Chapter 5.3
Waste management Samantha Moss
5.3.1 Introduction In prehistoric times, waste was mainly composed of ash from fires, wood, bones and vegetable or bodily waste. It was disposed of into the ground, where it would act as a compost and help improve the soil. Waste began to be a problem as the transition came from hunter-gatherer to farmer. The industrial revolution led to a massive population shift from rural areas to the city between 1750 and 1850 in the UK. The growing population living in towns led to an increase in the volume of domestic waste arising, which was matched by the production of industrial waste from new large-scale manufacturing processes. As city populations expanded, space for disposal decreased and societies began to develop waste management systems. Prior to 1972, there were few controls on waste disposal. The power to inspect first appears in the Public Health Act 1848 and the duty to do so in the Sanitary Act 1866. These powers and duties could not prevent the nuisance arising from wastes but at least they should have ensured there were no unknown major toxic waste deposits. In 1875 the Public Health Act charged local authorities with the duty to arrange the removal and disposal of waste and signified the start of significant local authority power. This Act also ruled that householders had to keep their waste in a ‘movable receptacle’ (the early dustbin) which local authorities were required to empty every week. Most waste in the UK had been sent to landfill, a practice that had little impact until concern arose over uncontrolled dumping of toxic waste forced the introduction of the Deposit of Poisonous Waste Act 19721. However, growing concern about the environmental effects of waste in the 1960s led the Government to set up two working groups. The resulting reports paved the way for the Control of Pollution Act 19742 which aimed for much wider control on waste disposal and regulation of sites. Several provisions from the Control of Pollution Act have been transferred to the Environmental Protection Act 19903. Part 2 of this Act 921
922
Safety at Work
introduced a new statutory regime for the control of waste, introducing stricter controls and placing responsibility (the ‘Duty of Care’) on waste producers and persons who may handle waste. More recently, the Environment Act 19954 repealed a number of areas of the 1990 Act and from both these key pieces of legislation, a number of UK regulations have been enacted to address the implementation of good waste management practices.
5.3.2 Waste authorities The Waste Disposal Authorities continue to exist mostly as County Councils in England, District Councils in Wales and Islands or District Councils in Scotland. These bodies do not undertake disposal themselves but will contract this service to private operators or Local Authority Waste Disposal Companies. The Environment Agencies of England and Wales (EA) and the Environment Protection Agency of Scotland (SEPA) were established by the Environment Act 1995 and now have responsibility for waste regulation. Together they manage and monitor the environment through the enforcement of a full range of environmental legislation dealing with sitebased emissions, and increasingly seeking to influence the controls, checks and balances that are evolving with emissions that arise from the use of products. 5.3.2.1 Regulatory waste management responsibilities of the environment agencies The key aspects of legislation from which the agencies with responsibility for environmental protection derive their waste management duties and powers are: 䊉 䊉 䊉 䊉 䊉
Control of Pollution (Amendment) Act 19895 Controlled Waste (Registration of Carriers and Seizure of Vehicles) Regulations 1991 and amendment 19986 Waste Management Licensing Regulations 1994 and amendments in 1995, 1996, 1997, and 19987 Transfrontier Shipment of Waste Regulations 19948 Environment Act 19954.
In addition, the Environment Agency has taken on new responsibilities since it was established in 1996 as a result of the following legislative provisions: 䊉 䊉
The Special Waste Regulations 1996 and amendments in 1996 and 19979 Finance Act 1996 and Landfill Tax Regulations 1996 and amendments in 1996, 1998, 1999 and 200210
Waste management 䊉
923
Producer Responsibility Obligations (Packaging Waste) Regulations 1997 and amendments in 1999 and 200011.
5.3.3 National waste strategies The waste management industry faces a tremendous challenge in the 21st century as it seeks to develop and implement sustainable waste management practices. Waste managers need to ensure that their activities conform to a range of government policies reflecting both EU and UK legislation and national waste strategies including the Government’s vision on sustainability. This vision is based on four broad objectives: 䊉 䊉 䊉 䊉
social progress which recognises the needs of everyone; effective protection of the environment; prudent use of natural resources; and maintenance of high and stable levels of economic growth and employment.
Waste has two main impacts on sustainability: first, the amount of waste produced is a consequence of how efficiently resources to produce goods are used and of the quantity of goods produced and consumed and, second, once waste has been produced, the aim should be to manage the waste to minimise the impact on the environment. The waste strategies for England, Scotland, Wales and Northern Ireland, seek to ensure that waste management plays a major role in the search for increased sustainability. They focus on measures to achieve waste minimisation and re-use and for the management of wastes to be carried out in an environmentally responsible way. Under the Kyoto Protocol, the Government has agreed to legally binding targets to reduce greenhouse gas emissions to 12.5% below 1990 levels over the period 2008 to 2012 and has a domestic aim to reduce CO2 emissions by 20% by 2010. Waste managers need to strive to work within a sustainable waste management framework, with regulatory regimes that prescribe the rules for environmentally responsible operations and practices. To achieve this task it is necessary to look forward and consider the impacts that these products have during their use downstream. 5.3.3.1 Waste strategy for England and Wales 2000 This strategy was published as a requirement of the Environmental Act 1995, and describes the vision for sustainable waste management by preparing a strategy for the recovery and disposal of waste. The strategy clearly identifies landfill as the least desirable option to tackle waste and identified an urgent need to stimulate waste minimisation, recycling and greater resource efficiency to reduce amounts of waste disposed to landfill. One of the key targets in this strategy is that, by 2005, the amount
924
Safety at Work
of commercial and industrial waste sent to landfill is reduced to 85% of the 1998 level. This is to be achieved by focusing on recovering value, reducing environmental impacts and addressing growth in wastes. Based on figures from the National Waste Production Survey12 (commissioned by the Environment Agency in 1998 and covering 20 000 businesses in England and Wales) this translates into a reduction of around 5 million tonnes of waste going to landfill per year. In addition targets have been set that increase the amount of municipal waste that is recycled, aiming to recycle or compost at least 25% of household waste by 2005, 30% by 2010 and 33% by 2015. 5.3.3.2 Waste strategy for Scotland 1999 This strategy, which was published by SEPA in 199913, sets out the system for sustainable waste management through the implementation of several key tools including statutory functions, education, economic instruments and focused waste management research and development.
5.3.4 Defining waste The first key task is to ascertain whether or not the material in question is actually a waste according to the legal definition before any attempt is made to classify it appropriately. This is a complex process that begins with the definition of waste which is given in European Waste Framework Directive14 and with detailed guidance given by the Department of the Environment in Joint Circular 11/9415. The main questions to be considered are outlined in Figure 5.3.1 and should assist in reaching a view on the status of the material. It is the responsibility of the waste producer to decide whether the substance or object in his possession is waste. This decision is not always straightforward and final interpretation may be a matter for the courts.
Figure 5.3.1 Identifying waste
Waste management
925
However, in a case where the holder is in doubt about the status of a substance or object as waste the regulatory authority should be consulted. In order for material to be classified as a certain type of waste, such as a controlled waste, a substance or object should meet the definition of ‘directive waste’ as set out in the Waste Framework Directive and its amendment and reflected in section 22 of the Environment Act 1995 and the Waste Management Licensing Regulations 199416. This definition is based on whether the producer or person in possession of the material in question has discarded it, intends to or is required to discard it. Guidance on how this definition should be interpreted is given in Department of the Environment Circular 11/9217 now replaced by Circular 04/2000. However a number of questions can be posed in order to decide whether or not something is a waste: 䊉
䊉 䊉 䊉
䊉
䊉 䊉 䊉
Is the substance or object still part of the commercial cycle (i.e. the producer’s main activities) or chain of utility (i.e. if an object has been given away but is still being used for the purpose for which it was made)? If it is part of these, then it is fair to assume that it is not a waste. Has the item been consigned to a disposal operation? If so it is almost certainly a waste. Has the item been abandoned or dumped illegally? If so, it is a waste. Has the item been consigned to a specialised recovery operation? If so it is likely to be a waste. (A specialised recovery operation is one which recovers or recycles materials which otherwise could not be used.) Can the item be used in its present form without being subjected to a specialised recovery operation? If so it may well not be a waste (e.g. bottles returned for refilling). Does the owner have to pay for the item to be taken away? If so, it is likely to be a waste. Will the person receiving the item regard it as something to be disposed of rather than as a useful product? If so it is a waste. Has the item been reprocessed so that it can re-enter the commercial cycle (e.g. a recycled solvent which can be sold back to a purchaser)? This is no longer a waste.
