Velocities of Windblown Particles in Saltation: Preliminary Laboratory and Field Measurements

Velocities of Windblown Particles in Saltation: Preliminary Laboratory and Field Measurements

133 VELOCITIES OF WINDBLOWN PARTICLES I N SALTATION: PRELIMINARY LABORATORY AND FIELD MEASUREMENTS 85287 R. GREELEY: Dept. o f Geology, A r i...

794KB Sizes 0 Downloads 24 Views

133

VELOCITIES

OF WINDBLOWN

PARTICLES I N

SALTATION:

PRELIMINARY LABORATORY

AND

FIELD MEASUREMENTS

85287

R. GREELEY: Dept. o f Geology, A r i z o n a S t a t e U n i v e r s i t y , Tempe, AZ S.H.

WILLIAMS: Dept. o f Geology, Arizona S t a t e U n i v e r s i t y , Tempe, AZ

J.R.

MARSHALL: NASA-Ames Research Center, M o f f e t t F i e l d , CA

g

85287

94035

gravitational acceleration

urn f r e e s t r e a m wind speed

u,

wind f r i c t i o n speed

u,.~

wind t h r e s h o l d f r i c t i o n speed

x

h o r i z o n t a l d i s t a n c e on wind t u n n e l t e s t p l a t e

E

roughness h e i g h t

1.0

INTRODUCTION The speeds o f g r a i n s c a r r i e d by t h e wind has been a t o p i c o f i n t e r e s t s i n c e

Bagnold's (1941)

p i o n e e r i n g work on

t h e physics

o f windblown p a r t i c l e s .

i n t e r e s t i n t h e s u b j e c t developed f r o m r e s e a r c h on t e r r e s t r i a l t r i a l a e o l i a n processes ( T a b l e l ) , e s p e c i a l l y sion on

Mars (Greeley e t al.,

tion i s c r i t i c a l

1982).

Our

and e x t r a t e r r e s -

i n r e g a r d t o r a t e s of

wind a b r a -

D e t e r m i n i n g p a r t i c l e speed d u r i n g s a l t a 1) t h e r a t e o f a b r a s i o n of s u r f a c e

i n t h e understanding o f :

m a t e r i a l s by i m p a c t i n g p a r t i c l e s , 2) t h e r a t e and n a t u r e o f p a r t i c l e comminution i n t h e s a l t a t i o n c l o u d , 3) t h e r e l a t i o n s h i p between s a l t a t i o n p a r t i c l e wind speed and i t s s i g n i f i c a n c e f o r sediment r e d i s t r i b u t i o n , and 4) of saltating

p a r t i c l e s i n general.

We have

i n v e s t i g a t e d p a r t i c l e speed under

simulated m a r t i a n , t e r r e s t r i a l , and Venusian e n v i r o n m e n t a l c o n d i t i o n s mine

i t s relationship t o

t h e key

parameters o f atmospheric

diameter, and wind speed (Wil'liams and Greeley, results.

I n addition,

planets which e x p e r i e n c e a e o l i a n processes:

t o deter-

density, p a r t i c l e

1983).

T h i s r e p o r t p r e s e n t s t h e methods used t o determine p a r t i c l e gives p r e l i m i n a r y

f l u x and

t h e physics

we compare

v e l o c i t i e s and

r e s u l t s among t h e

Earth, Mars, and Venus.

three

134 TABLE 1.

IMPORTANT PARAMETERS OF THE AEOLIAN ENVIRONMENTS OF EARTH, MARS, AND VENUS EARTH

VENUS

Atmospheric Composition

96%

COP

N2

S u r f a c e Pressure

3.5%

MARS

N2

77%

c02

02

21%

N2

2.7%

Ar

1.6%

H20

1%

Ar

0.9%

90 bar

95%

1 bar

7 mb

-288

-218

~

Temperature ( K e l v i n )

-730 2.2 cm/s

Hinimum t h r e s h o l d winc, r r i c t i o n speed f o r p a r t i c l e e n t r a i n m e n t ( f r o m I v e r s e n e t a l . , 1976).

\J,

1.2

250 cm/s

20.5 cm/s

APPROACH

The approach

used i n t h i s

study involved

the analysis o f

windblown par-

t i c l e s i n wind t u n n e l s u s i n g an i n s t r u m e n t t o measure d i r e c t l y t h e speed of particles,

supplemented by high-speed

second) o f g r a i n s i n f l i g h t . tained i n

a field

motion p i c t u r e s

I n addition,

experiment

(up t o

10,000

frames per

high-speed m o t i o n p i c t u r e s were ob-

t o determine

particle velocities

in

a natural

aeol ian e n v i ronment. Three atmospheric b o u n d a r y - l a y e r wind t u n n e l s were used i n t h e experiments, a l l o f which a r e a p a r t o f d i n a t e d by A r i z o n a

t h e NASA P l a n e t a r y Geology A e o l i a n

State University

(Greeley e t

al.,

Consortium coor-

1977; 1981).

l o c a t e d a t NASA's Ames Research Center, M o f f e t t F i e l d , C a l i f o r n i a : Surface ___ lating

Wind Tunnel --

(MARSWIT; Fig.

l),

m a r t i a n atmosphere c o m p o s i t i o n

t e r r e s t r i a l gravity,

a 13 m long, o p e n - c i r c u i t (Coil) and

system o p e r a t i n g a t 1 g a t a CO2 p r e s s u r e

o f 35 b a r and an

s u r f a c e o f Venus).

