JOURNAL
OF MOLECULAR
Sf’ECTROSCOPY
99, 431-449 (1983)
Vibration-Rotational and Rotational Intensities for CO Isotopes C. CHACKERIAN,JR. NASA Ames
Research
Center,
Mofett Field, Ca&rnia
94035
AND
R. II. TIPPING’ Air
Force Geophysics Laboratory, Hanscom Air Force Base, Bedford* Massachusetts OI 731
Dipole moment matrix elements have been computed for the five most abundant isotopes of CO. The wave functions utilized were obtained from a direct solution of the ~hr~inger equation with an accurate RKR potential. The dipole moment function, in the form of a Pad& approximant, was chosen to reproduce the experimental measurements near equilibrium, to have the proper united and separated atom limits, and to have the correct long-range asymptotic functional dependence on internuclear separation. Because of the huge number of transitions involved, and to facilitate applications, the squares of the dipole moment matrix elements were fitted by a least-squares procedure to polynomials in u and J. Predictions for the 5-O and 6-O rotationless matrix elements and Herman-Wallis coefficients are given, and their dependence on the isotopic reduced mass is discussed. For the pure rotational band, u = u’ = 0, explicit Einstein A values and transition frequencies were calculated for the three most abundant isotopes for J up to 55. The corresponding dipole moment matrix elements were also fitted to simple polynomials in m and the dependence of the coefficients on the reduced mass given. The present results incorporate the most accurate and extensive intensity measurements and theoretical dipole moment function data for any heteronucl~ diatomic molecule. fn view of this, because of the importance of the CO laser, the accuracy of the spectral frequencies, and the ubiquity of the CO molecule, it is reasonable to expect that some of these lines, in particular, in the fundamental band of ‘*C?O, can serve as laboratory standards for intensity measurements. I. INTRODU~ION
Carbon monoxide line intensities are important for a number of applications involving quanti~tive spectroscopy. In the area of astrophysics, some of these are isotopic ratios in stellar atmospheres (1) and the interstellar medium (Z), stellar atmospheric structure (3), thermal dynamics of molecular clouds (4), etc. In the area of laboratory chemical physics, the CO gas laser is useful, for example, as a probe in the examination of nascent population dist~butions produced in chemical reactions (5), or in the study of relaxation processes behind shock waves (6). Outside of the laboratory, the fundamental vibration-rotation and overtone bands are important in atmospheric work for, among other things, monito~ng pollution, or for tracking troposphere-stratosphere exchange as, for example, in the Space Shuttle based gas filter experiment (7). Because of the wealth and accuracy of the intensity measure’ Permanent address: Dept. of Physics and Astronomy, University of Alabama, University, Ala. 35486. 431
0022-2852/83 $3.00 Copyright @ I983 by Academic f+esr. Inc. Ail ri$hts of reproduction in any form reserved
432
CHACKERIAN
AND TIPPING
ments for 12C60 and its more common isotopes, it is hoped that these spectral lines, in particular, the fundamental lines of 12C’60, will be useful as absolute intensity standards (8). In this paper we report calculations of line intensities for five isotopic species of CO for transitions with Av = v’ - v = 0 through 4, v = 0 through 27, and every tenth J for both R and P lines from J = 0 through 150. For the convenience of application, and in view of the large number of lines involved, we have fitted our results to polynomials in the vibrational and rotational quantum numbers v and m, where m is J + 1 for R lines, and -J for P lines. We have also computed Einstein A values and frequencies for all lines in the pure rotational spectrum (v’ = v = 0; and 0 G J G 55) for the “C60, ‘3C’60, and ‘2C’80 isotopes. We feel that the present results are more accurate than previous results (many of which have been summarized recently by Werner (9)) for a number of reasons. (1) Recent, more accurate measurements of the fundamental line intensities (10) have resulted in changes of the order of 6%; this leads primarily to an increase in the fundamental rotationless matrix element, with concomitant changes in the dipole moment function around the equilibrium internuclear separation. (2) The availability of extensive frequency data and Dunham coefficients (II, 12) has enabled more accurate calculations (RKR) of classical turning points for the vibrational potential of the ground electronic state. Using these potentials, we have computed the vibration-rotational wave functions numerically, thus minimizing any errors associated with the wave functions in the calculation of the dipole moment matrix elements. The principal uncertainties at present arise from inaccuracies in the electric dipole moment function (EDMF). (3) Our representation of the dipole moment function, a Pad& approximant, is chosen so as to reproduce the most accurate experimentally determined value and slope around the equilibrium internuclear separation, to have the correct separated atom limit and slope, and is constrained to agree with the ab initio results in the intermediate region near 3.4 A. Refinements in this function may, of course, still be needed and can be made when accurate intensity data on the line or band intensities of the higher overtones (5-0,6-O, etc.) become available. The improvement (I) leads to more accurate intensities for the low v and small AV transitions, while the other two refinements lead to more realistic intensities for high v and large Av transitions. II. NUMERICAL
WAVE
FUNCTIONS
The vibration-rotational wave functions utilized in the present calculations were obtained via a direct integration of the radial Schrijdinger equation using the procedure described in Ref. (13). The appropriate classical turning points of the vibrational potential were calculated for each isotope using the RKR method (14). Vibrational energy term values needed for the latter calculations were obtained through the reduced Dunham coefficients reported by Dale et al. (II). The range of integration (0.45-3.0 A) of the wave equation was chosen to extend well beyond the limit of classical oscillation of the highest level considered, and the dissociation energy of the rotationless potential (zero-point vibration included) was set at 90 544.1 cm-’ (IS). Since our knowledge of the high-order Dunham constants is limited, there is some uncertainty in the magnitude of the effective potential and therefore in the wave-
INTENSITIES FOR CO ISOTOPES
433
functions for states having the largest VJ products. We have not made specinc numerical tests, but the dipole moment matrix elements and the curves fitted to these could be somewhat in error for these transitions. Fortunately, for most applications, these high uJ product matrix elements are not needed with an accuracy comparable to the lower VJ product results. III. DIPOLE MOMENT FUNCTION Previous work on the EDMF of CO, both ab initio and ex~~mental has been summa~zed recently by Werner (9), and earlier by Tipping (15). Using this information plus new experimental intensities for the fundamen~ band lines (IQ), we have obtained a “semiempirical” representation of the dipole moment function in the form of a Pad6 approximant (17). The near equilibrium region of the EDMF, out to an internuclear separation of approximately I .45 A, was well dete~in~ from laboratory measurements of vibrational band intensities for the fundamen~~ and first three ove~ones. The form of our EDMF is chosen so as to have an Rp4 asymptotic dependence which is appropriate for the ground electronic state dissociation of CO. The magnitude of the EDMF in the intermediate range was constrained to match the ab initio results near 3.4 J%(9, 18). Except for the improved 1-O band intensity, the vibrationat band intensities used in the present calculation differ only slightly from those used previously to determine the EDMF (9, 16, 17). The experimentally determined rotationless dipole moment matrix elements used in determining the coefficients in the Padi approximant were obtained from the following sources. Based on the recent results of Varanasi and Sara@ (19) and Varghese and Hanson (IO), we have increased the rotationless matrix element for the fundamental band by 2.75% (intensives by approximately 7.5%) over previous results. Many measurements on the 2-O band have recently been discussed by Chandraiah and Herbert (20), and most of the recent results are in substantial agreement; consequently, we have adopted the value of 2.10 cm-’ agt-’ for the total intensity of this band. Data for the 3-O and 4-O vibrations bands were taken from Refs. (21) and (X?), and the ground state result from Ref. (23). These input data are summarized in Table I and are reproduced by our EDMF which is expressed by
-0.122706(1
- 28.5291x - 29.5291x2)
M(x) = i 4 1.10102~ + 1.0643~~ C 0.43789~” + 3.55499x6
(1)
where x = (& - R)f& is the reduced disp~a~me~t from the ~uilib~um intern~c~~r separa~on. In Fig, I we compare the Padi EDMF, Eq. (I), with the two most recent (and probably most accurate) ab initio functions. The curves have the same general shape near equilibrium; however, at x = 0, the three curves are displaced from each other. The “‘semiempirical” curve (with the permanent moment equal to -0.1227 D) is approximately 0.07 D below the Cooper and Langhoff value (I@, and approximately 0. I1 D above that of Werner (9). This shift would result in a different distribution of intensities within vibrational bands, i.e., different He~an-Wa~lis factors (N), Because the vibrational matrix elements are dependent primarily on the shape of the EDMF around the equilibrium separation, we note that the Werner EDMF yields a
434
CHAC~RIAN
AND TIPPING
TABLE I Rotationless Matrix Elements M!(O) in Debye Used in the Determination of the EDMF
M;(O)
”
0
-0.10982 a
1
0.1084
2
-6.6
4.29 x 10-4
3 4
a.
