Vapor-liquid equilibria, density and sound velocity measurements of (water or methanol or ethanol + 1,3-propanediol) binary systems at different temperatures

Vapor-liquid equilibria, density and sound velocity measurements of (water or methanol or ethanol + 1,3-propanediol) binary systems at different temperatures

Accepted Manuscript Title: Vapor-liquid equilibria, density and sound velocity measurements of (water or methanol or ethanol + 1,3-propanediol) binary...

2MB Sizes 0 Downloads 59 Views

Accepted Manuscript Title: Vapor-liquid equilibria, density and sound velocity measurements of (water or methanol or ethanol + 1,3-propanediol) binary systems at different temperatures Author: Manel Zaoui-Djelloul-Daouadji Ilham Mokbel Indra Bahadur Amina Negadi Jacques Jose Deresh Ramjugernath Eno E. Ebenso Latifa Negadi PII: DOI: Reference:

S0040-6031(16)30240-4 http://dx.doi.org/doi:10.1016/j.tca.2016.09.005 TCA 77598

To appear in:

Thermochimica Acta

Received date: Revised date: Accepted date:

29-12-2015 1-9-2016 3-9-2016

Please cite this article as: Manel Zaoui-Djelloul-Daouadji, Ilham Mokbel, Indra Bahadur, Amina Negadi, Jacques Jose, Deresh Ramjugernath, Eno E.Ebenso, Latifa Negadi, Vapor-liquid equilibria, density and sound velocity measurements of (water or methanol or ethanol + 1,3-propanediol) binary systems at different temperatures, Thermochimica Acta http://dx.doi.org/10.1016/j.tca.2016.09.005 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1

Vapor-liquid equilibria, density and sound velocity measurements of (water

2

or methanol or ethanol + 1,3-propanediol) binary systems at different

3

temperatures

4 5

Manel Zaoui-Djelloul-Daouadji1, Ilham Mokbel2,3, Indra Bahadur4,5, Amina Negadi1, Jacques

6

Jose2, Deresh Ramjugernath6, Eno E. Ebenso4,5, Latifa Negadi1,*

7 1

8

LATA2M, Laboratoire de Thermodynamique Appliquée et Modélisation Moléculaire, University of

9

Tlemcen, Post Office Box 119, Tlemcen 13000, Algeria. 2

10

Laboratoire Interfaces et Matériaux, UMR 5615, Université Claude Bernard -Lyon 1, 43Bd du 11

11

Novembre 1918, 69622 Villeurbanne Cedex, France. 3

12

Université de Saint Etienne, Jean Monnet, F-42023 Saint Etienne, Université de Lyon, F-42023

13

Saint Etienne, France. 4

14

Department of Chemistry, North-West University (Mafikeng Campus), Private Bag

15

X2046, Mmabatho 2735, South Africa. 5

16

Material Science Innovation & Modelling (MaSIM) Research Focus Area, Faculty of Agriculture,

17

Science and Technology, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho

18

2735, South Africa. 6

19 20

Thermodynamics Research Unit, School of Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, 4041 Durban, South Africa

21 22 23 24 25

*

26

E-mail: [email protected], [email protected], Tel.: +213 43 21 63 71.

Corresponding Author:

27 28

Graphical abstract

29

fx1

1

30 31 32 33 34 35 36

Highlights     

VLE for water or methanol + 1,3-propanediol binary mixtures were measured. The investigated temperatures are 273 K to 363 K. The NRTL, UNIQUAC and Modified UNIFAC (Do) models have been used. Densities and sound velocities were measured water or methanol or ethanol + 1,3propanediol. The excess functions were correlated using the Redlich-Kister polynomial equation.

37 38

ABSTRACT

39

In this work, vapor liquid equilibria (VLE) data for the binary systems containing {water or

40

methanol (1) + 1,3-propanediol (2)} are reported. All measurements were performed in the temperature

41

range of (273.15 to 343.15 (or 363.15)) K over the whole composition range. The experimental data

42

were correlated using the NRTL, UNIQUAC and Modified UNIFAC (Do) models. Additionally, the

43

experimental measurements of densities and sound velocities were measured for binary systems (water

44

or methanol or ethanol (1) + 1,3-propanediol (2)} at atmospheric pressure and at (283.15, 293.15,

45

303.15 and 313.15) K. The excess/deviation functions were calculated and correlated using the Redlich-

46

Kister polynomial equation.

47 48

Keywords:1,3-Propanediol, biomass, vapor pressure, density, sound velocity, Redlich-Kister

49

polynomial equation.

50

1. Introduction

51

Nowadays, it is necessary to make efforts to find replacements of fossil fuels due to the

52

diminishing of petroleum reserves and increasing of the greenhouse gas emissions. For this reason, the

53

interest has been taken in the conversion of biomass resources into biofuels. Biodiesel is one of the

54

promising alternative fuels to meet these problems. Biodiesel, also known as fatty acid methyl or ethyl

55

ester, is commonly derived from the transesterification or esterification of biological feedstocks with

56

alcohol (ethanol or methanol).From the transesterification process; glycerol is the major byproduct,

57

approximately 10 wt. % of the total product [1, 2]. With this enormous generation of the waste stream,

58

it is very important to explore some utilizing glycerol. One of this utilization of glycerol is the microbial

59

conversion into1,3-propanediol (1,3-PDO) [3]. The world production of 1,3-PDO is growing rapidly

60

due to the increasing market demand of its derivatives into highly valuable products. It is achieving

61

over 100 million pounds per year [4]. 1,3-PDO is a colorless, odorless, viscous liquid and have

62

properties such as non-flammable, low toxicity, miscible with water, alcohol and ethers. As a

63

biofunctional organic molecule, 1,3-PDO has several promising properties for many synthetic reactions, 2

64

such as monomer for polycondensations to produce polyesters [5]. 1,3-PDO can be also formulated into

65

laminates, solvents, adhesives, resins, detergents, cosmetics, deodorants and other uses [6]. 1,3-PDO

66

has a multitude of other applications as shown in Figure 1.

67

1,3-PDO is mainly produced from petroleum derivatives such as ethylene oxide and acrolein

68

through chemical processes [7]. The fermentation route to produce 1,3-PDO from a glucose feedstock

69

is estimated to be price competitive with the petrochemical methods. The bioconversion method of

70

glycerol into the 1,3-PDO was demonstrated using several microbial cultures such as klebsiella

71

pneumonia [8], citrobacterfreundii,[9] enterobacteragglomerans,[10] clostridium butyricum,[11,12]

72

and lactobacillus reuteri [13].

73

Several methods have been adopted for the separation of 1,3-PDO from the mixture containing

74

water and alcohols. Some of these include liquid-liquid extraction [14], reactive–extractive process

75

[15], aqueous two-phase extraction [16], and molecular distillation [17]. To carry out the recovery of

76

1,3-PDO, the knowledge of thermophysical properties including the density and sound velocity of

77

water, alcohol and 1,3-PDO presents in the downstream are required. These could also provide

78

important information on the purity of the samples as well as intermolecular interaction between the

79

mixtures and allows developing new predictive/correlative model.

80

To overcome the lack of information on thermodynamic and thermophysical properties for

81

{water or alcohol (1) + 1,3-PDO (2)} systems, the experimental data, such as vapor-liquid equilibrium,

82

volumetric and acoustic properties for these binary systems were presented by several authors [18-26-

83

28, 29]. Sanz et al. [18] have reported VLE data for {water (1) + 1,3-PDO (2)} at 30 kPa. Lai et al. [19]

84

have also studied the isobaric VLE of {water (1) + 1,3-PDO (2)} at 101.3KPa and at temperature

85

interval of (373 to 487)K. The vapor liquid equilibria for {water (1) + 1,3-PDO (2)} have been also

86

investigated by Mun and Lee [20] in terms of pressure but no comparison was possible. Parsons et al.

87

[21] have reported VLE data for {water (1) + 1,3-PDO (2)} at 25°C. No data have been found for

88

{methanol (1) + 1,3-PDO (2)} system. The excess molar volume for {water (1) + 1,3-PDO (2)} system

89

were performed by Zemánková et al.[22], Czechowski et al.[26] and Checoni et al.[27]at temperatures

90

between (283.15 to 313.15 ) K, The molecular interaction of alkanediols in methanol have been

91

explained by Piekarski et al. and Orge et al. [28, 29].

92

In this work, VLE data for the binary systems {water or methanol (1) + 1,3-PDO (2)} are

93

reported. All measurements were performed at atmospheric pressure and at (273.15 to 343.15 or 363.15)

94

K over the whole range of composition. In addition to this, the measurements of densities and sound

95

velocity are also presented for {water or methanol or ethanol (1) + 1,3-PDO (2)} at (283.15 to 313.15)

96

K.

97 3

98

2. Experimental section

99

2.1. Materials,

100

1,3-PDO, methanol and ethanol were high purity grade reagents with greater than 0.99 (mole

101

fraction). Freshly degassed triply distilled water (specific conductance > 10− 6 S·cm− 1) has been used

102

for the preparation of mixtures. Table 1, reports the provenance, CAS number, and the purities stated

103

by the suppliers and those obtained by Gas Chromatography, together with the densities (ρ) and the

104

refractive indexes (nD), of pure liquids at 293.15 K. The mass percent water content was determined

105

using a Metrohm 702 SM Titrino Metter before the experiments, and was found to be less than 0.03%

106

in all the solvents used in the present work and each solvent is given in also Table 1. The reported values

107

are also compared with those reported in the literature [30-37], and found to be good agreement with

108

literature values. No further purification was attempted owing to their high purity grade, and water used

109

is ultrapure.