University,

The t h i r d

i s an open c i r c u i t , 20

b o u n d a r y - l a y e r t u n n e l (Fig. T e s t s were

run i n

aeolian a c t i v i t y i n

all

mb) at

2), a c l o s e d - c i r c u i t ambient temperature

o f 220 C ( p r o d u c i n g t h e same f l u i d d e n s i t y as t h e -90 b a r , 730 K near t h e

system simu-

surface pressures (-7

and t h e --Venus Wind Tunnel (VWT; Fig.

Two are

t h e Martian

C02 atmosphere

wind t u n n e l , l o c a t e d a t Arizona

m l o n g by 1.0 m2

State

c r o s s - s e c t i o n atmospheric

3) o p e r a t i n g a t ambient t e r r e s t r i a l c o n d i t i o n s . t h r e e wind

t u n n e l s under

optimal

t h e p l a n e t a r y environment o f concern.

s e l e c t e d f o r a n a l y s i s i n c l u d e d t h o s e most e a s i l y

c o n d i t i o n s for

The p a r t i c l e

moved by t h e wind (Fig.

sizes 4) as

135

Fig. 1. P h o t o g r a p h o f t h e M a r t i a n S u r f a c e Wind Tunnel a t NASA-Ames Research Center. The o p e n - c i r c u i t a t m o s p h e r i c b o u n d a r y - l a y e r t u n n e l i s 13 m l o n g and has a 1.1 m2 t e s t s e c t i o n l o c a t e d 5 m f r o m t h e e n t r a n c e . It i s o p e r a t e d i n a l o w pressure chamber ( b a c k g r o u n d ) i n a C O P atmosphere a t -7 mb t o s i m u l a t e m a r t i a n conditions. w e l l as common dune sand particle

bed

s i z e s (-300

covered t h e

urn) on E a r t h .

e n t i r e bed

of

the test

I n most

experiments, t h e

s e c t i o n and

there

was an

unlimited supply o f p a r t i c l e s a v a i l a b l e f o r entrainment.

2.0

WIND TUNNEL MEASUREMENTS

L a b o r a t o r y e x p e r i m e n t s have t h e a d v a n t a g e t h a t c o n d i t i o n s can

be m o n i t o r e d

and c l o s e l y c o n t r o l l e d , t h u s r e d u c i n g t h e u n c e r t a i n t i e s i n i n t e r p r e t a t i o n o f t h e results

and a l l o w i n g a w i d e r a n g e

o f c o n d i t i o n s t o be t e s t e d .

e x t r a t e r r e s t r i a l s t u d i e s , l a b o r a t o r y s i m u l a t i o n s p r o v i d e an

I n t h e case of

extremely important

data base f o r a n a l y z i n g t h e l i m i t e d r e s u l t s o b t a i n e d i n s i t u f r o m s p a c e c r a f t . P a r t i c l e s u s e d i n t h e w i n d t u n n e l e x p e r i m e n t s were o b t a i n e d f r o m commercial sources

and f o r

t h e m a r t i a n and

w e l l - s o r t e d samples. Walnut-shell

Venusian runs

Q u a r t z sands

p a r t i c l e s were

were crushed and s i e v e d t o

were used

used i n obtain the

walnut s h e l l s (-1.1 g/cm3) a l l o w s

were f u r t h e r s i e v e d i n E a r t h and

the martian

simulations;

sizes of interest.

a partial

scaling f o r the

t o obtain

Venus s i m u l a t i o n s . these p a r t i c l e s

The l o w

d e n s i t y of

low g r a v i t a t i o n a l

136

F i g . 2. View o f t h e Venus Wind Tunnel a t NASA-Ames Research C e n t e r . This closed-circuit a t m o s p h e r i c b o u n d a r y - l a y e r w i n d t u n n e l has a 1 m l o n g by (3.14)(10-L)m2 t e s t s e c t i o n and o p e r a t e s a t a m b i e n t t e m p e r a t u r e w i t h carbon d i o x i d e a t 35 b a r t o s i m u l a t e V e n u s i a n c o n d i t i o n s . field

o f Mars,

appropriate

p r e v i o u s l y (Greeley e t al., The w i n d

f o r experiments

v e l o c i t y measured i n

t h e wind

speed, urn, f o u n d above t h e b o u n d a r y l a y e r . t e r r e s t r i a l and m a r t i a n c a s e s a l l o w wind f r i c t i o n

c o n d u c t e d on

Earth

as d i s c u s s e d

1981; 1982).

speed, u,(after

t u n n e l s was

the

f r e e s t r e a m wind

Boundary-layer p r o f i l e s taken i n the

c o n v e r s i o n o f urn t o t h e

Bagnold, 1941).

c o r r e s p o n d i n g wind

F o r t h e VWT t e s t s , u,

was d e t e r -

m i n e d from urn by u s i n g t h e e q u a t i o n o f S c h l i c h t i n g ( 1 9 6 8 ) :

where x

=

d i s t a n c e down t h e t e s t p l a t e and

p a r t i c l e diameter).

