsula had a geological evolution and components similar to those of eastern Cathaysia from Paleoproterozoic to early Mesozoic time, based on geochronology, geochemistry and rock assemblages (Yu et al., 2009). The whole-rock Nd isotope data presented here also are similar to data from the basement rocks of South Korea (Fig. 9), and Paleoproterozoic–Archean detrital zircons of modern river sands in the Korea show Hf-isotope patterns identical to our
J.-H. Yu et al. / Precambrian Research 222–223 (2012) 424–449
445
Fig. 11. Paleoposition of the united Cathay-South Korea micro-continent in the Columbia supercontinent (configuration map of Columbia after Zhao et al. (2002)).
samples (Figs. 7 and 8). These new observations confirm previous inferences linking the southern part of the Korean Peninsula and eastern Cathaysia (Yu et al., 2009). Consequently, the united terrane of eastern Cathaysia and the southern Korean Peninsula (CathayS. Korea) was most probably connected with the Lesser Himalaya of NW India during Paleoproterozoic time (Fig. 11). Based on the similarity with Eastern India during the assembling and breakup of Rodinia supercontinent (Yu et al., 2008), it could be suggested that the Cathay-South Korea terrane probably was detached from northern India between 1.8 Ga and 1.0 Ga and moved eastward (present coordinates) to approach Eastern India. Therefore the affinity of the Cathaysia Block with the India Block was maintained for more than 1 Ga, until the late Neoproterozoic breakup of Rodinia. 6. Conclusions This study provides new data on U–Pb ages, Hf-isotopes and trace-element compositions of zircons from the Badu Complex and whole-rock Nd-isotope compositions. Combined with previous petrographical and geochemical observations (Yu et al., 2009), these data support the several major conclusions. 1. The Badu Complex underwent at least two phases of granulite–facies metamorphism, at 1886–1882 Ma and
252–234 Ma. The early metamorphism was coincident with the intrusion of Paleoproterozoic syn-orogenic S-type granites in this area, and the later one was coeval with early Mesozoic S-type granites in the Cathaysia Block. REE patterns of overgrowth zircons indicate coexistence with garnet, suggesting that the two periods of metamorphism took place during crustal thickening related to collisional orogeny. 2. The sedimentary protoliths of the Badu Complex may have been deposited in an arc-related basin at ∼2.5 Ga. The Badu Complex thus represents the oldest rocks known in the Cathaysia Block. 3. The combination of zircon U–Pb ages and Hf isotopes and bulk Nd isotopes suggests that tectonothermal events in the eastern Cathaysia Block mainly occurred at 1.9–1.8 Ga, ∼2.5 Ga, ∼2.8 Ga, 3.3–3.0 Ga and 3.7–3.6 Ga. Juvenile crustal materials were generated at 2.5 Ga, 2.8 Ga and 3.5-3.3 Ga, with minor volumes at 3.7–3.6 Ga and ∼4.0 Ga. The ∼1.9 Ga and 3.3–3.0 Ga thermal events involved only the reworking of older crustal material, without input of juvenile magmas. Eastern Cathaysia was in a subduction-zone or arc-continent collisional setting during Neoarchean time, and in a continent-continent collisional setting during Paleoproterozoic time. 4. The eastern Cathaysia Block was a part of the supercontinent Columbia. Its Precambrian evolution is identical to those of the southern part of the Korean Peninsula and the Lesser Himalaya,
446
J.-H. Yu et al. / Precambrian Research 222–223 (2012) 424–449
suggesting that eastern Cathaysia was once linked with the South Korean massif (as a united Cathay-S. Korea craton), and connected to the Lesser Himalaya terrane of NW India. This connection was maintained for at least ten billion years until the breakup of the Neoproterozoic supercontinent Rodinia. Acknowledgements Most of the analytical work presented here was carried out at GEMOC, Department of Earth and Planetary Sciences, Macquarie University, using instrumentation funded by DEST Systemic Infrastructure Grants, ARC LIEF, NCRIS, Industry Partners and Macquarie University. Norman Pearson and E.A. Belousova are thanked for their assistance in LAM-ICPMS and LAM-MC-ICPMS analyses in GEMOC. We also thank Dr. Liu for assisting in LAM-ICPMS trace element analyses at the GPMR key centre, China University of Geosciences. This work was supported by the NSF of China (Grant Nos. 40972127 and 40672125) and ARC Discovery and ARC IREX grants (S.Y. O’Reilly and W.L. Griffin). This study was also supported by a grant (no. 2008-I-01) from the State Key Laboratory for Mineral Deposits Research (Nanjing