x 1O-3
-2.016
x 1O-s
The quantity determined experimentally
= -0.10980 differ from that listed by small J-dependent contributions of order (Be/me) z . The sign of the dipole moment function ts, by convention, chosen such that a negative permanent moment (-0.122706 Debye) corres ends to the the polarity is CP-0 . polarity of C-O+; for large separation,
fundamental matrix element of 0.1077 D, which is close to the experimental resdt listed in Table I. (Werner actually reported the value ofO.1070 for this matrix element, but we recalculated it using our accurate numerical wavefunctions and a Pad& representation of his ab initio data.) Similar results obtain for the higher overtone bands. Spot-checks of selected matrix elements showed that the Werner function is superior to that of Cooper and Langhoff in the near equilibrium region, and yields results which compare more favorably with experimental values (low ~1and J). Typical results are displayed in Table II where it can be seen that the overall agreement is very good.
= z 6 =
1.8r 1.6 1.41.2l.O.8 .6.4.2 o-, 2-. 4-. 6-. 8-1.0 -
IjrG. 1. Dipole moment function in Debye vs the reduced separation from equilibrium X: -, “semiempirical” Pade approximant; 0, ab initio results by Cooper and Langhoff (18); Q ab initio results by Werner (9). The range of classical oscillation in several vibrational states is indicated by the solid horizontal lines.
435
INTENSITIES FOR CO ISOTOPES TABLE II Comparison of EDMF Transition Matrix Elements (uJ(M~u’J’) (in Debye)
I
Semi-empiricala
”
J
Y'
J'
Experimental
0
0
2
0
-6.43(-3)c
-6.60(-3)
1
0
3
0
-1.268(-2)=
-1.156(-2)
2
0
4
0
-1.489(-Z)=
-l&53(-2)
3
0
5
0
-2.314(-2)=
-2.158(-Z)
4
0
6
0
-2.656(-2)d
-2.671(-Z)
4
10
5
9
4
12
5
5
9
5
ab initio b
0.23ak.003@
0.241
11
0.238’0.003
0.241
6
a
0.261'0.003
0.264
11
6
10
0.259'0.002
0.264
5
13
6
12
0.259'0.002
0.264
6
9
7
8
0.277'0.002
0.285
6
10
7
9
0.275'0.002
0.285
6
13
7
12
0.277'0.002
0.285
7
a
a
0.295'0.002
0.304
7
9
a
8
0.304'0.002
0.304
7
12
a
11
0.294~0.003
0.304
8
11
9
10
0.313'0.003
0.322
0.316
9
12
10
11
0.326'0.004
0.339
0.332
10
10
11
9
0.344'0.005
0.354
0.347
-
0.239
0.260
0.280
0.299
a This work. b Werner (9). ' Roux et al. (25). d Roux et al. (26). Roux et al. used the results of previous intensity measurements for several l.ines in the 2-O band (Ref. 28) in order to determine the optical path in their experiments. Consequently, the values obtained do not constitute a completely independent absolute intensity determination. However, the band intensity from Ref. (28) leads to a rotationless matrix element -6.53(-2), in good agreement with both the value cited by Roux et al. and the value used in the present work. ' Weisbach et al. (27)
The differences between the dipole moment functions become apparent for higher v and especially at high J. For example, the largest discrepancies occur for AII = 1, v = 20, m = -150,23%, Au = 2, v = 10, m = +75,6%: Au = 3, v = 20, m = -150, 34%; and AU = 4, Y = 10, m = -75, 470%. A close comparison of the present results with previous calculations for the same laser transitions (13, 17) reveals that the present agreement is slightly less good, the
436
CHACKERIAN AND TIPPING TABLE III Rotationless Matrix Elements [M(n)1in Debye Determined from the Least-Squares Fitting I Matrix Element
(2,6)
(2,7)
Isotopea (2,8)
(396)
(338)
1 1.0982 I 1 1.0840 I I 6-6000
1.1000
1.1015
1.1012
1.1046
1.0771
1.0708
1.0719
1.0582
6.5145
6.4378
6.4503
6.2845
4.2050
4.1290
4.1411
3.9788
1.9607
1.9081
1.9176
1.8087
i I
M(0) x lo1 M(1) x lo1 M(2) x lo3
1 4.2900 I I 2.0163
M(3) x lo4 M(4) x lo5
a.
The isotope 12C160 is denoted (2,6), etc.
“semiempirical” results being consistently higher than the Weisbach and Chackerian data (27). This difference is reasonable if in the laser experiments the absorption was measured not quite at the peak of the absorption due to a pressure shift of the lines. A shift of approximately 2.5 X lop3 cm-’ would explain the largest difference and is quite reasonable given the differences in conditions between the laser (T N 100 K, and p N 4 Torr) and the shocked gas (T N 3500 K, and 60 < p < 760 Torr).
