Use of the Nac Eye Mark Recorder to Study Visual Strategies of Military Aircraft Pilots

Use of the Nac Eye Mark Recorder to Study Visual Strategies of Military Aircraft Pilots

Theoretical and Applied Aspects of Eye Movement Research A.G. Gale and F. Johnson (Editors) 0 E h i e r Science PublishersB.V. (North-Holland),1984 3...

473KB Sizes 0 Downloads 37 Views

Theoretical and Applied Aspects of Eye Movement Research A.G. Gale and F. Johnson (Editors) 0 E h i e r Science PublishersB.V. (North-Holland),1984

367

USE OF THE NAC EYE MARK RECORDER TO STUDY VISUAL STRATEGIES OF MILITARY AIRCRAFT PILOTS

Jean-Paul PAPIN

Centre d'Etudes e t de Recherches de Medecine Aerospatiale

5 bis avenue de l a Porte de Sevres 75731 PARIS CEDEX 15

SUMMARY Recording of gaze direction of experienced a i r c r a f t pilots with the NAC EYE MARK RECORDER permits describing an optimal visual behavior i n instrument and visual f l i g h t . Results lead t o suggestions for the design and correction ergonomics of new visual information display modes. An analysis of visual behaviors of p i l o t students shows that the acquisition of the optimal behavior i s progressive and unconscious. To improve the training of these students, i t i s suggested t o use gaze direction recordings in two ways : one is t o show students the optimal behavior of expert p i l o t s , the other i s t o show students t h e i r own behavior.

INTRODUCTION The f i r s t recordings of visual behavior of a i r c r a f t p i l o t s were made by Tiff i n and Bromer as early as 1942, and many studies followed, b o t h 2n a i r c r a f t (Milton, 1952 ; Llewellyn Thomas, 1963 ; Spady, 1977) and on helicopter (Barnes, 1972 ; Frezell e t Hofmann, 1975). However, t h i s type of study remains of current i n t e r e s t . Indeed, the use of color TV screens or electronic head-up o r down displays t o provide modern a i r c r a f t p i l o t s w i t h the information he needs to f l y raised a double question : an ergonomic question : how t o provide the crew with only t h a t i n formation needed a t a given moment of the f l i g h t and i n the best possible form. a pedagogical question : how t o teach users e f f i c i e n t information pick-up and processing. To reach these goals i t i s necessary t o know : the nature of visual information really used d u r i n g the various f l i g h t phases ;

.

. .

. Whether

there are prefential visual strategies to pick-up and process t h i s information ; f i n a l l y , whether i t is possible t o describe, explain and teach these strategies i f they e x i s t . To answer these questions i t i s necessary t o know, a t every instant, what a p i l o t looks a t and perceives i n his surrounding environment. This i s made possible by the continuous recording of the projection of the gaze axis on the image of the visual environment of a subject. In the f i e l d of aeronaut i c s , one of the preferred techniques i s the use of a photooculograph derived from Mackworth and Mackworth's studies (1958) : the NAC EYE MARK RECORDER. This device, now well known, was used by the Ce&e d ' E & ~ d u c?,t de Rechached

.

J.-P.Papin

368

de MEdecine A E h o o p d d e (Aerospace M e d i c i n e r e s e a r c h C e n t e r ) i n P a r i s t o

conduct s e v e r a l experiments. Some o f these experiments a r e r e p o r t e d i n t h i s paper. I

-

ANALYSIS OF VISUAL STRATEGIES USED BY CONFIRMED PILOTS 1-1.