University) and a project (GPMR200802) from the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences. This is contribution 760 from the Australian Research Council National Key Centre for the Geochemical Evolution and Metallogeny of Continents (http://www.gemoc.mq.edu.au). References Ahmad, T., Bickle, M., Chapman, H., Bunbury, J., Prince, C., 2000. Isotopic constraints on the structural relationships between the Lesser Himalayan Series and the High Himalayan Crystalline Series, Garhwal Himalaya. GSA Bull. 112, 467–477. Ameen, S.M.M., Wilde, S.A., Kabir, M.Z., Akon, E., Chowdhury, K.R., Khan, M.S.H., 2007. Paleoproterozoic granitoids in the basement of Bangladesh: a piece of the Indian shield or an exotic fragment of the Gondwana jigsaw? Gondwana Res. 12, 380–387. Ansdell, K.M., 2005. Tectonic evolution of the Manitoba–Saskatchewan segment of the Paleoproterozoic Trans-Hudson Orogen, Canada. Can. J. Earth Sci. 42, 741–759. Ashton, K.E., Hartlaub, R.P., Heaman, L.M., Morelli, R.M., Card, C.D., Bethune, K., Hunter, R.C., 2009. Post-Taltson sedimentary and intrusive history of the southern Rae Province along the northern margin of the Athabasca Basin, Western Canadian Shield. Precambrian Res. 175, 16–34. Bagas, L., Bierlein, F.P., English, L., Anderson, J., Maidment, D., Huston, D.L., 2008. An example of a Palaeoproterozoic back-arc basin: petrology and geochemistry of the ca. 1864 Ma Stubbins Formation as an aid towards an improved understanding of the Granites-Tanami Orogen, Western Australia. Precambrian Res. 166, 168–184. Bhowmika, S.K., Bernhardt, H.-J., Dasgupta, S., 2010. Grenvillian age high-pressure upper amphibolite–granulite metamorphism in the Aravalli–Delhi Mobile Belt, Northwestern India: new evidence from monazite chemical age and its implication. Precambrian Res. 178, 168–184. Bickford, M.E., Collerson, K.D., Lowry, J.F., Van Schmus, W.R., Chiarenzelli, J.R., 1990. Proterozoic couisional tectonism in the Trans-Hudson Orogen, Saskatchewan. Geology 18, 14–18. Biju-Sekhar, S., Yokoyama, K., Pandit, M.K., Okudaira, T., Yoshida, M., Santosh, M., 2003. Late Paleoproterozoic magmatism in Delhi Fold Belt, NW India and its implication: evidence from EPMA chemical ages of zircons. J. Asian Earth Sci. 22, 189–207. Blichert-Toft, J., Albar‘ede, F., 1997. The Lu–Hf geochemistry of chondrites and the evolution of the mantle–crust system. Earth Planet. Sci. Lett. 148, 243–258. Breemen, O., Harper, C.T., Berman, R.G., Wodicka, N., 2007. Crustal evolution and Neoarchean assembly of the central–southern Hearne domains: Evidence from U–Pb geochronology and Sm–Nd isotopes of the Phelps Lake area, northeastern Saskatchewan. Precambrian Res. 159, 33–59. Buick, I.S., Allen, C., Pandit, M., Rubatto, D., Hermann, J., 2006. The Proterozoic magmatic and metamorphic history of the Banded Gneiss complex, central Rajasthan, India: LA-ICP-MS U–Pb zircon constraints. Precambrian Res. 151, 119–142. Carson, C.J., Worden, K.E., Scrimgeour, I.R., Stern, R.A., 2008. The Palaeoproterozoic tectonic evolution of the Litchfield Province, western Pine Creek Orogen: insight from recent U–Pb zircon and in-situ monazite geochronology. Precambrian Res. 166, 145–167. Cawood, P.A., Korsch, R.J., 2008. Assembling Australia: Proterozoic building of a continent. Precambrian Res. 166, 1–38. Chambers, J.A., Argles, T.W., Horstwood, M.S.A., Harris, N.B.W., Parrish, R.R., Ahmad, T., 2008. Tectonic implications of Palaeoproterozoic anatexis and Late Miocene
metamorphism in the Lesser Himalayan Sequence, Sutlej Valley, NW India. J. Geo. Society, London 165, pp. 725–737. Chen, N.-S., Liu, R., Sun, M., Li, H.-M., He, L., Wang, Q.-Y., Zhang, H.-F., 2006. LA-ICPMS U–Pb zircon dating for felsic granulite, Huangtuling area, North Dabieshan: constraints on timing of its protolith and granulite–facies metamorphism, and thermal events in its provenance. Earth Sci. (J. China Univ. Geosci.) 