There are a number of terms that describe a waste in legislation of which the main terms of reference used in UK law are: 䊉
Controlled waste is defined in the Controlled Waste Regulations 199218 and section 75 of the Environment Protection Act 1990 as wastes from households, commerce and industry. Wastes excluded from this definition include explosives, wastes from mines and quarries or agricultural wastes. Wastes included are: 䊉 Household waste: from a domestic property, caravan, residential home, educational establishment, hospital or nursing home. 䊉 Industrial waste: from a factory or from a premises used for or in connection with, the provision of public transport, the public supply of gas, water, electricity or sewerage services, and the provision of postal or telecommunication services.
926
Safety at Work
Commercial waste: from premises used for trade or business or for the purposes of sport, recreation or entertainment. Hazardous (special) waste: is controlled waste which, because of its hazardous properties, is subject to additional controls under the Special Waste Regulations 1996 (see a later section for further details). There are a number of guidance documents produced by regulatory authorities that further explain aspects of the definitions and the UK interpretations. The Environment Agency Special Waste Explanatory Notes19 are particularly helpful. Difficult waste: is a term used to describe wastes that could in certain circumstances be harmful to human health or the environment in the short or long term due to their chemical or biological properties. This term incorporates wastes whose physical properties present handling problems at the point of disposal. Clinical waste: the definition of clinical waste is given in the Controlled Waste Regulations 1992 in terms of two hazardous properties – infectivity and toxicity. Clinical waste includes: 䊉 Any waste which consists wholly or partly of human or animal tissue, blood or other bodily fluids, excretions, drugs or pharmaceutical products, swabs, dressings, syringes, needles or other sharp instruments, being a waste which unless rendered safe may prove hazardous to any persons coming into contact with it. 䊉 Any other waste arising from medical, dental, nursing, veterinary, pharmaceutical or similar practice, investigation, treatment, care or research, or the collection of blood for transfusion, being waste which may cause infection to any person coming into contact with it. 䊉
䊉
䊉
䊉
5.3.5 The waste hierarchy The government’s strategy for waste management promotes the ‘waste hierarchy’ as a guiding principle in the development of a more sustainable waste management system. Following the hierarchy is also a cost-effective and environmentally responsible approach to managing waste. The hierarchy ranks methods of waste management, defining elimination and reduction as the most desirable options followed by reuse, then recovery (through recycling, composting or energy recovery) and finally the least desirable option, disposal. The terms are covered in Article 3 of the Framework Waste Directive which states that member states of the European Union shall take appropriate measures to encourage the prevention or reduction of waste production and its harmfulness. With reference to industry, actions which will not necessarily lead to waste prevention but reductions in product and/or packaging which lead to reductions in waste generated are to be encouraged. It should be recognised however, that it is not always feasible (economically, technically or environmentally) to follow this strategy. Other means and principles may be necessary to formulate local waste strategies such as the precautionary principle, the proximity principle, life
Waste management
927
Table 5.3.1 The six-stage waste hierarchy Hierarchy
Waste option
Description and/or examples
Most desirable
Elimination Reduction
Complete elimination of the waste at source. The avoidance, reduction or elimination of waste generally within the confines of the production unit, through changes in industrial processes or procedures. This may involve using technology which requires less material in products and produces less waste in manufacture and by producing longer-lasting products with lower pollution potential. Examples are: returnable bottles and reusable transit packaging. Involves finding beneficial uses for waste such as recovering energy by burning it; recycling it to produce a useable product or composting to create products such as soil conditioners and growing media for plants. The destruction, detoxification or neutralisation of wastes into less harmful substances. By incineration or landfill without energy recovery. Secure land disposal may involve volume reduction, encapsulation, leachate containment and monitoring techniques.
⎜
䉲 Least desirable
Re-use Recovery
Treatment (Energy recovery) Disposal
cycle analysis and the Best Practicable Environmental Option (BPEO), which all apply to decisions about waste management. The BPEO is the option that provides the most benefits or least damage to the environment as a whole, at an acceptable cost, in the long term as well as the short term. The Waste Hierarchy (Table 5.3.1) captures these concepts. It is usually portrayed in a five- or six-stage list of options and strategies.
5.3.6 Waste management in practice Most pollution incidents are avoidable and the costs for cleaning up a pollution incident can be very high. Careful planning of facilities and effective operational procedures can reduce the risk of a loss of containment and simple precautions can prevent such a loss becoming a pollution incident. This section covers the good practice and pollution prevention measures necessary to achieve compliance with legal requirements and minimise the likelihood of incidents. Waste management processes are fundamental aspects of good business management and should be integrated into systems set up to run established business
928
Safety at Work
Figure 5.3.2 Five steps in waste management
operations. There are five steps involved in practical waste management as shown in Figure 5.3.2. They are discussed more fully in subsequent sections. 5.3.6.1 STEP1: Identify waste streams One of the first tasks of a waste minimisation programme is to identify and characterise the facility waste streams. This information can be used to assess inputs of raw materials to the waste stream, how much raw material can be accounted for through fugitive losses, distinguishing large single waste streams from smaller constant flows and tracking wastes that may be subject to seasonal variations. This is important data needed to establish effective and legally compliant waste management procedures as well as providing useful business information that can be used to improve process efficiency and minimise costs. Further details on the practical methods for carrying out this type of assessment are covered in a later section on waste minimisation. 5.3.6.2 STEP 2: Categorise waste according to legal definitions Once the list of waste streams have been identified and the decision has been made that the materials are in fact wastes according to the legal
Waste management
929
Figure 5.3.3 Waste classification chart
definition, the next stage is to ensure that the wastes are correctly classified. Figure 5.3.3 is a waste classification chart demonstrating the process. 5.3.6.3 STEP 3: Select the best waste management option The generation of waste is a common product of physical or chemical processing. However, the quantity and toxicity needs to be minimised in order to protect the environment and the safety of the working population and public. Waste minimisation can be achieved in many ways, through, for example, the design of processes and the selection of suitable raw materials which produce less waste, to the re-use and recovery of materials to avoid sending them for final disposal. This decision-making process is referred to as the waste management hierarchy and has been covered previously. The implementation of a waste minimisation programme to plan for waste elimination or source reduction options is covered in a later section. The business considerations that form part of the decision to select the best environmental option for the waste material requires that an evaluation of the costs of waste minimisation, treatment and disposal be carried out on an equitable basis. Alternative routes should be costed using as far as possible actual estimates and realistic assumptions about market values of recovered product. The costs of all the elements involved in the process from collection to transfer, treatment and final disposal needs to be considered. An analysis should therefore take account of the following: 䊉 䊉 䊉 䊉 䊉 䊉
labour costs of collection, delivery and disposal administrative costs of collection, delivery and disposal site purchase costs capital costs of equipment operating costs of equipment i.e. fuel, maintenance, insurance disposal costs i.e. landfill charges including tax, incinerator fees.
930
Safety at Work
The costs of any recycling schemes that may be associated with the overall strategy will also include: 䊉 䊉 䊉 䊉 䊉 䊉
labour and administrative costs of collecting and delivering recyclables either to a market or a processing facility residual disposal costs labour and administrative costs of processing capital costs of the recycling equipment such as vehicles, materials handling and processing facilities operating costs of recycling equipment, such as fuel, maintenance and insurance administrative costs of the recycling scheme including the costs of promotional materials, advisory and marketing services.
The revenues and savings from a recycling scheme include: 䊉 䊉
revenues from the sale of materials any revenue from commercial sponsorship of the scheme.
The process of financial appraisal should take into account both shortand long-term costs taking note that some of the figures will be estimated as the market value may fluctuate with supply and demand.