-

Instrument f l y i n g

A s t u d y conducted i n 1980 by Papin e,t d ,i n a f i g h t e r a i r c r a f t simulator consisted i n recording the v i s u a l behavior o f twelve p i l o t s r e p r e s e n t a t i v e o f a reconnaissance squadron. A l l p i l o t s had f l o w n 500 t o 2500 hours. They had t o r e p e a t f i v e t i m e s a v e r y s t e r e o t y p e d t a s k : a ground c o n t r o l approach. R e s u l t s show t h a t p i l o t s who a r e v e r y f a m i l i a r w i t h t h i s t a s k have good p e r formance scores t h r o u g h o u t a1 1 t e s t s . The a n a l y s i s o f e x p l o r a t o r y v i s u a l b e h a v i o r s shows t h a t t h e r e a r e no s i g n i ficant inter o r i n t r a - i n d i v i d u a l d i f f e r e n c e s . There i s a common v i s u a l b e h a v i o r and t h e s t r a t e g y o f v i s u a l e x p l o r a t i o n may be c o n s i d e r e d as o p t i mal, even i f a b e t t e r one may e x i s t , s i n c e t h e performance l e v e l remains s a t is f a c t o ry W i s b e h a v i o r i s c h a r a c t e r i z e d b y t h e f o l l o w i n g f a c t s . The i n s t r u m e n t panel i s explored i n a s t a r - l i k e p a t t e r n from a prefered instrument : p o s i t i o n i n d i c a t o r w h i c h p r o v i d e s i n f o r m a t i o n about t h e a i r c r a f t p o s i t i o n i n space and heading. The p i l o t ' s gaze s t o p s on t h e p o s i t i o n i n d i c a t o r , s h i f t s t o a n o t h e r i n s t r u m e n t , t h e n comes back t o t h e p o s i t i o n i n d i c a t o r s h i f t i n g a g a i n t o a n o t h e r i n d i c a t o r . Sometimes, gaze s t o p s on an i n s t r u m e n t c l o s e t o t h e i n s trument which was j u s t checked b e f o r e s h i f t i n g back t o t h e p o s i t i o n i n d i c a t o r . Whatever t h e case may be, gaze never l e a v e s t h e p o s i t i o n i n d i c a t o r more t h a n t h r e e seconds, and i n 70 % o f cases more t h a n one second. However, gaze may s h i f t f r o m motor i n d i c a t o r s f o r s e v e r a l seconds. The t o t a l amount o f t i m e s p e n t c h e c k i n g t h e p o s i t i o n i n d i c a t o r accounts f o r 64 % o f t h e t o t a l t e s t t i m e . It i s a l s o p o s s i b l e t o c l a s s i f y i n t r u m e n t s as a f u n c t i o n o f t h e amount o f t i m e s p e n t checking them o r o f t h e number o f times t h e y were checked. We w i l l c a l l these " l o o k - f i x a t i o n s " f o r two reasons. First;tly, because when d a t a i s analysed, what i s c o n s i d e r e d t h e sum o f a l l s m a l l s h i f t s occ u r i n g when gaze s h i f t s back t o a d i a l r a t h e r t h a n each i n d i v i d u a l " f i x a t i o n " . Second, because i n most cases, these l o o k - f i x a t i o n s a r e l i k e l y t o be a s s o c i a t e d w i t h t h e p i c k - u p o f i n f o r m a t i o n , o r a t l e a s t , i n f o r m a t i o n p i c k - u p was p o s s i b l e . I n a d d i t i o n , as t h e r e i s a s t r o n g c o r r e l a t i o n between t h e d u r a t i o n and t h e number o f f i x a t i o n s , i t becomes p o s s i b l e t o express r e s u l t s as l o o k - f i x a t i o n r a t e s f o r v a r i o u s i n s t r u m e n t s . I n t h e p r e s e n t case, i t i s p o s s i b l e t o e s t a b l i s h a hierarchy f o r the various instruments : p o s i t i o n i n d i c a t o r , airspeed, a l t i m e t e r , v e r t i c a l speed, motor i n d i c a t o r s and stand-by h o r i z o n . Another i m p o r t a n t f e a t u r e o f t h e s e r e s u l t s i s t h e average d u r a t i o n o f t h e s e l o o k - f i x a t i o n s . An a n a l y s i s b y i n t e r v i e w s evidenced t h a t t h e y depend on t h e n a t u r e o f t h e i n f o r m a t i o n t o be p i c k e d up. A l o o k - f i x a t i o n o f l e s s t h a n 100-150 m i l l i s e c o n d s i s n o t l o n g enough t o r e a d a d i a l . I n a 100-150 m i l l i second l o o k - f i x a t i o n t h e p i l o t can check t h a t a hand has n o t moved. He needs 150-200 m i 11iseconds t o p e r c e i v e a move and 200-250 m i 11iseconds t o assess t h e a n g u l a r v a l u e o f t h i s move. F i n a l l y , a p i l o t needs a p p r o x i m a t e l y 400 m i l l i s e c o n d s t o r e a d a d i g i t value. These r e s u l t s c o n f i r m t h a t t o be c o r r e c t , t h e p i c k - u p o f i n f o r m a t i o n on an i n s t r u m e n t panel must be a s s o c i a t e d w i t h s y s t e m a t i c and c o n t i n u o u s e x p l o r a t i o n ( i n f o r m a t i o n on d i a l s which a r e n o t checked i s n o t perceived).An e f f i c i e n t method i s t o e x p l o r e an area i n a s t a r - l i k e p a t t e r n f r o m a p r e f e r e d s i t e t o which gaze comes back f r e q u e n t l y . F i n a l l y , i n f o r m a t i o n i s more r a p i d l y p i c k e d up on symbol d i s p l a y s t h a n on alphanumeric d i s p l a y s .

