Uvaichnites riojana: A new crane-like bird ichnotaxon from the lower Miocene of La Rioja (Ebro Basin, Spain)

Uvaichnites riojana: A new crane-like bird ichnotaxon from the lower Miocene of La Rioja (Ebro Basin, Spain)

Proceedings of the Geologists’ Association 123 (2012) 464–470 Contents lists available at SciVerse ScienceDirect Proceedings of the Geologists’ Asso...

2MB Sizes 1 Downloads 33 Views

Proceedings of the Geologists’ Association 123 (2012) 464–470

Contents lists available at SciVerse ScienceDirect

Proceedings of the Geologists’ Association journal homepage: www.elsevier.com/locate/pgeola

Uvaichnites riojana: A new crane-like bird ichnotaxon from the lower Miocene of La Rioja (Ebro Basin, Spain) Ignacio Dı´az-Martı´nez a,b,*, Jose´ Marı´a Herna´ndez c, Salvador Garcı´a Ferna´ndez d, Xabier Murelaga e, Fe´lix Pe´rez-Lorente a a

Universidad de La Rioja/Fundacio´n Patrimonio Paleontolo´gico de La Rioja, Madre de Dios 51-53, E-26006 Logron˜o, La Rioja, Spain Grupo Aragosaurus-IUCA, Paleontologı´a, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna, 1., E-50009 Zaragoza, Spain Fundacio´n Cristina Enea, Paseo Duque de Mandas 66, E-20012 San Sebastia´n, Gipuzkoa, Spain d Aula Paleontolo´gica de Cenicero, Casa de Cultura Las Monjas, E-26350 Cenicero, La Rioja, Spain e Universidad del Paı´s Vasco UPV/EHU, Facultad de Ciencia y Tecnologı´a, Departamento de Estratigrafı´a y Paleontologı´a, Apartado 644, E-48080 Bilbao, Bizkaia, Spain b c

A R T I C L E I N F O

A B S T R A C T

Article history: Received 6 August 2011 Received in revised form 16 February 2012 Accepted 19 February 2012 Available online 14 March 2012

A new bird ichnotaxon found in Cenicero (La Rioja, Ebro Basin, Spain) is described here. The footprints are preserved in sandstone beds in a central-distal alluvial fringe with a mud-dominated floodplain, located in the transition unit between the Na´jera and Haro formations. This level is positioned between the Y and Z local Agenian biozones (lower Miocene). The footprints were preliminarily studied in another work and considered as an indeterminate ichnotaxon. Uvaichnites riojana ichnogen. nov. and ichnosp. nov. is a tridactyl footprint characterized by a prominent central pad, very large to enormous sized, with unjointed toes at the proximal end. These features differ from Aquatilavipes, Aviadactyla, Avipeda, Ludicharadripodiscus, Fuscinapeda, and Ornithotarnocia of the Avipedidae morphofamily. U. riojana is considered to be similar to common crane (Grus grus) footprints in the Gruidae family. There are a few references about this family in the Iberian Peninsula and Balearic Islands and this find could confirm the presence of Gruidae since at least the lower Miocene. ß 2012 The Geologists’ Association. Published by Elsevier Ltd. All rights reserved.

Keywords: New ichnotaxon Uvaichnites riojana Gruidae Lower Miocene Ebro Basin

1. Introduction Several bird footprints have been described in the western Ebro Basin in recent years (Fig. 1). The oldest ones come from the Eocene of Javier and Liedena (Navarra), where a new ichnotaxon (Leptoptilostipus pyrenaicus Payros et al., 2000) has been described. Some Oligocene bird footprints were found near Etaio (Navarra) and lower Miocene bird footprints have been described close to this locality as well (Astibia et al., 2007; Murelaga et al., 2007). In La Rioja, two tracksites have been studied: Alcanadre of upper Oligocene–lower Miocene age (Garcı´a-Raguel et al., 2009) and Cenicero of lower Miocene age (Dı´az-Martı´nez et al., 2011). Bird bones have been found in the lower Miocene (MN3) of Bardenas Reales of Navarra. This material has been determined to be Phoenicopteridae indet (Murelaga, 2000). At the Cenicero site, the authors of this work studied 14 sandstone blocks with vertebrate footprints. The blocks containing * Corresponding author at: Edificio CCT, Universidad de La Rioja, Madre de Dios ˜ o, La Rioja, Spain. Tel.: +34 94 1299657. 51-53, E-26006 Logron E-mail addresses: [email protected] (I. Dı´az-Martı´nez), [email protected] (J.M. Herna´ndez), [email protected] (S. Garcı´a Ferna´ndez), [email protected] (X. Murelaga), [email protected] (F. Pe´rez-Lorente).