5.3.6.4 STEP 4: Prepare and implement a plan to manage wastes on-site Waste poses a threat to the environment and to human health if it is not managed properly and recovered or disposed of safely. It is critical to good business practice to ensure that environmental legislation is not breached by a lack of understanding of key legislative requirements or poor implementation of waste management procedures. To avoid such risks arising, the responsibility for managing this process should be identified and appropriate resources allocated. There are many aspects to be considered such as waste containment, segregation and storage, waste treatment, handling and the preparations necessary to transfer the wastes off-site to the next stage of the management cycle. All these areas have clearly defined expectations set out in various legal statutes and Codes of Good Practice. The key requirements in this area are set out in this section and should be considered in the development of a strategy to manage the company’s wastes while on-site. 5.3.6.4.1 The Duty of Care The basic guiding principles and controls required for good on-site waste management practice are set out in the Duty of Care concept which places a duty on anyone who in anyway has a responsibility for controlled waste. The Environmental Protection (Duty of Care Regulations) 199120, issued under section 34 of the Environmental Protection Act 1990, detail
Waste management
931
the strict waste management controls to be implemented by the waste holder. The waste holder is defined as ‘any person who imports, produces, keeps, treats or disposes of controlled waste or as a broker has control over it.’ A clear understanding of this regime is necessary to implement the different elements that apply. These are clearly set out in the guidance document ‘Waste Management, The Duty of Care A Code of Practice’21 issued by the Department of the Environment, which recommends a series of steps which should normally be sufficient to meet the Duty of Care. The Duty of Care places the holder of the waste under a duty to take all measures, applicable to him in that capacity, as are reasonable in the circumstances. The steps to be taken are: 1. To prevent any contravention by any other person from disposing, treating or storing the waste without a licence, breaching the conditions of the licence or in a manner likely to cause environmental pollution or harm to health. In practice this means that the waste producer must take all reasonable steps to ensure that all the waste is disposed of to suitably licensed sites and not fly-tipped at an unauthorised site. If the waste was not handled correctly and the producer has failed to make reasonable checks, such as that the recipient’s waste management licence permits them to take the type and quantity of the waste involved, then the producer could be liable for breach of the Duty of Care. Full checks do not need to be repeated on each occasion if transfers of the same type of waste follow the same path, however licences should be examined when changes occur. It is reasonable to go beyond licence checking for larger quantities of more hazardous waste which is likely to involve periodic audits at the disposal site to check that disposal takes place according to the conditions of the site licence. 2. To prevent the escape of waste from his or another person’s control. The waste must be appropriately packaged in order to prevent foreseeable escape or leakage whilst on site, in transit or in storage. Holders should protect waste against the risks posed by: 䊉 䊉 䊉 䊉 䊉
Corrosion or wear of waste containers. Accidental spilling or leaking or inadvertent leaching from waste unprotected from rainfall. Accident or weather breaking open contained waste and allowing it to escape. Waste blowing away or falling while stored or transported. Scavenging of waste by vandals, thieves, children, trespassers or animals.
3. On the transfer of waste, to secure that the transfer is only to an authorised person or to a person for authorised transport purposes. 4. On the transfer of waste, to secure that there is also transferred a written description of the waste which is good enough to enable each person receiving it to avoid committing any offences under section 33 and to comply with the duty of care relating to the escape of the waste.
932
Safety at Work
Points 3 and 4 are discussed in section 5.3.6.5 concerning off-site waste management. Each holder in the chain has a responsibility to ensure that the duty is discharged while the waste is under his control. Different measures are reasonable for each role. For example, the holder acting as the waste carrier would not normally be expected to provide a description of the waste he collects from the producer unless for some reason he alters the composition of the waste. 5.3.6.4.2 Waste management licensing This sets out a licensing system designed to regulate the deposit, keeping, treatment or disposal of controlled waste (i.e. industrial, commercial or household wastes) on land. Its objective is to prevent unacceptable environmental emissions by specifying the management system for a site or plant. This regime was introduced by the Waste Management Licensing Regulations 1994 as required by the EC Framework Directive on Waste and is regulated and enforced by the Environment Agency. All producers of waste need to understand the requirements of waste management licensing in order to assess whether or not they need a licence for the activities carried out on their site. Although there is a broad requirement for licensing, it is equally important to establish whether or not the waste activities are categorised within an extensive list of activities exempt from licensing as set out in Schedule 3 to the Waste Management Licensing Regulations 1994. Exemptions are permitted in circumstances where there are other adequate controls such as consents given under the Water Resources Act 199122 and for a number of specified activities carried out at the place of production of the waste (where waste is to be reused or recovered) or where small quantities of waste are being managed. Exemptions must be registered with the Environmental Agency, giving them the business name and address, details of the activity which is exempt and the place where the activity takes place. The Environment Agency are likely to specify appropriate terms and conditions in a licence and conditions will vary depending on the activity being considered. Clearly conditions for a large and complex landfill site will be much more detailed with higher expectations set than for a simple treatment operation. The conditions are likely to address the types and quantities of waste involved and operational issues such as monitoring, record keeping and controls which are set out in a work plan provided by the site operator. The applicant for the licence must be a ‘fit and proper person’ to hold a licence and this will be judged according to the following considerations: 䊉 䊉
If he or another relevant person has been convicted of a relevant offence. The management of the activities would be in the hands of a technically competent person (holding approved waste management qualifications).
Waste management 䊉
933
The potential licence holder has made financial provision for the adequate discharge of the obligations arising from the licence.
The regulations further define requirements and procedures for submission of licence applications, surrender or transfer of licences, assessment of ‘fit and proper persons’ appeals and public registers. 5.3.6.4.3 Good waste management practices To ensure that waste is properly controlled and managed the following techniques should be practised: A. Waste storage Wastes will often have to be stored at some stage for varying periods of time. Underground storage tanks are susceptible to damage and corrosion and therefore above ground storage facilities are preferred. Any waste should be stored in a container that is appropriate for the volume of waste produced and the fabric of the container should be compatible with the nature of the waste, i.e. its chemical or physical properties. This means that wastes must not be kept in corroded, worn or damaged containers. Metal drums are not always suitable for acid wastes and open-top drums are not suitable for liquid wastes. Where waste is stored it should be placed under cover within a secure designated area that is regularly inspected. Suitable secondary containment (bunding) should be provided for waste chemical substances to prevent any accidental release to the environment in the event of leakage, a spill or leaching. Any bunding provided should be designed to contain 110% of the contents of the stored volume within it, without any drains or valves and should be routinely checked to ensure its integrity is maintained. B. Waste location All waste should be placed in a suitable location in order to avoid accidental contamination and to minimise its handling and transportation thus reducing the potential for spillage. C. Labelling of containers The labelling of all waste products is essential for two reasons: 䊉 䊉
to ensure the correct segregation of wastes in order to avoid incompatible storage; to provide the appropriate labelling to indicate any hazardous properties that may be associated with it.
If containers have been re-used, it is important that they have been cleaned prior to refilling in order to remove any residue of previous contents and that old misleading labels are removed and replaced as appropriate.
934
Safety at Work
D. Waste handling and deliveries The handling of materials involves risks of spillage and accidents. It is important to identify these risks so they can be appropriately minimised. The following aspects should be considered: 䊉 䊉 䊉
䊉
䊉 䊉 䊉
Loading and unloading areas should be designated, marked and isolated from the surface water drainage system. The routes for the movements of materials on site should be identified so that any necessary precautions can be taken. High-risk areas such as refuelling points should be isolated from the surface water system using ramped bunds or some form of restricted access. Deliveries of oil and potentially hazardous materials should be supervised. If there is a spillage it should be contained and reported immediately. Tankers should discharge via a lockable fixed coupling within a bunded area. Automatic cut-off valves should be fitted to delivery pipes to prevent overfilling. Pipe couplings should be unique to the liquid being handled.
E. Spillage and emergency response procedure Operators are expected to have in place procedures for responding to emergency environmental incidents. Figure 5.3.4 provides an example of an emergency procedure. Clearly set out and, depending on the waste and its properties, may need additional precautions to be added. 5.3.6.4.4 Managing liquid wastes on-site There are three methods available for the disposal of trade effluent (liquid waste): 䊉 䊉
䊉
The transfer off-site for treatment and disposal by a recognised waste contractor. Obtain a ‘Consent to Discharge Trade Effluent’ from the local Water Services Companies so that waste can be discharged to the drains onsite. Authorisation is required in the form of a ‘Consent to Discharge Trade Effluent’ document issued by the sewerage undertaker (England and Wales) or Water Authorities (Scotland). These bodies are empowered to set conditions and levy charges on those who discharge effluent to the sewerage system. Obtain a ‘Discharge Consent’ from the local Environment Agency if waste is to be discharged to controlled water (fresh and saline natural waters including rivers, streams, lochs, estuaries, coastal waters or groundwater). A consent to discharge to this media, is under the control of the Environment Agency (England and Wales) and the Scottish Environmental Protection Agency (Scotland). These bodies will set conditions and levy charges. (These bodies also regulate the sewerage undertaker since they discharge to controlled waters following treatment that takes place at a sewage works.)