-

.

Visual Strategies of Pilots

369

1-2. Visual f l y i n g

The v i s u a l s t r a t e g y o f confirmed p i l o t s i n v sual f l y i n g was analysed during a research study (Papin eA d.,1981 designed t o assess the p o s s i b i l i t y of f l y i n g a t a c t i c a l mission on a he i c o p t e r w i t h reduced v i s u a l f i e l d and monocular vision. Such f l y i n g - c o n d i t i o n s are encountered when v i s u a l aids are used i n n i g h t f l i g h t . The image o f the landscape r e corded by an i n f r a r e d camera placed outside o f the c o c k p i t appears on a m i n i TV screen attached t o the p i l o t ' s eyes. I n order t o simulate the r e duced v i s u a l f i e l d , a s e r i e s o f masks i s used which provides e i t h e r binocul a r o r monocular v i s i o n w i t h v i s u a l f i e l d s o f 60", 40" o r 20". This system p l u s the NAC were used t o monitor the gaze d i r e c t i o n o f seven p i l o t s w i t h a good experience o f t a c t i c a l f l i g h t during a r e a l f l i g h t during daytime. The 20-minute mission consisted i n searching a p o t e n t i a l ennemy i n a h i l l y t e r r a i n w h i l e keeping away from the enewy's s i g h t and blows. Recordedgaze s h i f t s were analysed e i t h e r as a f u n c t i o n o f objects looked a t outside the c o c k p i t o r as a f u n c t i o n o f the p o s i t i o n o f gaze p r o j e c t i o n on the he1i c o p t e r cockpit. Results show t h a t a l l p i l o t s have a nearly i d e n t i c a l v i s u a l behavior f o r a given c o n d i t i o n o f v i s i o n and f o r a f l i g h t over a p a r t i c u l a r type o f t e r r a i n . One o f the most remarkable f a c t s i s t h a t whatever the conditions may be, v i s u a l e x p l o r a t i o n i s organized i n space r e l a t i v e t o the canopy. Gaze s h i f t s from one area o f the cockpit t o another, i n a starshaped p a t t e r n from the area which corresponds t o gaze p r o j e c t i o n on the canopy when the p i l o t i s a t r e s t and looks s t r a i g h t i n f r o n t o f him. The only case i n which gaze s h i f t s depend on the type o f o b j e c t looked a t i s when the eye encounters a t r e e o r the border o f a f o r e s t . I n t h i s case, i t t r a v e l s back and f o r t h several times from the t r e e top t o the bottom. Another important i t e m i s t h a t most l o o k - f i x a t i o n s tend t o concentrate i n a r e l a t i v e l y small area around the area which i s again and again looked a t under normal v i s u a l conditions. The area where 80 % o f l o o k - f i x a t i o n s are concentrated on the canopy corresponds t o the base o f a cone whose p o i n t i s the p i l o t ' s head and which has 30" aperture angle. When the v i s u a l f i e l d shrinks t o concent r a t e 80 % o f l o o k - f i x a t i o n s , the angle o f t h i s cone increases. It reaches 60" when the f l i g h t t e s t i s conducted i n monocular v i s i o n w i t h a 40" v i s u a l f i e l d . Concurrently, an increase i n the number o f l o o k - f i x a t i o n s on the lower h a l f o f the c o c k p i t and on the instruments i s observed. This change i n behavior suggests t h a t p i l o t s search i n foveal v i s i o n i n f o r m a t i o n which they u s u a l l y capture i n peripheral v i s i o n and which g i v e them i n f o r m a t i o n on t h e i r o r i e n t a t i o n , t h e i r a l t i t u d e , and airspeed. Actually, t o compensate t h i s l a c k o f information, they observe more f r e q u e n t l y the instruments which provide information on these parameters. Such observations, i.e. pick-up o f information outside the c o c k p i t clues and increased checking o f c e r t a i n parameters i n monocular vision, had i m mediate ergonomic a p p l i c a t i o n .