TABLE IV Vibrational Anharmonicity Coefficients #“’ for the (2, 6) Isotope
i 0
I I I
hi(')
I / o.loooo(+l)
hi(')
hi(2)
hi(3)
hi(4)
0.10000(+1)
0.10000(+1)
0.10000(+1)
0.10001(+1)
-0.14243(-2)
0.23035(-l)
0.62314(-l)
0.20067(O)
2
I 1 0.54506(-l)
-0.18776(-3)
0.15977(-4)
0.11950(-2)
0.14361(-l)
3
1 0.13275(-3)
0.25099(-5)
-0.15246(-4)
-0.93001(-4)
-0.74698(-3)
4
1 0.10692(-4)
-0.70693(-6)
0.27701(-5)
0.17975(-4)
0.21841(-3)
5
I-0.12119(-5)
0.71219(-7)
-0.30533(-6)
-0.21963(-5)
-0.27312(-4)
6
1 0.57580(-7)
-0.43129(-8)
0.20163(-7)
0.14812(-6)
0.18868(-5)
7
/-0.16334(-B)
0.14553(-9)
-0.75946(-9)
-0.56409(-8)
-0.73808(-7)
8
I 0.19064(-10)
-0.25841(-11)
0.15284(-10)
0.11365(-9)
0.15177(-R)
9
j-0.54474(-13)
0.18832(-13)
-0.12803(-12)
-0.93824(-12)
-0.12737(-10)
1
l-0.46983(0)
437
INTENSITIES FOR CO ISOTOPES TABLE V Vibrational Anharmonicity Coefficients hj”’ for the (2, 7) Isotope
I I
i
hi(')
hi(4)
hi(3)
hi(*)
hi(')
-+ 0
/ 0.10000(+1)
0.10000(+1)
0.10000(+1)
0.99996(O)
0.99975(O)
1
I-0.46286(0)
-0.14102(-2)
0.22866(-l)
0.62552(-l)
0.20690(O)
2
-0.1?667(-3) -0.74465(-4)
0.27445(-3)
0.40039(-Z)
0.11834(-4)
0.20286(-3)
0.30052(-2)
5
i 0.52714(-l) I 1 0.21312(-3) I l-0.47749(-5) I 1 0.27227(-6)
6
j-0.22355(-7) -0.36022(8)
7
I 0.81739(-g) 0.13948(-g) -0.83374(-10) 0.42284(-8) 0.84978(-7) I /-0.20151(-10)-0.28672(-11) 0.35515(-11) -0.69029(-10) -0.15376(-8) I 1 0.20112(-12) 0.24431(-13) -O-43311(-13) 0.47122(-12) 0.11705(-10)
3 4
8 9
I
0.73471(-6)
-0.44615(-6) -0.14572(-5) -0.32318(-4) -0.47609(-3) 0.51651(-7)
0.79703(-7)
0.27388(-S)
0.45099(-4)
-0.88514(-g) -0.14009(-6) -0.255X+5)
I
TABLE VI Vibrational Anhamonicity
I
hi(')
Coefficients h’i”’for the (2, 8) Isotope
hi(')
hi(*)
hit3)
hi(l)
--
0
0.99999(0)
-0.45678(O) -0.13919(-2)
0.22540(-l)
0.61063(-l)
0.19713(O)
2
0.51261(-l) -0.16629(-3) -0.30640(-4)
0.92332(-3)
0.123551(-l)
3
0.24507(-3) -0,27044(-S)
0.13283(-4)
O-15885(-3)
1
4 5 6 7 8 9
0.39918(-5)
-0.12489(-4) 0.35548(-6) -0.10918(-5) -0.56673(-5) -0.15840(-4) 0.11105(-5) -0.449?1(-7)
0.13037(-6)
0.68833(-6)
0.364886-5)
-0.71960(-7) 0.298671-S) -0.85300(-8) -0..51474(-7)-0.37673(-6) 0.24323(-8) -0.11527(-9)
0.32996(-Y)
0.21800(-S)
0.18627(-7)
-O-45975(-10)0.23420(-11)-0.68232(-11)-0.47947(-10)-0.45409(-9) 0.35199(-12)-0.19336(-13) 0*57700(-13) 0.42881(-12) 0.43729(-11)
438
C~AC~RIAN
AND TIPPING
TABLE VII Vibrational Anharmonicity Coefficients f$’ for the (3, 6) Isotope
I
i 0
hi(')
0.99999(
1
0)
-0.45772(O)
hi(l)
0.10000(1)
0.99999(O)
0.99999(0)
-o.i3884(-2)
0.22797(-l)
&61168(-l)
0.19194(O)
2
0.51437(-l)
-0.17167(-3)
-0.20382(-3)
0.11066(-2)
0*15313(-l)
3
0.26618(-3)
-0.12586(-5)
0.56798(-4)
-0.78050(-4)
-0.57055(-3)
4
-0.16914(-4)
0.97746(-7)
-0.93750(-5)
0.14013(-4)
0.91292(-4)
0.16807(-5)
-0.17236(-7)
0.87786(-6)
-0.16065(-5)
-0.68736(-5)
-0.11672(-6)
0.12038(-8)
-0.48949(-7)
-0.10324(-6)
0.30767(-6)
0.16259(-8)
-0.38265(-a)
-0.86879(-a)
i
5
6
0.44909(-a)
7
0.10749(-11)
-0.29579(-10)
0.76429(-10)
o.a5774(-12) -0.94714(-14)
0.22651(-12)
-0.63367(-12)
-0.96490(-10)
a
I-
9
-0.49605(-10)
0.13909(-V)
-0.94381(-12)
TABLE VIII Vibrational Anharmonicity Coefficients hy’ for the (3, 8) Isotope I i
I
0
I 0.10000(+1) I i-0.44493(0)
+I
hi(')
hi(')
hi(')
hi(3)
hi(4)
0.10000(+1)
o.loooo(+l)
o.loooo(+l)
0.10000(+1)
-0.13484(-2)
0.21991(-l)
0.59862(-l)
0.19458(o)
-0.16159(-3)
0.18583(-4)
0.80624(-3)
0.11186(-1)
-0.12143(-5)
-0.14565(-4)
0.31917(-4)
0.32712(-3)
i-0.21431(-5)
0.46391(-7)
0.23838(-S)
-0.73507(-S)
-0.31847(-4)
/ 0.29273(-7)
-0.73182(-8)
i 0.487311-l) 1 3 1 0.17916(-3)
2
I 4 5
I
-0.23251(d)
0.69180(-6)
0.32446(-S)
0.13721(-7)
-0.40783(-7)
-0.21015(-6)
-0.14316(-10) -0.46797(-9)
0.14258(-8)
0.75980(-a)
I 6
l-0.60645(-8)
0.39704(-9)
7
I 1 0.20413(-V) I
8
(-0.64229(-H)
9
/ 0.70587(-13) -0.21594(-14) -0.670096-13) I
0.27748(-12)
0.86318(-N)
-0.26945(-10) -0.14848(-V) 0.21461(-12)
0.12319(-11)
439
INTENSITIES FOR CO ISOTOPES Fo (C&m)
a
.
L -
I - 120
160
.
..I
-80
I
I
40
-40
.
*
1.. 80
I 120
I 160
In
F, (O,m)
b
.
- 160
.
.
*
l
-120
,....*
’ .