110 111

2.2. Vapor pressure measurement

112

The vapor pressure measurements for the pure water and the two binary systems were carried

113

out using a static apparatus. The description of the apparatus and the experimental procedure can be

114

found elsewhere [38-41] so only the most salient information is given here. The apparatus was equipped

115

with a differential manometer from MKS, type 670, model 616A. The pressure measurement consisted

116

of applying the vapor pressure of the sample on the measurement side of the gauge. The reference side

117

was submitted to a permanent-dynamic pumping. The residual pressure was 10-4 Pa and therefore can

118

be neglected. Temperature measurements were carried out using a copper-constantan thermocouple

119

calibrated against a 25  platinum resistance standard thermometer (±0.001 K, IPTS 90) and a Leeds

120

& Northrup bridge (±10-4). During measurements the stability of the temperature is ±0.02 K. The

121

differential pressure gage was calibrated against a U-manometer filled with mercury or apiezon oil

122

depending on pressure range. The levels in both arms of the U-shaped manometer were read by a

123

cathetometer (reference 70298, from Bouty France) to the nearest 0.001 mm. The calibration was then

124

checked by measuring the vapor and the sublimation pressures of water and naphthalene [38]. The

125

uncertainty of the measurements is estimated to be: u(P/Pa) = 0.1Pa + 0.03*P for P < 600 Pa,

126

u(P/Pa) = 0.01*P for P in the range (600-1300 Pa), u(P/Pa) = 0.003*P for P over 1300 Pa and

127

u(T) =0.02 K for the temperature range 203 ≤ T/K ≤ 463. Mixtures were prepared by mass, and

128

thoroughly degassed by distillation. Once the VLE measurements were carried out, the liquid phase is

129

recovered and the molar fraction of the components determined by gas chromatography. The estimated

130

uncertainty of the molar fraction determination is U(x1) = ±0.0005.

131 4

132

2.3. Density and sound velocity measurement

133

Binary mixtures were prepared by mass, using an OHAUS analytical balance with a precision

134

of ±0.1 mg. The estimated error in the mole fraction was 0.0005. The details of the experimental

135

procedure can be found elsewhere [42]. A binary test system (diethyl carbonate + ethanol) [43] was

136

previously measured [44-46] to validate the experimental technique.

137

Density and sound velocity for pure components and their binary mixtures were measured using

138

a digital vibrating-tube densimeter and sound velocity analyzer (Anton Paar DSA 5000M) with an

139

accuracy of ±0.02 K. The speed of sound was measured using a propagation time technique with

140

frequency around 3 MHz [46].The estimated errors in density and sound velocity was less than ±0.90

141

kgm-3 and ±1.5 ms-1, respectively. The present measurements of density and sound velocity for pure

142

components and those reported in the literature have been listed in Table 2 [22-24, 32, 34, 47-53]. In

143

all cases, our results agree well with literature values. This agreement gives a verification of the results

144

obtained by the densimeter.

145 146 147

2.4. Refractive index measurements

148

The refractive index (nD) of the pure solvents were measured by using a digital automatic

149

refractometer (ATAGO, model RX-7000a, Japan) with an accuracy of ± 0.02 K in temperature. The

150

uncertainty in refractive index was ±0.0009.

151 152

3. Results and discussion

153

3.1. Vapor liquid equilibria

154

3.1.1. Pure components

155

For pure methanol and 1,3-PDO, vapor pressure data available in the literature [54,55] at

156

investigated temperatures has been used for correlation. Only the vapor pressure of water was

157

determined experimentally within the temperature range of (273.16 to 363.19) K. The data was fitted

158

to the Antoine equation (1):

159

log 10 P/Pa  A -

160

Where P is the vapor pressure, T is the temperature, A, B, and Care constants.

161

The objective function Q was the sum of the squared relative deviations in pressure

B C  T/ K

(1)

5

162 163 164

=∑

Pcalc  Pexp

(2)

Pexp

The overall mean relative deviation in pressure is:  P  P exp δP 100 %    calc  P N P exp 

   

2

(3)

165

Where N is the total number of experimental values. The coefficients A, B and C of the Antoine equation

166

for the pure components: 1,3-PDO, methanol, and water are reported in Table 3.For pure water, our

167

vapor pressure data agree to within 0.02% of those reported in the literature [56,57]within the

168

temperature range of (298 to 363) K.

169 170

3.1.2. Binary mixtures

171

The vapor pressures for {water (or methanol)(1) +1,3-PDO (2)} systems at temperatures

172

between (273 to 343.15 or 363) K were measured, and the results were fitted using equation (1). Then,

173

the data were reduced according to the Barker method [58]. The molar excess Gibbs free energy

174

functions GE were estimated from a fourth-order Redlich-Kister equation (4):

175 176

/

=





( − )

(4)

177

where x1 and x2 are the molar fractions for components 1 and 2, respectively. The coefficients Gj were

178

determined by regression through minimization of the sum of deviations in vapor pressures. Vapor

179

phase deviations from ideality were accounted for in terms of the second molar virial coefficients,

180

estimated by the method of Tsonopoulos [59, 60].

181 182

The vapor phase compositions were calculated from:

=

(5)

183

Where P is the total equilibrium pressure, Pi is the vapor pressure of pure component i, xi is the mole

184

fraction in the liquid phase of component i; and γ is the activity coefficient of component i in the liquid

185

phase.

186

The experimental isothermal VLE data for the binary systems {water (or methanol) (1) + 1,3-

187

PDO (2)} are reported in Tables 4 and 5, along with the activity coefficients γ1 and γ2, and the values of

188

the excess molar Gibbs functions GE calculated by Barker's method [58]. There were no data found in

6

189

the open literature for comparison at the investigated temperature range for the system {methanol (1) +

190

1,3-PDO (2)}.

191

Sanz et al. [18], Mun et al. [20], and Parsons et al.[21] have measured the pressures for the

192

system {water (1) + 1,3-PDO (2), respectively, at (343, 355 or 363) K, (335, 343, 355 or 363) K, and

193

298 K. As shown in figures 2.a. and 2.b., it appears that our experimental results are in good agreement

194

with the literature values.

195

The variations of GE versus the liquid phase composition for the investigated temperatures are

196

reported in Tables 4 and 5, where the Gj coefficients and respective standard deviations σ are presented

197

in Table 6 .For {water (1) + 1,3-PDO (2)}system, the excess Gibbs free energy functions are low and

198

present a sinusoidal shape for all temperatures over the whole composition. The equimolar GE decreases

199

slightly with increasing temperature from -67 J.mol-1 at T = 273.15 K to -71 J.mol-1at T = 283.15 K than

200

increases with increasing temperature up to -5 J.mol-1 at T = 363.15 K. For the {methanol (1) + 1,3-

201

PDO (2)} system, excess Gibbs free energy functions exhibit negative values for all investigated

202

temperatures over the whole composition. The equimolar GE increases with increasing temperature from

203

-775 J.mol-1 at T = 273.15 K to -105 J.mol-1 at T = 293.15 K than decreases with increasing temperature

204

up to -1911 J.mol-1 at T = 343.15 K. This can be explained by compensation between the enthalpic and

205

entropic effects.

206

The NRTL [61] and UNIQUAC [62] equations were also applied to correlate the experimental

207

VLE results and to estimate the liquid phase activity coefficients. The Simulis thermodynamic software

208

developed by Prosim (France) was used to correlate the data and to fit the parameters.

209

Deviations were observed to be less than 0.1% in pressure, less than 0.1 °C in temperature and

210

less than 0.1% in the liquid and vapor mole fractions. The non-random parameter (α) in the NRTL

211

equation has been assigned, respectively, to 0.4 and 0.35 for {water (1) + 1,3-PDO (2)} and the

212

{methanol (1) + 1,3-PDO (2)} systems. The fitting parameters (aij and bij), the non-random parameter

213

(α) in the NRTL equation, and the relative standard deviations (σ) are given in Table 7. Figures 3 (a- b)

214

show the correlation results using the two models at the ten temperatures investigated for the mixtures.

215

The two models fit the experimental results of the two systems very well.

216

Prediction of VLE, for the investigated systems, has also been carried out by the Modified

217

UNIFAC (Do) group contribution model [60, 63]. As shown in Figures3 (a- b), the predicted (P-x-y)

218

data for the {methanol (1) + 1,3-PDO (2)} system using the Modified UNIFAC (Do) method is in good

219

agreement with rmsd = 4.39, where for the {water (1) + 1,3-PDO (2)}, important deviations are obtained

220

between experimental values and those predicted for all temperatures investigated. This is due to the

221

existence of intermolecular and intermolecular effects especially the association effect between like and

222

unlike molecules. 7

223 224

3.2. Thermophysical properties

225

3.2.1. Density

226

The density, ρ, for the binary systems {water or methanol or ethanol (1) + 1,3-PDO (2)} were

227

measured at (283.15, 293.15, 303.15, and 313.15) K, and are given in Table 8. From Table 8, it can be

228

seen that the ρ values decreases with an increase in temperature for all systems. For the sake of

229

comparison, we have plotted our experimental density values with those reported by Piekarski et al.

230

and Orge et al. [28, 29] at 298.15 K for the system {methanol (1) + 1,3-PDO (2)}. As shown in Figure

231

4 (a), it appears that experimental density values are quite consisting and follow the trends with

232

concentration and temperature with literature values reported [28, 29]. George and Sastry [64] as well

233

as Saini et al. [65] have measured the densities for the system {water (1) + 1,3-PDO (2)} at temperature

234

range (298.15 to 338.15) K. Our experimental results are in good agreement with those reported in

235

literatures [64, 65] as shown in Figure 5 (a).

236 237

3.2.2. Sound velocity

238

Sound velocity is also an important property, which describes the solvent-solvent, solute-

239

solvent and solute-solute interactions in the mixture [65]. In this regards, the sound velocity data, u,

240

were also measured at same experimental condition for systems studied and are given in Table 8. From

241

Table 8, it can be seen that the u values decreases with an increase in temperature. George and Sastry

242

[64] as well as Saini et al. [65] have also measured the sound velocity of the system {water (1) + 1,3-

243

PDO (2)}at temperature range of (298.15 to 338.15) K. From Figure 5 (b), it appears that the magnitude

244

is slightly varying between experimental values with those reported in [64, 65] probably due to

245

experimental conditions or purity of chemicals. For the sake of comparison and clarity, we have plotted

246

our experimental sound velocity values with those reported by Orge et al. [29] at 298.15 K for the

247

system {methanol (1) + 1,3-PDO (2)}. As shown in Figure 4 (b), it appears that experimental sound

248

velocity values are quite consisting with literature values reported [29].