31, 294–300 (in Chinese with English abstract). Cheong, C.S., Kwon, S.T., Park, K.H., 2000. Pb and Nd isotopic constraints on Paleoproterozoic crustal evolution of the northeastern Yeongnam massif, South Korea. Precambrian Res. 102 (3–4), 207–220. Crispe, A.J., Vandenberg, L.C., Scrimgeour, I.R., 2007. Geological framework of the Archean to Paleoproterozoic Tanami Region Northern Territory. Miner. Deposita 42, 3–26. Cross, A.J., Crispe, A.J., 2007. SHRIMP U–Pb analyses of detrital zircon: a window to understand the Paleoproterozoic development of the Tanami Region, northern Australia. Miner. Deposita 42, 27–50. Dalziel, I.W.D., Mosher, S., Gahagan, L.M., 2000. Laurentia–Kalahari collision and the assembly of Rodinia. J. Geol. 108, 499–513. DeCelles, P.G., Gehrels, G.E., Najman, Y., Martin, A.J., Carter, A., Garzanti, E., 2004. Detrital geochronology and geochemistry of Cretaceous – rarly Miocene strata of Nepal: implications for timing and diachroneity of initial Himalayan orogenesis. Earth Planet. Sci. Lett. 227, 313–330. DeCelles, P.G., Gehrels, G.E., Quade, J., LaReau, B., Spurlin, M., 2000. Tectonic implications of U–Pb zircon ages of the Himalayan Orogenic Belt in Nepal. Science 288, 497–499. Doumbia, S., Pouclet, A., Kouamelan, A., Peucat, J.J., Vidal, M., Delor, C., 1998. Petrogenesis of juvenile-type Birimian (Paleoproterozoic) granitoids in Central Côte-d’Ivoire, West Africa: geochemistry and geochronology. Precambrian Res. 87, 33–63. Faure, M., Trap, P., Lin, W., Monie, P., Bruguier, O., 2007. Polyorogenic evolution of the Paleoproterozoic Trans-North China Belt, new insights from the Lüliangshan–Hengshan–Wutaishan and Fuping massifs. Episodes 30, 1–12. Gan, X., Li, H., Sun, D., Jin, W., Zhao, F., 1995. A geochronological study on early Proterozoic granitic rocks, southeastern Zhejiang. Acta Petrol. Miner. 14 (1), 1–8 (in Chinese with English abstract). Gordon, T.M., Hunt, P.A., Bailes, A.H., Syme, E.C., 1990. U–Pb ages from the Flin Flon and Kisseynew belts, Manitoba: chronology of crust formation at an Early Proterozoic accretionary margin. In: Lewry, J.F., Stauffer, M.R. (Eds.), The Early Proterozoic Trans-Hudson Orogen, vol. 37. Geol. Assoc. Can., pp. 177–200 (Spec. Pap.). Greentree, M.R., Li, Z.X., Li, X.H., Wu, H., 2006. Late Mesoproterozoic to earliest Neoproterozoic basin record of the sibao orogenesis in western South China and relationship to the assembly of Rodinia. Precambrian Res. 151, 79–100. Greentree, M.R., Li, Z.-X., 2008. The oldest known rocks in south–western China: SHRIMP U–Pb magmatic crystallisation age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group. J. Asian Earth Sci. 25, 289–302. Griffin, T.J., Page, R.W., Sheppard, S., Tyler, I.M., 2000. Tectonic implications of Palaeoproterozoic post-collisional, high-K felsic igneous rocks from the Kimberley region of northwestern Australia. Precambrian Res. 101, 1–23. Griffin, W.L., Wang, X., Jackson, S.E., Pearson, N.J., O’Reilly, S.Y., Xu, X., Zhou, X., 2002. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61, 237–269. Griffin, W.L., Belousova, E.A., Shee, S.R., Pearson, N.J., O’Reilly, S.Y., 2004. Archaean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons. Precambrian Res. 131, 231–282. Griffin, W.L., Powell, W.J., Pearson, N.J., O’Reilly, S.Y., 2008. GLITTER: data reduction software for laser ablation ICP-MS. In laser Ablation–ICP–MS in the earth sciences. In: Sylvester, P. (Ed.), Mineralogical Association of Canada Short Course Series 40. Appendix 2, pp. 204–207. Hartmann, L.A., 2002. The Mesoproterozoic supercontinent Atlantica in the Brazilian shield – review of geological and U–Pb zircon and Sm–Nd isotopic evidence. Gondwana Res. 5, 157–163. Heaman, L.M., Peck, D., Toope, K., 2009. Timing and geochemistry of 1.88 Ga Molson Igneous Events, Manitoba: insights into the formation of a craton-scale magmatic and metallogenic province. Precambrian Res. 172, 143–162. Heilbron, M., Duarte, B.P., Valeriano, C.M., Simonetti, A., Machado, N., Nogueira, J.R., 2010. Evolution of reworked Paleoproterozoic basement rocks within the Ribeira belt (Neoproterozoic), SE-Brazil, based on U–Pb geochronology: Implications for paleogeographic reconstructions of the São Francisco-Congo paleocontinent. Precambrian Res. 178, 136–148. Hoffman, P.F., 1991. Did the breakout of Laurentia turn Gondwanaland inside out? Science 252, 1409–1412. Hollis, J.A., Carson, C.J., Glass, L.M., 2009. SHRIMP U–Pb zircon geochronological evidence for Neoarchean basement in the western Arnhem Land, northern Australia. Precambrian Res. 174, 364–380. Hossain, I., Tsunogae, T., Rajesh, H.M., Chen, B., Arakawa, Y., 2007. Palaeoproterozoic U–Pb SHRIMP zircon age from basement rocks in Bangladesh: A possible remnant of the Columbia supercontinent. C. R. Geosci. 339, 979–986. Hou, G.T., Santosh, M., Qian, X.L., Lister, G.S., Li, J.H., 2008. Configuration of the Late Paleoproterozoic supercontinent Columbia: insights from radiating mafic dyke swarms. Gondwana Res. 14, 395–409. Howard, K.E., Hand, M., Barovich, K.M., Reid, A., Wade, B.P., Belousova, E.A., 2009. Detrital zircon ages: Improving interpretation via Nd and Hf isotopic data. Chem. Geol. 262, 277–292.