-80
-40
40
80
120
160
In
FIG. 2. Herman-Wallis factors for the ‘%?O band; (d) the 3-O band; (ef the 4-O band. IV. POLYNOMIAL
FITTING
isotope: (a) the O-O band; (b) the 1-O band; (c) the 2-O
OF THE EDMF MATRIX
ELEMENTS
Individual ~b~tion-rotations line intensities and Einstein A coefficients depend on the square of the dipole moment matrix elements (vJ~M~v’J’)~. These have been computed for five CO isotopes for A@= n = 0 to 4, u = 0 to 27, i~cIuding both R-
c
F, (o,ml r
_ 3.0
* 2.0
. t l
L
-IW
1 -120
I -80
-46
m
I
I
I
I
40
80
I20
160
aad P-branch transitions for every tenth J fromJ = 0 to 150, using the Pad6 dipole moment function, Eq. (l), and the numerical wavefunctions. Because of the large number of transitions involved, we have fitted the results to expressions of the form
INTENSITIES
441
FOR CO ISOTOPES F4 (On) 70
E
60
_ so
_
40
_
30
_
20
.
. . . .
-
.
to . .
1.__1__ -160
-120
1...1...1 -60
. -40
*
.
l
*
I
I 80
40
120
I 160
m
FIG. %-Continued
(2) where yytis the running index m=
J’(J’+
1)-J&F+ 2
1)
(3)
which is equal to J + 1 for the R lines, and -J for the P lines. The coefficients, M(n) = (001MlnO), are the rotationless matrix elements, and are listed in Table III for the five isotopes for n = 0 through 4. The functions I_ln(u)model the vibrational anha~onicity and have been fitted by the least-squares routine for n = 0 through 27 to polynomials in the vibrational quantum number 21,that is, u!n!(vO/Mlv + no)’
Hn(2)) =(v +
n)!(00p4~n0)2=
9
,shi * (“)u;
(4)
The resulting coefficients /zy’ are displayed in Tables IV through VIII for the individual isotopes. The functions F,(v, m) in Eq. (2) are the Herman-Wallis factors (24) which describe the influence of vibration-rotation interaction:
(5)
442
CHACKERIAN
AND TIPPING
TABLE IX g$’ Coefficients for the (2, 6) Isotope II i
I I I 0 I 11 2 3 4 5 6
I I I I
I I I I
0 i 11 2 3 4 5 6
I I
I
I I
I
0
1 2 3 4 5 6
0
2
1
3
n=o 0.10000(+1) 0.74142(-10) 0.19076(-3) -O.62487(-13) -O.50862(-6) 0.15218(-16) -0.31359(-11)
-0.85296(-4) -0.17706(-g) -o.11880(-2) 0.14942(-12) 0.11024(-5) -O.36384(-16) 0.68065(-11)
0.17547(-4) 0.36530(-10) 0.30179(-3) -O.30826(-13) -O.22060(-6) 0.75047(-17) -O.13630(-11)
-0.93551(-6) -0.19428(-11) -O.18488(-4) 0.16387(-14) 0.11468(-7) -O.39882(-18) 0.70895(-13)
n=l 0.00000
0.10000(+1) 0.19027(-3) 0.70112(-5) -0.21784i-7j -0.82485(-U) -O.20811(-12) -0.83958(-16)
0.00000 -o.50303(-4) -0.203871-6) -0.73577(-9) -O.19716(-11) 0.15967(-14) -O.llSOl(-16)
0.00000 X1.32773(-6) -O.11501(-8) -o.l6314i-li) 0.76882(-15) -o.90972(-15) -O.18261(-17)
-0.66337(-E) -0.130061-9) -o.41434i-lj) -O.53066(-14) 0.35135(-16) -O.44716(-19)
0.10000(+1) 0.51206(-2) 0.34079(-4) 0.78730(-7) 0.33385(-g) 0.41807(-12) 0.30415(-14)
-O.38840(-9) -0.96144(-4) -0.57521(-6) -O.29083(-8) -0.95081(-11) -O.10206(-12) 0.73446(-17)
-O.44289(-7) 0.74737(-6) 0.48188(-E) -o.19733(-10) -0.38067(-12) 0.14492(-13) -O.52711(-17)
0.27195(-E) -O.22463(-7) 0.10095(-9) 0.20817(-11) 0.52529(-13) -O.80869(-15) 0.62062(-18)
0.13601(d) 0.86455(-5) 0.76300(-7) 0.42931(-9) 0.95005(-11) 0.83713(-13) -O.lOElE(-14)
-O.73815(-7) X1.14773(-6) -O-95783(-9) -O.29918(-11) -0.45293(-12) -O.32300(-14) 0.64953(-16)
0.12571(-3) 0.21194(-3) 0.49020(-5) 0.34575(-7) 0.50314(-9) 0.55033(-11) -O.30643(-13)
-O.73961(-5) -O.71176(-5) -O.16630(-6) -O.96046(-9) -O.23960(-10) -o.29450(-12) 0.19834(-14)
I
I
I 0 I 11 2 3 4 5 6
I
I I
I I I
IF3 0.10000(+1) 0.11589(-l) 0.98870(-4) 0.48206(-6) 0.23087(-E) 0.83974(-11) 0.30409(-13)
I
I 0 I 11 2 3 4 5 6
I I
I
I
I
-0.41605(-5) -O.33468(-3) -O.31427(-5) -0.20650(-7) -0.12675(-9) -O.86709(-12) 0.28055(-14) r?=4
0.10005(+1) 0.34656(-l) 0.49106(-3) 0.38383(-5) 0.22503(-7) 0.12735(-9) 0.38542(-12)
These were first fitted, holding
-O.60052(-3) -o.30927(-2) -0.61845(-4) -0.50062(-6) -0.42106(-E) -O.35809(-10) 0.96195(-13)
u and n constant, F,(v, m) =
to a polynomial
5 fj”‘(v)m’
in m
(6)
i=O
for various trial values of N. Because of the widely varying shapes of the HermanWallis factors (see Fig. 2), it was found that to fit all the lines (m = -150 to 150, v = 0 - 27, and n = 0 - 4) within their estimated uncertainties, one needed N = 11. The successive fi are typically smaller by two to three orders of magnitude, but for fixed i are not always smoothly varying functions of v (especially for the higher i). Because of this variation in v, it was not possible to fit all of the data to
INTENSITIES
FOR
443
CO ISOTOPES
TABLE X g$’ Coefficients for the (2, 7) Isotope jl i
0 I I I
1" I 2 I 3 I 4 I :
i
I I
I 0 I 11 2 I 3 I 4 I 6'
i I !