Boundary l a y e r

E

=

roughness h e i g h t ( e s s e n t i a l l y the

studies are

v a r i o u s s u r f a c e roughness v a l u e s used f o r t h e VWT. p l i c a t i o n a r i s e s when sand

i s set i n motion; t h e

t r a n s f e r o f momentum f r o m t h e w i n d t o t h e r e p o r t e d here a r e approximate.

grains

c u r r e n t l y underway t o

assess

It m u s t be n o t e d t h a t a com-

u,/urn

r a t i o changes due

n motion, thus t h e

to a

u, v a l u e s

137

Fig. 3. View o f t e s t s e c t i o n o f t h e one atmosphere, o p e n - c i r c u i t w i n d t u n n e l i n t h e P l a n e t a r y Geology L a b o r a t o r y a t A r i z o n a S t a t e U n i v e r s i t y . The t u n n e l i s 19 m long and has a 1.1 m2 c r o s s s e c t i o n . Shown h e r e i s t h e e x p e r i m e n t a l s e t - u p t o f i l m windblown p a r t i c l e s i n f l i g h t a g a i n s t a c m - g r i d b a c k d r o p ( i n t e s t s e c t i o n ) using a Hycam Model I 1 m o t i o n p i c t u r e camera ( a t r i g h t ) .

2.1

PARTICLE VELOCIMETER Figure

5 i s a diagram o f

experiments.

t h e p a r t i c l e v e l o c i m e t e r used i n

The d e s i g n o f t h i s d e v i c e i s based

Forest S e r v i c e ( S c h m i d t , 1977) t o ticles.

measure t h e

the laboratory

on a system used by

v e l o c i t y o f windblown

t h e U.S. snow p a r -

The v e l o c i m e t e r u t i l i z e s a l i g h t s o u r c e w h i c h p r o j e c t s a beam a c r o s s a

s m a l l gap t o t w o p h o t o t r a n s i s t o r s .

As a w i n d b l o w n g r a i n passes t h r o u g h t h e gap,

i t i n t e r r u p t s t h e beam and c a s t s a

shadow on t h e f i r s t d e t e c t o r

w h i c h responds

p u l s e ; i t t h e n shadows t h e

second d e t e c t o r

by g e n e r a t i n g a p o s i t i v e e l e c t r i c a l which g e n e r a t e s a n e g a t i v e p u l s e .

for

These s i g n a l s

l a t e r a n a l y s e s w i t h an o s c i l l o s c o p e .

a r e r e c o r d e d on m a g n e t i c t a p e

The v e l o c i t y

i s determined from t h e

distance t r a v e l e d (known f r o m t h e geometry o f t h e windows) and f r o m t h e travel

(determined from t h e

signal displayed

on t h e o s c i l l o s c o p e ) .

signals r e p r e s e n t i n g g r a i n s e i t h e r p a s s i n g t h r o u g h t h e gap a t o b l i q u e i n clusters are Approximately

i d e n t i f i e d by

150 s i g n a l s

velocity d i s t r i b u t i o n s .

were

asymmetric o r analyzed f o r

distorted each r u n

time o f Spurious angles o r

oscilloscope tracings. to

determine p a r t i c l e

138

Fig. 4. T h r e s h o l d f r i c t i o n speed (m/s) as a f u n c t i o n o f p a r t i c l e d i a m e t e r f o r Earth, Mars, and Venus; speed r e q u i r e d f o r p a r t i c l e m o t i o n i s i n v e r s e l y proport i o n a l t o t h e atmospheric d e n s i t y ( T a b l e 1); n o t e t h a t t h e optimum g r a i n s i z e ( i d e n t i f i e d on each curve) f o r p a r t i c l e threshold i s about t h e same i n a l l three planetary environments; ( a f t e r I v e r s e n and White, 1982).

1

-

-> (I)

\

E

-

115

k

t

0 0 0l.e 8 O A W

>

z

-

0

I-

EARTH

0

0.2

L

0.10

a P A

75

-

0 I

u)

0.02 -

w 0.03 a I

I-

0

75 . 2030

10

0

50

100

1 200

5 500 1

0

P A R T I C L E D I A M E T E R ((lm)

above the

To determine t h e range o f p a r t i c l e v e l o c i t i e s a t a s i n g l e h e i g h t s u r f a c e , v e l o c i t y measurements were grouped plotted

as a h i s t o g r a m expressed as

s p e c i f i e d v e l o c i t y range. percentage o f

i n even

i n c r e m e n t s o f one

t h e percentage

f r e e s t r e a m wind speed.

This l a t t e r

function i s

o r d e r s o f magnitude.