J.-H. Yu et al. / Precambrian Research 222–223 (2012) 424–449 Hu, X., Xu, J., Tong, Z., Chen, C., 1991. The Precambrian Geology of Southwestern Zhejiang Province. Geol. Publish. House, Beijing, pp. 1–278 (in Chinese with English abstract). Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in-situ U–Pb zircon geochronology. Chem. Geol. 211, 47–69. Jiang, G., Sohl, L.E., Christie-Blick, N., 2003. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (South China): Paleogeographic implications. Geology 31, 917–920. Jiao, W.F., Wu, Y.B., Yang, S.H., Peng, M., Wang, J., 2009. The oldest basement rock in the Yangtze Craton revealed by zircon U–Pb age and Hf isotope composition. Sci. China Ser. D 52, 1393–1399. Karlstrom, K.E., Åhäll, K.-I., Harlan, S.S., Williams, M.L., McLelland, J., Geissman, J.W., 2001. Long-lived (1.8–1.0 Ga) convergent orogen in southern Laurentia, its extensions to Australia and Baltica, and implications for refining Rodinia. Precambrian Res. 111, 5–30. Kaur, P., Chaudhri, N., Raczek, I., Kroner, A., Hofmann, A.W., 2007. Geochemistry, zircon ages and whole-rock Nd isotopic systematics for Palaeoproterozoic A-type granitoids in the northern part of the Delhi belt, Rajasthan, NW India: implications for late Palaeoproterozoic crustal evolution of the Aravalli craton. Geol. Mag. 144, 361–378. Kaur, P., Chaudhri, N., Raczek, I., Kröner, A., Hofmann, A.W., Okrusch, M., 2011. Zircon ages of late Palaeoproterozoic (ca. 1.72–1.70 Ga) extension-related granitoids in NE Rajasthan, India: Regional and tectonic significance. Gondwana Res. 19, 1040–1053. Kemp, A.I.S., Hawkesworth, C.J., Paterson, B.A., Kinny, P.D., 2006. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature 439, 580–583. Ketchum, J.W.F., Jackson, S.E., Culshaw, N.G., Barr, S.M., 2001. Depositional and tectonic setting of the Paleoproterozoic Lower Aillik Group, Makkovik Province, Canada: evolution of a passive margin-foredeep sequence based on petrochemistry and U–Pb (TIMS and LAM-ICP-MS) geochronology. Precambrian Res. 105, 331–356. Kim, J.N., Cho, M., 2003. Low-pressure metamorphism and leucogranite magmatism, northeastern Yeongnam Massif, Korea: implication for Paleoproterozoic crustal evolution. Precambrian Res. 122, 235–251. Kröner, A., Wilde, S.A., Li, J.H., Wang, K.Y., 2005. Age and evolution of a late Archaean to early Palaeozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. J. Asian Earth Sci. 24, 577–595. Lee, S.R., Cho, M., Yi, K., Stern, R.A., 2000. Early Proterozoic granulites in central Korea: tectonic correlation with Chinese Cratons. J. Geol. 108, 729–738. Lerouge, C., Cocherie, A., Toteu, S.F., Penaye, J., Mile si, J.-P., Tchameni, R., Nsifa, E.N., Fanning, C.M., Deloule, E., 2006. Shrimp U–Pb zircon age evidence for Paleoproterozoic sedimentation and 2.05 Ga syntectonic plutonism in the Nyong Group, South-Western Cameroon: consequences for the Eburnean–Transamazonian belt of NE Brazil and Central Africa. J. Afr. Earth Sci. 44, 413–427. Li, S.Z., Zhao, G.C., Sun, M., Wu, F.Y., Liu, J.Z., Hao, D.F., Han, Z.Z., Luo, Y., 2004. Mesozoic, not Paleoproterozoic SHRIMP U–Pb zircon ages of two Liaoji granites, Eastern Block, North China Craton. Intern. Geol. Rev. 46, 162–176. Li, S.Z., Zhao, G.C., 2007. SHRIMP U–Pb zircon geochronology of the Liaqji granitoids: Constraints on the evolution of the paleoproterozoic Jiao–Liao–Ji belt in the eastern block of the north China craton. Precambrian Res. 158, 1–16. Li, W.-X., Li, X.H., Li, Z.X., Lou, F.S., 2008. Obduction-type granites within the NE Jiangxi Ophiolite: implications for the final amalgamation between the Yangtze and Cathaysia blocks. Gondwana Res. 13, 288–301. Li, W.-X., Li, X.H., Li, Z.X., 2005. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precambrian Res. 136, 51–66. Li, X.-H., 1999. U–Pb zircon ages of granites from the southern margin of Yangtze Block: timing of the Neoproterozoic Jinning Orogeny in SE China and implications for Rodinia Assembly. Precambrian Res. 97, 43–57. Li, X.-H., Li, W.X., Li, Z.X., Lo, C.H., Wang, J., Ye, M.F., Yang, Y.H., 2009. Amalgamation between the Yangtze and Cathaysia blocks in South China: Constraints from SHRIMP U–Pb zircon ages, geochemistry and Nd–Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Res. 174, 117–128. Li, X.-H., 1997. Timing of the Cathaysia Block formation: constraints from SHRIMP U–Pb zircon geochronology. Episodes 20, 188–192. Li, Z.-X., Zhang, L., Powell, C.M., 1995. South China in Rodinia: part of the missing link between Australia–East Antarctica and Laurentia? Geology 23, 407–410. Li, Z.-X., Li, X.H., Zhou, H., Kinny, P.D., 2002. Grenvillian continental collision in south China: New SHIMP U–Pb zircon results and implications for the configuration of Rodinia. Geology 30, 163–166. Li, Z.-X., Li, X.H., Kinny, P.D., Wang, J., Zhang, S., Zhou, H., 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Res. 122, 85–109. Li, Z.-X., Li, X.H., 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model. Geology 35, 179–182. Li, Z.-X., Li, X.H., Wartho, J.A., Clark, C., Li, W.X., Zhang, C.L., Bao, C.M., 2010. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai Orogeny, southeastern South China: new age constraints and P–T conditions. GSA Bull. 122, 772–793. Liu, S.W., Liang, H.H., Zhao, G.C., Hua, Y.G., Jian, A.H., 2000. Isotopic chronology and geological events of Precambrian complexes in Taihangshan region. Sci. China (Ser. D) 43, 386–393.