0 1
i
:
/
4 5 6
I I I
I
1
3
2 WO
0.10000(+1) -0.93475(-10) 0.81343(-4) 0.30791(-13) -0.32117(-6) -0.23985(-X) -0.13267(-11)
-0.64634(-4) 0.17343(-91 -0.93338(-3) -0.17662(-12) 0.69?87(-6) 0.470151-16) 0.41963(-11)
0,130%2(-Q) -0.36683(-10) 0.2514?(-3) 0.361121-13) -0.13706(-6) -0.96174(-17) -0.82519(-12)
-0.6%530(-6) 0.19623(-11) -0.15851(-4) -0.19317(-14) 0.63%7%(-8~ 0.51445(-1%) 0.42119(-13)
-0.69930(-7) -0.31410(-6) -0.18362(-9) -0.16529(-11) -0.28366(-12) -0.857%6(-15) 0.25546(-16)
0.58275(-8) -0.62753(-8) -0.18766(-9) -0.13782(-12) 0.17794(-13) 0.682836-16) -0.23272(-l?)
0.31469(-6) 0.69890(-61 0.53153(-9) 0.16971(-10) 0.11583(-11) 0.27803(-14) -0.53307(-16)
-O-26030(-7) -0.20627(-7) 0.33132(-3) 0.43220(-13) -0.79621(-13) -0.19254(-15) 0.65313(-17)
0.33800(-5) 0.83473(-5) 0.49315(-7) 0.23934(-9) O-74037(-11) 0.30716(-13) -0.18903(-15)
-0.2303%(-6) -0.14311(-6) 0.79693(-3) 0.13398(-10) -0.41235(-12) -0.57253(-14) 0.14384(-16)
-0.50077(-4) 0.18X3(-3) 0.51674(-S) 0.45043(-7) 0.31948(-10) 0.33717(-13) O-31864(-13)
0.225%4(-5) -0.58841(-5) -0.1%296(-6) -0.15632(-8) -0.10761(-11) 0.78173(-14) -0.16120(-14)
I?=1 0.10000(+1) O.l%%SO(-3) 0.68388(-5) -0.20357(-7) -0.84431(-U) -0.19393(-12) -0.37078(-l?)
0.20396(-6) -0.49033(-4) -0.19335(-6) -0.68%85(-9) -0.37803(-12) -0.15267(-14) -0.891%5(-16)
-7 o.loooo(+l) 0.50573(-2) 0.33204(-4) 0.75687(-7) 0.32604(-9) 0.43409(-12) 0.17004(-14)
----I-
-0.12677(-5) -0.93587(-4) -0.53%26(d) -0.23172(-8) -0.13614(-10) -0.48008(-13) 0.15937(-15) n=3
10f 2 3 4
I
6
I
I i 5 I
0.11448(-l) 0.964651-4) 0.46583(-6) 0.21506(-8) O-730%4(-11) 0.36058(-13)
-0.11247(-4) -O.32576(-3) -0.23442(-5) -0.19543(-7) -0.10689(-9) -0.66735(-12) -0.11217(-141
0.39940(O) 0.34190(-l) 0.4%414(-3) 0.3%007(-5) 0.19168(-7) 0.86731(-10) O-70938(-12)
0.31666(-3) -0.29324(-Z) -0.62444(-4) -0.54493(-6) -0.20417(-8) -0.70307(-11) -0.21085(-12)
0.99939(O)
t-I=4
I I
Y
/
: 4 5 6
I I I I
simple ~lynomi~s in v to within the ~#~t~~l unce~nties. However, for a restrictive data set approbate to most iabomtorato~ measurements (m = -50 - 50.0 = 0 - IO, n = 0 - 4) one could represent the fi”’ by
fin)(v) = i g$bj. j=o Combining Eqs. (6) and (7), one can represent the Herman-Wallis transitions by 6
3
t=O
j=O
(7) factors for these
444
COACHMAN
AND TIPPING
TABLE XI g”iI Coefficients for the (2, 8) Isotope jj
0
1
2
3
it 0 1 : 4 5 6
I I 1
I
I
-0.118?.9(-14)
I i
-0.22-/79(-6) 0.57898(-18) -0.13729(-11)
I I I I
f
i
2 3
I
z 6
I’
0
I
I
f
I
0.10000(+li 0.18689(-3) 0.66819(-5) -0.20230(-7) -0.76315(-11) -0.18337(-12) -0.41659(-16)
0.14319(-4) -0.13418(-121 0.21991(-3) 0.30288(-151 -O.Q1452(-7) 0.11404(-39) -0.57030(-12)
-0.73660(-63 0.27803(-13) -0*14219(-a> -0.37522(-S> 0.447781-81 0.44177(-20) 0.283161-13)
0.00000
0.00000
-0.47900(-41 -0.18950(-61 -0.65078(-P) -0.16642(-11) -0.36069(-14) -0.22011(-16)
0.00000
-0.30265(-6) -0.10243(-E!) -0.36981(-H.) -0.20929(-13) -0.74856(-161 0.19297(-17)
-0.60350(-8) -0.11456(-Q) O-36422(-13) -0.33431(-14) O-64831(-17) -0.21338(-18)
0.24X6(-6) 0.6%l53(-61 0.3%534(-8) -0.14301(-10) 0.46987(-12) 0.11753(-U) -0.45905(-N)
-0.17288(-7) -0.20541(-71 O.l2401(-91 0.22623{-11) -0.18483(-13) -0.84092(-15) 0.33397(-17)
0.77972(-6) 0.798831-5) 0.?9800(-7) 0.496321-91 0.35820(-11) 0.36079(-13) -0.19945(-15)
-O-42347(-7) -0.13338(-61 -o.lss51(-8) -0.664?6(-111 -0,12220(-12) -0.14585(-14) 0.13958(-16)
-0.29719(-4) 0.18742(-3) 0.51470(d) 0.47208(-7) 0.18379(-Q) -0.80936(-13) 0.13969(-13)
0.14029(-5) -0,59258(d) -0.18662(-6) -0.17449(-8) -0.61312(-U) 0.17142(-13) -0.60233(-15)
_-II 0*10000(~1~
0.5050?(-2) 0.32464(-4) 0.73009(-7) 0.30910(-93 0.45482(-12) 0.18159(-14)
i 0 1 11 2 I 3 I 4 I 5 I 6 I
-0.?1946(-4) -0.1448?(-11) -0.78154(-3) 0.69495(-15) 0.48345(-6) -0.56475(-18) 0.29753(-U) It=1
/
11 2 I 3 1 4 I rz
WO 0.10000(+1) 0.20333(-U) 0.131441-4)
-O_lf395(-51 -0.91549(-4) -0.53318(-61 -0.26791(-E) -0.10957(-10) -0.78040(-13) 0.13830(-15) n=3
0.99999(O) 0.11324(-13 0.94386(-4) 0.45154(-6) 0.2ocso(-8) 0.66741(-111 0.31380(-13)
i I
-O.31220(-5) -0.31879(-3) -0.29721(-51 -0.19684(-7) -0.92226(-10) -0.47558(-121 -&67318(-15)
n=4
1
::
i
s
I
"5 6
I I
0.99960(O) 0.33923(-l) 0.47512(-3) 0.37118(-5) 0.19142(-7) 0.80313(-LO) 0.55847(-12)
0.19457(-3) -0.29079(-2) -0.61365(-4) -0.54417(-6) -0.24546(d) -0.60282(-U) -0.12023(-12)
and the resulting coefficients g$’ are presented in Tables IX through XIII for the five isotopes. As a result, one can easily reconstruct the squares of the dipole moment matrix elements for the quantum transitions of laboratory interest from Eq. (2) and the data in Tables IV through XIII. For readers interested in the more extensive Herman-Wallis fitting parameters for higher m and TV,we would be glad to provide these on request. For the most abundant isotope (2, 6), we have also calculated the squares of the dipole moment matrix elements for n = 5 and 6, in anticipation of their measurement in the laboratory. We have fitted these results to an expression of the form