Waste management
935
EMERGENCY SPILLAGE PROCEDURE Names (and telephone numbers) of staff members trained to respond to an emergency spill: Response Procedure: 1 Notify one of the above persons. 2 Locate the Safety Data Sheets for the spilled material. 3 Review the information given on potential risks to health, safety and the environment. 4 Put on the recommended personal protective equipment. 5 Locate the spill response supplies and equipment. 6 Isolate all near-by drains with absorbent containment materials or other measures. 7 Stop the leak or spill e.g. turn off the valve, stand up a knocked over container etc. 8 Isolate the spill with containment materials. 9 Absorb spilled liquid chemicals with absorbent material or a wet vacuum cleaner. 10 Spills of dry materials must be swept up and not washed to the drain. 11 Place the contaminated absorbent material in a container suitable for storage on-site and transportation off-site. Consideration should be given as to whether it is hazardous waste or not. 12 Wash any equipment or floors so that no traces of the chemical remain. 13 Absorb the wash water and place it in the same container with the contaminated absorbent materials. 14 Label the container with the appropriate workplace and shipping labels. 15 Notify the manager and fill out the incident report form. 16 Send a copy of the report to the manager for evaluation so that measures can be put in place to prevent a recurrence of the incident. If the spill reached the drainage system which exits the site, call the Water Service Company, or Environment Agency if appropriate (for spills into the surface water drains), immediately to report it. Identify the drains clearly and the drainage route the contaminant followed from the spill to the site perimeter.
Figure 5.3.4 Outline emergency procedure for loss of containment (spillage) of waste materials
Trade effluent, which is fully defined in the Water Industry Act 199123, is a liquid that is produced in the course of any trade or industry on trade premises. It does not include domestic sewage or other domestic liquid waste. Waste materials classified as hazardous under the special waste regime may be discharged subject to agreement with the Water Service Provider. It is an offence to discharge trade effluent without the formal consent of the Water Services Companies or when in breach of any condition of such a consent.
936
Safety at Work
The Urban Wastewater Treatment Regulations 199424 requires Water Services Companies to exercise their powers under the Water Industry Act 1991 and to write conditions into trade effluent consents and agreements to control trade effluents, either alone or in combination with other wastes. Controls on trade effluents are necessary to prevent them causing: 䊉 䊉 䊉
Corrosion of the material of construction of the sewer, especially concrete pipes and mortar joints. Blockage or hydraulic overloading of sewers leading to foul flooding of property or pollution of watercourses via network overflows. The formation of explosive, flammable or poisonous gases in the sewerage system which may be prejudicial to the health of personnel maintaining the sewerage system or the cause of danger or a nuisance to adjoining properties.
In addition, the treatment works must be protected to ensure that: 䊉 䊉 䊉 䊉 䊉
䊉
The available plant can treat the sewage arriving at the works effectively and economically. Damage does not occur to the structure of the works or to mechanical, electrical and instrumentation equipment. Personnel employed in the operation of the treatment works are not harmed. Biological treatment processes are not poisoned or inhibited by toxic substances. Sewage treatment works effluent does not adversely affect the environment or prevent receiving water from complying with European Union Directives. Sewage sludge can be re-cycled or disposed of safely in another environmentally acceptable manner.
The Water Services Companies are themselves subject to controls in the form of consents issued by the Environment Agency to control the release from the treatment works to controlled waters of effluent and sludges produced in the sewage purification process. Many chemicals will be completely degraded into harmless natural products in the sewage purification process. Their concentrations at discharge need not usually be limited as long as the local sewerage system and associated sewage treatment works provide adequate dilution. Advice will be given by the relevant Water Services Companies on request. However, certain constituents of effluent will be subject to specific controls, for example: 䊉 䊉 䊉 䊉
acidity – to prevent corrosion of concrete pipes ammonia – to control toxicity and nuisance in sewers, also toxicity and oxygen demand in receiving waters heavy metals – to control toxicity sulphates and sulphides – to prevent corrosion of pipes and control nuisance
Waste management 䊉
937
excessive oxygen demand – to prevent stagnation effect in sewers and overload of the treatment process.
The trade effluent consents issued by Water Services Companies will usually contain the following requirements: 1 No trade effluent shall be discharged having a pH < 6.0 or > 10.0. 2 Trade effluent shall not contain: 䊉 䊉 䊉
䊉 䊉 䊉 䊉
Sulphides, hydrosulphides, polysulphides and substances producing hydrogen sulphide on acidification in excess of 1.0 mg/l. Sulphates as SO4 in excess of 1000 mg/l. Toxic metals in excess of 5 mg/l either individually or in total, e.g. antimony, arsenic, beryllium, chromium, copper, lead, nickel, selenium, tin, vanadium and zinc. Cyanides and cyanogen compounds, which produce hydrogen cyanide on acidification in excess of 1.0 mg/l. Total suspended solids at pH 7.0 and dried at 110°C in excess of 400 mg/l. Settled chemical oxygen demand in excess of 1000 mg/l. Ammonia in excess of 250 mg/l.
It is important to understand that limit values may vary from place to place depending upon the size of the sewage treatment works, dilution in the receiving watercourse and other industrial discharges in the catchment area. The Water Services Companies are empowered to charge for the services they provide. Companies who discharge trade effluent into the sewage system are generally charged by the Water Services Company for the reception, conveyance, treatment and disposal of the trade effluent. Charges may be levied in three ways: 1 A ‘Charges scheme’ whereby a fixed charge is levied for the services provided. 2 An independent charging agreement between the Water Service Company and the discharger. 3 As a condition of the trade effluent licence where charges are calculated according to the ‘Mogden formula’. Trade effluent charges – Mogden Formula All Water Services Companies use a Mogden-type formula to charge for trade effluents. The basic Mogden formula is: C = R + V + Ot B + St S Os
Ss
Where: C = total charge per cubic metre of trade effluent R = reception and conveyance charge V = volumetric and primary treatment cost
938
Ot Os B St Ss S
Safety at Work
= = = = = =
the chemical oxygen demand (COD) of the trade effluent the average COD of settled sewage for the region biological oxidation cost the suspended solids in the trade effluent the average suspended solids in crude sewage for the region treatment and disposal costs of primary sludge.
The purpose of the formula is to match as closely as possible the trade effluent charge to the cost of providing the services of reception and conveyance of the trade effluent and its subsequent biological oxidation and sludge treatment and disposal. The four unit costs (R, V, B and S) together with the COD and solids content of sewage are fixed annually in advance by the Water Services Companies. The only remaining variable in the formula is the volume of trade effluent actually discharged that should be determined from the water meter for the incoming supply or the submeter to the process. The use of standard strength will ensure consistency within the area covered by each Water Services Company. There will still be regional differences in charging owing to different tariffs between the Water Services Companies. An extra charge may be made depending on local circumstances. There are cost-effective on-site treatments to reduce the strength of an effluent leaving the premises to the public sewer. Together with water recycling and chemical management systems, operators can reduce the overall cost of their effluent. Water recycling systems in particular offer a large reduction in water usage (often in excess of 90%), as well as savings on water heating costs and reduction of emergency water storage. From a water and energy conservation viewpoint, their use is to be supported. However, it must be realised that the trade effluent concentration is likely to be radically altered making the waste more concentrated and possibly more hazardous to handle and transport. Consequently it may be necessary to have much of the trade effluent taken off-site for treatment in order to meet discharge consent levels. Anyone considering installation of a water-recycling unit is advised to discuss the matter with their local Water Services Companies. 5.3.6.5 Step 5: Managing wastes off-site The waste producer’s duties and responsibilities in law do not cease once the waste has been transferred off-site as he maintains a shared responsibility through to its final treatment or disposal. There are a number of matters to address as preparations are made to remove the waste from the premises depending on the type of waste being transferred and its final destination. These considerations are covered by: 䊉 䊉 䊉
Duty of Care requirements relating to contractor selection and the provision of appropriate information. An alternative regime for the control of hazardous wastes covered by the Special Waste Regulations 1996. The system to follow if wastes are to be exported from the UK.