the fossil tracks were destined for the building of a winery in Cenicero, La Rioja. 142 footprints were analysed, 72 of which belong to birds, 46 to artiodactyls, six to perissodactyls, and 18 are unidentified. The artiodactyl (Fig. 2B) footprints were assigned to Pecoripeda sp. Vialov, 1965 and the perissodactyl (Fig. 2C) to cf. Hippipeda Vialov, 1966 (Dı´az-Martı´nez et al., 2011). The bird footprints were grouped into two morphotypes. Ichnotaxon 1 is characterized by a tetradactyl footprint of large to enormous size and an incumbent hallux (Fig. 2A) assigned to Gruipeda cf. maxima Panin and Avram, 1962. It was considered to be similar to current heron footprints of the order Ciconiiformes. Ichnotaxon 2 is characterized by tridactyl footprints with a prominent central pad, large to enormous size, and proximally joined digits. Ichnotaxon 2 has been suggested as a possible new ichnotaxon (Dı´az-Martı´nez et al., 2011). The aims of this work are the ichnotaxonomic study of this last ichnotype, the definition of a new ichnogenus and ichnospecies of bird footprints, and a discussion about the trackmaker. 2. Geological setting The Cenicero site (Fig. 1) lies in the Tertiary Ebro Basin, a large tectonosedimentary depression filled with more than 4000 m of

0016-7878/$ – see front matter ß 2012 The Geologists’ Association. Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.pgeola.2012.02.003

I. Dı´az-Martı´nez et al. / Proceedings of the Geologists’ Association 123 (2012) 464–470

465

Fig. 1. Locality map for the Cenicero tracksite and the other tracksites with avian footprints in the western area of the Ebro Basin.

Oligocene–Miocene sediments (Villena et al., 1996). The coordinates are 428280 21.9900 N latitude and 28370 42.9000 W longitude. The referenced cross-section (Fig. 3) crops out with an 188NE dip and a N458E bed direction. The most common facies association consists of a succession of mainly beige lutites, which frequently have pseudo-gley paleosoil levels (PiPujol and Buurman, 1997), and less commonly are interbedded with red or orange lutites showing gley levels (Kraus and Aslan, 1993). These fine detrital deposits occasionally include interbedded calcarenitic sandstones, sublitharenites, or wackas in layers less than 30 cm thick. These sediments have sharp bases and horizontal lamination, are organized in fining-upward sequences, and have levels with vertical root traces at the tops (Herna´ndez et al., 1997). This facies assemblage suggests that these deposits were laid down in a central-distal alluvial fringe or a mud-dominated floodplain. The pedogenic features indicate subaerial exposure commonly occurred after floods, followed by vertical water or air circulation through the deposits. The calcarenitic sandstone interlayers are interpreted as distal erosional channels with grain-transporting floods, and root bioturbation levels show that subaerial exposure commonly occurred after floods. The measured paleocurrents suggest a south-dominant flow, and the sandstone calcareous composition is related to erosion of the source area in the Iberian Range.

The Cenicero outcrop is located in the so-called transition unit, an informal unit proposed by Dı´az-Martı´nez et al. (2011) and stratigraphically positioned between the Na´jera Formation (below) and the Haro Formation (above). The stratigraphic and cartographic relationship with the Fuenmayor microvertebrate site studied by Martı´nez-Salanova (1987) offers a lower Miocene age for the Cenicero site. However, cricetid specimens have been recovered immediately below the footprint level and, therefore, the age of the site must be between the lower Miocene local biozones Y and Z (Agenian) (see discussion in Dı´az-Martı´nez et al., 2011). 3. Material and method This work studies the avian ichnotaxon 2 of Dı´az-Martı´nez et al. (2011). The footprints used here for the analysis are: 1CN1, 1CN3.1, 1CN3.2, 2CN1, 2CN2, 2CN3, 2CN4, 2CN5, 2CN6, 3CN3, 3CN5, 4CN1, 4CN2.1, 4CN2.2, 4CN2.3, 4CN2.4, 4CN3.1, 4CN3.2, 4CN3.3, 4CN4.1, 4CN4.2, 6CN1.1, 6CN1.2, 6CN2.2, 6CN2.3, and 6CN3. The footprints are preserved in five sandstone blocks deposited in the Paleontological Museum of Enciso (Enciso, La Rioja, Spain). Most of the footprints are preserved as convex hyporeliefs without clear erosional structures. Some footprints (1CN3.1, 2CN2, 2CN4, 6CN1.2, 6CN2.1, and 6CN2.2) have been redrawn and remeasured, with some

I. Dı´az-Martı´nez et al. / Proceedings of the Geologists’ Association 123 (2012) 464–470

466

Fig. 3. Stratigraphic section of the Cenicero tracksite.