249 250

3.3. Derived properties

251

3.3.1. Excess molar volume

252

The excess molar volumes, VEm, for systems studied were calculated using equation used [42,44-

253

47] from the density data of the mixture and the pure components. Table 1S represent the results of

8

254

excess molar volume, VEm, for system studied and are also plotted in Figures 6 (a-c). The VEm values are

255

negative for all mixtures, it can be seen that for the {water (1) + 1,3-PDO (2)} system the curves are

256

skewed towards the side of the water-rich region whereas for {methanol (1) + 1,3-PDO (2)} and

257

{ethanol (1) + 1,3-PDO (2)} systems a slight displacement to high alcohol concentration is observed.

258

According to Checoni and Francesconi [67], the dissolution of alkanediols in aqueous solutions

259

is accompanied by structural enhancement of solution promoted by two kinds of effects: hydrophilic

260

effects, which is the hydrogen bonding among water and hydroxyl groups and hydrophobic effects,

261

which is related to the hydrogen bonding between water molecules, forming a cluster around the non-

262

polar surface of a mono alcohol molecule [68]. As a consequence, curves have an unsymmetrical format

263

at the hydroxyl compound dilute region. The same behavior was observed in the mixture of alcohol

264

with 1,3-PDO. The observed negative VEm values are explained by the presence of the hydrogen bonding.

265

The coupling of hydroxyl group compounds leads to an important contraction trend, due to the higher

266

association of the two exposed hydroxyl groups. The influence of the temperature provides larger

267

contraction at higher temperatures.

268

Addition of an alkyl group in the chain of alcohol increases the contraction effect, which

269

represent a decrease in the excess molar volume values. The order of increase of contraction effect for

270

all mixtures is the following: H- ˂ -CH2- ˂ CH3-CH2-. For the sake of clarity and comparison we have

271

plotted experimental VEm values of{water (1) + 1,3-PDO (2)} system with literature values reported by

272

Zemankova et al. [22] at temperature range of (283.15-313.15) K, Checoni [27] at 298.15 K and

273

Czechowskl et al. [26] at temperature range of (293.15-313.15) K. As shown in Figure 7, our results

274

show good agreement with all the literature data.

275 276

3.3.2. Isentropic compressibility, and deviation in isentropic compressibility

277

The isentropic compressibility, κs, and the deviations in isentropic compressibility, Δκs, were

278

calculated using the Newton–Laplace equation [42,44-46]. The results of isentropic compressibility, κs,

279

for the investigated systems at (283.15, 293.15, 303.15, and 313.15) K are given in Table 8. The

280

isentropic compressibility, κs, values increases with an increase in temperature at a fixed composition

281

for all systems. The κs value increases with concentration of component-1 at a fixed temperature for the

282

systems of 1,3-PDO in alcohol, whereas for the aqueous solution of 1,3-PDO, decreases with

283

concentration of water at a fixed temperature than increases from x1=0.5997 upwards.

284

It is well known that the interactions between the two components in liquid mixtures lead to the

285

decrease in the free-space, thereby contributing to a negative deviation in isentropic compressibility[69-

286

71].The calculated Δκs values for system studied at (283.15, 293.15, 303.15, and 313.15) K systems are 9

287

also given in Table 1S. Furthermore, Figures 8(a-c), respectively, shows deviations in isentropic

288

compressibility against mole fraction. As it is obvious from Table 1S and Figures 8 (a-c), the values of

289

Δκs are negative over the entire mole fraction for all systems, and become more negative with increasing

290

temperature for {alcohol (1) + 1,3-PDO (2)} systems and the opposite behavior in aqueous solution of

291

1,3-PDO. This behavior means that the mixtures are less compressible than the pure components; it

292

results in strong intermolecular interaction between unlike molecules. Thus, the greater resistance to

293

compression (enhanced rigidity) is observed. All systems show both enhanced rigidity (Δκs<0) and

294

contraction ( VEm<0) over the entire composition range and temperature interval.

295 296

3.4. Correlation of derived properties

297

Experimental excess/deviation properties of the {water or methanol or ethanol (1) + 1,3-PDO

298

(2)}at (283.15, 293.15, 303.15 and 313.15) K were correlated by Redlich–Kister equation [72]. The

299

values of the fitting parameters Ai have been determined using a least-square method. These results are

300

summarized in Table 9, together with the corresponding standard deviations, σ,.The values of VEm,

301

andΔκs as well as the plots of the Redlich-Kister model are displayed in Figures 6 (a-c) and 8(a-c),

302

respectively. The standard deviations, between the experimental data and those calculated using

303

Redlich–Kister equation are also given in Table 9, show very small values for both excess molar volume

304

and deviation in isentropic compressibility at the investigated temperatures for all the systems.

305 306

4. Conclusion

307

This paper reports vapor-liquid equilibria data for {water or methanol (1) + 1,3- PDO (2)}

308

systems using a static device over the range of temperature from (273.15 to 363.15) K. The aqueous

309

solution of 1,3-PDO exhibits positive and negative (S shape) values in GE calculated from the vapor

310

pressure values over the temperature range (273.15 ˂ T ˂ 363.15) K. The 1,3-PDO in methanol exhibits

311

negative deviations in GE within the same range of temperature. The results of the binary mixtures were

312

correlated satisfactorily using the NRTL and UNIQUAC equation. In addition, density and sound

313

velocity of the pure components and binary mixtures containing 1,3-PDO, water and alcohol were

314

measured at different temperatures. The effect of temperature on excess molar volume and deviation in

315

isentropic compressibility is reported. Further, these excess properties were fitted using the Redlich-

316

Kister polynomial equation and provides a good description for all systems. Solution property

317

measurements have proved useful understanding solute-solvent interactions and packing effects of

318

solutes among solvent molecules.

319 10

320

Acknowledgments

321

The research was supported by Joint Research Grant under the SA/Algeria (NRF/DGRSDT)

322

Agreement on Cooperation in Science and Technology “Measurement of Thermodynamic and Thermo-

323

physical Data for Fluorinated Organics and Petrochemicals”. Dr. I. Bahadur acknowledge funding from

324

North-West University and Department of Science and Technology and the National Research

325

Foundation (DST/NRF) South Africa grant funded (Grant UID: 92333).

326 327

11

328

References

329

[1]

M. Ayoub, A. Z. Abdallay, Critical review on the current scenario and significance of crude

330

glycerol resulting from biodiesel industry towards more sustainable renewable energy

331

industry, Renew. Sustain. Energy Rev.16(2012) 2671-2686.

332

[2]

A. B. Leoneti, V. Aragão-Leoniti, S. Valle-Walter-Borges de Oliveira, Glycerol as a by-

333

product of biodiesel production in Brazil: Alternatives for the use of unrefined glycerol,

334

Renew. Energy, 45 (2012) 138-145.

335

[3]

A. P. Zeng, H. Biebl, W. D. Deckwer, Microbial conversion of glycerol to 1,3-propanediol:

336

recent progress. Fuels and chemicals from biomass, American Chemical Society,9

337

(1997)264-269.

338

[4]

339 340

651.

[5]

341 342

[6]

G. Kaur, A. K. Srivastava, S. Chand, Advances in biotechnological production of 1,3propanediol, Biochem. Eng. J. 64 (2012)106-118.

[7]

345 346

A. P. Zeng, H. Biebl, Tools and Applications of Biochemical Engineering Science, Advs. Biochem. Eng. Biotechnol. 74 (2002) 239-259.

343 344

A. Kraus, Synthetic methods for the preparation of 1,3-propanediol, Clean, 36 (2008) 648-

T. Haasa, B. Jaeger, R. Webera, S. F. Mitchell, C. F. King, New diol processes: 1,3propanediol and 1,4-butanediol, Appl. Catal. A Gen.280 (2005) 83-88.

[8]

X. Chen, D. J. Zhang, W. T. Qi, S. J. Gao, Z. L. Xiu, P. Xu, Microbial fedbatch production

347

of 1,3-propanediol by Klebsiella pneumoniae under microaerobic conditions, Appl.

348

Microbiol. Biotechnol. 63 (2003) 143-146.

349

[9]

R. Boenigk, S. Bowien, G. Gottschalk, Fermentation of glycerol to 1,3-propanediol in

350

continuous cultures of Citrobacter freundii, Appl.Microbiol.Biotechnol.38 (1993) 453-457.

351

[10] F. Barbirato, C. Camarasa, J. P. C. Grivet, A. Bories, Glycerol fermentation of 1,3-

352

propanediol

353

Appl.Microbiol.Biotechnol.43 (1995) 786-793.

producing

microorganism:

Enterobacter.

Agglomerans,

354

[11] S. Abbad-Andaloussi, E. Guedon, E. Spiesser, H. Petitdemange, Glycerol dehydratase

355

activity: the limiting step for 1,3-ropanediol production by Clostridium butyricum, Let.

356

Appl.Microbiol.22 (1996) 311-323.

357

[12] H. Biebl, Glycerol fermentation to 1,3-propanediol by Clostridium butyricum: measurement

358

of product inhibition by use of a pH-auxostat, Appl.Microbiol.Biotechnol.35 (1991) 701-

359

705.

360

[13] J. Jolly, B. Hitzmann, S. Ramalingam, K. B. Ramachandran, Biosynthesis of 1,3-

361

propanediol from glycerol with lactobacillus reuteri: effect of operating variables,

362

J.Biosci.Bioeng.118 (2014) 188-194.

12

363 364 365 366

[14] J. Malinowski, Evaluation of liquid extraction potentials for downstream separation of 1,3propanediol,J. Tech.13 (1999) 127-131.

[15] Y. J. Fang, P. Zhou, Study on reactive extraction kinetics of 1,3-propanediol in dilute aqueous solutions, Sep.Sci.Technol.41 (2006) 329-340.

367

[16] Z. G. Li, H. Teng, Z. L. Xiu, Extraction of 1,3-propanediol from glycerol-based fermentation

368

broths with methanol/phosphate aqueous two-phase system, Process Biochem.46 (2011)

369

586-591.

370 371 372 373

[17] Z. Wang, Z. Wu, T. Tan, Studies on purification of 1,3-propanediol by molecular distillation, Biotechnol. Biopro. Eng.18 (2013) 691-697.

[18] M. T. Sanz, B. Blanco,S. Beltran, J. L Cabezas, Vapor liquid equilibria of binary and ternary systems with water, 1,3-Propanediol, and glycerol, J. Chem. Eng.Data,46 (2001) 635-639.