Waste management
939
5.3.6.5.1 The Duty of Care The Duty of Care applies to all holders of the waste from the producer to the waste manager of the final disposal operation. Duty of Care responsibilities for off-site waste transfer are covered by the following statements in the regulations 䊉
On the transfer of waste, to secure that the transfer is only to an authorised person or to a person for authorised transport purposes
The waste producer or holder should ensure that waste is only transferred to an authorised person such as a Waste Collection Authority (WCA) or a Waste Disposal Authority in Scotland, a holder of a waste management licence (or someone who is exempt from holding a licence) or a registered carrier of controlled waste (or someone who is exempt from registration). Details of carrier’s requirements are set out in the Controlled Waste (Registration of Carriers and Seizure of Vehicles) Regulations 1991. The enforcing agencies maintain a register of carriers as a reference list of companies who are authorised to transport waste, bearing in mind that the list is not a recommendation or guarantee of a carrier’s suitability to accept a certain type of waste. The registered carrier’s authority for transporting waste is a certificate of registration or an official copy, and a check should be made of the expiry date, certificate number and marking to confirm that it has been issued by the enforcing agency and that it covers the particular waste for disposal. Photocopies of a certificate of registration must not be taken as proof of registration. The phrase ‘Authorised transport purposes’ refers to the transport of controlled waste within the same premises, the importation of waste to the place of disposal and the exportation by air or sea or by rail from a place in the UK. 䊉
On the transfer of waste, to secure that there is also transferred a written description of the waste which is good enough to enable each person receiving it to avoid committing any offences under section 33 and to comply with the duty of care relating to the escape of the waste.
A transfer note (an example of which is given in the Duty of Care Code of Practice) must be completed, signed and kept by the parties involved if waste is to be transferred. A single transfer note may cover multiple consignments of waste transferred at the same time or over a period of time provided that all the details are the same. The transferor and transferee should keep the written description of the waste and a copy of the note for at least two years during which time the Environment Agency may request a copy. In addition, the description should include the following: 䊉
the source of the waste – reference can be made to the use of the premises or the occupation of the waste producer for wastes that do not require special arrangements for handling or disposal;
940 䊉 䊉
䊉
Safety at Work
the name of the substance – refers to an explanation of what the waste is, either by its chemical or common name; the process producing the waste – an explanation of how the waste was produced including details of the materials used and types of processes operated; a chemical and physical analysis – if wastes from different processes are mixed or if the activity or process alters the properties or composition of the material, it may be necessary for a physical and chemical analysis of the waste to be undertaken.
As a general rule, the waste description must provide enough information to enable subsequent holders of the waste to manage it responsibly. 5.3.6.5.2 Hazardous wastes This group of wastes is referred to as ‘special wastes’ in the UK, with a proposal to change the classification to ‘hazardous wastes’. The Special Waste Regulations 1996 (as amended) sets out an effective ‘cradle to grave’ system of control which ensures that hazardous wastes (which were initially defined as controlled wastes) are soundly managed from the moment they are first moved as waste until they reach their final destination for recovery or disposal. The regime for managing hazardous waste is however, stricter than the regime for controlled wastes, adding to the requirements a notification procedure to ensure that the regulatory authority (the appropriate Environment Agency) has advanced notification of the impending transfer of waste together with a description of the hazards associated with the waste being transferred. The starting point of any assessment of special waste is the definition of hazardous waste given in Regulation 2 of the Special Waste Regulations as amended. It states that a controlled waste, other than a household waste, is considered hazardous if: 䊉 䊉
䊉
it appears on the EC list of hazardous wastes25 and displays one or more of the hazardous properties set out in Table 5.3.2; it is not listed on the EC hazardous waste list but displays one or more of a sub-set of six hazardous properties in Table 5.3.2. These hazards are H3A (first category) and H4 to H8; it is a prescription-only medicine.
The Special Waste Regulations (schedule 2, part 4) indicates that there are three methods for assessing a waste for a hazardous property: 䊉
䊉
Using the Approved Supply List27 (made under the Chemicals (Hazard Information and Packaging for Supply) Regulations 200226) which prescribes hazard information and classifications for many common chemicals. Using the Approved Guide to the Classification and Labelling of Substances and Preparations Dangerous for Supply27 which sets out
Waste management
941
Table 5.3.2 Classification of hazardous waste properties 䊉 䊉 䊉 䊉 䊉 䊉 䊉 䊉 䊉 䊉 䊉 䊉 䊉 䊉 䊉
䊉
H1 Explosive H2 Oxidising H3A Highly flammable (5 sub-categories) H3B Flammable H4 Irritant H5 Harmful H6 Toxic H7 Carcinogenic H8 Corrosive H9 Infectious H10 Teratogenic H11 Mutagenic H12 Substances releasing toxic/very toxic gas in contact with air/water/acid H13 Substance capable of yielding, after disposal, another substance which has abovementioned properties H14 Ecotoxic
general principles of classification and informs suppliers how to correctly classify and label chemicals. Using the Approved Code of Practice on Test Methods28 where the latest amendment to Annex 5 to Directive 67/548/EEC has been adopted.
The Approved Supply List provides a risk phrase and classification for substances. The risk phrase(s) can then be linked to the hazards. In cases where a substance is found to exhibit a hazard, there is still a further stage of assessment to determine whether or not it is a hazardous waste. This next step is carried out to ascertain whether the waste ‘displays’ the hazardous property and is established by determining the concentration of the hazardous component in the waste. The Special Waste Regulations in Schedule 2, Part 3 set out the concentration thresholds that make a waste hazardous. These are set at different levels depending on the nature of the hazard, i.e. the total concentration of substances classified as ‘harmful’ in the waste needs to be present at 25% or above to classify it as ‘hazardous’. The hazardous waste transfer must follow the correct consignment procedure for the movement of the waste. This can be established with the help of the waste carrier who can advise on whether a simplified process can be followed for regular consignments of the same type of waste from the same premises. In order to cover the costs of administrating the procedure, the Environment Agency will charge a fee for the consignment of the hazardous waste. The Environment Agency provides full details on the hazardous waste regime in ‘Technical Guidance WM1 Special Wastes: A technical guidance note on their definition and classification’29. Further related documents can be obtained from the Environment Agency website.
942
Safety at Work
5.3.6.5.3 International waste transfers Waste importers and exporters must follow the system of control set out in the Transfrontier Shipment of Waste Regulations 1994 which directly implemented the EC Waste Shipment Regulation 259/93/EEC30. It establishes a complex system of control on waste shipments, with detailed provisions varying according to the country of destination and means of transit, the intended purpose of the waste shipment, whether for disposal or recovery, and the type of waste involved. Anyone intending to ship waste across the frontier of a member state for disposal, where this is permitted, must notify the competent authorities in the countries through which the waste may pass by sending a consignment note obtained from the UK Environment Agency. After receipt of the note is acknowledged, the competent authorities of these countries have a limited period of time in which they may request further information, raise objections, impose conditions and authorise shipment. Once shipment has proceeded, the consignee (the person receiving the waste) must send the notifier (the person sending the waste) and the relevant competent authorities a copy of the completed consignment note and, after disposal or recovery, a copy of a certificate of disposal or recovery. Other requirements cover the details to be provided in the consignment notes and obligations which must form part of contracts for shipments. Wastes destined for recovery are divided into three categories – the Red, Amber and Green Lists – according to the severity of the hazards they present. Red listed wastes are the most hazardous and are subject to the full notification procedure, i.e. written prior consent of the authorities is required for each waste shipment. For Amber listed wastes, shippers and importers can take advantage of a more streamlined procedure whereby the consent of the competent authorities is assumed provided no objections are made. Green listed wastes are normally not subjected to regulation although shipments should be accompanied by a transfer note.
5.3.7 Waste minimisation It has been estimated that the average product sold to the consumer contains just 5% of the materials that went into its manufacture. The rest has been lost along the way. At each stage of the life cycle of the product, waste is created including mining, refining raw materials, processing and transport. The fate of the 95% inevitably adds to the pollution load on the Earth. Much of this waste can be eliminated by resource efficiency which could be achieved by choosing better materials or more efficient energy sources. The concept of waste minimisation is based on the rationale that by using materials carefully to reduce the generation of waste, pollution is reduced, resources are conserved and charges for waste disposal are minimised. A good waste minimisation programme should identify all significant process emissions to all media (air, water or land) and its aim should be a reduction in the total amount of waste generated.