Fig. 2. Other morphotypes described at the Cenicero tracksite. (A) Gruipeda aff. maxima; (B) Pecoripeda sp.; (C) cf. Hippipeda. Scale bar 5 cm (A); 2 cm (B) and (C).

differences with respect to Dı´az-Martı´nez et al. (2011). The parameters were measured directly in the drawings using AutoCAD software, and then verified in the blocks. Measurements were made (Table 1) of the footprint length (FL), footprint width (FW), central pad length and width (cp L  W), digit II length (II), digit III length (III), digit IV length (IV), angle between digits II and III (II^III), angle between digits III and IV (III^IV), angle between digits II and IV (II^IV), and pace length (PL).

Table 1 Measurements of the Uvaichnites riojana ichnogen. nov. and ichnosp. nov footprints. Footprint length (FL), footprint width (FW), central pad length and width (cp L  W), digit II length (II), digit III length (III), digit IV length (IV), angle between digits II and III (II^III), angle between digits III and IV (III^IV), angle between digits II and IV (II^IV), and pace length (PL). All parameters are given and compared in millimeters, except for II^III, III^IV, and II^IV, which are in degrees. FL 1CN3.2 1CN3.1 1CN1 2CN6 2CN4.2 2CN4.1 2CN3 2CN2 2CN1 3CN5 3CN3 4CN4.2 4CN4.1 4CN3.3 4CN3.2 4CN3.1 4CN2.4 4CN2.3 4CN2.2 4CN2.1 4CN1 6CN3 6CN2.2 6CN2.1 6CN1.2 6CN1.1

126 122 126 120 110 130

Average

FW

cp L  W

II

III

IV

II^III

III^IV

II^IV

PL

26  16 28  30 20  24

30 30 40

90 84 85 110 80 90

60 70 66 60

57

63 53 73 76

110

380

97 105 75 80

60

140 22  22

125

124

107 116

113

27  28

40

19  16 49

138 100

120

22  25 19  20

111

149

25  26 20  22 26  19

123 120 125 123 116

136

17  22

110

23  29 21  26 16  25

120

127

22  23

50

59 85

25 42 62 39 63 61 46 24

118

67

106

58

121

44 48 61 67

66 118 127

55 55

57 50

55

89 95

55

58 51 49

70 67

128 118

54 59 39 50

70 58 33 42

59

121

25

93 90 85 92 85 78

42

88

60

49

0.1

0.01 443

105 75 84

78 39

0.1 410

35

53

(FL  FW)/FW

0.1

282 320 400

0.2

0.1 435

70 60 72

103 102

63

111

390 0.1 382

0.01

I. Dı´az-Martı´nez et al. / Proceedings of the Geologists’ Association 123 (2012) 464–470

467

In order to characterize the relative footprint width, the (FL  FW)/ FW ratio has been calculated (Pe´rez-Lorente, 2001). All parameters are given and compared in millimeters, except for II^III, III^IV, and II^IV, which are in degrees. The ichnotaxonomic analysis is based on the ichnotaxobases proposed by de Valais et al. (2008) and Dı´az-Martı´nez et al. (2011).

the physical state of the substrate. The preserved footprint impressions range from very shallow (almost disappeared) to deep (8 mm in 1CN1). There are also two poorly preserved trackways in block 4CN. Trackway 4CN2.1-4 has an irregular pace length (range 282– 400 mm).

