41n(q’~t)41~(q, =
=
—
~dqdq’
—
t)
I Q I q’> 41~(q’,t)41~(q,t)
=.
(C.8)
The inner product (7.23) can be written asPrnn
=
=
~pmno~n’
—
,
Wmn
=
(C.9)
,
Em
—
E~.
M. Ichiyanagi/Phvsics Reports 243 (1994) 125—182
179
Therefore, application of Eqs. (C.7) and (C.9) yields
n’<~IIPI~><1~I IFIn>
~pmn0
=
=
(C.10)
,
where the bar on the upper right of the bracket shows that we should replace j~i,,and H in the inner product defined by Eq. (7.23) with their time-reversal operators Pc and H, respectively. Similarly, we can prove that= ~pmn ,n’ (s + lWnm) =
>~pmnwrnn’(s + 10mm)
. In the absence of magnetic field, we write Eqs. (C.10) and (C.11) in the form =
=
,
=
.
(C.11) (C.12)
Appendix D. The relative entropy formula We want to solve Eq. (7.7) in the general form lnp(t)
=
lnp(to) + 4,(t; t0)
,
t
t0
(D.1)
.
By substituting this into Eq. (7.7), we obtain
(a/at)4,(t;
t0) + i[H
—
PE(t), 4,(t; t0)]
=
i[PE(t)
—
H, lnp(to)]
.
(D.2)
The formal solution of Eq. (D.2) is given by 4,(t; t0) = jds U(t, s)i[PE(s)
—
H, ln p(t0)] U~(t, s).
(D.3)
Here U(t, s) is the unitary evolution operator defined as a solution to the equation of motion
(a/at)U(t, s) = —i(H — PE(t))U(t, s) with the initial condition at t U(t
=
s, s) = I
.
=
(D.4)
s: (D.5)
We stress that in choosing the retarded solution of the inhomogeneous equation (D.2) we have broken the time-reversal invariance of Eq. (7.7). We have assumed that the system was in thermal equilibrium at an infinite past. As a consequence, the density matrix is expressed as an integral over the entire past. This is typical the way time-reversal invariance is broken in macroscopic equations, which describe only time development of a class of solutions to the original microscopic equations. However, it has been argued strenuously by van Kampen [62] that no irreversibility is entered the picture. It would be desirable to explain why the use of the density matrix should create a difference between past and future where none existed before. To reply van Kampen’s specific objection, we have to define an entropy production in the framework of the density matrix formalism. To do this, we utilize the concept of relative entropy [9, 83, 84]. A relative entropy of
180
M. Ichivanagi/Phvsics Reports 243 (1994) 125 182
two states described by p(t) and p(t0) is given by S[p(t) I p(to)]
=
kB Tr p(t) {ln p(t)
—
ln p(to)}
0
(D.6)
,
which is nonnegative by Klein’s inequality. The relative entropy is a measure which clarifies how far from the initial state p(to) the state p(t) evolves. By making use of Eq. (D.l) together with Eq. (D.3) into Eq. (D.6) we obtain S[p(t)Ip(to)]
=
Tr
dsp(s)i[PE(s)
—
H, lnp(t0)].
(D.7)
Jto
We now denote by P(t; t0) the entropy production defined as the time derivative of the relative entropy [8,9] P(t; t0)
=
(d/dt)S[p(t) I p(to)]
(D.8a)
or equivalently P(t; t0)
—
=
(d/dto)S[p(t) I p(t~,)].
We know that if lim P(t; t0) at t0
—*
(D.8b)
—cc exists then the initial-time average
(‘0
P(t)
lim (l/T0)
dt0 P(t; t0)
(D.9)
J—T0
also exists and is equal to the former. By making use of Eq. (D.8b) into Eq. (D.9), we have P(t)
=
lim (l/T0) {S[p(t) I p( To
—
T0)
—
S[p(t) I p(O)] }
—~X
Then, we obtain P(0)= lim S[p(0)Ip(—To)]/To0,
(D.I0)
-. ~
where the inequality is based upon Eq. (D.6). Substituting Eq. (D.6) into Eq. (D.lO) yields P(0)
=
lim (l/T0) T0-.cr~
(‘0
dsp(s)i[H, P]E(s)/T.
(D.ll)
J—T0
Here we have used the fact that p( —cc) = p~.Accordingly, P(0) is equal to the initial-time average of the entropy production (say the Joule heat) and is nonnegative in the steady state considered. The Joule heat is a manifestation of the irreversibility of dynamical processes in the real world. In short, a nonnegative entropy production is a consequence of the statistical assumption on the initial condition.