Waste management
943
5.3.7.1 The benefits of waste minimisation The relative importance of waste minimisation varies in terms of reduced environmental impacts, financial savings, reduced energy and materials usage, achieving regulatory compliance thereby reducing potential liabilities. An improved environment profile of the company can enhance investor confidence and environmentally responsible products may promote customer acceptance of the product. Furthermore waste costs money through a reduction in yield, decrease in productivity and the direct costs of disposal. Therefore economic benefits of waste minimisation can be identified as: 䊉 䊉 䊉
䊉 䊉
reduction in waste results in savings in waste disposal costs; more economical processes through the reuse and recycling of materials; a reduction in environmental costs in the short term through better process control making it less likely for fines to be imposed for pollution incidents; a reduction in potential liabilities in the longer term; a reassessment of processes which may make them more efficient.
5.3.7.2 Senior management commitment It is essential that the senior management of a company is engaged in the waste minimisation programme and provides leadership to the process. This ensures interest in: 䊉 䊉 䊉 䊉
a company environmental policy together with a strategy for its implementation provision of adequate resources a programme for training staff strong visible support and leadership with high level accountability.
5.3.7.3 Waste minimisation techniques Waste can be reduced by the applications of a variety of techniques individually or in tandem including those discussed below. 5.3.7.3.1 Source reduction Source reduction is a term given to the activity that reduces or eliminates the generation of waste from a process. The techniques used may be outlined as follows: 䊉
Plant management – relates to the alteration of procedures or organisational aspects of the production process. The generation of waste is reduced by implementing improvements to the overall
944
䊉
䊉
䊉
䊉
䊉
䊉
䊉
䊉
Safety at Work
management of the production process in key areas. It is one of the easiest ways to reduce waste and may also result in overall health and safety improvements. Employee information and awareness – simple techniques such as training employees to use equipment efficiently and report process malfunctions such as leaking pipes or containers. Management accountability – the process of making production managers take ownership of the waste minimisation process and be made accountable for reporting quantities of waste generated and progress towards meeting waste reduction targets. Inventory control – focusing on the efficient control of inventories of raw materials or products to prevent wastes arising from poor storage management such as exceeded shelf life or incorrect storage conditions. Waste segregation – this technique is very important for chemical wastes since by separating hazardous from non-hazardous wastes the total volume of mixed hazardous waste can be reduced. It may also avoid legal non-compliance related to the mixing of such wastes. By providing separate collection containers for the different waste streams, extra reclamation costs may be avoided by the elimination of a reprocessing step. Material handling – improves techniques associated with waste movements to minimise the chance of material wastage due to spillage or other losses. Spill and leakage prevention – implemented through regular checks of plant and machinery for leaks in order to avoid material losses as well as reducing employee exposure. In the event of a spillage or loss of containment a spillage procedure should be implemented to ensure a timely response to the unplanned event to minimise loss and prevent other environmental damage occurring. Planned preventative maintenance – is the term given to the technique of maintaining equipment before it needs maintenance rather than reacting to equipment failure. Process modifications should be considered in order to optimise the efficiency of a particular operation where technically feasible. These can be divided into four categories: 䊉
䊉
䊉
䊉
Process changes involving the use of alternative low-waste process pathways to obtain the same quality of product. Process changes are typically made during process redesign or the development of a new plant. Equipment modifications which can be introduced to perform existing operations more efficiently in order to eliminate or reduce waste that is generated at start up and shut down or during product changes and maintenance operations. Changes to operational settings involving adjustments to equipment to optimise the process and minimise the production of waste materials. Process automation involving the provision of automated systems that are more efficient at handling or producing a product.
Waste management 䊉
945
Raw material substitution – which refers to replacing or substituting hazardous materials used in production processes by less hazardous or non-hazardous alternatives. Changes in these materials may also lead to the reduction or elimination of hazardous wastes. However it should be noted that material changes to a less hazardous material may have an adverse effect on the production process, product quality or waste generation and therefore any changes should be fully evaluated before implementation. Product substitution is achieved by reformulation of the final or intermediate products in order to reduce the quantity of waste arising during its manufacture or use. Since the nature of the finished product may change, the issues around customer acceptability should be addressed.
5.3.7.3.2 Re-use and recycling Recycling differs from re-use because it involves a processing step. Recycling can be defined as the collection and separation of materials from waste and subsequent processing to produce marketable products. Recycling waste materials for future use and reclamation may provide a costeffective alternative to treatment and disposal. It should be noted however that elimination and minimisation of the waste at source are the preferred options as set out in the waste management hierarchy. Success in the recycling of wastes depends upon the ability to use the materials taking into account the cost-effectiveness of the technology and the ease of implementation of the option. Schemes for recycling may range from those requiring only minor procedural changes that incur no capital investment to more significant projects requiring considerable expenditure. 5.3.7.4 The practical implementation of a waste minimisation programme The seven stages necessary to implement a successful waste implementation programme are: 䊉 䊉 䊉 䊉 䊉 䊉 䊉
Identify sources of waste using process flow charts to monitor inputs and outputs Prioritising significant waste streams Assess feasibility of options Project implementation Set waste reduction targets and time scales Involve and educate staff Monitor performance against targets and communicate results.
5.3.7.4.1 Identify waste sources In order to implement the most efficient systems for waste minimisation, it is necessary to understand fully the production processes and business operations and how materials flow through these operations, starting
946
Safety at Work
from the acquisition of raw materials, through transport and distribution to final use. Flow diagrams provide the basic means for identifying and organising information that is useful in the assessment. Flow diagrams should be prepared to identify important process steps and sources of waste generation. They are also the foundation upon which material balances, sometimes termed ‘mass balances’, are developed. Material balances are important for waste minimisation projects since they allow quantifying the losses or emissions that were previously unaccounted for and assist in developing the following information: 䊉 䊉 䊉
baseline data for tracking progress during the implementation of the project; data to estimate the size and cost of additional equipment and other modifications; data to evaluate economic performance.
In its simplest form, the material balance is represented by the mass conservation principle: MASS IN = MASS OUT + MASS ACCUMULATED Material balances can assist in determining concentrations of waste constituents where analytical test data is limited. These are particularly useful where there are points in a production process where it is difficult or uneconomical to collect analytical data. A material balance can help determine if fugitive losses are occurring, for example, the evaporation of solvents from a tank for cleaning parts can be estimated as the difference between solvent put into the tank and solvent removed from the tank. To characterise waste streams by material balance can require considerable effort. However, by doing so, a more complete picture of the waste situation can be established. This helps to establish the focus of the waste minimisation activities and provides a baseline for measuring performance. Mass balance information (materials entering and leaving a process) can be obtained from a variety of sources: 䊉 䊉 䊉 䊉 䊉 䊉 䊉 䊉 䊉 䊉
Samples, analyses and flow measurements of feedstocks, products and waste streams Raw material purchase records Material inventories Emission inventories Equipment cleaning procedures Product specifications Production records Operating logs Standard operating procedures Waste records.
Material balances can be easier, more meaningful and more accurate when they are completed for individual units, operations or processes.
Waste management
947
Figure 5.3.5 General material flow diagram
For this reason it is important to define carefully the system boundary for each unit being evaluated. The overall material balance for a facility can then be developed from individual unit material balances. Diagrammatically, any industrial system or process can be represented within a system boundary that encloses all the operations of interest. Several diagrams may be required to map out complex processes, joining each diagram with its separate operations together to form the full system being considered. There are several pieces of software, which can be used to produce flow diagrams. Once established, it provides the basis to understand what ancillary materials, consumables and energy are consumed (the ‘inputs’) and where wastes are generated (process emissions) at various stages. A general overview of a material flow diagram is provided in Figure 5.3.5 Inputs have been defined in terms of: 䊉 䊉 䊉
䊉 䊉 䊉
Raw materials: essential materials used directly in production. Ancillary materials: materials used indirectly for production such as materials for cleaning, maintenance or treatment processes. Consumable materials: materials for offices (paper, printer cartridges); sales materials (brochures, envelopes), personal protective equipment. Packaging: materials used to deliver goods (plastic wrapping, wooden pallets) and to supply finished products. Energy: fuel and electricity for workplace or production heating, company vehicles. Water: water from company mains, boreholes, or rivers.