447
Liu, S.W., Zhao, G.C., Wilde, S.A., 2006. Th-U–Pb monazite geochronology of the Luliang and Wutai Complexes: Constraints on the tectonothermal evolution of the Trans-North China Orogen. Precambrian Res. 148, 205–224. Liu, Y.S., Hu, Z.C., Gao, S., Günther, D., Xu, J., Gao, C.G., Chen, H.H., 2008a. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 257, 34–43. Liu, X., Gao, S., Diwu, C., Ling, W., 2008b. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies. Am. J. Sci. 308, 421–468. Liu, R., Zhou, H., Zhang, L., Zhong, Z., Zeng, W., Xiang, H., Jin, S., Lu, X., Li, C., 2009. Paleoproterozoic reworking of ancient crust in the Cathaysia Block, South China: evidence from zircon trace elements, U–Pb and Lu–Hf isotopes. Chin. Sci. Bull. 54, 1543–1554. Liu, Y., Gao, S., Hu, Z., Gao, C., Zong, K., Wang, D., 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J. Petrol. 51, 537–571. Lu, S.N., Zhao, G.C., Wang, H.C., Hao, G.J., 2008. Precambrian metamorphic basement and sedimentary cover of the North China Craton: Review. Precambrian Res. 160, 77–93. Lu, X.-P., Wu, F.-Y., Guo, J.-H., Wilde, S.A., Yang, J.-H., Liu, X.-M., Zhang, X.-O., 2006. Zircon U–Pb geochronological constraints on the Paleoproterozoic crustal evolution of the Eastern block in the North China Craton. Precambrian Res. 146, 138–164. Luo, Y., Sun, M., Zhao, G.C., Li, S., Xu, P., Ye, K., Xia, X.P., 2004. LA-ICP-MS U–Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: constraints on the evolution of the Jiao–Liao–Ji Belt. Precambrian Res. 134, 349–371. Luo, Y., Sun, M., Zhao, G.C., Ayers, J.C., Li, S.Z., Xia, X.P., Zhang, J.H., 2008. A comparison of U–Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe Group: Constraints on the evolution of the Jiao–Liao–Ji Belt, North China Craton. Precambrian Res. 163, 279–306. Martin, D.M., Sircombe, K.N., Thorne, A.M., Cawood, P.A., Nemchin, A.A., 2008. Provenance history of the Bangemall Supergroup and implications for the Mesoproterozoic paleogeography of the West Australian Craton. Precambrian Res. 166, 93–110. McQuarrie, N., Robinson, D., Long, S., Tobgay, T., Grujic, D., Gehrels, G., Ducea, M., 2008. Preliminary stratigraphic and structural architecture of Bhutan: Implications for the along strike architecture of the Himalayan system. Earth Planet. Sci. Lett. 272, 105–117. Miller, C., Klötzli, U., Frank, W., Thöni, M., Grasemann, B., 2000. Proterozoic crustal evolution in the NW Himalaya (India) as recorded by circa 1.80 Ga mafic and 1.84 Ga granitic magmatism. Precambrian Res. 103, 191–206. Nelson, D.R., 2001. Compilation of geochronology data, 2000. West. Aust. Geol. Surv. Rec. 2, p1–p205. Noce, C.M., Pedrosa-Soares, A.C., Silva, L.C., Armstrong, R., Piuzana, D., 2007. Evolution of polycyclic basement complexes in the Arac¸uaí Orogen, based on U–Pb SHRIMP data: implication for Brazil–Africa links in Paleoproterozoic time. Precambrian Res. 159, 60–78. Orrell, S.E., Bickford, M.E., Lewry, J.F., 1999. Crustal evolution and age of thermotectonic reworking in the western hinterland of the Trans-Hudson Orogen, northern Saskatchewan. Precambrian Res. 95, 187–223. Parrish, R.R., Hodges, K.V., 1996. Isotopic constraints on the age and provenance of the Lesser and Greater Himalayan sequences, Nepalese Himalaya. Geol. Soc. Am. Bull. 108, 904–911. Qiu, Y., Gao, S., McNaughton, N.J., Groves, D.I., Ling, W., 2000. First evidence of >3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonic. Geology 28, 11–14. Rao, V.V., Reddy, P.R., 2002. A Mesoproterozoic supercontinent: evidence from the Indian shield. Gondwana Res. 5, 63–74. Rawlings-Hinchey, A.M., Sylvester, P.J., Myers, J.S., Dunning, G.R., Kosler, J., 2003. Paleoproterozoic crustal genesis: calc-alkaline magmatism of the Torngat Orogen, Voisey’s Bay area, Labrador. Precambrian Res. 125, 55–85. Richards, A., Parrish, R., Harris, N., Argles, T., Zhang, L., 2006. Correlation of lithotectonic units across the eastern Himalaya, Bhutan. Geology 34, 341–344. Richards, A., Argles, T., Harris, N., Parrish, R., Ahmad, T., Darbyshire, F., Draganits, E., 2005. Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth Planet. Sci. Lett. 236, 773–796. Rino, S., Komiya, T., Windley, B.F., Katayama, I., Motoki, A., Hirata, T., 2004. Major episodic increases of continental crustal growth determined from zircon ages of river sands; implications for mantle overturns in the Early Precambrian. Phys. Earth Planet. Inter. 146, 369–394. Robinson, D.M., DeCelles, P.G., Patchett, P.J., Garzione, C.N., 2001. The kinematic evolution of the Nepalese Himalaya interpreted from Nd isotopes. Earth Planet. Sci. Lett. 192, 507–521. Rogers, J.J.W., Santosh, M., 2002. Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Res. 5, 5–22. Roy, A., Prasad, M.H., 2003. Tectonothermal events in Central Indian Tectonic Zone (CITZ) and its implications in Rodinian crustal assembly. J. Asian Earth Sci. 22, 115–129. Sagong, H., Cheong, C.S., Kwon, S.T., 2003. Paleoproterozoic orogeny in South Korea: evidence from Sm–Nd and Pb step-leaching garnet ages of Precambrian basement rocks. Precambrian Res. 122, 275–295. Santosh, M., Wilde, S.A., Li, J.H., 2007. Timing of Paleoproterozoic ultrahigh temperature metamorphism in the North China Craton: evidence from SHRIMP U–Pb zircon geochronology. Precambrian Res. 159, 178–196.