4. Systematic ichnology

5. Systematic discussion

Class Aves Linnaeus, 1758 Subclass Neornithes Gadow, 1893 Morphofamily Avipedidae Sarjeant and Langstone, 1994 Ichnogenus Uvaichnites ichnogen. nov. ichnotaxon 2 Dı´az-Martı´nez et al. (2011, Figs. 3, 4.1–4.3 and 5.1). Type ichnospecies: Uvaichnites riojana nov. ichnosp. Monospecific ichnogenus. Holotype: Footprint 2CN2 (Fig. 4A and B) the originals are held in the Paleontological Museum of Enciso (Enciso, La Rioja). Paratypes: 1CN1, 1CN3.1 (Fig. 4C), 1CN3.2 (Fig. 4F), 2CN1, 2CN3, 2CN4, 2CN5, 2CN6, 3CN3, 3CN5, 4CN1, 4CN2.1, 4CN2.2, 4CN2.3 (Fig. 4E), 4CN2.4, 4CN3.1, 4CN3.2, 4CN3.3, 4CN4.1 (Fig. 4D), 4CN4.2, 6CN1.1, 6CN1.2, 6CN2.2, 6CN2.3, and 6CN3. Type locality: Cenicero (La Rioja). Type horizon: Transition unit between the Na´jera and Haro formations of Agenian age (lower Miocene). Derivatio nominis: Uva, Spanish word for grape; ichnites, footprint. Meaning grape track, because it was found during the building works for a new winery. Diagnosis: Very large to enormous (more than 100 mm) mesaxonic tridactyl bird track with a prominent central pad and not proximally jointed toes. Total interdigital span large (more than 1008). Angular asymmetry (angle between II and III less than III and IV). Webbing absent. Slender digit impressions, no welldefined claws. Central digit length (III) more than 25% longer than lateral digits. Digit II smaller than digit IV. Two digital pad impressions on digit II and three on digit III. Uvaichnites riojana ichnosp. nov. Holotype: As for ichnogenus. Paratypes: As for ichnogenus Type locality: As for ichnogenus. Type horizon: As for ichnogenus. Derivatio nominis: After La Rioja province. Diagnosis: As for ichnogenus. Description: The type series, holotype and paratypes (Table 1 for the measurements), are unwebbed tridactyl footprints with forwardly directed digits. The footprints are very large to enormous (see parameters of the ichnotaxobases in Dı´az-Martı´nez et al., 2011), from 100 mm to 138 mm, and approximately as long as wide (average 120 mm long and 127 mm wide). The central digit (III) is the longest of the three (average 88 mm). Digit II is shallower and smaller than IV (average 42 mm II and 60 mm IV). The digit divarication between digits II and IV is large (average 1118). They have angular asymmetry, average digit divarication between digits II and III is 498 less than between III and IV which is 638. They are leptodactyls (long, slender digits). They possess digital pad impressions, two on digit II, three on digit III, and unknown on digit IV (2, 3, ?). They are mostly only slightly visible, although there are two very clear bumps on the sole of the footprints marking the lateral outline of the pads. The proximal ends of the digit impressions are not in contact with each other, even though they are sometimes very close to the central pad. This pad is subcircular with a similar or larger diameter than the digit width. The digit marks, especially in digit III, tend to tape distally. Often, this characteristic has nothing to do with the tapering digits (related to the distal claw marks), but rather with

Tridactyl footprints, forwardly directed digits, lack of normal webbing, and sometimes proximally separated digits are all features that correspond to the Avipedidae morphofamily Sarjeant and Langstone, 1994. This morphofamily is composed of Aquatilavipes Currie, 1981, Avipeda Vialov, 1965, Aviadactyla Kordos, 1983, Ludicharadripodiscus Ellenberguer, 1980, Fuscinapeda Sarjeant and Langstone, 1994 and Ornithotarnocia Kordos, 1983 according to Sarjeant and Langstone (1994) and Sarjeant and Reynolds (2001). Aviadactyla (sensu Sarjeant and Reynolds, 2001) differs from Uvaichnites in the length of the central digit (III), which is less than 25% longer than the lateral digits. The digits are more slender and do not have a metatarsal pad (Fig. 5H). Uvaichnites (Figs. 4 and 5A and B) differs from the otherwise very similar Avipeda (sensu Sarjeant and Langstone, 1994) in that it has proximally separated digits but no metatarsal pad (Fig. 5I). The total interdigital span is about 958 and the length of digit III is similar to digits II and IV. Uvaichnites differs from Fuscinapeda (sensu McCrea and Sarjeant, 2001) and Ornithotarnocia (sensu Sarjeant and Reynolds, 2001) essentially in having more slender digits, a central pad, and no proximally united digits (Fig. 5D and E). Aquatilavipes (sensu McCrea and Sarjeant, 2001) has slender digits, but they are not separated proximally (Fig. 5F). Ludicharadripodiscus occasionally has interdigital webbing and a hallux, and the digits are united proximally (Fig. 5G). Sarjeant and Reynolds (2001) defined Alaripeda Sarjeant and Reynolds, 1999, 2001 and assign it to the Gruipedidae morphofamily, but Lockley and Harris (2010; p. 29, Table 3) included the ichnogenus Alaripeda within the morphofamily Avipedidae. Alaripeda is very different from Uvaichnites in the number of digits (in fact, it can have four digits), in the length of digit III (less than 25% longer than the lateral digits), in divarication (total interdigital span more than 1508), and in not showing a metatarsal pad (Fig. 5J). Panin and Avram (1962; p. 464, Fig. 9) included a similar Gruidae footprint from a paper by Formozov (1952), but it does show a hallux impression. U. riojana was found next to another bird ichnotaxon with a hallux impression at the Cenicero site. The depth of both types of footprints is similar, and hence it can be assumed that the lack of the hallux is not due to differences in the physical properties of the substrate or to behavioural variations. Nevertheless, there are no long, clear trackways to verify it. All these characteristics together strongly suggest that the footprints studied in this paper, assigned to U. riojana, represent a new ichnotaxon that belongs to the morphofamily Avipedidae, and differs from the other ichnotaxa of that morphofamily. 6. Trackmaker affinity Dı´az-Martı´nez et al. (2011) suggest that these footprints are similar to current crane tracks (Figs. 5C and 6) and they assign them to the order Gruiformes. This order appears in the Late Cretaceous (Houde, 2009) and it comprises the families Psophiidae, Aramidae, Gruidae, Heliornithidae, and Rallidae (Livezey, 1998). U. riojana is close in size and shape to Grus grus Linnaeus, 1758 (common crane) footprints figured by Brown et al. (2003, p. 88)