As shown

range.

has demonstrated t h e a c c e l e r a t i o n o f

saltation Figure 6

i n Figure

path, and we c o n s i d e r t h e

experiment

t o r e f l e c t grains a l s o shows

in a

V e l o c i t i e s a r e g i v e n b o t h as an a c t u a l speed and as a useful i n nor-

m a l i z i n g d a t a f o r i n t e r p l a n e t a r y comparisons i n which w i n d speeds may White (1979)

m/s and

o f grains t r a v e l l i n g

6, p a r t i c l e v e l o c i t i e s

wide range

sampled i n

t h a t some g r a i n s

d i f f e r by

have a

i n v e l o c i t i e s measured

different parts o f

exceed t h e

wide

p a r t i c l e s along the i n our

t h e i r trajectory.

f r e e s t r e a m wind

a t t r i b u t e t h i s observation t o very high accelerations r e s u l t i n g from

speed.

We

rebound o f

s a l t a t i n g g r a i n s f r o m t h e s u r f a c e and from i n t e r g r a i n c o l l i s i o n s . Tests t h e surface. speed w i t h

were r u n t o d e t e r m i n e p a r t i c l e

As shown

i n Figure

7, t h e r e i s

height, r e f l e c t i n g , f i r s t ,

t h r o u g h t h e boundary

layer,

speed as a f u n c t i o n o f a general

t h e increase

and second,

t h e longer

h e i g h t above

increase i n p a r t i c l e

i n wind speed particle

w i t h height

trajectory

--

139

" . . ,

-

PHOTOTRANSISTORS

Fig. 5. Diagram o f t h e p a r t i c l e v e l o c i me t e r used t o measure t h e speed o f windblown g r a i n s ( f r o m Greeley e t al., 1982)

p a r t i c l e p a t h l e n g t h i n c r e a s e s w i t h h e i g h t and a f f o r d s a l o n g e r t i m e

f o r accel-

A s i m i l a r r e l a t i o n s h i p was found i n experiments s i m u l a t i n g

e r a t i o n by t h e wind.

the m a r t i a n environment (Fig. 8).

The p a r t i c l e v e l o c i m e t e r does n o t o p e r a t e i n

the Venus Wind Tunnel, and no measurements were made w i t h t h i s technique. F i g u r e 9 shows t h e e f f e c t at

a s i n g l e height.

o f wind v e l o c i t y on p a r t i c l e

Two p a r t i c l e

martian atmospheric

conditions.

f r e q u e n t l y measured

speed).

v e l o c i t i e s t h a n l a r g e r ones. wind and t h e

smaller

s i z e s (350 urn and 92 P a r t i c l e speeds

I n general,

v e l o c i t y , measured

urn) were t e s t e d under

a r e modal

smaller p a r t i c l e s

values ( t h e travel a t

most higher

We a t t r i b u t e t h i s t o a b e t t e r c o u p l i n g between t h e

p a r t i c l e s owing

t o their

larger

cross-sectional

area-

to-mass r a t i o . Figure

9 a l s o shows t h a t p a r t i c l e

markably c o n s t a n t t h r o u g h a wide may shed some l i g h t on known t h a t Kawamura,

the characteristics of particle flux.

increases i n 1951; and

v e l o c i t y a t a given height

wind

others).

remains r e -

range o f f r e e s t r e a m wind speeds. speed cause However,

increases i n it

has n o t

This r e s u l t

It has l o n g been

flux

(Bagnold, 1941;

been known

whether

the

increase i n f l u x r e s u l t e d p r i m a r i l y from h i g h e r p a r t i c l e v e l o c i t i e s o r p r i m a r i l y from i n c r e a s e s i n t h e number o f g r a i n s i n t r a n s p o r t , o r both.

F i g u r e 9 suggests

t h a t i n c r e a s e s i n f l u x may be t h e r e s u l t o f more g r a i n s i n t r a n s p o r t r a t h e r t h a n o f higher p a r t i c l e v e l o c i t i e s .

2.2

HIGH SPEED MOTION PICTURES

A Hycam Model I 1 16 mm camera (Fig.

o f windblown

g r a i n s a t f r a m i n g r a t e s up

were photographed a g a i n s t a back-drop ysis

of the f i l m .

The f i e l d

3) was used t o o b t a i n t o 10,000

frames p e r second.

w i t h a cm-scale g r i d t o

o f view had t o be

motion p i c t u r e s Grains

f a c i l i t a t e anal-

s u f f i c i e n t l y small

t o permit

i n d i v i d u a l g r a i n s t o be r e s o l v e d and y e t l a r g e enough t o c h a r a c t e r i z e t h e f l i g h t path o f t h e g r a i n s

and t o d e t e r m i n e t h e i r v e l o c i t i e s .

analyzed (-600 pm), t h e maximum u s e f u l f i e l d o f view

For t h e

largest grains

was about 6 cm h i g h

by 10

140

3 5 0 p m QUARTZ 16.1cm HEIGHT

~ ~ ' 1 0 . 2m2/ s

PARTICLE VELOCITY (m/roc) I

1

0

20

60

40

80

I

100

120

% O F FREESTREAM WIND S P E E D

Fig. 6. D i s t r i b u t i o n o f p a r t i c l e v e l o c i t i e s a t a h e i g h t o f 16.1 cm above t h e s u r f a c e f o r 350 um d i a m e t e r q u a r t z g r a i n s s u b j e c t e d t o a f r e e s t r e a m windspeed of -10.22 m/s i n a s i m u l a t i o n o f E a r t h (u, = 0.5 m/s). The v e l o c i t y d i s t r i b u t i o n i s t y p i c a l f o r b o t h wind t u n n e l and f i e l d experiments and w i l l be r e p r e s e n t e d i n subsequent f i g u r e s as a one-standard d e v i a t i o n v e l o c i t y range around a mean p a r t i c l e velocity. cm wide.