448
J.-H. Yu et al. / Precambrian Research 222–223 (2012) 424–449
Scherer, E., Munker, C., Mezger, K., 2001. Calibration of the Lutetium–Hafnium clock. Science 293, 683–687. Schneider, D.A., Heizler, M.T., Bickford, M.E., Wortman, G.L., Condie, K.C., Perilli, S., 2007. Timing constraints of orogeny to cratonization: Thermochronology of the Paleoproterozoic Trans-Hudson orogen, Manitoba and Saskatchewan, Canada. Precambrian Res. 153, 65–95. Scott, D.J., 1998. An overview of the U–Pb geochronology of the Paleoproterozoic Torngat Orogen, northeastern Canada. Precambrian Res. 91, 91–107. Sharma, K.K., Rashid, S.A., 2001. Geochemical evolution of peraluminous paleoproterozoic bandal orthgneiss NW, Himalaya, Himachal Pradesh, India: implications for the ancient crustal growth in the Himalaya. J. Asian Earth Sci. 19, 413–428. Shu, L., Faure, M., Yu, J.-H., Jahn, B.-M., 2011. Geochronological and geochemical features of the Cathaysia block (South China): new evidence for the Neoproterozoic breakup of Rodinia. Precambrian Res. 187, 263–276. Shu, L.S., Zhou, G.Q., Shi, Y.S., Yin, J., 1994. Study of the high-pressure metamorphic blueschist and its Late Proterozoic age in the Eastern Jiangnan belt. Chin. Sci. Bull. 39, 1200–1204. Singh, S., Jain, A.K., Bailey, M., 2009. SHRIMP U–Pb c. 1860 Ma Anorogenic Magmatic Signatures from the NW Himalaya: implications for Palaeoproterozoic Assembly of the Columbia Supercontinent. Geological Society, London, pp. 283–300 (Special Publications 323). Sun, M., Chen, N., Zhao, G.C., Wilde, S.A., Ye, K., Guo, J., Chen, Y., Yuan, C., 2008. U–Pb Zircon and Sm–Nd isotopic study of the Huangtuling granulite, dabie-sulu belt, China: implication for the paleoproterozoic tectonic history of the Yangtze craton. Am. J. Sci. 308, 469–483. Tam, P.Y., Zhao, G.C., Liu, F., Zhou, X., Sun, M., Li, S., 2010. Timing of metamorphism in the Paleoproterozoic Jiao–Liao–Ji Belt: new SHRIMP U–Pb zircon dating of granulites, gneisses and marbles of the Jiaobei massif in the North China Craton. Gondwana Res. 19, 150–162. Wan, Y.S., Liu, D.Y., Xu, M.H., Zhuang, J., Song, B., Shi, Y., Du, L., 2007. SHRIMP U–Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia Block, China: tectonic implications and the need to redefine lithostratigraphic units. Gondwana Res. 12, 166–183. Wang, Y., Yang, J., Guo, L., Shi, Y., Hu, X., Wang, X., 1992. The discovery of the lower Proterozoic granite in Longquan, Zhejiang Province, and the age of the basement. Geol. Rev. 38 (6), 525–531 (in Chinese with English abstract). Wang, X.-L., Zhou, J.-C., Qiu, J.-S., Zhang, W., Liu, X., Zhang, G., 2006. LA-ICP-MS U–Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China: implications for tectonic evolution. Precambrian Res. 145, 111–130. Wang, X.L., Zhou, J.C., Griffin, W.L., Wang, R.C., Qiu, J.S., O’Reilly, S.Y., Xu, X.S., Liu, X.M., Zhang, G.L., 2007. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: dating the assembly of the Yangtze and Cathaysia Blocks. Precambrian Res. 159, 117–131. Wang, X.L., Zhao, G.C., Zhou, J.C., Liu, Y.S., Hu, J., 2008. Geochronology and Hf isotopes of zircon from volcanic rocks of the Shuangqiaoshan Group, South China: Implications for the Neoproterozoic tectonic evolution of the eastern Jiangnan orogen. Gondwana Res. 14, 355–367. Wang, L.J., Griffin, W.L., Yu, J.H., O’Reilly, S.Y., 2010a. Precambrian crustal evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks. Precambrian Res. 177, 131–144. Wang, Z., Wilde, S.A., Wan, J., 2010b. Tectonic setting and significance of 2.3–2.1 Ga magmatic events in the Trans-North China Orogen: new constraints from the Yanmenguan mafic–ultramafic intrusion in the Hengshan–Wutai–Fuping area. Precambrian Res. 178, 27–42. Whalen, J.B., Wodicka, N., Taylor, B.E., Jackson, G.D., 2010. Cumberland batholith, Trans-Hudson Orogen, Canada: petrogenesis and implications for Paleoproterozoic crustal and orogenic processes. Lithos 117, 99–118. Whitehouse, M.J., Bridgwater, D., 2001. Geochronological constraints on Paleoproterozoic crustal evolution and regional correlations of the northern Outer Hebridean Lewisian complex, Scotland. Precambrian Res. 105, 227–245. Whittington, A., Foster, G., Harris, N., Vance, D., Ayres, M., 1999. Lithostratigraphic correlations in the western Himalaya – an isotopic approach. Geology 27, 585–588. Wilde, S.A., Zhao, G.C., 2005. Archean to Paleoproterozoic evolution of the North China Craton. J. Asian Earth Sci. 24, 519–522. Worden, K.E., Carson, C.J., Scrimgeour, I.R., Lally, J., Doyle, N., 2008. A revised Palaeoproterozoic chronostratigraphy for the Pine Creek Orogen, northern Australia: evidence from SHRIMP U–Pb zircon geochronology. Precambrian Res. 166, 122–144. Wu, F.