References [1] L. Onsager, Phys. Rev. 37 (1931) 405; 38 (1931) 2265. [2] W. Muschik and R. Trostel, Z. Angew. Math. Mech. 63 (1983) 190. [3] S. Ono, Adv. Chem. Phys. 3 (1961) 267.
M. Ichiyanagi/Phvsics Reports 243 (1994) 125—182
181
[4] K. Umeda, Sci. Pap. Inst. Phys. Chem. Res. Tokyo 39 (1942) 342; K. Umeda and T. Toya, J. Fac. Sci. Hokkaido Univ. [2] 3 (1949) 257; K. Umeda and T. Yamamoto, J. Fac. Sci. Hokkaido Univ. [2] 3 (1949) 249. [5] W. KroII, Z. Phys. 80 (1933) 50. [6] M. Kohier, Z. Phys. 124 (1948) 772; 125 (1949) 679. [7] H. Nakano, Proc. Roy. Soc. 82 (1963) 757; Prog. Theor. Phys. 15 (1956) 77; 22 (1959) 453; 37 (1967) 52; 49 (1973) 1503. [8] M. Ichiyanagi, J. Phys. Soc. Japan 51(1986) 2963. [9] 1. Ojima, H. Hasegawa and M. Ichiyanagi, J. Stat. Phys. 50 (1988) 633. [10] 0. Penrose, Rep. Prog. Phys. 42 (1988) 1937. [11] B.A. Lippmann and J. Schwinger, Phys. Rev. 79 (1950) 469. [12] G. Sauermann, Physica 98A (1979) 352. [13] D. Djukic and B. Vujanovic, Z. Angew. Math. Mech. 51(1971) 611. [14] M. lchiyanagi, J. Phys. Soc. Japan 62 (8) (1993). [15] 1. Gyarmati, Non-Equilibrium Thermodynamics (Springer, Berlin, 1970). [16] P. Glansdorff and I. Prigogine, Physica 30 (1964) 351; 46 (1970) 344. [17] A. Einstein, Ann. Phys. (Leipzig) 22 (1907) 180. [18] N. Hashitsume, Prog. Theor. Phys. 8 (1952) 461. [19] L. Onsager and S. Machlup, Phys. Rev. 91(1953)1505. [20] J.M. Ziman, Electrons and Phonons (Oxford University Press, Oxford, 1961). [21] A.H. Wilson, The Theory of Metals (Cambridge, 1958). [22] J.M. Ziman, Can. J. Phys. 34 (1956) 1256. [23] M. Baylin, Phys. Rev. 126 (1962) 2040. [24] H. Nakano, Prog. Theor. Phys. 15 (1956) 77; 17 (1957) 145. [25] R. Kubo, J. Phys. Soc. Japan 12 (1957) 570. [26] H. Nakano and M. Hattori, Prog. Theor. Phys. 83 (1990) 1115. [27] S. de Groot and Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962). [28] S. Yomosa, Busseiron Kenkyu (in Japanese) 75 (1954) 7. [29] S.R. de Groot. Thermodynamics of Irreversible Processes (North-Holland, Amsterdam, 1951). [30] 1. Prigogine, Physica 15 (1949) 272. [31] P. Glansdorff and I. Prigogine, Thermodynamical Theory of Structure, Stability and Fluctuations (Wiley, New York, 1971). [32] El. Blount, Phys. Rev. 131 (1963) 2354. [33] R. Courant and D. Hubert, Methods of Mathematical Physics, Vol. 1 (Interscience, New York, 1957) pp. 252—257. [34] N.K. Hindley and F. Garcia-Moliner, Phys. Rev. 140 (1965) A343. [35] L. Rayleigh, Theory of Sound, Vol. 1 (London, 1894) p. 102. [36] S. Machlup and L. Onsager, Phys. Rev. 91(1953)1512. [37] J.B. Keller, J. Math. Phys. 11(1970)2919. [38] P. Glansdorff and I. Prigogine, Physica 20 (1954) 773. [39] H. Nakano, Prog. Theor. Phys. 77 (1987) 880. [40] H. Takahasi, J. Phys. Soc. Japan 7 (1952) 439. [41] M. Ichiyanagi and K. Nisizima, J. Phys. Soc. Japan 58 (1989)1182, see also, S. Abiko and K. Kitahara, J. Phys. Soc. Japan 56 (1987) 2332. [42] H. Hasegawa, Prog. Theor. Phys. 58 (1977) 128. [43] P. Rosen, J. AppI. Phys. 25 (1954) 336. [44] B.A. Finlayson and L.E. Scriven, Int. J. Heat Mass Transfer 10 (1967) 799. [45] R. Kubo, K. Matsuno and K. Kitahara, J. Stat. Phys. 9 (1973) 51, see also, N.G. Van Kampen, in: Studies in Statistical Mechanics, Vol. X, eds. E.W. Montrol and J.L. Lebowitz (North-Holland, Amsterdam, 1981). Ch. 5. [46] E.H. Sondheimer, Proc. Roy. Soc. A 201 (1950) 75. [47] I. Adawi, Phys. Rev. 115 (1959) 1157; 120 (1960) 118. [48] C. Cercignani, J. Stat. Phys. 1 (1969) 297. [49] L.E.G. Ah-Sham, H. Hojgaard Jensen and H. Smith, J. Stat. Phys. 3 (1971) 17.