INTENSITIES
445
FOR CO ISOTOPES
TABLE XII g$’ Coefficients for the (3, 6) Isotope 1 1
0
2
3
i l-Z=0
I 0 I 1 I 2 3 4 5 6
I
1 I I I I I
0 I II 2 3 4 5 6
I I I I I I I
0.10002(+1) -0.42X4(-11) 0.22439(-4) 0.35078(-14) -0.24461(-6) -0.83461(-18) -0.14876(-11)
o.loooo(t1) 0.18?15(-3) 0.67064(-5) -0.20339(-7) -0.73902(-11) -0.18781(-12) -0.77479(-16)
I I I I
I I I I 0 I
1 2 3 4 5 6
0 II 2 3 4 5 6
I I
I I I
I I I I I
I I I
I I
-0.65660(-5) 0.17074(-12) -0.14437(-4) -0.14691(-15) 0.50738(-8) 0.36116(-19) 0.312991-13)
-0.49068(-6) -0.48069(-4) -0.18880(-6) -0.67442(-g) -0,23291(-11) O-24804(-14) 0.55058(-16)
0.15268(-6) -0.30956(-6) -0.16120(-E) 0.25921(-11) 0.18270(-12) -0.21397(-14) -0,22671(-H)
-0.11655(-7) -0.56640(-S) -0.71160(-10) -0.48054(-12) -0.19002(-13) 0.17465(-15) 0.16896(-17)
-0.39219(-6) 0.62305(-6) 0.46973(-8) 0.70560(-10) 0.13494(-113 -0.11954(-13) -0.15877(-15)
0.29332(-7) -0.15719(-7) 0.11486(-9) -0.36948(-11) -0.91088(-13) 0.83345(-15) 0.13086(-16)
0.39196(d) 0.80472(-5) 0.65343(-7) 0.64729(-g) 0.82926(-U) 1).71978(-14) -0.81794(-15)
-0.27428(-6) -0.12985(-6) -0.31123(-9) -0.18837(-10) -0.45796(-12) 0.22949(-14) 0.58036(-16)
-0.355481-7) 0.18692(-3) 0.49914(-5) 0.42154(-7) 0.19898(-9) 0.11662(-U) 0.96287(-14) ~
-0.44891(-6) -0.58658(-S) -O.17708(-6) -%14382(-S) -0.68582(-11) -0.56876(-13) -0.36768(-15)
e7
0.10000(+1)
i
0.11535(-3) -0.28557(-11) 0.22418(-3) 0.24341(-14) -0.10180(-6) -0.59447(-18) -0.62455(-121
n=l
o-i ~~~
1 2 3 4 5 6
-0.52312(-3) 0.12033(-10) -0.80321(-3) -O.10120(-13) 0,52943(A) 0.24482(-17) 0.32309(-11)
0.32593(-41 0.73604(-7) 0.31228&9) 0.4089?(-121 0.17903(-14)
0.12090(-S) -0.91628(-4) -0.54225(-6) ~.30~24(-8) -0.13573(-10) 0.512986-14) 0.43201(-15)
0.10000(+1) 0.11345(-l) O-94703(-4) 0.45408(-6) 0.20929(-B) 0.67469(-11) 0.30185(-13)
-0.13897(-4) -0.32040(-3) -0.29385(-5) -0.20236(-7) -0.11021(-9) -0.37006(-12) 0.15510(-14)
0.99976(O) 0.33973(-l) 0.4?548(-3) 0.36992(-S) 0.19395(-7) 0.87975(-10) 0.52976(-12)
0.58324(-4) -0.29123(-2) -0.60718(-4) -0.52140(-6) -0.25562(-S) -0.12105(-10) -0.96889(-13)
0.50098(-2)
l-l=3
IF4
the results: M&O) = 1.975 X lop6 D, C, = -5.29 X lo-*, and DS = 4.0 X 10S4; J&j(O) = -1.098 X 10m6D, C, = -1.41 X 10e2, and & = -1.4 X 10A5. From the known reduced mass dependence of the matrix elements of x and the analytical form of the leading terms of C,, L),, etc. (16), one can show with
(10) while c n
C n 2.6
=
@2,6/h~,b)~'~
(11)
446
CHACKERIAN
AND TIPPING
TABLE XIII &‘) Coefficients for the (3, 8) Isotope 0 1
L
2
3
rF0 0.10000(+1) 0.12864(-10) -0.83621(-4) -0.91991(-14) -0.15628(-6) O,lY184(-17) -0,87216[-121
-0.18791(-4) -0.30427(-10) -0.55626(-3) 0.22562(-13) 0.32202(-6) -0.48765(-1-t) 0.18042(-111
0.35192(-5) 0.46171(-11) 0.17634(-31 -0.33616(-14) -0.56319(-71 0.7f27W181 -0.31641(-12f
-0.16880(-K) -0.15243(-12) -0.12048(-4) 0.10499(-15) 0,25528f-8) -0,20936(-19) 0.14105(-13)
0.00000 -0.28191(-61 -0.93230(-9) -0.34798(-11) -O.L?OZl(-131 -0.65111(-17) 0.14905(-17)
0.00000 -0,544X(-82 -0,10230f-9) 0.36558(-D) -0.32679(-14) 0*38809(-l?) -0,17334(-x3)
O.OD5OD 0.62017(-6) 0.41342(-8) 0.17623(-10) 0.31077(-12) 0.10682(-14) -0.27815(-16)
[f"O50#0 -0.168221-7) 0.70416(-10) -0.17881(-12) -0.72953(-14) -0.68756(-16) 0.18599(-175
0.84965(d) 0.74825(-51 0.72940(-7) 0.47974(-9) 0.43186(-U) 0.21111<-f3) -0.20341(-15)
-0.92836(-7) -0.12292(-6) -0.12520(-8) -0.70002(-111 -0,19436f-12) -0.90831(-15) 0.14350(-16)
-0.30379(-4f 0*1#041~-31 0,48617{-5) 0.41?71f-?I 0.13928(-Y) 0.27084(-12) 0.16515(-13)
0.159461-5) -0.568281-51 -0.17624f-6f -0.15287(-8) -0.38475(-11) 0.30617(-14) -0.79524(-15)
n=l 0.10000(*11 0.18365(-31 0.63769(-51 -Q.f8833I-?f -0.69220(-U) -0.16092(-12) -0.31024(-16)
0.00000 -U.45669(-41 -0.1X38(-6f -0.58994(-95 -0.14939(-111 -0.36855(-14) -0.19043(-16) n=2
O*~~~~~(~l) 0.48867(-2) 0.309821"4) 0.68264(-7) 0.28152(-g) 0.35434(-12) 0.15442(-14)
0_00000 -O.87264(-41 -0.49940(-6) -0.25602(-B) -0.94096(-U) -0.31727(-13) 0.94607(-161 n=3
0 1
2
0.10000(+1) 0.11074(-l) 0.90157(-4) 0.42100(-6) 0.18839(-85 0.60958{-11) 0.274821~13)
-0.33842(-5) -0.30492(-3) -0.27772(-5) -0.x3136(-7) -Q.85850f-.lot -0.36813(-12) -0.42365(-15)
: 2 3 4 5 6
0.99966(O) 0,33332(-l) 0*4570?(-31 0.34652(-T) 0.17438{-7) 0.78586(-10) 0.51615(-12)
0.18035(-31 -0.28182(-Z> -0.58283f-4t -0.49287(-6) -0.21052(-R) -0.80623(-Al) -0.12537(-X21
2 :
IF4
and
where cl& denotes the reduced mass of the ‘T&O isotope. Computed results are in good agreement with these relations. Finally, as mentioned in the Introduction, when accurate experimental values for A&O), k&O>, etc. become avaiIabIe, and if they differ si~~~cantIy from the predictions above, one can use the experimentaf data to refine the EDMF given in Eq. ( 1).