374

[19] H. S. Lai,Y. Lin, C. H. Tu, Isobaric (vapor + liquid) equilibria for the ternary system of

375

(ethanol + water + 1,3-propanediol) and three constituent binary systems at P = 101.3 kPa,

376

J. Chem. Thermodyn.68 (2014) 13-19.

377 378

[20] S. Y. Mun, H. Lee. Vapor-Liquid Equilibria of the Water + 1,3-Propanediol and Water + 1,3-Propanediol + Lithium Bromide Systems. J. Chem. Eng. Data. 44 (1999) 1231-1234.

379

[21] M. T. Parsons, F. W. Lau, E. G. M. Yee, Y. Koga. Excess Chemical Potentials and Partial

380

Molar Enthalpies in Aqueous 1,2- and 1,3- Propanediols at 250C, J. Solution Chem. 32

381

(2003) 137-153.

382

[22] K. Zemánková, J. Troncoso, L. Romaní, Excess volumes and excess heat capacities for

383

alkanediol + water systems in the temperature interval (283.15–313.15) K, Fluid Phase

384

Equilib.356 (2013) 1-10.

385

[23] E. Zore˛bski, M. Dzida, M. Piotrowska, Study of the Acoustic and Thermodynamic

386

Properties of 1,2- and 1,3-Propanediol by Means of High-Pressure Speed of Sound

387

Measurements at Temperatures from (293 to 318) K and Pressures up to 101 MPa, J. Chem.

388

Eng. Data, 53 (2008) 136-144.

389

[24] M. M. Alavianmehr, M. Sharifi, M. N. S. Rad, Measurement and modeling of volumetric

390

properties and sound speeds of several mixtures of alcohol liquids containing 1-propanol

391

and 2-propanol at T = (298.15–323.15) K and ambient pressure, Fluid Phase Equilib. 376

392

(2014) 181-192.

393

[25] T. Sun, S. N. Blswas, N. J. Trappenlers, C. A. T. Seldam, Acoustic and Thermodynamic

394

Properties of Methanol from 273 to 333 K and at Pressures to 280MPa, J. Chem. Eng. Data,

395

33 (1988) 395-398.

396 397

[26] G. Czechowskl, B .Zywuckl, J. Jadiyn, Excess molar volumes of binary mixtures of diols and water, J. Chem. Eng. Data,33 (1988) 49-55.

13

398

[27] R. F. Checoni, Experimental study of the excess molar volume of ternary mixtures

399

containing {water + (1,2-propanediol, or 1,3-propanediol, or 1,2-butanediol, or 1,3-

400

butanediol, or 1,4-butanediol, or 2,3-butanediol) + electrolytes} at a temperature of 298.15

401

K and atmospheric pressure, J. Chem. Thermodyn.42 (2010) 612-620.

402 403

[28] H. Piekarski, A. Pietrzak, Molecular interactions of alkanediols in methanol and in water: density and heat capacity measurements, J. Mol. Liq.121 (2005) 46-52.

404

[29] B. Orge, B. E. Decominges, G. Marino, M. Iglesias, J. Tojo, Derived properties of binary

405

mixtures containing (acetone or methanol) + hydroxil compounds, Phys. Chem. Liq. 39

406

(2001) 99-116.

407 408 409 410

[30] M. Frenkel, X. Hong, R. C. Wilhoit, K. R. Hall, Thermodynamic properties of organic compound and their mixtures, Springer Berlin, 1998.

[31] M. J. Fontao, M. Iglesias, Effect of temperature on the refractive index of aliphatic hydroxilic mixtures (C2–C3), Int. J.Thermophys.23 (2002) 513-527.

411

[32] P. Slobodan, C. Serbanovi, L. Mirjana. I. Kijevcanin, R. Radovi´c, B. D. Djordjevi´c, Effect

412

of temperature on the excess molar volumes of some alcohol + aromatic mixtures and

413

modeling by cubic EOS mixing rules, Fluid Phase Equilib.239 (2006) 69-82.

414

[33] A. Rodriguez, J. Canosa, J. Tojo, Density, refractive index, and speed of sound of binary

415

mixtures (diethyl carbonate + alcohols) at several temperatures, J. Chem. Eng. Data,46

416

(2001) 1506-1515.

417

[34] G. I. Egorov, D. M. Makarov, A. M. Kolker, Volume properties of liquid mixture of water

418

+ glycerol over the temperature range from 278.15 to 348.15 K at atmospheric pressure,

419

Thermochim. Acta, 570 (2013) 16-26.

420

[35] J. Soujanya, B. Satyavathi, T. E. V. Prasad, Experimental (vapour + liquid) equilibrium data

421

of (methanol + water), (water + glycerol) and (methanol + glycerol) systems at atmospheric

422

and sub-atmospheric pressures, J. Chem.Thermodyn.42 (2010) 621-624.

423 424

[36] J. A. Riddick, W. S. Bunger, T. K. Sakno, Organic solvents: physical properties and methods of purification, 4th ed., Wiley Interscience, New York, 2(1986).

425

[37] K. A. Kurnia, M. M. Taib, M. I. A. Mutalib, T. Murugesan, Densities, refractive indices and

426

excess molar volumes for binary mixtures of protic ionic liquids with methanol at T = 293.15

427

to 313.15 K, J. Mol. Liq. 159 (2011) 211-219.

428

[38] T. Sawaya, I. Mokbel, E. Rauzy, J. Saab, C. Berro, J. Jose, Experimental vapor pressures of

429

alkyl and aryl sulfides Prediction by a group contribution method, Fluid Phase Equilib. 226

430

(2004) 283-288.

431

[39] S. Sarraute, I. Mokbel, M. F. C. Gomes, V. Majer, H. Delepine, J. Jose, Vapour pressures,

432

aqueous solubility, Henry’s law constants and air/water partition coefficients of 1,8-

433

dichlorooctane and 1,8-dibromooctane, Chemosphere. 64 (2006) 1829-1837. 14

434

[40] T. Sawaya, I. Mokbel, N. Ainous, E. Rauzy, C. Berro, J. Jose, Experimental Vapor Pressures

435

of Six n-Alkanes (C21, C23, C25, C27, C29, C30) in the Temperature Range between 350 K and

436

460 K, J. Chem. Eng. Data, 51 (2006) 854-858.

437

[41] S. Sarraute, I. Mokbel, M. F. C. Gomes, V. Majer, J. Jose, Atmosphere/water partition of

438

halocycloalkanes from vapour pressure and solubility data, Atm. Environ.42 (2008) 4724-

439

4732.

440

[42] I. Bahadur, N. Deenadayalu, P. Naidoo, D. Ramjugernath, Density speed of sound, and

441

refractive index measurements for the binary systems (butanoic acid + propanoic acid or 2-

442

methyl-propanoic acid) at T = (293.15–313.15) K, J.Chem.Thermodyn.57 (2013) 203-211.

443

[43] R. B. Torres, A. Z. Francesconi, P. L. O. Volpe, Volumetric properties of binary mixtures

444

of acetonitrile and alcohols at different temperatures and atmospheric pressure, J. Mol.

445

Liq.132 (2007) 139-144.

446

[44] I. Bahadur, S. Singh, N. Deenadayalu, P. Naidoo, D. Ramjugernath, Influence of alkyl group

447

and temperature on thermo-physical properties of carboxylic acid and their binary mixtures,

448

Thermochim. Acta, 590 (2014) 151-159.

449

[45] I. Bahadur, N. Deenadayalu, P. Naidoo, D. Ramjugernath, Volumetric, acoustic and

450

refractive index for the binary system (butyric acid + hexanoic acid) at different

451

temperatures, J. Solution Chem.43 (2014) 487-492.

452 453

[46] T. J. Fortin, A. Laesecke, M. Freund, S. Outcalt, Advanced calibration adjustment, and operation of a density and sound speed analyzer, J. Chem.Thermodyn.57 (2013) 276-285.

454

[47] A. Pal, R. Gaba, Densities, excess molar volumes, speeds of sound and isothermal

455

compressibilities for {2-(2-hexyloxyethoxy)ethanol + n-alkanol} systems at temperatures

456

between (288.15 and 308.15) K, J. Chem. Thermodyn. 40 (2008) 750-758.

457

[48] M. Zaoui-Djelloul-Daouadji, L. Bendiaf, I. Bahadur, A. Negadi, D. Ramjugernath, E. E.

458

Ebenso, L. Negadi, Volumetric and acoustic properties of binary systems (furfural or

459

furfuryl alcohol + toluene) and (furfuryl alcohol + ethanol) at different temperatures,

460

Thermochim. Acta, 611 (2015) 47-54.

461

[49] R. B. Leron, A. N. Soriano, M. H. Li, Densities and refractive indices of the deep eutectic

462

solvents (choline chloride + ethylene glycol or glycerol) and their aqueous mixtures at the

463

temperature ranging from 298.15 to 333.15 K, J. Taiwan Inst. Chem. Eng. 43 (2012) 551-

464

559.

465

[50] S. M. Pereira, M.A. Rivas, J. L. Legido, T. P. Iglesias, Speeds of sound, densities, isentropic

466

compressibilities of the system (methanol + polyethylene glycol dimethyl ether 250) at

467

temperatures from 293.15 to 333.15 K, J. Chem. Thermodyn. 35 (2003) 383-398.

468

[51] H. E. Hoga, R.B. Torres, Volumetric and viscometric properties of binary mixtures of

469

{methyl tert-butyl ether (MTBE) + alcohol} at several temperatures and p = 0.1 MPa: 15

470

Experimental results and application of the ERAS model, J. Chem. Thermodyn. 43 (2011)

471

1104-1110.

472 473 474 475

[52] M. J. Dávila, H. Gedanitz, R. Span, Speed of sound measurements of liquid C1–C4 alkanols, J. Chem. Thermodyn. 93 (2016) 157-163.

[53] R. N. Gupta, P. C. Jain, V. S. Nanda, Speed of sound measurements in mixtures of H2O and D2O, J. Chem. Thermodyn. 8 (1976) 627-629.

476

[54] V. N. Emel’yanenkoa, S. P. J. Verevkin, Benchmark thermodynamic properties of 1,3-

477

propanediol: Comprehensive experimental and theoretical study, J. Chem. Thermodyn. 85

478

(2015) 111-119.