-

Ergonomic a p p l i c a t i o n s During the f i r s t f l i g h t s flown w i t h the prototype system where the image o f the landscape recorded by a camera placed outside the c o c k p i t appears on a TV screen w i t h o u t c o c k p i t clues, the p i l o t seemed t o be conf r o n t e d w i t h s p a t i a l o r i e n t a t i o n , speed, a l t i t u d e and distance evaluation d i f f i c u l t i e s . It was therefore recommended t o show on the image seen by the p i l o t bars corresponding t o the v e r t i c a l and h o r i z o n t a l frame o f the canopy and a l s o t o superimpose on the image heading, airspeed, a l t i t u d e and changing c l i m and descent speeds. These changes added during experiments seemed t o t a l l y satisfactory. 1-3.

370

I1

-

L-R Papin ANALYSIS OF VISUAL STRATEGIES USED BY TRAINING PILOTS

The r e p o r t e d example concerns t h e f o l l o w - u p o f t h e e v o l u t i o n o f t h e v i s u a l b e h a v i o r o f s i x m i l i t a r y a i r c a r r i e r s t u d e n t p i l o t s . Gaze d i r e c t i o n o f these p i l o t s was r e c o r d e d a t r e g u l a r i n t e r v a l s d u r i n g t h e i r 18-month t r a i n i n g program, d u r i n g r e a l o r s i m u l a t e d f l i g h t s , b u t always d u r i n g t h e same "Rodeotacan" t a s k . T h i s t a s k of a p p r o x i m a tely 17 minutes encompasses a l l p o s s i b l e f l i g h t phases. Resu lt s were compared among each o t h e r and a l s o w i t h those o f a c o n t r o l group o f f l i g h t i n s t r u c t o r s who performed t h e same t a s k . R e s u l t s show t h a t a l l s t u d e n t s d i s p l a y a common c h a r c t e r i s t i c b e h avior a t each t r a i n i n g phase. A t t h e begin n i n g o f t h e t r a i n i n g programm, s t u d e n t p i l o t s e x p l o r e d t h e i n s t r u m e n t panel i n a s t a r - l i k e p a t t e r n s t a r t i n g from t h e p i t c h i n d i c a t o r which corresponds t o t h e p o s i t i o n i n d i c a t o r i n combat a i r c r a f t . However they o f t e n lo ok ed back and f o r t h between two i n st rument s, s t o p p i n g f o r a p r a c t i c a l l y i d e n t i c a l l y s h o r t t i m e on each one. Some omissions were a l s o recorded. As t h e s t u d e n t s progressed, t h e number o f back and f o r t h gaze s h i f t s decreased w h i l e t h e d u r a t i o n o f l o o k - f i x a t i o n s increased. Omissions g r a d u a l l y disappeared and l o o k - f i x a t i o n on t h e most i m p o r t a n t i n d i c a t o r s f o r a g i v e n f l i g h t phase became l o n g e r . T h i s f i n a l behavior i s s p e c i f i c t o f l i g h t i n s t r u c t o r s . E v i d e n t l y , t h e a c q u i s i t i o n o f t h i s behavior i s a slow, t o t a l l y unconscious process. The q u e s t i o n i s t o know whether i t may be p o s s i b l e t o a c t i v e l y i n f l u e n c e t h i s a c q u i s i t i o n process. I11