468

I. Dı´az-Martı´nez et al. / Proceedings of the Geologists’ Association 123 (2012) 464–470

Fig. 4. Photographs and line drawing of Uvaichnites riojana ichnogen. nov. and ichnosp. nov. (A) and (B) 2CN2 (holotype), (C) 1CN3.1, (D) 4CN4.1, (E) 4CN2.3, (F) 1CN3.2. Scale bars 5 cm.

from the Gruidae family, and could belong to this family. Mlı´kovsky´ (2002) cited four genera in the family Gruidae in the European Cenozoic: Palaeogrus Portis, 1884, which appears in the late Eocene; Geranopsis Lydekker, 1891 in the late Eocene; Balearica Brisson, 1760 in the early Miocene; and Grus Pallas, 1766 from the middle Miocene. There are only seven reports of fossils of the Gruidae family in the Iberian Peninsula and Balearic Islands (Fig. 7). Herna´ndez-Pacheco

(1930) classified three fragments of bird bones from the Miocene of Valladolid as ?Grus or ?Ciconiidae. The material is now lost (Sa´nchez, 1999) and therefore this assignation and the place it was found cannot be verified. In the province of Valladolid, there is a report of indeterminate bird bones at the site of Simancas1 from the upper Aragonian (Pineda et al., 2007), and it is possible that the fossil remains described by Herna´ndez-Pacheco (1930) come from similar levels. Adrover et al. (1974) found Grus bones in the late Pliocene of

I. Dı´az-Martı´nez et al. / Proceedings of the Geologists’ Association 123 (2012) 464–470

469

Fig. 5. Uvaichnites riojana footprints (A) 2CN2 (holotype) and (B) 1CN3.1 compared with common crane (Grus grus) footprint and ichnotaxa of the Avipedidae morphofamily: (C) Grus grus (Brown et al., 2003); (D) Fuscinapeda texana Sarjeant and Langston, 1994 (redrawn from Sarjeant and Langston, 1994); (E) Ornithotarnocia lambrechti Kordos, 1985 (redrawn from Sarjeant and Reynolds, 2001); (F) Aquatilavipes curriei McCrea and Sarjeant, 2001 (redrawn from McCrea and Sarjeant, 2001); (G) Ludicharadripodiscus edax Ellenberger, 1980 (redrawn from Ellenberger, 1980); (H) Aviadactyla vialovi Kordos and Prakfalvi, 1990 (redrawn from Sarjeant and Reynolds, 2001); (I) Avipeda griponyx Sarjeant and Reynolds, 2001 (redrawn from Sarjeant and Reynolds, 2001); and (J) Alaripeda lofgreni Sarjeant and Reynolds, 2001 (redrawn from Sarjeant and Reynolds, 2001). Scale bar 5 cm.

La Puebla de Valverde (Teruel). Segui (2002) defined in the Pleistocene of Menorca a new genus of Gruidae: Camusia quintanai Segui, 2002. In the late Pleistocene, bones of G. grus have also been reported from the l’Arbreda cave in Girona (Garcı´a, 1995, 1997) and bones of Grus primigenia Milne-Edwards, 1869 in the d’Es Poua`s cave in Ibiza (Florit et al., 1989) and in Mallorca (Northcote and MourerChauvire´, 1988). Mourer-Chauvire and Antunes (2000) published a

report on bones of Grus primigenia in the Figueira Brava cave (Setu´bal) from the Pleistocene–Holocene. We consider that the phylogenetic relationship of the U. riojana trackmaker is close to the Gruidae family, recorded in Europe since the Eocene. These facts could confirm the presence of the Gruidae family in the Iberian Peninsula and Balearic Islands since at least the lower Miocene.