Thus f a r i n o u r i n v e s t i g a t i o n o n l y a l i m i t e d number o f runs have been

made i n which h i g h speed m o t i o n p i c t u r e s were o b t a i n e d , a l l a t E a r t h

(wind t u n -

n e l and f i e l d c o n d i t i o n s ) and Venus c o n d i t i o n s , b u t n o t m a r t i a n c o n d i t i o n s . Data were

obtained from

processed

L a f a y e t t e Analyzer o n t o a 40" by 60" GTCO 11/45 computer. i n t o the

The g r i d

image

via a

x-y d i g i t i z i n g t a b l e l i n k e d t o

a PDP

f i l m s by

p o s i t i o n , f r a m i n g r a t e , and wind

program and t h e p a r t i c l e p o s i t i o n s

f i l m sequence.

projecting the

were p l o t t e d

speed were e n t e r e d f o r each frame

in a

The reduced d a t a i n c l u d e v e l o c i t i e s i n t h e f o l l o w i n g c a t e g o r i e s :

1) particles i n r i s i n g trajectories,

2) p a r t i c l e s i n f l a t t r a j e c t o r i e s ,

t i c l e s i n f a l l i n g t r a j e c t o r i e s and 4) combined t r a j e c t o r i e s ;

3) p a r -

p a r t i c l e speeds are

g i v e n i n m/s and as a percentage o f f r e e s t r e a m wind speed (urn).

141

25 0-

E 0

20

W

0 4:

LL

a

3

15

fn W

> 0

m

EARTH CASE

10

3 5 0 ptn Q U A R T Z P A R T I C L E S

4

v

I-

r

?!

urnr 1 0 . 5 r n / s

5

W

r I

I

I

I

1

I

I

MEAN PARTICLE VELOCITY ( m / s ) 1

I

I

0 20 40 60 80 100 M E A N P A R T I C L E V E L O C I T Y (%urn)

Fig. 7. P a r t i c l e v e l o c i t i e s f o r 350 um q u a r t z g r a i n s measured a t f o u r h e i g h t s above t h e s u r f a c e i n a wind t u n n e l a t 1 b a r p r e s s u r e and a f r e e s t r e a m wind speed o f 10.5 m/s (u, = 0.5 m/s). Figure

10 shows

typical

results for

speeds i n c r e a s e w i t h h e i g h t above with the

p a r t i c l e velocimeter, although

f i l m i s limited.

E a r t h cases;

t h e surface

in

general, p a r t i c l e

similar t o the

t h e range

r e s u l t s obtained

i n the heights

analyzed by

A t t h i s t i m e , i d e n t i c a l experiments have n o t been r u n t o com-

pare r e s u l t s f r o m t h e v e l o c i m e t e r w i t h t h o s e f o r t h e m o t i o n p i c t u r e s . shows

r e s u l t s o b t a i n e d i n t h e Venus

tures.

Wind Tunnel

f r o m analyses o f

Although t h e a b s o l u t e v e l o c i t i e s a r e v e r y low

(a r e f l e c t i o n of t h e low

wind speeds on Venus), n o t e t h a t t h e p a r t i c l e s a c h i e v e n e a r l y t h e as f r e e s t r e a m

wind speed,

in

marked c o n t r a s t

t o Mars

F i g u r e 11 motion p i c -

where

same v e l o c i t y

p a r t i c l e s seldom

reach f r e e s t r e a m v e l o c i t i e s . I n a d d i t i o n , p a r t i c l e v e l o c i t i e s on r i s i n g , f l a t , and were assessed (Fig. Earth increase

12).

throughout

falling trajectories

As p r e d i c t e d by White (1979), p a r t i c l e v e l o c i t i e s the saltation

b e f o r e impact w i t h t h e s u r f a c e ,

t r a j e c t o r y , reaching

a

on

maximum j u s t

142

25

-

A

E 0

20

W

0

U

u.

U

3

15

ln W

> 0

m U

MARS CASE

10

-

c

I

a -

3 5 0 p m SHELL PARTICLES u

6 5 m/ s

5

W

I I

(

I

1

1

I

0

I

1

I

1 35

I

30 20 25 15 10 MEAN PARTICLE VELOCITY (m/s)

5

I 50

I

I

10 20 30 40 M E A N P A R T I C L E V E L O C I T Y (%Urn)

Fia. 8. P a r t i c l e v e l o c i t i e s f o r f o u r d i f f e r e n t h e i a h t s above t h e s u r f a c e for 356 w a l n u t s h e l l p a r t i c l e s s u b j e c t e d t o a f r e e s t r e a m wind speed o f 65 m/s (u, = 3.4 m/s) i n a low atmospheric p r e s s u r e (6.6 mb) t o s i m u l a t e t h e martian e n v i ronment. 3.0

FIELD STUDIES Although l a b o r a t o r y s i m u l a t i o n s e n a b l e a e o l i a n processes t o be i n v e s t i g a t e d

under c o n t r o l l e d c o n d i t i o n s , q u e s t i o n s the results

as a p p l i e d t o n a t u r a l c o n d i t i o n s .

t i o n s , a f i e l d experiment was particles.

inevitably arise

conducted t o

I n order

v a l i d i t y of

as t o t h e

t o address such ques-

obtain v e l o c i t y data

f o r saltating

The experiment was conducted 3 November 1981 a t Waddell Creek State

Beach i n C a l i f o r n i a , about 90

km s o u t h o f San Francisco.

