Vacancy formation and the thermal expansion of platinum

Vacancy formation and the thermal expansion of platinum

Scripta METALLURGICA Vol. 4, pp. 251-254, 1970 P r i n t e d in the U n i t e d States VACANCY FORMATION AND THE THERMAL Pergamon EXPANSION OF ...

157KB Sizes 5 Downloads 30 Views

Scripta

METALLURGICA

Vol. 4, pp. 251-254, 1970 P r i n t e d in the U n i t e d States

VACANCY FORMATION

AND THE THERMAL

Pergamon

EXPANSION

OF PLATINUM

J. Van den Sype Department of M e t a l l u r g y a n d M a t e r i a l s U n i v e r s i t y of P e n n s y l v a n i a Philadelphia, Pa. 19104

(Received

Fig. 1 shows Platinum

some

in the temperature

surements

accurate

range

method.

1000 - 1 9 0 0 ° K . (1) o n t h e l i n e a r

They estimate

within 50 pprn. Kraftmakher

of m e a s u r i n g the results

the coefficient of K r a f t m a k h e r

Kraftmakher

data show increasing

other absolute

methods

present

is to show that these

paper

effect inherent

coefficient

of thermal

determining

vacancy

frequency

thermal

deviations

Curve

this technique.

T> 1400°K,

may be explained modulation

equilibrium

Technique

for Studying Thermal

data to be a method

In the temperature

For

the method(and

The purpose on the basis

technique

It is shown that this method

of t h e

of a v a c a n c y

for measuring

yields

the

a novel way of

conditions. Expansion

suitable conditions

the temperature

their

(Z) i n F i g . 1 s h o w s

t o Z6% a t 1900OK.

deviations

is heated under

of P t u s i n g t h e

from the optical comparison

s under

w. A s a r e s u l t ,

expansion

of

from the mea-

(Z) h a v e d e v e l o p e d

directly.

parameter

specimen

(1) i s d e r i v e d

are in good agreement.

in the temperature

expansion.

Modulation A wire

expansion

s e e r e f . 1), a m o u n t i n g

relaxation

Curve

expansion

the equation representing

(3) o n P t e m p l o y i n g

1000 - 1 4 0 0 ° K b o t h m e t h o d s

of t h e r m a l

and Cheremisina

of thermal

Science

2, 1970)

data o n t h e c o e f f i c i e n t

of K i r b y a n d R o t h r o c k

optical comparison

range

recent

February

Press,

of the specimen

of Metals

with an alternating exhibits

current

of

small oscillations

(at Zc~) about a m e a n value (TA) and this, in turn, produces periodic changes in its resistance (6R) and its length (54). The length fluctuations m a y be m e a s u r e d photometrically (Z). The resistance fluctuations give rise to a third harmonic component in the voltage drop across the specimen (4) i.e.,

zv~ =

where I and V s are the R M S

i

(i)

values of the current and 3rd harmonic voltage resp.

these considerations, it is clear that the coefficient of thermal expansion ~ m a y be

251

From

Inc

252

VACANCY

FORMATION

r e l a t e d to t h e t e m p e r a t u r e

AND THE THERMAL

c o e f f i c i e n t of r e s i s t a n c e

EXPANSION

OF PT

Vol.4,

(a) as f o l l o w s :

R'.I. 6~

8 :z~.v~

(z)

"

where R' and ~' are the resistance and length resp. of the specimen at 0°C. quantities on the right hand side of (P-)are readily measured, it.

No.

Since all

8 can be determined f r o m

In p a r t i c u l a r , a i s o b t a i n e d by d i f f e r e n t i a t i n g t h e r e s i s t a n c e v e r s u s t e m p e r a t u r e

c u r v e of t h e s a m p l e . E f f e c t s of V a c a n c y R e l a x a t i o n It i s c l e a r t h a t in o r d e r f o r ~ to r e p r e s e n t t h e e q u i l i b r i u m c o e f f i c i e n t of t h e r m a l e x p a n s i o n , t h e f r e q u e n c y of t h e t e m p e r a t u r e w h e r e ~ is the c h a r a c t e r i s t i c in t h e s a m p l e .

f l u c t u a t i o n s m u s t b e s u c h t h a t Z~<<~ -1

t i m e c o n n e c t e d with any r e l a x a t i o n p h e n o m e n o n o c c u r r i n g

F o r p u r e m e t a l s c l o s e to t h e i r m e l t i n g p o i n t , p a r t of t h e t h e r m a l

e x p a n s i o n i s due to t h e i n t r o d u c t i o n of v a c a n c i e s in t h e l a t t i c e and s i n c e t h i s p r o c e s s i s d i f f u s i o n l i m i t e d , t h e c o n d i t i o n Z~T<< 1 m a y n o t be s a t i s f i e d .

I n d e e d , if t h e f r e q u e n c y

i s l a r g e r t h a n t h e v a c a n c y l i f e t i m e at t h e a v e r a g e t e m p e r a t u r e ,

the v a c a n c i e s will he

f r o z e n out and t h e a p p a r e n t t h e r m a l e x p a n s i o n c o e f f i c i e n t w i l l b e l e s s t h e e q u i l i b r i u m one. form.