Fig. 6. Photography of a common crane (Grus grus) footprint of Gallocanta Lake (Teruel, Spain) taken on March 4th 2011.

Fig. 7. Locality map of the outcrops with fossil remain of the Gruidae family in the Iberian Peninsula and Balearic Islands. (A) Valladolid Herna´ndez-Pacheco (1930); (B) Teruel Adrover et al. (1974); (C) Menorca Segui (2002); (D) Girona Garcı´a (1995, 1997); (E) Ibiza Florit et al. (1989); (F) Mallorca Northcote and Mourer-Chauvire´ (1988); and (G) Setubal Mourer-Chauvire and Antunes (2000). Asterisk represents the Cenicero tracksite.

470

I. Dı´az-Martı´nez et al. / Proceedings of the Geologists’ Association 123 (2012) 464–470

7. Conclusions The Cenicero tracksite (lower Miocene, Agenian) formed in a central-distal alluvial fringe with a mud-dominated floodplain. At this tracksite, footprints of mammals (Pecoripeda sp. and cf. Hippipeda) and birds (Gruipeda aff. maxima and U. riojana) have been identified. The features of the new ichnotaxon U. riojana (tridactyl, prominent central pad, very large to enormous and unjointed toes at the proximal end) are close to the common crane (G. grus) of the Gruidae family. In Europe, bone records of this family appear in the Eocene and in the Iberian Peninsula and Barearic Islands there is a doubtful report of the Gruidae family for the middle–late Miocene. Therefore, U. riojana could verify the presence of the Gruidae family record at least since the Agenian (lower Miocene). Acknowledgements I.D.M. benefited from a pre-doctoral research grant from the La Rioja University and the Palaeontological Heritage Foundation of La Rioja. F.L.P. and I.D.M. thank the La Rioja Government for the Fomenta Project (2008/02). X.M. thanks the Education and Science Ministry of Spain for the projects BTE2003-7252, CGL2004-0780, and CGL2007-66431. We also thank Xabier Pereda-Suberbiola (U.P.V/E.H.U), Novella Razzolini (I.C.P.), and Miguel MorenoAzanza (U.Z.) for their comments on an early version of the manuscript, Christine Laurin in revising the English text, and Dr. Jim Rose, Dr. Peter L. Falkingham and anonymous reviewer for comments and suggestions. References Adrover, R., Aguirre, E., Heintz, E., Moissenet, E., Morales, J., 1974. Teruel II. In: Aguirre, E., Morales, J. (Eds.), Coloquio Internacional Sobre Bioestratigrafı´a Continental del Neo´geno Superior y Cuaternario Inferior. Libro guı´a, Madrid, pp. 69–83. Astibia, H., Pereda-Suberbiola, X., Payros, A., Murelaga, X., Berreteaga, A., Baceta, J.I., Badiola, A., 2007. Bird and mammal footprints from the Tertiary of Navarre (Western Pyrenees). Ichnos 14, 175–184. Brisson, M.J., 1760. Ornithologie. Bouche, Paris, pp. 632–639. ˜ ales de las aves de Brown, R., Ferguson, J., Lawrence, M., Lees, D., 2003. Huellas y sen ˜ a y de Europa. Ediciones Omega, Barcelona, p. 336. Espan Currie, P.J., 1981. Bird footprints from the Gething Formation (Aptian, Lower Cretaceous) of northeastern British Columbia, Canada. Journal of Vertebrate Paleontology 1, 257–264. de Valais, S., Melchor, R.N., 2008. Ichnotaxonomy of bird-like footprints: an example from the Late Triassic-Early Jurassic of Northwestern Argentina. Journal of Vertebrate Paleontology 28, 145–159. Dı´az-Martı´nez, I., Garcı´a Ferna´ndez, S., Herna´ndez, J.M., Murelaga, X., Pe´rez-Lorente, F., 2011. Icnitas de aves y mamı´feros del Mioceno inferior de La Rioja (Cuenca ˜ a). Ameghiniana 48, 139–153. del Ebro, espan Ellenberger, P., 1980. Sur les empreintes de pas de gros mammife`res de l’Eoce`ne supe´rieur de Garrigues-Ste-Eulalie (Gard). Palaeovertebrata, Me´moire du Jubile´e R, Lavocat, pp. 37–38. Florit, X., Mourer-Chauvire´, C., Alcover, J.A., 1989. Els ocells pleistoce`nics d’Es Poua`s. Eivissa. Nota preliminar. Bolletı´ del Institut Catala` d’-Histo`ria Natural 56, 35–46. Formozov, A.N., 1952. Snow Cover as an Integral Factor of the Environment and its Importance in the Ecology of Mammals and Birds. Boreal Institute, University of Alberta, Edmonton, p. 176. Gadow, H., 1893. Vo¨gel. II. Systematischer Theil. In: Bronn’s Klassen und Ordnungen des Their-Reichs, Vol. 6 C. F Winter, Leipzig. Garcı´a, L., 1995. Preliminary study of Upper Pleistocene bird from bone remains from l’Arbreda cave (Catalonia). Courier Forschungsinstitut Senckenberg 181, 215–227. Garcı´a, L., 1997. Les restes d’oiseaux des sites de Serinya` (Pays Catalans). In: Fullola, J.M., Soler, N. (Eds.), El mo´n mediterrani despre´s del Pleniglacial (18.000–12.000 BP), Museu d’Arqueologia de Catalunya, Se`rie Monogra`fica 17, Gerona, pp. 329– 344. Garcı´a-Raguel, M., Cuevas-Gonza´lez, I., Dı´az-Martı´nez, I., Pe´rez-Lorente, F., 2009. Fragmentos de roca con huellas de aves en el Terciario de Alcanadre (La Rioja). Descripcio´n estructuras y problemas de identificacio´n. Zubı´a 27, 1–78. Herna´ndez, J.M., Pujalte, V., Robles, S., 1997. Los rizolitos de la Fm. Aguilar (Kimmeridgiense-Berriasiense, Palencia, Burgos y Cantabria): caracterizacio´n, ge´nesis y significado. Geogaceta 22, 93–96.