- USE OF GAZE DIRECTION RECORDINGS I N PILOT TRAINING PROGRAMS

To i n f l u e n c e a c t i v e l y t h e a c q u i s i t i o n o f o p t i m a l v i s u a l e x p l o r a t i o n s t r a t e g i e s , two axes o f r e s e a r c h a r e s i m u l t a n e o u s l y f l o l l o w e d . The f i r s t c o n s i s t s i n c r e a t i n g t e a c h i n g m a t e r i a l which shows and e x p l a i n s these behaviors. I n o r d e r t o do t h i s , once t h e v i s u a l behavior o f e x p e r t p i l o t s has been re c o r d e d d u r i n g r e a l o r s i m u l a t e d f l i g h t , a document i s prepared which a1 t e r n a t e s dynamic p r e s e n t a t i o n o f these behaviors, e x p l a n a t o r y sketches and consequences o f most f r e q u e n t inadequate behaviors , e x h i b i t e d bu s t u d e n t p i l o t s . Such documents have been made, i n c o l o r , f o r t h e v a r i o u s phases o f h e l i c o p t e r f l i g h t i n s t r u c t i o n , b o t h o v e r c o u n t r y s i d e and mountainous t e r r a i n . However, t hey have n o t been d i s t r i b u t e d t o s t u d e n t p i l o t s s i n c e t h e r e s u l t s o b t a i n e d r e c e n t l y i n r a d i o l o g y ( P m a l b e r t i e l at, 1983) and a v i a t i o n s t u d i e s (Spady, 1982) show t h a t alone, v i e w i n g t h e o p t i m a l behavior i s n o t e f f i c i e n t . What i s e f f i c i e n t i s e i t h e r t o show t h e s t u d e n t s t h e i r own behavior, o r t o l e t them p a r t i c i p a t e a c t i v e l y when t h e f i l m i s shown. To o b t a i n such a c t i v e p a r t i c i p a t i o n d u r i n g f i l m viewing, s p e c i a l scenes must be prepared and we a r e c u r r e n t l y p r e p a r i n g them f o r h e l i c o p t e r f l i g h t i n s t r u c t i o n . The second a x i s f o l l o w e d i n t h i s t e a c h i n g r e s e a rch i s t o l e t s t u d e n t s object i v a t e t h e i r b ehav i o r . Such an approach i s p r o m i s i n g b u t r a i s e s numerous problems. Indeed, i n i t s p r e s e n t c o n f i g u r a t i o n , t h e NAC i s n o t adapted f o r stude n t s who a r e s t a t i n g t h e i r f l i g h t i n s t r u c t i o n o r f o r s i n g l e - s e a t e r comb a t a i r c r a f t s t u den t s . However, t h e method can be used i n a s i m u l a t o r t o h e l p st udent s a c q u i r e emergengy procedures as we demonstrated i t i n a s t u d y on h e l i c o p t e r simul a t o r o r as Spady (1982) showed i t on a Boeing 737 s i m u l a t o r . T h i s method cans a l s o be used i n r e a l f l i g h t when a p i l o t i s t r a n s f e r r e d t o a new h e l i c o p t e r o r a new a i r c r a f t . We c o u l d t h u s h e l p tremendously an a i r c a r r i e r p i l o t . I n s t r u c t o r s were c o n f r o n t e d w i t h t h e a l t e r n a t i v e t o e i t h e r dismiss t h e s t u d e n t o r make him r e p e a t h i s courses. An i n f l i g h t r e c o r d i n g helped t h e