The beach

i s one o f

t h e w i n d i e s t on t h e c o a s t and i s f a i r l y wide, e n a b l i n g a good s a l t a t i o n c l o u d t o develop across

t h e dry

p a r t o f the

beach b e f o r e

r e a c h i n g t h e area

where the

f i l m i n g t o o k place. Using t h e same i n s t r u m e n t s as ( a t a h e i g h t o f 1.0 m above Greeley e t al., taneously.

t h e surface), p a r t i c l e f l u x (using

1982), and h i g h

The p a r t i c l e

wind v e l o c i t y

employed i n t h e w i n d t u n n e l s ,

speed m o t i o n p i c t u r e s were a l l

c o l l e c t o r s , see o b t a i n e d simul-

v e l o c i m e t e r m a l f u n c t i o n e d and d a t a were

w i t h i t i n t h e f i e l d experiment.

n o t obtained

143

92vm

350um 130 120

Siia

\

E

k

0 0 A

W

10( 9c

>

n

z

3 z a

W

8C

7C

a

+ W W

6(

U

LL

5c 1

I

5

10

1

1

I

15

20

25

1

I

35

30

PARTICLE VELOCITY ( Y O D E , m / a )

Fig. 9. S t a t i s t i c a l modes o f v e l o c i t i e s as a f u n c t i o n o f f r e e s t r e a m wind speed a t a h e i g h t o f 7.1 cm above t h e s u r f a c e f o r 350 urn and 92 urn s h e l l p a r t i c l e s i n a m a r t i a n s i m u l a t i o n ; p a r t i c l e v e l o c i t y remains c o n s t a n t o v e r a wide range of freestream wind speeds. Four s u c c e s s f u l r u n s were completed, hold.

i n t h e wind t u n n e l runs. is

a l l a t wind speeds j u s t

The m o t i o n p i c t u r e s were analyzed f o l l o w i n g t h e

somewhat d i f f e r e n t

above t h r e s -

same procedures as used

F i g u r e 13 shows t h e r e s u l t s ; a l t h o u g h t h e f r o m t h o s e used

i n the

wind t u n n e l runs,

grain size the particle

v e l o c i t y d i s t r i b u t i o n s a r e w i t h i n t h e range expected.

4.0

SUMMARY AND CONCLUSIONS

Velocities o f speed,

windblown

h e i g h t above t h e

p a r t i c l e s were

ground, and

d e t e r m i n e d as

p a r t i c l e diameter f o r

functions

of wind

various conditions

s i m u l a t i n g Earth, Mars, and Venus i n e n v i r o n m e n t a l wind t u n n e l s .

S i m i l a r data,

although o f l i m i t e d range, were o b t a i n e d f r o m a f i e l d experiment

f o r comparison

w i t h t h e wind t u n n e l r e s u l t s s i m u l a t i n g t h e t e r r e s t r i a l environment.

144

-

-

EARTH CASE

E

-

ASU WIND TUNNEL

0

W

0

a Y

U

3 UJ W

> 0

m

a I-

I

-

Q W

I I

'0

I

I

I

I

I

1

5 6 7 3 4 2 MEAN PARTICLE VELOCITY (m/s)

1 I

I

I

I

I

8 I

1

I

20 30 40 50 60 MEAN PARTICLE VELOClTY

10

J

70

80

(%Urn)

F i g . 10. P a r t i c l e v e l o c i t i e s o b t a i n e d f r o m a n a l y s e s of h i g h speed m o t i o n p i c t u r e s f o r 400 q u a r t z p a r t i c l e s s u b j e c t e d t o a f r e e s t r e a m w i n d speed of 10.5 m/s (u, = 0.55 m / s ) i n t h e 1.0 b a r a t m o s p h e r i c w i n d t u n n e l a t A r i z o n a S t a t e Un iv e r s i t y

.

I n g e n e r a l , t h e r e s u l t s show

that particles

travel a t higher

speeds w i t h

i n c r e a s e d h e i g h t above t h e ground, and t h a t s m a l l e r p a r t i c l e s t r a v e l f a s t e r t h a n l a r g e r ones. not increase

However, f o r a g i v e n h e i g h t above t h e ground, p a r t i c l e speed does with higher

t h i s i s with reference t o

f r e e s t r e a m w i n d speeds.

modal v a l u e s

and

I t must

be remembered t h a t

n o t t o maximum v a l u e s ; a

few p a r t i -

c l e s do i n c r e a s e i n v e l o c i t y w i t h f r e e s t r e a m w i n d v e l o c i t i e s . Comparisons o f r e s u l t s f o r

E a r t h , Mars,

and Venus r e v e a l

some r e m a r k a b l e

differences.