948
Safety at Work
Outputs from the system are essentially the generation of products (a product is a marketable commodity and is the principal outcome of a manufacturing process) and wastes in the form of emissions to air, waste water, solid and liquid waste and energy losses. Small and medium sized businesses or even large businesses with only a few waste-generating operations should attempt to assess their entire facility. It is also beneficial to look at an entire facility where there are a large number of similar operations. Similarly, the implementation of good operating practices that involve procedural or organisational measures should be implemented on a facility-wide basis, such as employee awareness programmes, inventory or maintenance procedures. 5.3.7.4.2 Prioritising significant waste streams While all waste streams should be assessed, prioritising is necessary when available funds and or other resources are limited. Prioritising the waste streams should focus on identifying the most important areas first allowing the assessors to move onto lower priority areas as time, resources and funding become available. A variety of criteria can be used to prioritise waste streams including: 䊉 䊉 䊉 䊉 䊉 䊉 䊉
regulatory considerations hazardous properties of the waste including toxicity quantity management costs safety and health risks potential for success concerns about potential environmental liability.
There may be some areas where it will be easy to implement a waste minimisation improvement project without making a large capital investment. Such changes may include: 䊉 䊉 䊉 䊉 䊉
segregation of wastes to prevent mixing of hazardous and nonhazardous wastes improved material handling and inventory practices to reduce the amount of inventory that has expired preventative maintenance production scheduling to reduce quantities of batch-generated wastes or unused raw materials minor operational changes.
Small adjustments will often not only reduce waste production but can save resources and costs. After waste streams have been ranked, the next step is to identify which waste minimisation options are technically and economically justifiable. 5.3.7.4.3 Assess feasibility of waste minimisation options Prioritising key areas for improvement is essential as feasibility exercises can be time consuming and expensive. This part of the programme
Waste management
949
should consider both the technical feasibility and economic viability of the waste minimisation options considered in section 5.3.7.3. The technical evaluation determines whether or not a waste management option will work in a particular application. The following aspects should be considered: 1 Safety considerations related to any new system of work. 2 Compatibility of new equipment with existing plant and operating procedures. 3 Location of the new equipment in terms of available space and any requirements for water and energy supplies. 4 Impacts an option would have on production such as any stoppage that may be required in order to install a new system. 5 Additional technical expertise that may be required to install, operate or maintain a new system. 6 Any other environmental matters related to the operation of a new system such as the generation of modified or new waste streams. The environmental effects of any proposed changes need to be carefully considered to ensure that the overall environmental burden is minimised. Procedures that can be followed in this evaluation include the following: (a) reviews of technical literature; (b) visits to an existing installation to observe its operation and discuss practical aspects of operation; (c) pilot-scale demonstration of equipment prior to purchase. When decisions are being made on the feasibility of options, the discussions should involve consultation with key groups of staff that have technical and practical expertise in the areas being reviewed such as purchasing, production, engineering, maintenance to ensure viability and acceptance of an option. Any solutions that are considered technically feasible need to be assessed for economic viability using the company’s preferred method. When performing the economic evaluation, various costs and savings should be considered. A project’s profitability is normally estimated from a cost–benefit analysis, where the costs are evaluated by looking at both capital and operating costs. If a waste management option has no significant capital costs, then its profitability can be judged by whether or not an operational cost saving can be made. If such an option does reduce overall operating costs, this becomes a recommendation for it to be implemented. An economic assessment of a waste solution may include the following: 1 Capital costs of new equipment 2 Additional (or reduced) operating costs (including raw materials, labour, energy and water, inspection and auditing)
950
Safety at Work
3 Training costs for employees covering the new system 4 Disposal costs for any wastes. Reducing or avoiding current and future operating costs associated with waste treatment, storage and disposal are a major element of the project economic evaluation. The financial benefits from improved operational and environmental performance will include: 1 Capital savings derived from avoiding the installation of emission control and monitoring equipment. 2 Savings in waste disposal costs. 3 Savings due to more efficient use of raw materials. 4 Savings from reductions in product waste, energy and water use. 5 Savings based on the reuse of materials previously sent for disposal or income from sale of recyclable materials. 6 Improved company environmental performance leading to marketing opportunities. 5.3.7.4.4 Project implementation The assessment and evaluation report will provide the basis for obtaining funding for a waste minimisation project. Waste projects that only involve operational, procedural or material changes that do not involve alterations to plant or equipment should be implemented as soon as the cost savings have been verified. The implementation of projects involving capital expenditure and/or significant process modifications will clearly need to be integrated into a business plan. The plan should take into consideration the time scales for release of the capital and the manpower to manage the project. The responsibilities and time scales for implementation should be clearly assigned and good communications are essential to maintain momentum and commitment. Appropriate training and supervision should be provided for staff involved in any new scheme. 5.3.7.4.5 Set waste reduction targets and time scales Goals should be established that are consistent with the policy adopted by the company. Waste minimisation goals can be qualitative, for example, ‘a significant reduction of toxic emissions into the environment’. However, it is better to establish measurable, quantifiable goals since qualitative goals can be subjective and interpreted ambiguously. Quantifiable goals establish a clear guide to the benefits expected from the waste minimisation programme. A major company could adopt a corporate wide goal of (say) 5% waste reduction per year, with each facility in the company setting its own waste minimisation goals. The goals should be challenging enough to motivate staff to be realisable and practical. Attributes of effective goals are listed in Table 5.3.3. Goals should be reviewed and refined periodically to reflect any changes such as improved technologies, expanding experiences, new legislation or economic climate.
Waste management
951
Table 5.3.3 Attributes of effective goals Attributes of effective goals Acceptable to those who will work to achieve them Flexible and adaptable to changing requirements Measurable over the allocated project time scales Motivational to all employees Suitable for the overall corporate goals and mission Understandable by all the organisation’s stakeholders Achievable with a practical level of effort and resource
5.3.7.4.6 Staff training Training and communications programmes for all levels of employee are an essential feature of the plan. Staff need to understand the company’s waste management strategy, policies and practices in order to take responsibility for providing support to these activities. A training programme could include the following aspects: 䊉 䊉 䊉 䊉 䊉 䊉
Company policy and expectations for waste minimisation strategy Overview of the programme being implemented Key areas of waste identified and associated cost of waste management Key environmental impact of wastes generated Benefits of efficient waste minimisation and the techniques being used Case studies to demonstrate key messages and successes.
5.3.7.4.7 Monitor performance and communicate results Having set specific reduction goals, these should be tracked and the results reported at regular intervals both to management and employees. Monitoring performance will assist in the overall management of a project such as where material or utility consumption can be compared to a measure of work activity such as production output, i.e. the amount of electricity used per item produced. Good communication will help maintain an interest in the programme being implemented and provide the motivation and commitment to continue, particularly if the projects are reporting successful outcomes. Recognition of the efforts of individuals or groups may also be considered appropriate to reinforce good environmental achievements and help develop and sustain an environmentally responsible culture. There are many ways of presenting data using bar charts, line graphs or pie charts. Whichever method is chosen the data should be displayed in a clear and simple format, noting any trends and with key messages highlighted.
952
Safety at Work
5.3.8 The cost of failure to manage waste effectively Where waste is not managed effectively, enforcement action may be taken with the purpose of securing the protection of the environment and compliance with regulatory requirements. The regulators have a range of enforcement options before prosecution is considered. Powers to issue notices requiring actions such as the clean up of land, compliance with discharge consents and compliance by waste operators with their licences. Under the Pollution Prevention Control Regulations31, prohibition notices can also be issued on premises where processes are carried out. In many cases, the worst consequence of a conviction for an offence relating to waste may be from the adverse publicity for the business as most offences are widely reported in journals, the local press and in serious cases, the national press. These reports can have a damaging effect on the company’s reputation and can attract the attention of environmental interest groups. If an enforcement agency decides to prosecute or caution a defendant, it would consider the following factors: 䊉 䊉 䊉
the environmental impact of the non-compliance foreseeability of the events leading up to an incident the offender’s previous history, attitude, intentions and personal circumstances.
The most common offences lie in the following areas: 䊉 Water pollution Section 85 of the Water Resources Act 1991 makes it an offence to cause or knowingly permit the pollution of waters. This offence is normally prosecuted under the ‘cause’ category as this is an offence of strict liability and requires only proof that the offence occurred and the defendant caused it. The penalty can be 6 months imprisonment or a fine of up to £20 000 in the magistrates court or 2 years imprisonment or an unlimited fine in the Crown Court. 䊉 Water abstraction Section 24 of the Water Resources Act 1991 prohibits abstraction of water from streams or the ground except in pursuance of a licence granted by the Environment Agency. This offence is punishable by a fine of up to £5000 or on indictment, an unlimited fine. 䊉 Waste regulation Under Section 33 of the Environmental Protection Act 1990, it is an offence to deposit waste, or knowingly cause or permit waste to be deposited, in or on any land except in accordance with a waste management licence. This places on producers of waste a duty to take reasonable care to know and monitor how others in the waste chain manage their waste if they are to avoid charges of ‘knowingly causing’ or ‘knowingly permitting’ unlawful deposit or treatment of waste. A producer has a defence to those causing or permitting offences if he can show he took all reasonable precautions and exercised due diligence.