Herna´ndez-Pacheco, E., 1930. Fisiografı´a, Geologı´a y Paleontologı´a del territorio de Valladolid, vol. 37. Comisio´n de Investigaciones Paleontolo´gicas y Prehisto´ricas, pp. 1–205. Houde, P., 2009. Cranes, rails, and allies (Gruiformes). In: Hedges, S.B., Kumar, S. (Eds.), The Timetree of Life. Oxford University Press, Oxford, pp. 440–444. Kordos, L., 1983. La`bynomok az Ipolytarnoci also-Mioce´n koru homokko¨ben. Geologica Hungarica 46, 261–368. ´ jabb adatok az euro´pai neoge´n la´bnyomos re´tegek Kordos, L., Prakfalvi, P., 1990. U ismerete´hez. Fo¨ldtani Inte´zet E´vi Jelente´se 1988-ro´l (I), 201–212. Kraus, M., Aslan, A., 1993. Eocene hydromorphic paleosols: significance for interpreting ancient floodlain processes. Journal of Sedimentary Petrology 63 (3), 453–463. Linnaeus, C., 1758. Systema naturae per regna tria naturae, Regnum animale, Holmiae, Laurentii Salvii, 10th ed., vol. 1. Trustees, British Museum (Natural History), London, p. 824. Livezey, B.C., 1998. A phylogenetic analysis of the Gruiformes (Aves) based on morphological characters with an emphasis on the rails (Rallidae). Philosophical Transactions of the Royal Society B: Biological Sciences 353, 2077–2151. Lockley, M.G., Harris, J.D., 2010. On the trail of early birds: a review of the fossil footprint record of avian morphological evolution and behavior. In: Ulrich, P.K., Willett, J.H. (Eds.), Trends in Ornithology Research. Nova Publishers, pp. 1–63. Lydekker, R., 1891. Catalogue of the Fossil Birds in the British Museum (Natural History). British Museum (Natural History), London, p. 368. Martı´nez-Salanova, J., 1987. Estudio paleontolo´gico de los micromamı´feros del Mioceno inferior de Fuenmayor (La Rioja). Ciencias de la Tierra 10, 1–99. McCrea, R., Sarjeant, W.A.S., 2001. New ichnotaxa of bird and mammal footprints form the Lower Cretaceous (Albian) Gates Formation of Alberta. In: Tanke, D.H., Carpenter, K. (Eds.), Mosozoic Vertebrate Life. Indiana University Press, Bloomington, Indianapolis, pp. 453–478. Milne-Edwards, A., 1869. Recherches anatomiques et pale´ontologiques pour servir a` l’histoire des oiseaux fossiles de la France. Masson, Paris, p. 200. Mourer-Chauvire, C., Antunes, M.T., 2000. L’avifaune ple´istoce`ne et holoce`ne de Gruta da Figueira Brava (Arra´bida Portugal). In: Antunes, M.T. (Ed.), Colloquium Last neanderthals in Portugal Memo´rias da Academia das Cieˆncias de Lisboa, vol. 38. pp. 129–159. Mlı´kovsky´, J., 2002. Cenozoic Birds of the World. Part 1: Europe. Ninox Press, Praha, p. 406. Murelaga, X., 2000. Estudio de las faunas de vertebrados del Mioceno inferior de las Bardenas Reales y a´reas colindantes (Cuenca del Ebro, Navarra). Tesis Doctoral, UPV/EHU, Bilbao, p. 363. ˜ a, J.C., 2007. Murelaga, X., Astibia, H., Baceta, J.I., Almar, Y., Beamud, B., Larrasoan Fo´siles de pisadas de aves en el Oligoceno