479

[55] D. Ambrose, C. H. S. Sprake, Thermodynamic properties of organic oxygen compounds

480

XXV. Vapour pressures and normal boiling temperatures of aliphatic alcohols,

481

J.Chem.Thermodyn.5 (1970) 631-645.

482

[56] A. Belabbaci, C. A. Razzouk, I. Mokbel, J. Jose, L. Negadi, Isothermal vapor−liquid

483

equilibria of (monoethanolamine + water) and (4-methylmorpholine + water) binary systems

484

at several temperatures, J. Chem. Eng. Data, 54 (2009) 2312-2316.

485

[57] N. Chiali-Baba-Ahmed, L. Negadi, I. Mokbel, J. Jose, Phase equilibrium properties of

486

binary

487

diaminopropane, or 1,4-diaminobutane at several temperatures, J. Chem.Thermodyn.43

488

(2011) 719-724.

489 490 491 492

aqueous

solutions

containing

ethanediamine,

1,2-diaminopropane,

1,3-

[58] J. A. Barker, Determination of activity coefficients from total pressure measurements, Aust. J. Chem. 61(953) 207-232.

[59] C. Tsonopoulos, An empirical correlation of second virial coefficients, AIChE J.20 (1974) 263-272.

493

[60] C. Tsonopoulos, Second virial coefficients of polar haloalkanes, AIChEJ.21 (1975)827-829.

494

[61] D. S. Abrams, J. M. Prausnitz, Statistical thermodynamics of liquid mixtures: A new

495

expression for the excess Gibbs energy of partly or completely miscible systems, AIChE J.

496

21 (1975) 116-128.

497 498

[62] H. Renon, J. M. Prausnitz, Local compositions in thermodynamic excess functions for liquid mixtures, AIChE J.14 (1968) 135-144.

499

[63] J. Gmehling, J. Li, M. Schiller, A modified UNIFAC model. 2. Present parameter matrix

500

and results for different thermodynamic properties, Ind. Eng. Chem. Res.32 (1993) 178-193.

501

[64] J. George, N. V. Sastry, Densities, dynamic viscosities, speeds of sound, and relative

502

permittivities for water + alkanediols (propane-1,2- and -1,3-diol and butane-1,2-, -1,3-, -

503

1,4-, and -2,3-Diol) at different temperatures, J. Chem. Eng. Data, 48 (2003) 1529-1539.

16

504

[65] B. Saini, A. Gupta, R. Sharma, R. K. Bamezai, Acoustical and excess thermodynamic

505

studies of mixtures of 2-pyrrolidone with 1,3-propanediol and water as well as 1,3-

506

propanediol with water at 308.15 K, Phys. Chem. Liq. 52 (2014) 262-271.

507

[66] I. Bahadur, N. Deenadayalu, Apparent molar volume and isentropic compressibility for the

508

binary systems {methyltrioctylammonium bis (trifluoromethylsulfonyl) imide + methyl

509

acetate or methanol} and (methanol + methyl acetate) at T = 298.15, 303.15, 308.15 and

510

313.15 k and atmospheric pressure, J. Solution Chem.40 (2011) 1528-1543.

511

[67] R. F. Checoni, A. Z. Francesconi, Experimental study of the excess molar enthalpy of ternary

512

mixtures containing water + (1,2-propanediol, or 1,3-propanediol, or 1,2-butanediol, or 1,3-

513

butanediol, or 1,4-butanediol, or 2,3-butanediol) + electrolytes at 298.15 K and atmospheric

514

pressure, J. Solution Chem.38 (2009) 1055-1070.

515

[68] M. Y.Nagamachi, A. Z. Francesconi, Measurement and correlation of excess molar enthalpy

516

HEm for (1,2-propanediol, or 1,3-propanediol, or 1,4-butanediol + water) at the temperatures

517

(298.15, 323.15, and 343.15) K, J. Chem.Thermodyn.38 (2006) 461-478.

518 519 520 521 522 523 524 525

[69] N. V. Choudary, P. R. Naidu, Sound velocities and isentropic compressibilities of mixtures of 1, 2-dichloroethane with alkanols, Chem. Scripta.19 (1982) 89-91.

[70] G. Dharmaraju, P. Venkatswarlu, G. K. Raman, Ultrasonic studies in binary liquid mixtures of associated liquids (cyclohexylamine + alcohol), Chem. Scripta. 19 (1982) 140-142.

[71] G. C. Benson, Y. P. Handa, Ultrasonic speeds and isentropic compressibilities for (decan-1ol + n-alkane) at 298.15 K, J. Chem.Thermodyn.13 (1981) 887-896.

[72] O. Redlich, A. T. Kister, Algebraic representation of thermodynamic properties and the classification of solutions, Ind. Eng. Chem. 40 (1948)345-348.

526

17

527 528 529

Table 1 Pure component specifications: suppliers, CAS number, supplier purity, density (ρ), measured and from literature, and refractive indices (nD), measured and from literature and at p = 0. 1 MPa. Chemical name

Supplier

CAS No.

1,3-PDO

Methanol

Acrosa

E.Mercka

Sigma-

Sigma-

Aldrichb

Aldrichb

504-63-2

67-56-1

0.996a

0.995a

Mass fraction purity

Ethanol

Water

Aldrich

64-17-5

-

7732-18-5

-

≥0.99 0.98

b

≥0.996

b

ρmeas/kg.m-3(293.15K)

1052.61

791.28

789.70

998.19

ρlit/kg.m-3(293.15K)

1052.8030

791.40032

789.45432

998.1634

791.233 nDmeas/(293.15K)

1.4393

1.3285

998.2035 1.3620

1.3330 1.33335

nDLit(293.15K)

1.4394129

1.3294137

1.3612931 1.3329836

Water content 0.03

0.02

0.01

0.02

(mass percent) 530 531 532 533 534 535

a:Purity taken for the vapor pressure measurement as stated by the supplier. b: Purity taken for the density and sound velocity measurement as stated by the supplier. Standard uncertainties u are u(T) = ±0.02 K, u(p) = ±0.04 MPa and the combined expanded uncertainty Uc in mole fractions, density and sound velocity measurements were less than Uc(x) = ±0.0005, Uc(ρ) = ± 0.90 kgm-3, Uc(nD) = ±0.0009 and Uc(u) = ± 1.5 ms-1, respectively (0.95 level of confidence).

536 537 18

538

Table 2

539

Comparison of experimental density,ρ, and sound velocity, u, of the pure component with the

540

corresponding literature values at (283.15, 293.15, 303.15 and 313.15) K and at and at p = 0. 1MPa. Component

T (K)

ρ (kgm-3) Exp.

1,3-PDO

u (ms-1)

Lit.

Exp.

Lit.

283.15

1058.85

1059.1422

1659.5

-

293.15

1052.61

1052.8522

1636.3

1635.9923

303.15

1046.36

1046.5122

1613.6

1613.1623 1613.4324

313.15

1040.07

1040.1222

1591.1

1590.4823 1590.9124

Methanol

283.15

293.15

800.67

791.28

-

1153.3

791.40

32

791.15

50

1119.6

1154.125

1118.9147 112050 1119.10652

791.2451

1121.025

781.96632 1086.0347 303.15

781.84

782.250

1086.6

781.8551

313.15

772.30

772.44332 772.750

108750 1087.125

1054.2

1052.650 1053.17852 1054.625 19

Ethanol

283.15

293.15

303.15

798.22

798.5148

1196.8

1197.348

789.9948 789.70

789.5250

1162.3

1162.548

781.09

781.3848

1128.2

1128.348

780.9551

Water

541 542 543 544 545 546

1094.648

313.15

772.34

772.6448

1094.6

283.15

999.68

999.7034

1448.1

1446.353

293.15

998.19

998.2034

1482.7

1483.053

303.15

995.64

995.6849

1509.4

1511.353

313.15

992.17

992.2649

1529.2

1531.253

Standard uncertainties u are u(T) = ±0.02 K, u(p) = ±0.04 MPa and the combined expanded uncertainty Ucin mole fractions, density and sound velocity measurements were less than Uc(x) = ± 0.0005, Uc(ρ) = ± 0.90 kgm-3 and Uc(u) = ± 1.5 ms-1, respectively (0.95 level of confidence).

20

547

Table 3

548

The Antoine constants of pure components of the Antoine equation. Component

A

B

C

Reference

1,3-PDO

16.076420

6150.063

95.4981

Ref.54

Methanol

10.204020

1581.302

-33.50356

Ref.55

Water

9.918650

1576.129

-52.58132

Present work

549 550

21

Table 4 Values of the liquid phase composition x1, vapor phase composition y1, vapor pressure P, activity coefficients 1 and 2 and excess molar Gibbs functions GE for the binary system water (1) + 1,3-PDO (2).