182
M. Jchivanagi/ Physics Reports 243 (1994)125—182
[50] H. Hojgaard Jensen, H. Smith and W. Wilkins, Phys. Rev. 185 (1969) 323. [51] P.D. Robinson and A.M. Arthurs, J. Math. Phys. 9 (1968) 1364. [52] I. Prigogine, Thermodynamics of Irreversible Processes (Wiley, New York, 1955). [53] L. Lorentz, Proc. Acad. Sci. Amst. 1 (1904—04) 438, 585, 684. [54] A. Sommerfeld, Z. Phys. 47 (1928) 1. [55] F. Bloch, Z. Phys. 52 (1928) 555. [56] 5. Nakajima, Proc. Phys. Soc. A 69 (1956) 441. [57] R. Balian and M. Veneroni, Ann. Phys. 164 (1985) 334. [58] G. Sauermann and Y.M. Zhang, Physica 113 (1982) 277. [59] G. Sauermann and H. Turschner, J. Stat. Phys. 25 (1981) 459. [60] J. Schwinger, J. Math. Phys. 2 (1961) 407. [61] R. Balian, Y. Alhassid and H. Reinhardt, Phys. Lett. C 131 (1986) 1. [62] N.G. van Kampen, in Fluctuation Phenomena in Solids, ed. R.E. Burgess (Academic Press, New York, 1965). [63] K.M. Vleit, J. Math. Phys. 19 (1978) 1345; 20 (1979) 2573. [64] H. Nakano, Prog. Theor. Phys. 23(1960) 526. [65] E. Verboven, Physica 26 (1960) 1091. [66] E. Fick and G. Sauermann, in: The Quantum statistics of Dynamic Processes, ed. W.D. Brewer (Springer. Berlin, 1990). [67] G.V. Chester and A. Thellung, Proc. Phys. Soc. 73(1960) 745. [68] B. Robinson and I. Bernstein, Ann. Phys. 18 (1962) 110. [69] E.P. Gross, Ann. Phys. (1972) 42; J. Stat. Phys. 9 (1973) 275, 297. [70] R.W. Davies, Phys. Rev. 152 (1967) 621. [71] J.H. Hopps, Phys. Rev. A 13 (1973) 1226. [72] H. Nakano, Prog. Theor. Phys. 37 (1967) 52. [73] T. Kasuya, Bussei-Kenkyu (in Japanese) (Kyoritsu, Tokyo 1958). [74] H. Nakano, Int. J. Mod. Phys. B 7 (1993) 2397. [75] H. Hasegawa, Prog. Theor. Phys. 56 (1976) 44. [76] D. Jou, J. Casas-Vazquez and G. Lebon, Rep. Prog. Phys. 51(1988) 1105. [77] 1. Muller and T. Ruggeri, Extended Thermodynamics, Springer Tracts in Natural Philosophy, Vol. 37 (Springer, Berlin, 1993). [78] H. Grabert and M.S. Green, Phys. Rev. A 19 (1979) 1747. [79] M. Ichiyanagi, Prog. Theor. Phys. 76 (1986) 37; 78 (1987) 329. [80] R.L. Peterson, Rev. Mod. Phys. 39 (1967) 69. [81] M. Ichiyanagi, J. Phys. Soc. Japan 61(1992) 2280; Physica A 201 (1993) 626. [82] 5. Chandrasekhar. Rev. Mod. Phys. 15 (1943) 1. [83] H. Araki, PubI. RIMS, Kyoto Univ. 11(1976) 809; 13 (1977) 173. [84] A. Uhlmann, Commun. Math. Phys. 54 (1977) 21.