Visual Strategies of Pilots

37 1

p i l o t i d e n t i f y h i s e r r o r s and t r u s t h i s i n s t r u c t o r s again. He could corr e c t h i s e r r o r s q u i c k l y and catch up on what he had missed. This c l i n i c a l observation i s very i n t e r e s t i n g b u t i t i s d i f f i c u l t t o make a generalizat i o n since actions must be punctual and r e q u i r e g r e a t a v a i l a b i l i t y . NOW, what should be done i s t o go from research t o p r a c t i c a l application. 'Ib ck t h i s s p e c i a l i s t s must be t r a i n e d and special equipment must be acquired. I t would c e r t a i n l y be a long and expensive process. CONCLUSION The NAC EYE MARK Recorder i s a valuable t o o l f o r the study o f the v i s u a l behavior o f confirmed p i l o t s i n v i s u a l f l i g h t on h e l i c o p t e r o r a i r c a r r i e r and a l l a i r c r a f t types i n simulators. Such studies h e l p s o l v i n g ergonomic c o r r e c t i o n and design problems. The NAC can be used e f f i c i e n t l y t o prepare t r a i n i n g m a t e r i a l f o r p i l o t s t u dents, and t o help c e r t a i n categories o f f a i l i n g students. However, i t should n o t be used t o analyse p i l o t ' s work i n a s i n g l e seater f i g h t e r a i r c r a f t i n r e a l f l i g h t nor t o help beginner students. I n order t o go f u r ther i n t h i s type o f approach i n the f i e l d o f a v i a t i o n , i t w i l l be necessary t o w a i t f o r the development o f recording equipment b e t t e r adapted t o t h i s task.

-

REFERENCES

-

BARNES J.A. : "Analysis o f p i l o t s eye movements during h e l i c o p t e r f l i g h t " Tech. memo. 11-72, Human engineering laboratory, a p r i l 1972.

-

FREZELL T.L., HOFMANN M.A. : Comparison o f v i s u a l performance o f monocul a r and binocular v i s i o n during VHR h e l i c o p t e r f l i g h t . Aerospace Medic a l pane1,Agard conference pr0ceedingG.B. Val CP 1982, n04 10/1975.

-

MACKWORTH Y.F., MACKWORTH N.M. : Eye f i x a t i o n s recorded on changing v i s u a l scenes by the t e l e v i s i o n eye-marker. J. opt. SOC. Amer., 1958.

-

MILTON J.L. : Analysis o f p i l o t s eye movements i n f l i g h t . A v i a t i o n Medecine, February 1952.

-

P A P I N J.P., NAUREILS P., SANTUCCI G. :Pickup o f v i s u a l i n f o r m a t i o n by the p i l o t during a ground c o n t r o l approach i n a f i g h t e r a i r c r a f t simulator. A v i a t i o n space, and environnemental medicine, may 1980.

-

-

-

PAPIN J.P., WIATZ A., GANGLOFF B. : La d i r e c t i o n du regard e t des alarmes v i s u e l l e s sur simulateur PUMA 5A 330, Rapport CERMA 80-12, J u i n 80. PAPIN J.P., MENU J.P., SANTUCCI G. : Vision monoculaire en vol t a c t i q u e s u r h 6 l i c o p t e r e . Agard CP 312, mai 1981.

.

SPADY A., AMOS : A i r l i n e p i l o t scanning behavior during approaches and landing i n Boeing 737 simulator, Agard CP 240, A p r i l 1978. SPADY A., JONIS D., COATES G., KIRBY R. : Effectiveness o f using r e a l time eye scanning information f o r p i l o t s t r a i n i n g . Proceding HF Society 1982.

THOMAS E., LLEWELLYN, The eye movements of a p i l o t during a i r c r a f t Landing. Aerospace Medicine, May 1963. TIFFIN J., BROMES : Analysis o f eye f i x a t i o n s and p a t t e r n s o f eye mowements i n landing a Piper cub J 3 a i r plane. Report no 10 d i v i s i o n o f research c i v i l aeronautics adminstration, Washington DC, February 1943.