447
INTENSITIES FOR CO ISOTOPES TABLE XIV Einstein A Values and Frequencies for the Pure Rotational Transitions u = 0, J 12+0 J
Atsec-1)
EC180
13&j (cm-It
kfsec-ll
0 = 0, / - 1
fall-1
f
AtSeC-lt
imr’~
6.223(-8) 5.974(-7) 2.158i-6j 5.297(-6) 1.056(-5)
3.6619388 7.3237444 10.985284 14.646423 18.307030
1.848(-5).
21.966371 25.626114 29.284324 32.941469 36.597415
3.8450323 7.6899177 11.534509 15.378660 19.222224
6.297(-8) 6.0421-7) 2.181[-6j 5.355(-6) 1.068(-5)
3.6759208 7.3517074 11.027226 14.702341 18.376920
23.065053 ~6.907002 30.747922 34‘587668 38.426093
1‘868f”5)
22.050828
2.992(-S) ?.488(-5) 6.408(-5) 8,800(-5)
25.723931 29.396~~ 33.067184 36.737067
2.959(-5) 4.439(-5) 6.3386~5) 8.705(-5)
11 12 13 14 15
42.263049 46.098391 49.931972 53.763645 57.593264
7.171(-4) 1.518(-4) 1.925(-4) 2.396(-d) 2.935(-4)
40.4056~8 44.072674 47.738130 51.401843 55.063679
1.159(-4) 1 .501(-41
2.370(-4j 2.904(-4)
40.252031 43.905182 47.556736 51 .I?06560 54.854521
16 I? I8
61.420682 65.245753 69.068331 72.888269 76.705421
3.544(-4) 4.2271-43 4.986(-4j 5.823(-4) 6.741(-4)
58.723503 62.381183 66.~365~ 69.689573 73.340017
3.507(-4) 4.183(-4) 4.$33(-d) 5.762(-4) 6.670(-4)
58.500486 62.144322 65.785898 69.425039 73.061735
8.766(-4) 9.985(-4) 1.130(-3) 1.270(-Z) 1.419(-31
80.519642 84.330784 88.338703 91.943253 95.744287
7.7391-4) 8.821(-4j 9.986(-4) 3.123(-33 1.256(-3)
76.987781 80.632732 84.274737 87.913662 91.549375
7*658(-4) 8.728(-4) 9.031(-4) l.llZ(-3) 1.243(-3)
76.695731 80.326936 83.955217 87.580442 91.202479
! .576(-3) I. 745(-3) 1.921(-3) 2.105(-3) 2.298(-3)
99.541660 103.33523 107.12484 110.91036 114.69163
98.810631 102.43591 1.8681-31 106.05744 2.040(-3j 109.67509
1.3831-3) I .530(-3) 1.686(-3) 1.849[-3)
2.023(-3)
94,821195 9~..436460 102,04814 105.65610 109*26022
2.4971-S) 2.704’(-3) 2.918(-3)
118.46852 122.24088 126.00855 129.77!41 133.52930
Z.?.l$(-3) 2.405(-3) 2.597(-3) 2.796(-3) 2.999(-3)
113.28874 116.89824 120.50347 124.10429 127.70057
2.197(-3) 2.381(-3) 2.572(-3) 2.768(-3) 2.970(-3)
112.86036 116.45638 120.04816 123.63557 127.21847
137.28208 141.02950 144.77172 148.50830 152.23919
3.207(-3) 3.4&q-33 3.635(-3) 3.854(-3) 4.075(-3)
131.29217 134.87898 138.46085 142.03765 145.60925
3.176(-3) 3.3&q-3) 3.601(-3) 3.818(-3) 4.038(-3)
130.79674 134.37024 137.93884 141.50242 145.06083
2.483(-C) 6.094(-6) 1.215(-5) 6 7 8 9 10
2.1X(-5) 3.403(-5)
:1: 21 22 23 24 25
1.3!37(-3) 95.181742
1.547(-3) 1.703( -3)
V. PURE ROTATIONAL
l.wt-41 -___.
EfNSTEIN A COEFFICIENTS
Pure rotational lines of CO have been observed in ~trophysical sources in the radio, submillimeter, and far-infmred spectral regions. We conclude from a brief survey of the astrophysicaf literature that rigid rotor transition probabilities have been used to compute the Einstein A values; however, vibration-rotation interaction becomes increasingly significant as J increases. It is. therefore, important for far-infrared lines (J > 15) as well as for the computation of non-LTE steady state population dist~butions (J -z 50) (29) to evakate the EDMF matrix elements accurately.