If t h e v a c a n c i e s o b e y l i n e a r k i n e t i c s , it is e a s y to put t h e a b o v e in q u a n t i t a t i v e It m a y b e s h o w n t h a t E q . (g) i s a l w a y s v a l i d , p r o v i d e d b o t h a and 8 a r e t a k e n as

frequency dependent:

~-1 +

4 o~~

~"

~

~s)

and

1-13~ +4o~ ~- po~ (U)) = L 1 + 4w ~ ,'a

1 ~/~

(4)

=o and 8o refer to the equilibrium values, while ~== and 8~ are defined as ,~o = ~

l

~R



(-~.-T.)

=

xD

(5) xD

x D b e i n g the a t o m f r a c t i o n of v a c a n c i e s , vacancy formation energy,

56 ~1 (~-#)

~ the v a c a n c y l i f e t i m e .

Denoting by Ef the

PD the a d d i t i o n a l s c a t t e r i n g p e r a t o m f r a c t i o n of v a c a n c i e s

and 6 t h e r a t i o of t h e v a c a n c y v o l u m e to the a t o m i c v o l u m e , one h a s

~o

_

=co

p,

=.£u.

k~T .~

XD(TA)

(6)

4

Vol.

4, No.

4

VACANCY

F O R M A T I O N A N D THE T H E R M A L

E X P A N S I O N OF PT

253

13o_130o = -~ 6 . kTAa Ef • xD(TA)

9' i s t h e r e s i s t i v i t y t i o n of t h e r e l a x a t i o n

(7)

of t h e s a m p l e a t 0 ° C .

Equations

e f f e c t s of v a c a n c i e s

on ~ a n d ~.

(3) to (7) g i v e a c o m p l e t e From

descrip-

E q u a t i o n (Z) it is e v i d e n t

that m e a s u r e m e n t s of 5~ and Va over a wide frequency range and as a function of TA will yield information on % xD(TA) , PD and ~ under equilibrium conditions.

Effects of the

relaxation on the specific heat have been discussed elsewhere (5). The Results of K r a f t m a k h e r on Pt (3) The data f r o m curve (Z) w e r e taken at a temperature modulation frequency of Z0 Hz.

If the vacancy lifetime in Pt is s o m e w h a t larger than I0 m s e c ,

the positive

deviations f r o m the equilibrium coefficient can be readily understood in the following way.

Since the vacancy fluctuations are frozen out, the quantity

reported by

K r a f t m a k h e r is (cf. Eq.(g) ):

~k =

13~o ~--e-° (100

(8)

This is due to the fact that ao data w e r e used to compute his "coefficient of thermal expansion" (cf. ref. 6).

Positive deviations will then occur if (Io/a¢o> ~ o / ~ .

More

quantitatively, the "false" thermal expansion data are related to the vacancy parameters (provided the frequency was large enough to freeze out the vacancy relaxation): ak

= L-?

=o

_ 8 IE_/

"3]kT/~ xD (TA)

(9)

The observed deviation at 1900°K can be accounted for if w e take the following reason1 able values {at 1900°K): PD = 6 " 1 0 - 4 ~ c m / a t ° m fraction; 6 = ~; E f : I . 3 5 e V ; x D ( 1 9 0 0 ° K ) =0.3%.

This m a k e s our reinterpretation of the K r a f t m a k h e r data s e e m plausible.

It

is proposed that the modulation m e t h o d for m e a s u r i n g thermal expansion be extended to cover a wide enough frequency range so that both ~o/~o and ~=o/~=0m a y be determined oR the s a m e specimen.

It would then provide a powerful

tool

for

investigating

equilibrium properties of vacancies for materials w h e r e the quenching m e t h o d is difficult. A c k n o w l e d g m ent This is a contribution of the Laboratory for R e s e a r c h on the Structure of Matter, sponsored by the A d v a n c e d R e s e a r c h Project Agency, D e p a r t m e n t of Defense.

254

FORMATION AND THE THERMAL

VACANCY

EXPANSION

OF PT

Vol.

4, No. 4

}%eferences I.

R. K. Kirby and B. D. }%othrock, European Conference on Therrnophysical Properties of Solid Materials at High Temperatures (Nov. 1968).

2.

Ya. A. Kraftrnakher and I. M. Cheremisina, P M T F

3.

Ya. A. Kraftrnakher, Soy. Phys. Solid State 9, 1197 (1967).

4.

See eg., L. }%. Holland, ]. AppI. Phys. 3___4,Z350 (1963).

5.

J. Van den Sype, Phys. Star. Sol. (in press).

6.

Y. A. Kraftrnakher and E. B. Lanina, Soy. Phys. Solid State m7, 9Z (1965).

2__, 114 (1965).

24 22 20 T

O"



18

0 "-

16

-

2

o"

14 12 I0 8

I

I000

1200

I

I

I

1400 1600 1800 TEM PERATU RE, •K

2000

FIG. 1 Coefficient of thermal expansion of Platinum; line ( . . . . ): ref. Z.

solid line (

): r e f .

1; d a s h e d