-Y., Ji, W.-Q., Liu, C.-Z., Chung, S.-L., 2010. Detrital zircon U–Pb and Hf isotopic data from the Xigaze fore-arc basin: constraints on Transhimalayan magmatic evolution in southern Tibet. Chem. Geol. 271, 13–25. Wu, F.-Y., Yang, J.-H., Wilde, S.A., Liu, X.-M., Guo, J.-H., Zhai, M.-G., 2007. Detrital zircon U–Pb and Hf isotopic constraints on the crustal evolution of North Korea. Precambrian Res. 159, 155–177. Wu, R.-X., Zheng, Y.-F., Wu, Y.-B., Zhao, Z.-F., Zhang, S.-B., Liu, X., Wu, F.-Y., 2006. Reworking of juvenile crust: element and isotope evidence from Neoproterozoic granodiorite in South China. Precambrian Res. 146, 179–212. Wu, Y.-B., Zheng, Y.-F., Gao, S., Jiao, W.-F., Liu, Y.-S., 2008. Zircon U–Pb age and trace element evidence for Paleoproterozoic granulite–facies metamorphism and Archean crustal rocks in the Dabie Orogen. Lithos 101, 308–322. Xia, X.P., Sun, M., Zhao, G.C., Wu, F.Y., Xu, P., Zhang, J.H., Luo, Y., 2006a. U–Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton. Earth Planet. Sci. Lett. 241, 581–593.
Xia, X.P., Sun, M., Zhao, G.C., Luo, Y., 2006b. LA-ICP-MS U–Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance. Precambrian Res. 144, 199–212. Xia, X.P., Sun, M., Zhao, G.C., Wu, F.Y., Xu, P., Zhang, J.S., 2008. Paleoproterozoic crustal growth events in the Western Block of the North China Craton: evidence from detrital zircon Hf and whole rock Sr–Nd isotopes of the khondalites in the Jining complex. Am. J. Sci. 308, 304–327. Xiong, Q., Zheng, J.P., Yu, C., Su, Y., Tang, H., Zhang, Z., 2009. Zircon U–Pb age and Hf isotope of Quanyishang A-type granite in Yichang: signification for the Yangtze continental cratonization in Paleoproterozoic. Chin. Sci. Bull. 54, 436–446. Yang, J., Gao, S., Chen, C., Tang, Y., Yuan, H., Gong, H., Xie, S., Wang, J., 2009. Episodic crustal growth of North China as revealed by U–Pb age and Hf isotopes of detrital zircons from modern rivers. Geochim. Cosmochim. Acta 73, 2660–2673. Yang, Z., Sun, Z., Yang, T., Pei, J., 2004. A long connection (750–380 Ma) between South China and Australia: paleomagnetic constraints. Earth Planet. Sci. Lett. 220, 423–434. Ye, M.F., Li, X.H., Li, W.X., Liu, Y., Li, Z.X., 2007. SHRIMP zircon U–Pb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block. Gondwana Res. 12, 144–156. Yin, C.Q., Zhao, G.C., Sun, M., Xia, X.P., Wei, C.J., Zhou, X.W., Leung, W.H., 2009. LA-ICPMS U–Pb zircon ages of the Qianlishan complex: constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Precambrian Res. 174, 78–94. Yin, C.Q., Zhao, G.C., Guo, J.H., Sun, M., Zhou, X.W., Zhang, J., Xia, X.P., Liu, C.H., 2011. U–Pb and Hf isotopic study of zircons of the Helanshan complex: constrains on the evolution of the Khondalite Belt in the Western block of the North China Craton. Lithos 122, 25–38. Yu, G., Bao, C., Fang, B., Ma, W., Shong, F., He, S., 1995. Brief introduction to the achievements on lithostratigraphic rebuilding in Zhejiang. Geol. Zhejiang 11 (1), 1–14 (in Chinese with English abstract). Yu, J.-H., Zhou, X., O’Reilly, S.Y., Zhao, L., Griffin, W.L., Wang, R.-C., Wang, L.-J., Chen, X., 2005. Formation history and protolith characteristics of granulite facies metamorphic rock in Central Cathaysia deduced from U–Pb and Lu–Hf isotopic studies of single zircon grains. Chin. Sci. Bull. 50 (18), 2080–2089. Yu, J.-H., O’Reilly, S.Y., Wang, L.-J., Griffin, W.L., Zhang, M., Wang, R.-C., Jiang, S.-Y., Shu, L.-S., 2008. Where was South China in the Rodinia supercontinent? Evidence from U–Pb ages and Hf isotopes of detrital zircons. Precambrian Res. 164, 1–15. Yu, J.-H., Wang, L.-J., Griffin, W.L., O’Reilly, S.Y., Zhang, M., Li, C.-Z., Shu, L.-S., 2009. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China. Precambrian Res. 174, 347–363. Yu, J.-H., O’Reilly, S.Y., Wang, L.-J., Griffin, W.L., Zhou, M.