de Etaio (Navarra, Cuenca del Ebro). Geogaceta 41, 147–150. Northcote, E.M., Mourer-Chauvire´, C., 1988. The extinct crane Grus primigenia Milne-Edwards in Majorca (Spain). Geobios 21 (2), 101–108. Pallas, P.S., 1766. Miscellanea Zoologica, quibus novae imprimis atque obscurae animalium species describuntur et observationibus iconibus que illustrantur. Petrum van Cleef, Hague, p. 224. Panin, N., Avram, E., 1962. Noe urme de pas de vertebrate in Miocenul Subcarpatilor Ruminestkya. Studie si Cercetari de Ge´logie, Ge´ophyzica, si Ge´ografie, Serie de Ge´ologie 7, 455–484. Payros, A., Astibia, H., Cearreta, A., Pereda-Suberbiola, X., Murelaga, X., Badiola, A., 2000. The Upper Eocene South Pyrenean coastal deposits (Liedena Sandstone, Navarre): sedimentary facies, benthic foraminifera and avian ichnology. Facies 42, 107–132. Pe´rez-Lorente, F., 2001. Paleoicnologı´a. Los dinosaurios y sus huellas en La Rioja. Fundacio´n Patrimonio Paleontolo´gico de La Rioja, p. 227. Pineda, A., Piles, E., Salazar, A., Herrero, A., 2007. Memoria de Mapa Geolo´gico de ˜ a a escala 1:50000 (MAGNA). Hoja no. 371 (Tordesillas) IGME. Espan PiPujol, M.D., Buurman, P., 1997. Dynamics of iron and calcium carbonate redistribution and palaeohydrology in middle Eocene alluvial paleosols of the southeast Ebro Basin margin (Catalonia northeast Spain). Palaeogeography, Palaeoclimatology, Palaeoecology 134, 87–107. Portis, A., 1884. Contribuzioni alla ornitolitologia italiana. Memorie Regia Accademia Scienze 36, 361–384. Sa´nchez, A., 1999. Cata´logo paleornitolo´gico del Terciario ibe´rico y balear. Estudios Geolo´gicos 55, 115–118. Sarjeant, W.A.S., Langstone, W., 1994. Vertebrate footprints and invertebrate traces from the Chadronian (Late Eocene) of Trans-Pecos Texas. Texas Memorial Museum Bulletin 36, 1–86. Sarjeant, W.A.S., Reynolds, R.E., 1999. Camel and horse footprints from the Miocene of California. San Bernardino County Museum Association Quarterly 46, 3–18. Sarjeant, W.A.S., Reynolds, R.E., 2001. Bird footprints from the Miocene of California. In: Reynolds, R.E. (Ed.), The changing face of the east Mojave Desert: Fullerton. California State University, Desert Studies Consortium, pp. 21–40. Segui, B., 2002. A new genus of crane (Aves: Gruiformes) from the Late Tertiary of the Balearic Islands, Western Mediterranean. Ibis 144, 411–422. Vialov, O.S., 1965. Stratigrafiya neogenovix molass Predcarpatskogo progiba. Naukova, Dumka, Kiev, p. 191. Vialov, O.S., 1966. Szledu¨ zsiznedejatelnoszty organizmov ih paleontologicszkoe znacse´nie. Akademii Nauk Ukraine, p. 219. ˜ oz, A., Gonza´lez, A., 1996. The Tertiary of the Villena, J., Pardo, G., Pe´rez, A., Mun Iberian margin of the Ebro basin: paleogeography and tectonic control. In: Friend, P.F., Dabrio, C.J. (Eds.), Tertiary Basins of Spain. Cambridge University Press, Cambridge, pp. 86–88.