448
CHAC~~AN
AND TIPPING
TABLE XIV-Continued 12,$60 J
A(sec-1)
13c16~
12c180
w (cm-l)
A( sec’l)
w (n-1)
A(sec-1)
w (cm-l)
42
41
4.787(-3) 5.029(-3)
155.96425 159.68333
4.428(-3) 4.521(-3)
149.17552 152.73633
4.X9(-3) 4.480(-3)
148.61395 152.16166
i: 45
5.270(-3) 5.508(-3) 5.744(-3)
163.39630 167.10300 170.80330
4.966(-3) 4.774(-3) 5.186(-3)
159.84104 156.29155 163.38468
4.922(-3) 4.701(-3) 5.141(-3)
155.70381 159.24028 162.77094
if:
6.201(-3) 5.975(-3)
174.49705 178.18411
166.92233 170.45387
6.421(-3) 6.633(-3) 6.837(-3)
181.86434 185.53759 189.20372
173.97916 177.49807 181.01047
5.357(-3) 5.570(-3) 5.778(-3) 5.981(-3) 5.197(-3)
169.81432 166.29566
48 49 50
5.403(-3) 5.617(-3) 5.826(-3) 6.030(-3) 6.226(-3)
i:
7.213(-3) 7.031(-3)
196.51407 192.86260
6.596(-3) 6.416(-3)
188.01524 184.51624
6.366(-3) 6.546(-3)
187.31199 183.82563
7.542(-3) 7.384(-3) 7.685(-3)
203.79424 200.15800 207.42265
6.767(-3) 6.928(-3) 7.076(-3)
194.99242 191.50734 198.47034
6.717(-3) 6.877(-3) 7.026(-3)
190.79151 194.26405 197.72949
:: 55
173.32677 176.83289 180.33255
The Einstein A values are defined according to
A(sc’)
= = 3.136139 x lo-'
(13)
where w is the transition frequency in cm-‘, and the matrix elements are in Debye. Results for u = 0 along with the corresponding frequencies are tabulated in Table XIV for (2, 6) (3, 6), and (2, 8) isotopes; results for the (2, 7) and (3, 8) isotopes have been calculated but are not reported in view of their low natural abundances. Again, to parameterize the data in a useful format for other types of calculations, we have fitted the (2, 6) results to an expression of the form (see Fig. 2a))
M@rt)* = ~~(0)2(1 + Lt:?n* + K;pn4)
(14)
for u = 0 and 1. The results are: MS(O) = -0.10982 D, @ = -2.11 X 10W4,and &$ = 1.05 X IO-*; Mf(0)= -0.08399 D, Bt = -2.79X 10-4, and iui = 1.86 X lo-‘. Analogous results can be obtained for the other isotopes using the reduced mass scaling of these parameters (M:(O) + 0.122706Lb = (P ,P b)1,2 236 a, (M:(O) + 0.1 22706)2,6 D:ab d 0::
2,6
=
(~2,6ha,b)
(15) (16)
and (17)
INTENSITIES
FOR CO ISOTOPES
449
to
a high degree of accuracy. These results are much more accurate and almost as easy to program as the rigid rotor results. ACKNOWLEDGMENTS One of the authors (RHT) would like to acknowledge the support provided by a NASA-ASEE Summer Faculty Fellowship at Stanford University during which this work was begun, and the the National Research Council for their award of a Senior Research Associateship at the Air Force Geophysics Laboratory where this work was completed.
RECEIVED:
November 23, 1982 REFERENCES
1. K. M. MERRILL AND S. T. RIDGEWAY, Ann. Rev. Astron. Astrophys. 17, 9-41 (1979). 2. A. A. PENZIAS, K. B. JEFFERTS,AND R. W. WILSON, Astrophys. J. 165, 229-240 (1971). 3. D. F. CARBON, Ann. Rev. Astron. Astrophys. 17, 5 13-549 (1979). 4. J. W. V. STOREY, D. M. WATSON, C. H. TOWNES, E. E. HALLER, AND W. L. HANSEN, Astrophys. J. 247, 136-143 (1981). 5. R. G. SHORTRIDGEAND M. C. LIN, Chern. Phys. Lett. 35, 146-150 (1975). 6. C. CHACKERIAN, JR., AND M. F. WEISBACH,J. Chem. Phys. 59, 807-81 I (1973). 7. H. G. REICHLE, JR., S. M. BECK, R. F. HAYNES, W. D. HESKETH, J. A. HOLLAND, W. D. HYPES, H. D. ORR, R. T. SHERRILL, H. A. WALLIO, J. C. CASAS, M. S. SAYLOR, AND B. B. GORMSEN, Science 218, 1024-1026 (1982). 8. C. CHACKERIAN, JR., G. GUELACHVILI, AND R. H. TIPPING, J. Quant. Spectrosc. Radiut. Transfer,
in press. 9. H-J. WERNER, Mol. Phys. 44, Ill-123 (1981). 10. P. L. VARGHESEAND R. K. HANSON, J. Radiat. Transfer 24, 479-489 (1980). 11. R. M. DALE, M. HERMAN, J. W. C. JOHNS,A. R. W. MCKELLAR, S. NAGLER, AND I. K. M. STRATHY, Canad. J. Phys. 57, 677-686 (1979). 12. T. R. TODD, C. M. CLAYTON, W. B. TELFAIR, T. K. MCCUBBIN, AND J. PL~VA, J. Mol. Spectrosc. 62,201-227 (1976). 13. C. CHACKERIAN , JR., J. Chem. Phys. 65,4228-4233 (1976). 14. C. CHACKERIAN,JR., AND D. G~R~ITCH, NASA Technical Memo. No. 84266, June 1982. 15. K. P. HUBER AND G. HERZBERG,“Molecular Spectra and Molecular Structure, IV Constants of Dia-
tomic Molecules,” Van Nostrand-Reinhold, New York, 1979. 16. ‘R. H. TIPPING, J. Mol. Spectrosc. 61, 272-281 (1976). 17. S. M. KIRSCHNER,R. J. LE ROY, J. F. OGILVIE, AND R. H. TIPPING, J. Mol. Spectrosc. 65, 306-312 (1977); J. F. OGILVIE, R. W. RODWELL, AND R. H. TIPPING, J. Chem. Phys. 73,5221-5229 (1980). 18. D. M. COPPERAND S. R. LANGHOFF, J. Chem. Phys. 74, 1200-1210 (1981). 19. P. VARANASI AND S. SARANGI, J. Quant. Spectrosc. Radial. Transfer 15, 473-482 (1975). 20. G. CHANDRAIAH AND G. R. HERBERT, Cunad. J. Phys. 59, 1367-1372 (1981). 21. R. A. TOTH, R. H. HUNT, AND E. K. PLYLER, J. Mol. Spectrosc. 32, 85-96 (1969). 22. C. CHACKERIAN,JR., AND F. P. J. VALERO, J. Mol. Spectrosc. 62, 338-345 (1976). 23. J. S. MUENTER, J. Mol. Spectrosc. 55,490-491 (1975); see also W. L. MEERTS, F. H. DELEEUW, AND A. DYMANUS, Chem. Phys. 22, 319-324 (1977). 24. R. HERMAN AND R. F. WALLIS, J. Chem. Phys. 23,637-646 (1955). 25. F. Roux, C. EFFANTIN, AND J. D’INCAN, J. Quant. Spectrosc. Radiat. Transfer 12, 97-106 (1972). 26. F. Roux, D. CERNY, AND J. D’INCAN, J. Quant. Spectrosc. Radiat. Transfer 14, 153-156 (1974). 27. M. F. WEISBACHAND C. CHACKERIAN, JR., J. Chem. Phys. 59.4272-4276 (1973). 28. C. L. KORB, R. H. HUNT, AND E. K. PLYLER, J. Chem. Phys. 48,4252-4260 (1968). 29. C. F. MCKEE, J. W. V. STOREY, D. M. WATSON, AND S. GREEN, Astrophys. J. 259, 647-656 (1982).