x1 c

GE(J/mol)

y1,calc

Pexp /Pa

γ1

γ2

0.0000

0.0000

<10-1,ref.54

2.1716

1.0000

0

0.1052

0.9963

62

0.9799

1.0376

70

0.2088

0.9979

98

0.8075

1.0709

22

0.3623

0.9992

202

0.8967

1.0217

-59

0.5000

0.9996

287

0.9979

0.9443

-68

0.6250

0.9998

371

1.0111

0.9319

-44

0.7500

0.9999

438

0.9845

0.9896

-33

0.8000

0.9999

478

0.9780

1.0121

-35

0.9000

0.9999

522

0.9845

0.9633

-40

1.0000

1.0000

593

1.0000

0.6636

0

0.0000

0.0000

1 ref.54

1.8992

1.0000

0

0.1052

0.9948

123

0.9544

1.0323

55

0.2088

0.9972

203

0.8158

1.0587

6

0.3623

0.9989

413

0.9081

1.0098

-68

0.5000

0.9995

594

1.0037

0.9381

-71

0.6250

0.9997

762

1.0156

0.9272

-44

0.7500

0.9998

898

0.9897

0.9830

-28

T = 273.15 Ka

T = 283.15 Ka

22

0.8000

0.9999

976

0.9828

1.0065

-30

0.9000

0.9999

1070

0.9869

0.9729

-34

1.0000

1.0000

1210

1.0000

0.7080

0

0.0000

0.0000

2 ref.54

1.7024

1.0000

0

0.1052

0.9929

233

0.9384

1.0277

43

0.2088

0.9963

397

0.8265

1.0487

-5

0.3623

0.9985

799

0.9202

1.0008

-72

0.5000

0.9993

1158

1.0104

0.9342

-70

0.6250

0.9996

1475

1.0211

0.9247

-40

0.7500

0.9998

1735

0.9955

0.9795

-21

0.8000

0.9998

1882

0.9881

1.0048

-21

0.9000

0.9999

2066

0.9894

0.9884

-26

1.0000

1.0000

2328

1.0000

0.7614

0

0.0000

0.0000

5 ref.54

1.5567

1.0000

0

0.1052

0.9903

421

0.9295

1.0238

34

0.2088

0.9951

739

0.8391

1.0404

-13

0.3623

0.9980

1470

0.9327

0.9940

-73

0.5000

0.9990

2139

1.0179

0.9322

-66

0.6250

0.9994

2713

1.0274

0.9239

-32

0.7500

0.9997

3184

1.0018

0.9785

-10

0.8000

0.9997

3448

0.9937

1.0061

-10

0.9000

0.9999

3787

0.9920

1.0085

-16

T = 293.15 Ka

T = 303.15 Ka

23

1.0000

1.0000

4251

1.0000

0.8229

0

0.0000

0.0000

11 ref.54

1.4460

1.0000

0

0.1052

0.9867

733

0.9257

1.0205

26

0.2088

0.9935

1315

0.8530

1.0334

-19

0.3623

0.9974

2588

0.9456

0.9888

-71

0.5000

0.9987

3773

1.0258

0.9314

-59

0.6250

0.9992

4764

1.0343

0.9242

-22

0.7500

0.9995

5583

1.0048

0.9793

3

0.8000

0.9996

6034

0.9995

1.0098

4

0.9000

0.9998

6629

0.9946

1.0321

-4

1.0000

1.0000

7411

1.0000

0.8922

0

0.0000

0.0000

24 ref.54

1.3596

1.0000

0

0.1052

0.9820

1232

0.9257

1.0175

20

0.2088

0.9913

2248

0.8678

1.0274

-22

0.3623

0.9965

4378

0.9586

0.9849

-67

0.5000

0.9982

6384

1.0341

0.9315

-50

0.6250

0.9990

8033

1.0416

0.9255

-10

0.7500

0.9994

9399

1.0152

0.9815

18

0.8000

0.9995

10141

1.0053

1.0151

20

0.9000

0.9998

11136

0.9971

1.0584

8

1.0000

1.0000

12400

1.0000

0.9685

0

T = 313.15 Ka

T = 323.15 Ka

T = 333.15 Ka

24

0.0000

0.0000

54 ref.54

1.2899

1.0000

0

0.1052

0.9757

2005

0.9279

1.0149

15

0.2088

0.9884

3704

0.8829

1.0223

-24

0.3623

0.9953

7149

0.9715

0.9818

-61

0.5000

0.9976

10408

1.0426

0.9322

-40

0.6250

0.9986

13059

1.0491

0.9271

5

0.7500

0.9991

15256

1.0221

0.9844

35

0.8000

0.9993

16437

1.0112

1.0214

36

0.9000

0.9997

18032

0.9997

1.0866

22

1.0000

1.0000

20000

1.0000

1.0515

0

0.0000

0.0000

114 ref.54

1.2311

1.0000

0

0.1052

0.9988

3167

0.9314

1.0126

11

0.2088

0.9995

5908

0.8980

1.0176

-25

0.3623

0.9998

11303

0.9842

0.9792

-55

0.5000

0.9999

16410

1.0510

0.9331

-28

0.6250

1.0000

20544

1.0567

0.9289

20

0.7500

1.0000

23965

1.0290

0.9877

52

0.8000

1.0000

25787

1.0171

1.0281

54

0.9000

1.0000

28251

1.0022

1.1158

37

1.0000

1.0000

31215

1.0000

1.1404

0

0.0000

0.0000

234 ref.54

1.1783

1.0000

0

0.1052

0.9566

4870

0.9348

1.0103

6

T = 343.15 Ka

T = 353.15 Ka

25

0.2088

0.9796

9147

0.9126

1.0133

-25

0.3623

0.9916

17359

0.9964

0.9768

-48

0.5000

0.9957

25107

1.0593

0.9338

-16

0.6250

0.9974

31377

1.0643

0.9305

35

0.7500

0.9984

36549

1.0358

0.9907

71

0.8000

0.9988

39283

1.0228

1.0346

73

0.9000

0.9994

42967

1.0046

1.1450

52

1.0000

1.0000

47296

1.0000

1.2343

0

0.0000

0.00000

465 ref.54

1.1274

1.0000

0

0.1052

0.9973

7307

0.9369

1.0081

1

0.2088

0.9990

13786

0.9261

1.0090

-27

0.3623

0.9996

25968

1.0080

0.9741

-42

0.5000

0.9998

37384

1.0673

0.9341

-5

0.6250

0.9999

46656

1.0716

0.9314

50

0.7500

1.0000

54272

1.0424

0.9929

89

0.8000

1.0000

58270

1.0284

1.0403

92

0.9000

1.0000

63617

1.0070

1.1734

67

1.0000

1.0000

69771

1.0000

1.3319

0

T = 363.15 Ka

Standard uncertainties: au(T) = ±0.02 K, bu(P/Pa) = 0.1Pa + 0.03*P for P < 600 Pa, u(P/Pa) = 0.01*P for P in the range (600-1300 Pa), u(P/Pa) = 0.003*P for P over 1300 Pa, and cu(x1) = ±0.0005

26

Table 5 Values of the liquid phase composition x1, vapor phase composition y1, vapor pressure P, activity coefficients 1 and 2 and excess molar Gibbs functions GE for the binary system methanol (1) + 1,3-PDO (2).

x1 c

GE(J/mol)

y1,calc

Pexp /Pa

γ1

γ2

0.0000

0.0000

<10-1, ref.54

0.0041

1.0000

0

0.3887

1.0000

1617

1.0316

0.4921

-957

0.4926

1.0000

2096

1.0550

0.4848

-775

0.5956

1.0000

2480

1.0331

0.4971

-598

0.7034

1.0000

2911

1.0261

0.5027

-422

0.8871

1.0000

3642

1.0183

0.5288

-127

1.0000

1.0000

4032ref.55

1.0000

0.7834

0

0.0000

0.00000

1 ref.54

0.1020

1.0000

0

0.3887

0.9999

2955

1.0257

0.7463

-398

0.4926

0.9999

3776

1.0351

0.7417

-317

0.5956

1.0000

4544

1.0278

0.7481

-238

0.7034

1.0000

5335

1.0251

0.7515

-159

0.8871

1.0000

6667

1.0128

0.8003

-33

1.0000

1.0000

7411ref.55

1.0000

1.0412

0

0.0000

0.0000

2 ref.54

0.4425

1.0000

0

0.3887

0.9998

5150

1.0191

0.9007

-138

T = 273.15 Ka

T = 283.15 Ka

T = 293.15 Ka

27

0.4926

0.9999

6549

1.0240

0.8976

-105

0.5956

0.9999

7939

1.0232

0.8985

-72

0.7034

1.0000

9322

1.0219

0.9007

-39

0.8871

1.0000

11654

1.0090

0.9578

8

1.0000

1.0000

12996ref.55

1.0000

1.1440

0

0.0000

0.0000

5 ref.53

0.4711

1.0000

0

0.3887

0.9997

8602

1.0119

0.9039

-144

0.4926

0.9998

10974

1.0198

0.8987

-112

0.5956

0.9999

13300

1.0193

0.8993

-80

0.7034

0.9999

15613

1.0171

0.9030

-46

0.8871

1.0000

19551

1.0065

0.9485

-1

1.0000

1.0000

21861ref.55

1.0000

1.0785

0

0.0000

0.0000

11 ref.54

0.1609

1.0000

0

0.3887

0.9996

13837

1.0043

0.7812

-389

0.4926

0.9998

17820

1.0212

0.7719

-315

0.5956

0.9998

21462

1.0161

0.7768

-241

0.7034

0.9999

25182

1.0111

0.7836

-168

0.8871

1.0000

31615

1.0052

0.8059

-52

1.0000

1.0000

35430ref.55

1.0000

0.8986

0

0.0000

0.0000

24 ref.53

0.0219

1.0000

0

0.3887

0.9996

21521

0.9966

0.5985

-847

T = 303.15 Ka

T = 313.15 Ka

T = 323.15 Ka

28

0.4926

0.9997

28123

1.0272

0.5857

-694

0.5956

0.9998

33493

1.0133

0.5956

-542

0.7034

0.9999

39270

1.0042

0.6052

-393

0.8871

1.0000

49466

1.0047

0.6051

-141

1.0000

1.0000

55539ref.55

1.0000

0.6780

0

0.0000

0.0000

54 ref.53

0.0014

1.0000

0

0.3887

0.9996

32477

0.9888

0.4159

-1498

0.4926

0.9998

43237

1.0370

0.4022

-1231

0.5956

0.9998

50719

1.0110

0.4149

-968

0.7034

0.9999

59416

0.9966

0.4254

-709

0.8871

1.0000

75131

1.0051

0.4113

-265

1.0000

1.0000

84488ref.55

1.0000

0.4723

0

0.0000

0.0000

114 ref.54

0.0001

1.0000

0

0.3887

0.9996

47693

0.9810

0.2673

-2322

0.4926

0.9998

64903

1.0500

0.2549

-1911

0.5956

0.9998

74746

1.0091

0.2675

-1506

0.7034

0.9999

87480

0.9884

0.2772

-1109

0.8871

1.0000

111092

1.0060

0.2581

-421

1.0000

1.0000

125091ref.55

1.0000

0.3086

0

T = 333.15 Ka

T = 343.15 Ka

Standard uncertainties: au(T) = ±0.02 K, bu(P/Pa) = 0.1Pa + 0.03*P for P < 600 Pa, u(P/Pa) = 0.01*P for P in the range (600-1300 Pa), u(P/Pa) = 0.003*P for P over 1300 Pa, and cu(x1) = ±0.0005

29

Table 6 Coefficients Gj and standard deviations  for least-squares representations by Equation 4.