As shown i n F i g u r e 14, most p a r t i c l e s a c h i e v e speeds n e a r l y equal

t o freestream

w i n d speed o n Venus, b u t

seldom a c h i e v e

Mars; E a r t h c a s e s a r e o f i n t e r m e d i a t e v a l u e s . ences

i n a t m o s p h e r i c d e n s i t y and t o

p l a n e t a r y e n v i r o n m e n t s ( T a b l e 1). V e n u s i a n atmosphere t h a n on and f o r t h e (just

t h e t h r e s h o l d w i n d speeds among

speeds), t h e

speed on the three

P a r t i c l e s a r e more e a s i l y moved i n t h e dense

Mars; c o n s e q u e n t l y , t h r e s h o l d speeds a r e

r a n g e o f w i n d speeds i n

above t h r e s h o l d

h a l f t h e wind

This i s attributed t o the d i f f e r -

w h i c h most grains

movement i s presumed

need n o t

be m o v i n g

very

v e r y low, t o occur fast to

145

-

-

3

VENUS CASE

E

VENUS WIND TUNNEL

0

Y

5 0 0 - 6 0 0 p m QUARTZ PARTICLES

W

0

ucO = 3.621111s

U

u . 2 K

__t_

3 v)

W

> 0

m

u 1

-

-

I-

-

r

-

0 W

I 0

I

I

1

,

-

I

I

1

1

I

I

I

I

I

I

I

1

60

l

I

I

l

1

1

I

3.5

2.5 3.0 MEAN PARTICLE VELOCITY (m/s)

0

--

80 90 70 MEAN PARTICLE VELOCITY (%urn)

4.0 I

100

Fig. 11. P a r t i c l e v e l o c i t i e s o b t a i n e d f r o m a n a l y s i s o f h i q h speed m o t i o n p i c t u r e s f o r 500 t o 600 pm q u a r t z p a r t i c l e s s u b j e c t e d t o a f r e e s t r e a m w i n d speed o f 3.62 m/s (u, = 0.2 m/s) a t 30 b a r s a t m o s p h e r i c p r e s s u r e i n t h e Venus Wind Tunnel. achieve

100% o f t h e w i n d speed.

C o n v e r s e l y , p a r t i c l e s on Mars must a c c e l e r a t e

very r a p i d l y t o a c h i e v e t h e speed o f t h e h i g h w i n d s r e q u i r e d f o r despite

the f a c t t h a t s a l t a t i o n path

lengths are

l o n g on Mars

most g r a i n s f a l l t o t h e s u r f a c e b e f o r e a c h i e v i n g even 50-60% o f

t h r e s h o l d , and ( W h i t e , 1979), freestream wind

speed. F u t u r e e x p e r i m e n t s w i l l i n v o l v e e x p a n s i o n o f t h e d a t a base t o a w i d e r r a n g e o f wind-tunnel

and f i e l d c o n d i t i o n s and f o r a w i d e r r a n g e o f p a r t i c l e d i a m e t e r s ,

wind speeds, and measurements f o r

v a r i o u s h e i g h t s above t h e s u r f a c e .

tion, a v e l o c i m e t e r i s under development t h a t w i l l be f i e l d - p o r t a b l e obtain

a l a r g e r number

of velocity

measurements t h a n a r e

I n addii n order t o

presently available

from h i g h - s p e e d m o t i o n p i c t u r e s . ACKNOWLEDGEMENTS A l l a s p e c t s o f t h i s work

were s u p p o r t e d

by t h e P l a n e t a r y

Geology O f f i c e ,

N a t i o n a l A e r o n a u t i c s and Space A d m i n i s t r a t i o n . We t h a n k t h e f o l l o w i n g i n d i v i d u a l s f o r t h e i r c o n t r i b u t i o n t o D.

B a l l f o r p h o t o g r a p h i c s u p p o r t , G.

Kuhl f o r d a t a r e d u c t i o n , and

Beardmore,

P.

Parkes, K.

t h i s study:

Malone,

and D.

R. Leach f o r a s s i s t a n c e i n o b t a i n i n g t h e w i n d t u n -

146 n e l d a t a and development o f t h e p a r t i c l e v e l o c i m e t e r . i n the i n i t i a l

arrangements f o r

Alan P e t e r f r e u n d a s s i s t e a

t h e f i e l d experiment.

R. Leach, M.

We thank

M a l i n , and K. Gerety f o r h e l p f u l comments on t h e manuscript.

f0

60

501

DESCENDING

0

6

4

2

8

10

PARTICLE VELOCITY (m/s) I

0

I

10

, 20

I

30

I

I

40

50

I

60

PARTICLE VELOCITY

70

80

I

I

90

100

(%Urn)

Fig. 12. P a r t i c l e v e l o c i t i e s o b t a i n e d f r o m a n a l y s i s o f high-speed m o t i o n p i c t u r e s f o r 500 t o 600 vm q u a r t z p a r t i c l e s s u b j e c t e d t o a f r e e s t r e a m wind speed of 10.5 m/s (u, = 0.5 m / s ) a t one b a r atmospheric pressure, comparing v e l o c i t i e s f o r g r a i n s on t h e r i s i n g , h o r i z o n t a l , and descending p a r t s o f t h e i r t r a j e c We p r e s e n t l y have no e x p l a n a t i o n f o r t h e bimodal v e l o c i t y d i s t r i b u t i o n tories. o f g r a i n s on t h e h o r i z o n t a l p a r t o f t h e t r a j e c t o r y .