-F., Zhang, M., Shu, L.S., 2010. Components and episodic growth of Precambrian crust in the Cathaysia Block, South China: evidence from U–Pb ages and Hf isotopes of zircons in Neoproterozoic sediments. Precambrian Res. 181, 97–114. Zhang, J., Zhao, G.C., Sun, M., Wilde, S.A., Li, S.Z., Liu, S.W., 2006. High-pressure mafic granulites in the Trans-North China Orogen: tectonic significance and age. Gondwana Res. 9, 349–362. Zhang, Z.Q., Liu, D.Y., Fu, G.M., 1994. Geochronology of Metamorphic Strata in the North Qinling Area. Geological Publishing House, Beijing (in Chinese). Zhang, S.B., Zheng, Y.F., Wu, Y.B., Zhao, Z.F., Gao, S., Wu, F.Y., 2006a. Zircon isotope evidence for ≥3.5 Ga continental crust in the Yangtze craton of China. Precambrian Res. 146, 16–34. Zhang, S.-B., Zheng, Y.-F., Wu, Y.-B., Zhao, Z.-F., Gao, S., Wu, F.-Y., 2006b. Zircon U–Pb age and Hf–O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Res. 151, 265–288. Zhao, G.C., Cawood, P.A., 1999. Tectonothermal evolution of the Mayuan assemblage in the Cathaysia Block: new evidence for Neoproterozoic collional-related assembly of the South China craton. Am. J. Sci. 299, 309–339. Zhao, G.C., Cawood, P.A., Wilde, S.A., Sun, M., 2002. Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Sci. Rev. 59 (1–4), 125–162. Zhao, G.C., Sun, M., Wilde, S.A., 2003. Correlations between the Eastern Block of the North China Craton and the South Indian block of the Indian shield: an Archean to Paleoproterozoic link. Precambrian Res. 122, 201–233. Zhao, G.C., Sun, M., Wilde, S.A., Li, S.Z., 2004. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Sci. Rev. 67 (1–2), 91–123. Zhao, G.C., Sun, M., Wilde, S.A., Li, S.Z., Liu, S.W., Zhang, J., 2006. Composite nature of the North China Granulite–Facies belt: tectonothermal and geochronological constraints. Gondwana Res. 9, 337–348. Zhao, G.C., Wilde, S., Sun, M., Li, S.Z., Li, X.P., Zhang, J., 2008. SHRIMP U–Pb zircon ages of granitoid rocks in the Lüliang complex: implications for the accretion and evolution of the Trans-North China Orogen. Precambrian Res. 160, 213–226. Zhao, G.C., Wilde, S.A., Guo, J., Cawood, P.A., Sun, M., Li, X., 2010. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton. Precambrian Res. 177, 266–276. Zhao, J.-H., Zhou, M.-F., Yan, D.-P., Zheng, J.-P., Li, J.-W., 2011. Reappraisal of the ages of Neoproterozoic strata in South China: no connection with the Grenvillian orogeny. Geology 39, 299–302. Zheng, Y.-F., Wu, Y.-B., Chen, F.K., Gong, B., Li, L., Zhao, Z., 2004. Zircon U–Pb and oxygen isotope evidence for a large-scale 18 O depletion event in igneous rocks during the Neoproterozoic. Geochim. Cosmochim. Acta 68, 4145–4165. Zheng, J., Griffin, W.L., O’Reilly, S.Y., Zhang, M., Pearson, N.J., Pan, Y., 2006. Widespread Archaean basement beneath the Yangtze craton. Geology 34 (6), 417–420.
J.-H. Yu et al. / Precambrian Research 222–223 (2012) 424–449 Zheng, Y.F., Zhang, S.B., Zhao, Z.F., Wu, Y.B., Li, X.H., Li, Z.X., Wu, F.Y., 2007. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: implications for growth and reworking of continental crust. Lithos 96, 127–150. Zheng, Y.-F., Wu, R.-X., Wu, Y.-B., Zhang, S.-B., Yuan, H., Wu, F.-Y., 2008. Rift melting of juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China. Precambrian Res. 163, 351–383. Zhou, X.M., Li, W.X., 2000. Origin of Late Mesozoic igneous rocks of south- eastern China: implications for lithosphere subduction and underplating of mafic magma. Tectonophysics 326, 269–287. Zhou, M.F., Kennedy, A.K., Sun, M., Malpas, J., Lesher, C.M., 2002a. Neoproterozoic arcrelated mafic intrusions along the northern margin of South China: implications for the accretion of Rodinia. J. Geol. 110, 611–618.
449
Zhou, M.F., Yan, D.P., Kennedy, A.K., Li, Y., Ding, J., 2002b. SHRIMP U–Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth Planet. Sci. Lett. 196, 51–67. Zhou, M.F., Ma, Y., Yan, D.-P., Xia, X., Zhao, J.-H., Sun, M., 2006. The Yanbian Terrane (Southern Sichuan Province, SW China): a Neoproterozoic arc assemblage in the western margin of the Yangtze Block. Precambrian Res. 144, 19–38. Zhou, J.C., Wang, X.L., Qiu, J.S., 2009. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China: coeval arc magmatism and sedimentation. Precambrian Res. 170, 27–42. Zhuang, J., Huang, Q., Deng, B., 2000. Strata Subdivision and Petrology of Precambrian Metamorphic Rocks in Fujian. Xiamen University Press, Xiamen, pp. 80–90 (in Chinese).