T/K

G1



G2



G3



G4



Water (1) + 1,3-PDO (2) 273.15

-0.11895

0.039

0.11045

0.731

0.30164

0.117

-0.70323

0.213

283.15

-0.12048

0.031

0.13523

0.058

0.26856

0.092

-0.62856

0.168

293.15

-0.11530

0.025

0.15682

0.046

0.24503

0.073

-0.55916

0.134

303.15

-0.10506

0.020

0.17595

0.037

0.22890

0.059

-0.49466

0.108

313.15

-0.91146

0.016

0.19318

0.031

0.21848

0.049

-0.43463

0.090

323.15

-0.07477

0.014

0.20899

0.026

0.21240

0.042

-0.37858

0.077

333.15

-0.05704

0.012

0.22382

0.024

0.20946

0.037

-0.32600

0.068

343.15

-0.03899

0.012

0.23808

0.022

0.20862

0.034

-0.27633

0.064

353.15

-0.02166

0.011

0.25220

0.021

0.20892

0.033

-0.22899

0.061

363.15

-0.00610

0.011

0.26664

0.021

0.20936

0.033

-0.18330

0.061

Methanol (1) + 1,3-PDO (2) 273.15

-1.34107

0.036

1.55023

0.037

-1.52473

0.042

1.07147

0.030

283.15

-0.52853

0.199

0.66491

0.204

-0.59253

0.227

0.49654

0.162

293.15

-0.16864

0.282

0.26349

0.290

-0.17169

0.322

0.21140

0.230

303.15

-0.17446

0.242

0.25328

0.249

-0.16415

0.277

0.16087

0.198

313.15

-0.47591

0.102

0.55955

0.105

-0.49090

0.117

0.30038

0.083

323.15

-1.01619

0.118

1.12171

0.122

-1.08793

0.135

0.59379

0.097

333.15

-1.74902

0.404

1.89033

0.416

-1.90304

0.462

1.01158

0.330

343.15

-2.63660

0.742

2.82500

0.764

-2.89359

0.849

1.52957

0.605

30

353.15

-3.64791

1.122

3.89255

1.155

-4.02453

1.284

2.12790

0.914

363.15

-4.75751

1.535

5.06571

1.581

-5.26712

1.756

2.79022

1.249

Table 7 NRTL, UNIQUAC parameters and rmsd, estimated via the experimental VLE data generated in this work

System

a12

a21

b12

b21

rmsd

[J.mol-1]

[J.mol-1]

[J.mol-1deg-1]

[J.mol-1deg-1]

NRTLa

-452.916

23.090

-6.49764

10.26863

UNIQUACb

-108.392

-628.195

-0.77092

0.49253

NRTLa

3337.676

-2085.059

6.65498

-7.56843

0.35

1.77

UNIQUACb

707.586

-97.051

0.91237

-1.33054

-

1.78



Model [kPa] 0.4

0.70

Water (1) + 1,3-PDO (2) -

0.31

Methanol (1) + 1,3-PDO (2)

Pexp  Pcal ⎛

=

⎝ a

=(

-

)0 ;

b

=

;

=



Pexp =(

⎠ -

)T

.

31

Table 8 Densities, ρ, sound velocity, u, and isentropic compressibility,κs, for the binary systems water (1) + 1,3PDO (2), methanol (1) + 1,3-PDO (2) and ethanol (1) + 1,3-PDO (2)at (283.15, 293.15, 303.15, and 313.15) K and at p = 0. 1 MPa. x1

ρ (kgm−3)

u (ms-1)

κs (1012×Pa-1)