Waste management
953
Penalties for offences under section 33 are, on summary conviction (in a magistrates court), a fine of up to £20 000 or a term of imprisonment of up to 6 months, or both and on indictment (in a Crown Court), a term of imprisonment of up to 2 years, or a unlimited fine or both. Offences under section 34 of the above Act which places a ‘Duty of Care’ on any person who handles controlled waste, can on summary conviction, lead to a fine of up to £5000 and on indictment, to an unlimited fine. 䊉 Waste packaging Under regulation 34 of the Producer Responsibility Obligations (Packaging Waste) Regulations 1997 it is an offence to: 䊉 䊉 䊉
fail to register with the appropriate Agency or join a compliance scheme fail to carry out the recycling/recovery obligation fail to provide the Agency with a certificate of compliance.
Offences are punishable by a fine of up to £5000 or on indictment, an unlimited fine.
5.3.9 Conclusion Over the last ten years there have been significant developments in the area of environmental management as Government and business work to drive activities towards sustainable waste management practices. Success in meeting this vision requires the implementation of different facets such as regulatory obligations, market based benefits (economic, fiscal or voluntary) and Government incentives as set out below. Legislators have introduced a large number of environmental laws to control the management of wastes and more recently, the concept of producer responsibility has become an important element of the Government’s waste strategy, as seen in the packaging laws which place obligations on businesses to recover and recycle specified amounts of packaging and in the proposed ‘end of life’ laws for vehicles and electronic equipment setting out requirements aimed at controlling final disposal and avoiding landfill. While regulation plays a key role in environmental protection, other measures are equally important. Environmental management systems (such as ISO 14001 and the EC’s Eco-management and Audit Scheme) have been implemented by organisations to demonstrate their commitment to good environmental management practices in minimising environmental impacts leading in turn to an overall improvement in environmental performance. The Department of the Environment Food and Rural Affairs (DEFRA) has run a series of initiatives that are intended to encourage business to employ best practice by demonstrating cost-effective actions that can improve both business and environmental performance through programmes such as ‘Envirowise’ and the Energy Efficiency Best Practice Programme.
954
Safety at Work
Fiscal instruments have more recently begun to emerge as market based forces focus on environmental improvements through taxes and levies such as the landfill tax introduced in 1996, and the Climate Change Levy32 that came into effect on 1 April 2001. There is still a fair way to go and the next ten years will see further advancement in environmental management practices as we strive to ‘meet the needs of the present without compromising the ability of the future generations to meet their own needs’ (a definition of sustainable development by the World Commission on Environment and Development in the Brutland Report)33.
References 1. Deposit of Poisonous Waste Act 1972, repealed by the Control of Pollution Act 1974 2. Control of Pollution Act 1974, (c.40) replaced by Part II of the Environmental Protection Act 1990 3. Environmental Protection Act 1990, The Stationery Office, London (1990) 4. Environment Act 1995, The Stationery Office, London (1995) 5. Control of Pollution (Amendment) Act 1989, The Stationery Office, London (1989) 6. Controlled Waste (Registration of Carriers and Seizure of Vehicles) Regulations 1991, The Stationery Office, London (1991) 7. Waste Management Licensing Regulations 1994 and amendments SI 1995 No 288, SI 1995 No 1950, SI 1996 No 634, SI 1996 No 1279, SI 1997 No 351, SI 1997 No 2203, SI 1998 No 606, The Stationery Office, London. 8. Transfrontier Shipment of Waste Regulations 1994, The Stationery Office, London (1994) 9. The Special Waste Regulations 1996 and amendments SI 1996 No. 2019, SI 1997 No. 251, SI 2001 No. 3148, The Stationery Office, London 10. Finance Act 1996 and Landfill Tax Regulations 1996 SI No. 1527 and amendments SI 1996 No. 2100, SI 1998 No. 61, SI 1999 No. 3270 and SI 2002 No. 1, The Stationery Office, London 11. Producer Responsibility Obligations (Packaging Waste) Regulations 1997 and amendments SI 1999 No. 1361, SI 1999 No. 3447, SI 2000 No. 3375, The Stationery Office, London 12. National Waste Production Survey, www.environmentagency.gov.uk 13. Scottish Environmental Protection Agency (SEPA), National Waste Strategy, Scotland (1999), www.sepa.org.uk 14. Council Directive 75/442/EEC of 15 July 1975 on Waste, amended 91/156/EEC and 91/692/EEC 15. Department of the Environment, Transport and Regions, Circular 11/94: Environmental Protection Act 1990: Part II, Waste Management Licensing, the Framework Directive on Waste, The Stationery Office, London (1994) 16. Waste Management Licensing Regulations 1994, The Stationery Office, London (1994) 17. Department of the Environment, Transport and Regions, Circular 04/2000: Planning controls for hazardous substances, replacing DoE Circular 11/92. The Stationery Office, London (2000) 18. Controlled Waste Regulations 1992, The Stationery Office, London (1992) 19. Environment Agency, Special Waste Explanatory Notes, www.environmentagency.gov.uk 20. Environmental Protection (Duty of Care) Regulations 1991, The Stationery Office, London (1991) 21. Department of the Environment, Transport and Regions, Waste Management, the Duty of Care, A Code of Practice, The Stationery Office, London 22. Water Resources Act 1991, The Stationery Office, London (1991) 23. Water Industry Act 1991, The Stationery Office, London (1991) 24. The Urban Wastewater Treatment Regulations 1994, The Stationery Office, London (1994) 25. European Union, Decision 94/904/EC establishing a list of hazardous waste pursuant to Article 1(4) of Council Directive 91/689/EEC on hazardous waste (last updated February 2001), EU, Luxembourg
Waste management
955
26. Chemicals (Hazard Information and Packaging for Supply) Regulations 2002, The Stationery Office, London (2002) 27. Health and Safety Executive, Publication no: L124, Approved Supply List (Sixth edition) (2000) gives classification and labelling information for several thousand commonlysupplied chemicals. Publication no: L199 Approved Classification and Labelling Guide (Fourth edition) (1999) provides information on how to classify and label chemicals not listed in the Approved Supply List. HSE Books, Sudbury 28. European Union, Classification, packaging and labelling of dangerous substances in the European Union, Part 2 (1997), a publication of the European Commission detailing test methods, EU, Luxembourg (1997) 29. Environment Agency, A guide to the Special Waste Regulations 1996, The Stationery Office, London. www.environment agency.gov.uk/commondata/105385/specwaste 30. European Union Council Regulation 259/93 of 1 February 1993 on the Supervision and control of shipments of waste within, into and out of the European Community, EU, Luxembourg (1993) 31. Pollution Prevention and Control [England and Wales] Regulations 2000, The Stationery Office, London (2000) 32. www.hmce.gov.uk/business/othertaxes/ccl 33. Bruntland, G. (ed.), Our Common Future: The World Commission on Environment and Development, Oxford University Press, Oxford (1987).
Further reading Environmental Compliance Manual: Practical Guidance for Managers – Gee Publishing Limited Croners Waste Management, Croners Publications Limited Croners Environmental Management, Croners Publications Limited Napier, C., Waste Management: Legal Requirements and Good Practice for Producers of Waste Waste Minimisation: An Environmental Good Practice Guide for Industry, Environment Agency (2001) Waste Minimisation: A Guide for Industry to their Reduction of Wastes and their Pollutant Effects, Loss Prevention Council (1994) Waste Minimisation, Institution of Wastes Management (1996) Practical Advice on Best Value and the Waste Management Industry, IWM Business Services Limited Resource Productivity, Waste Minimisation and the Landfill Tax, Advisory Committee on Business and the Environment (2001) The US EPA Manual for Waste Minimisation Opportunity Assessments, The US Environment Protection Agency Report number EPA/600/2–88/025 (1988) Crittenden, B.D. and Kolaczkowski, S.T., Waste Minimisation Guide, The Institution of Chemical Engineers, Rugby (1992)