147

-Eo

4

LL

a a

m

-

10

W

0

-

12

8

-

EARTH CASE FIELD EXPERIMENT WADDELL BEACH, CA Dp

__t_

= 300pm

6

W

> 0

m 4

W

I

2 i 4

1

0

3

2

5

4

MEAN PARTICLE VELOCITY (m/S) I

0

I

10

1

20

1

I

I

I

I

I

30

40

50

60

70

80

M E AN P A R T I C L E V E L 0 C I T Y ( % uoo)

Fig. 13. P a r t i c l e v e l o c i t i e s o b t a i n e d f r o m a n a l y s i s o f h i g h speed m o t i o n p i c t u r e s f o r n a t u r a l beach sands o f -300 um d i a m e t e r s u b j e c t e d t o a wind speed o f -6 m/s measured a t a h e i g h t o f 1 m above t h e s u r f a c e a t Waddell Creek S t a t e Beach, C a l i f o r n i a .

148

-E 0

w

30 25

0 U

;2 0 3 v)

w 15

>

0 I-

10

I

Q

i i 5 r

0

I

I

I

I

I

I

I

I

I

I

10

20

30

40

50

60

70

80

90

100

P A R T I C L E V E L O C I T Y (MODE,%u,)

F i g . 14. Comparison o f v e l o c i t i e s on E a r t h , Mars, and Venus. Two s i z e s o f p a r t i c l e s , each s u b j e c t e d t o r e l a t i v e l y l o w and h i g h w i n d speeds, were t e s t e d under E a r t h and Mars c o n d i t i o n s ; one s i z e p a r t i c l e was t e s t e d a t a l o w v e l o c i t y under Venus c o n d i t i o n s . I n g e n e r a l , g r a i n s a c h i e v e a much h i g h e r v e l o c i t y i n r e l a t i o n t o t h e w i n d speed u n d e r V e n u s i a n c o n d i t i o n s t h a n u n d e r m a r t i a n c o n d i t i o n s , and g r a i n s u n d e r t e r r e s t r i a l c o n d i t i o n s have i n t e r m e d i a t e v e l o c i t i e s . REFERENCES Bagnold, R.A., 1941. The P h y s i c s o f Blown Sand and D e s e r t Dunes: Methuen, London, 265 pp. G r e e l e y , R., R.N. Leach, S.H. W i l l i a m s , B.R. White, J.B. P o l l a c k , D.H. K r i n s l e y , J. _ Geophy. a n d J.R. M a r s h a l l , 1982. R a t e o f Wind A b r a s i o n on Mars: _ _ _ - Res., 87, pp. 10,009-10,024. G r e e l F , R., B.R. White, J.B. P o l l a c k , J.D. I v e r s e n , and R.N. Leach, 1977. Dust s t o r m s on Mars: C o n s i d e r a t i o n s and S i m u l a t i o n s : NASA T e c h n i c a l Memo. TM 78423, pp. 29. G r e e l e y , R., B.R. W h i t e , J.B. P o l l a c k , J.D. I v e r s e n , and R.N. Leach, 1981. Dust s t o r m s on Mars: C o n s i d e r a t i o n s and S i m u l a t i o n s : I n Desert Dust: Origin, C h a r a c t e r i s t i c s , and E f f e c t on Man. Geol. SOC. her.--1 T r o y Pewe, pp. l O T i 2 i 7 ' - - G r e e l e y , and J.B. P o l l a c k , 1976. Windblown d u s t on Earth, I v e r s e n , J.E., R. Mars, and Venus: J. Atmos. S c i . , 2, 2425-2429. S a l t a t i o n t h r e s h o l d on E a r t h , Mars, and I v e r s e n , J.D. and B . R T W W 1 9 8 2 . Venus: S e d i m e n t o l o g y , 29, pp. 111-119. Kawamura, R., 1951. S t u d y of sand movement by w i n d : Phy. S c i . Res. I n s t . , Tokyo Univ., 5, 95-112, ( o r i g i n a l i n Japanese; NASA t r a n s l a t i o n ) . S c h l i c h t i n g , H., 1368. Boundary-Layer Theory: M c G r a w - H i l l Book Company, New York, pp. 748. Schmidt, R.A. 1977. A System T h a t Measures B l o w i n g Snow: U.S. Dept. Agric. Res. Paper, RM -194, 80 pp. WhiteXR-79. S o i l T r a n s p o r t by Winds on Mars: J. Geophy. Res., 84, pp. 4643-4651. Williams, S.H. and R. G r e e l e y , 1983. F l u x o f w i n d b l o w n p a r t i c l e s on Venus: NASA Rept. P l a n e t a r y Geology, ( a b s t r a c t , Preliminary laboratory results: i n press).