Water (1) + 1.3-PDO (2) T = 283.15 K 0.0000

1058.85

1659.5

342

0.1022

1059.27

1672.9

337

0.2010

1059.47

1686.6

332

0.2987

1059.49

1702.0

326

0.3998

1059.07

1717.3

320

0.4997

1057.91

1732.0

315

0.5997

1055.48

1742.7

312

0.6999

1050.47

1742.0

314

0.7999

1041.86

1718.2

325

0.8997

1025.27

1637.8

364

1.0000

999.68

1448.1

477

0.000

1052.61

1636.3

354

0.1022

1053.04

1650.1

349

0.2010

1053.26

1664.0

343

0.2987

1053.30

1679.4

337

0.3998

1052.91

1695.2

330

T = 293.15 K

32

0.4997

1051.82

1710.5

325

0.5997

1049.54

1722.7

321

0.6999

1044.85

1725.1

322

0.7999

1036.89

1707.4

331

0.8997

1021.75

1641.2

363

1.0000

998.19

1482.7

456

0.0000

1046.36

1613.6

366

0.1022

1046.79

1627.2

361

0.2010

1047.01

1641.4

355

0.2987

1047.05

1656.8

348

0.3998

1046.67

1672.8

341

0.4997

1045.61

1688.7

335

0.5997

1043.42

1701.9

331

0.6999

1039.01

1707.1

330

0.7999

1031.59

1695.0

337

0.8997

1017.64

1641.6

365

1.0000

995.64

1509.4

441

0.0000

1040.07

1591.1

379

0.1022

1040.48

1605.0

373

0.2010

1040.68

1618.9

367

0.2987

1040.70

1634.1

360

0.3998

1040.30

1650.2

353

T = 303.15 K

T = 313.15 K

33

0.4997

1039.25

1666.4

347

0.5997

1037.10

1680.5

341

0.6999

1032.92

1688.1

340

0.7999

1025.94

1680.9

345

0.8997

1012.95

1639.0

367

1.0000

992.17

1529.2

431

Methanol (1) + 1.3-PDO (2) T = 283.15 K 0.0000

1058.85

1659.5

343

0.0500

1052.58

1645.8

351

0.0996

1045.92

1629.2

361

0.1503

1038.75

1613.8

370

0.2000

1031.38

1596.8

380

0.2502

1023.44

1578.8

392

0.2998

1015.08

1560.7

404

0.3491

1006.18

1540.2

419

0.3998

996.52

1519.5

435

0.4497

986.31

1497.0

452

0.5000

975.38

1474.0

472

0.5501

963.77

1450.2

493

0.5994

951.07

1423.3

519

0.6501

936.86

1394.9

549

0.6998

922.43

1366.9

580

0.7499

906.27

1336.0

618

0.8000

889.44

1305.0

660

0.8501

869.90

1269.1

714

34

0.9000

849.27

1233.7

774

0.9501

826.76

1196.0

846

1.0000

800.67

1153.3

939

0.0000

1052.61

1636.3

355

0.0500

1046.29

1622.5

363

0.0996

1039.56

1605.8

373

0.1503

1032.32

1590.1

383

0.2000

1024.87

1572.8

394

0.2502

1016.87

1554.7

407

0.2998

1008.41

1536.1

420

0.3491

999.42

1515.4

436

0.3998

989.65

1494.2

453

0.4497

979.34

1471.6

472

0.5000

968.29

1448.0

493

0.5501

956.54

1423.8

516

0.5994

943.69

1396.4

543

0.6501

929.32

1367.3

576

0.6998

914.70

1338.6

610

0.7499

898.33

1307.1

652

0.8000

881.29

1275.3

698

0.8501

861.50

1238.8

756

0.9000

840.58

1202.3

823

0.9501

817.77

1164.0

903

1.0000

791.28

1119.6

1008

0.0000

1046.36

1613.6

367

0.0500

1039.98

1599.5

376

T = 293.15 K

T = 303.15 K

35

0.0996

1033.18

1582.6

386

0.1503

1025.88

1566.8

397

0.2000

1018.34

1549.2

409

0.2502

1010.26

1530.8

422

0.2998

1001.72

1511.9

437

0.3491

992.64

1490.9

453

0.3998

982.76

1469.3

471

0.4497

972.34

1446.3

492

0.5000

961.17

1422.3

514

0.5501

949.29

1397.7

539

0.5994

936.28

1369.7

569

0.6501

921.74

1340.1

604

0.6998

906.94

1310.7

642

0.7499

890.37

1278.5

687

0.8000

873.11

1246.1

738

0.8501

853.06

1208.7

802

0.9000

831.86

1171.3

876

0.9501

808.72

1132.1

965

1.0000

781.84

1086.6

1083

0.0000

1040.07

1591.1

380

0.0500

1033.62

1576.8

389

0.0996

1026.76

1559.7

400

0.1503

1019.37

1543.7

412

0.2000

1011.73

1525.8

425

0.2502

1003.55

1507.1

439

0.2998

994.98

1487.9

454

T = 313.15 K

36

0.3491

985.81

1466.6

472

0.3998

975.82

1444.7

491

0.4497

965.29

1421.4

513

0.5000

953.99

1397.0

537

0.5501

941.97

1371.9

564

0.5994

928.82

1343.4

597

0.6501

914.15

1313.3

634

0.6998

899.12

1283.3

675

0.7499

882.34

1250.5

725

0.8000

864.86

1217.4

780

0.8501

844.55

1179.2

852

0.9000

823.05

1140.9

933

0.9501

799.59

1100.8

1032

1.0000

772.30

1054.2

1165

Ethanol (1) + 1.3-PDO (2) T = 283.15 K 0.0000

1058.85

1659.5

343

0.0500

1049.70

1642.4

353

0.1000

1040.25

1623.9

365

0.1500

1030.34

1605.2

377

0.2000

1020.03

1585.7

390

0.2499

1009.63

1565.3

404

0.3004

998.62

1544.3

420

0.3502

987.34

1523.0

437

0.4000

975.76

1501.0

455

0.4501

963.57

1478.2

475

0.5004

950.95

1454.4

497

37

0.5501

938.39

1431.2

520

0.6001

924.91

1406.4

547

0.6500

911.17

1382.1

575

0.7000

896.69

1356.6

606

0.7503

881.71

1331.1

640

0.8001

866.31

1304.9

678

0.8502

850.07

1278.5

720

0.9000

833.71

1252.1

765

0.9500

816.56

1225.1

816

1.0000

798.22

1196.8

874

0.0000

1052.61

1636.3

355

0.0500

1043.39

1618.9

366

0.1000

1033.87

1600.1

378

0.1500

1023.87

1580.9

391

0.20000

1013.44

1560.9

405

0.2499

1003.00

1540.2

420

0.3004

991.91

1518.7

437

0.3502

980.54

1496.8

455

0.4000

968.84

1474.2

475

0.4501

956.56

1450.8

497

0.5004

943.82

1426.5

521

0.5501

931.16

1402.8

546

0.6001

917.56

1377.6

574

T = 293.15 K

38

0.6500

903.69

1352.5

605

0.7000

889.09

1326.3

639

0.7503

873.96

1300.1

677

0.8001

858.42

1273.3

719

0.8502

842.04

1246.2

765

0.9000

825.51

1219.0

815

0.9500

808.22

1191.3

872

1.0000

789.70

1162.3

937

0.0000

1046.36

1613.6

367

0.0500

1037.07

1595.7

379

0.1000

1027.48

1576.5

392

0.1500

1017.39

1556.8

406

0.2000

1006.78

1536.5

421

0.2499

996.35

1515.3

437

0.3004

985.17

1493.3

455

0.3502

973.69

1470.9

475

0.4000

961.90

1447.8

496

0.4501

949.50

1423.8

520

0.5004

936.66

1399.0

545

0.5501

923.88

1374.6

573

0.6001

910.16

1348.8

604

0.6500

896.16

1323.2

637

0.7000

881.42

1296.4

675

T = 303.15 K

39

0.7503

866.15

1269.4

716

0.8001

850.47

1242.0

762

0.8502

833.92

1214.2

813

0.9000

817.24

1186.3

870

0.9500

799.79

1157.9

933

1.0000

781.09

1128.2

1052

0.0000

1040.07

1591.1

380

0.0500

1030.71

1572.9

392

0.1000

1021.03

1553.2

406

0.1500

1010.85

1533.1

421

0.2000

999.86

1511.0

438

0.2499

989.64

1490.6

455

0.3004

978.36

1468.1

474

0.3502

966.78

1445.3

495

0.4000

954.88

1421.7

518

0.4501

942.36

1397.1

544

0.5004

929.42

1371.7

572

0.5501

916.52

1346.8

601

0.6001

902.67

1320.4

635

0.6500

888.54

1294.2

672

0.7000

873.66

1266.8

713

0.7503

858.23

1239.1

759

0.8001

842.41

1211.1

809

T = 313.15 K

40

0.8502

825.70

1182.7

866

0.9000

808.85

1154.0

928

0.9500

791.23

1125.0

999

1.0000

772.34

1094.6

1080

Standard uncertainties u are u(T) = ±0.02 K, u(p) = ±0.04 MPa and the combined expanded uncertainty Ucin mole fractions, density and sound velocity measurements were less than Uc(x) = ± 0.0005, Uc(ρ) = ± 0.90 kgm-3 and Uc(u) = ± 1.5 ms-1, respectively (0.95 level of confidence). Table 9 Coefficients Ai, and standard deviations, σ, obtained for the binary systems studied in this work at different temperatures and at p = 0. 1 MPa for the Redlich-Kister equation. T (K)

A0

A1

A2

A3

A4

σ

Water (1) + 1,3-PDO (2) V

E m

Δκs

(103×m3mol−1)

(1012×Pa-1)

283.15

-1.835

-0.758

-0.150

0.590

0.792

0.010

293.15

-1.712

-0.649

-0.085

0.509

0.654

0.010

303.15

-1.605

-0.556

-0.044

0.416

0.536

0.008

313.15

-1.151

-0.481

-0.024

0.333

0.437

0.008

283.15

-379.1

338.2

-263.6

344.4

-264.0

0.6

293.15

-320.5

289.1

-222.8

263.5

-190.2

0.4

303.15

-273.3

249.0

-192.5

209.4

-138.1

0.3

313.15

-234.4

216.0

-162.7

169.6

-113.9

0.2

Methanol (1) + 1,3-PDO (2) V

E m

(103×m3mol−1)

283.15

-2.031

-0.750

-0.050

-0.561

-0.866

0.019

293.15

-2.213

-0.820

-0.051

-0.626

-0.949

0.018

303.15

-2.396

-0.919

-0.082

-0.652

-1.008

0.017

313.15

-2.596

-1.025

-0.099

-0.692

-1.075

0.015

41

Δκs

(1012×Pa-1)

283.15

-676.8

349.1

-161.5

144.4

-118.7

0.8

293.15

-756.3

396.7

-183.5

173.2

-149.0

0.9

303.15

-844.4

451.2

-213.8

204.0

-173.4

1.0

313.15

-942.4

513.0

-248.0

239.6

-203.5

1.2

Ethanol (1) + 1,3-PDO (2) V

E m

Δκs

(103×m3mol−1)

(1012×Pa-1)

283.15

-2.257

-0.539

-0.136

0.107

-0.107

0.010

293.15

-2.418

-0.586

-0.131

0.101

-0.144

0.010

303.15

-2.587

-0.651

-0.112

0.117

-0.178

0.012

313.15

-2.779

-0.717

0.008

0.088

-0.356

0.014

283.15

-446.6

151.7

-46.3

22.4

-18.4

0.2

293.15

-502.5

177.1

-56.0

26.5

-22.3

0.2

303.15

-565.0

205.0

-67.0

33.1

-24.9

0.2

313.15

-635.6

238.0

-74.7

41.9

-36.4

0.3

Standard uncertainties u are u(T) = ±0.02 K, u(p) = ±0.04 MPa and the combined expanded uncertainty Ucin mole fractions, density and sound velocity measurements were less than Uc(x) = ±0.0005, Uc(ρ) = ± 0.90 kgm-3 and Uc(u) = ± 1.5 ms-1, respectively (0.95 level of confidence).

42

Figure captions Figure 1. Application of 1,3-PDO. Figure 2 (a) Plot of pressures of binary mixture of {water (1) + 1,3-PDO (2) } with literature values reported by Parsons et al. [21], at 293.15 K (●), and 303.15 K (▲); ref [21]: (X) 298.15 K (b) plot of pressures of binary mixture of {water (1) + 1,3-PDO (2) } with literature values reported by Sanz et al. [18], and Mun et al. [20] at 333.15 K (0), 343.15 K ( ), 353.15 K (●), and 363.15 K (); ref [18]: 343 K (□), 355 K (□), and 363 K (□); ref [20]: 335 K (), 343 K (), 355 K (), and 363 K (). Figure 3. Comparison between experimental and calculated P-x(y) using NRTL(——), UNIQUAC (―‐ ―‐) and UNIFAC modified Dortmund () models of (a)water (1) + 1,3-PDO (2) and (b)methanol (1) + 1,3-PDO (2) at different temperatures: , 273.15 K;▲,283.15 K; ●,293.15 K; +, 303.15 K; ●, 313.15 K; X,323.15 K; 0,333.15 K;

,343.15 K;∗,353.15 K;, 363.15 K.

Figure 4. (a) Plot of densities, ρ, of binary mixture of methanol (1) + 1,3-PDO (2) at 283.15 K (●), 293.15 K (●), 303.15 K (●), and 313.15 K (●) with literature values reported by Piekarski et al. [28], at 298.15 K (●), and Orge et. al. [29]: 298.15 K (●), (b) Plot of sound velocity values with literature values reported by Orge et al. [29] for the system {methanol (1) + 1, 3-PDO (2)} at 283.15 K (●), 293.15 K (●), 303.15 K (●), and 313.15 K (●); ref [29]: (●) 298.15 K. Figure 5. (a) Plot of densities, ρ, of binary mixture of {water (1) + 1, 3-PDO (2)} with literature values reported by George and Sastry [64], at 283.15 K (), 293.15 K (-), 303.15 K (▲), and 313.15 K (○); ref [58]: (…..) 298.15 K; (----) 308.15 K; (-..-) 318.15 K and ref [65] (-) 308.15 K (b) Plot of sound velocity values with literature values reported by George and Sastry [64] for the system {water (1) + 1, 3-PDO (2)} at 283.15 K (), 293.15 K (-), 303.15 K (▲), and 313.15 K (○); ref [64]: (…..) 298.15 K; (----) 308.15 K; (-..-) 318.15 K and ref [65] (-) 308.15 K. Figure 6. Plot of excess molar volumes, V Em , for the binary mixtures:(a){water (1) + 1, 3-PDO (2)}, (b) methanol (1) + 1, 3-PDO (2) and (c)ethanol (1) + 1,3-PDO (2) as function of the composition expressed in the mole fraction of water or alcohol at 283.15 K (), 293.15 K (-), 303.15 K (▲), and 313.15 K (○). The dotted lines were generated using Redlich-Kister polynomial curve-fitting. Figure 7. Plot of excess molar volumes, V Em , or the binary mixtures {water (1) + 1, 3-PDO (2)} with literature values [22, 26, 27] at 283.15 K (), 293.15 K (-), 303.15 K (▲), and 313.15 K (○). Ref [22]: 283.15 K (◊), 293.15 K (□), 298.15 (∗); 303.15 K ( ), and 313.15 K (●). Ref [26]: 293.15 K (……); 303.15 K (-.-); 313.15 K (----). Ref [27]: 298.15 K (

).

43

Figure 8. Plot of deviation in isentropic compressibility,

Δκs , for the binary mixtures:(a){water (1) +

1,3-PDO} (2), (b){methanol (1) + 1,3-PDO (2)}, and (c) {ethanol (1) + 1, 3-PDO (2)} as function of the composition expressed in the mole fraction of water or alcohol at 283.15 K (), 293.15 K (-), 303.15 K (▲), and 313.15 K (○), The dotted lines were generated using Redlich-Kister polynomial curve-fitting.

44

Figure 1

Figure 2 (a) 4500 4000 3500

P/Pa

3000 2500 2000 1500 1000 500 0 0

0.2

0.4

0.6

0.8

1

x1

Figure 2 (b)

P/kPa

60

40

20

0 0

0.2

0.4

0.6

0.8

1

x Figure 3 (a)

Figure 3 (b)

Figure 4 (a)

Figure 4 (b)

45

Figure 5 (a)

Figure 5 (b)

Figure 6 (a)

Figure 6 (b)

Figure 6 (c)

Figure 7

46

Figure 8 (a)

Figure 8 (b)

Figure 8 (c)

47