Water Quality Study of the Baltic Sea by Optical Remote Sensing Methods

Water Quality Study of the Baltic Sea by Optical Remote Sensing Methods

523 WATER QUALITY STUDY OF THE BALTIC SEA BY OPTICAL REMOTE SENSING METHODS J. Lokk, A. Purga I n s t i t u t e o f Thermophysics and E l e c t r o ...

320KB Sizes 0 Downloads 57 Views

523

WATER QUALITY STUDY OF THE BALTIC SEA BY OPTICAL REMOTE SENSING METHODS

J. Lokk, A. Purga I n s t i t u t e o f Thermophysics and E l e c t r o p h y s i c s Academy o f Sciences o f t h e Estonian S.S.R. INTRODUCTION O p t i c a l remote sensing methods enable us t o save t i m e i n studying t h e spatial

and temporal

v a r i a b i l i t y o f oceanic p r o p e r t i e s ,

and t o c o l l e c t

simultaneous data f o r l a r g e area. I n t h i s paper, we discuss t h e p o s s i b i l i t y o f u s i n g measurements o f t h e upward s p e c t r a l radiance t o study the d i s t r i b u t i o n o f suspended and d i s solved m a t t e r i n t h e sea. t h e research vessel R/V

The experiments were performed d u r i n g c r u i s e s o f "Ayu-Dag"

i n t h e B a l t i c Proper, and from aboard a

h e l i c o p t e r i n c o a s t a l areas. DISCUSSION

The study o f t h e s p a t i a l d i s t r i b u t i o n s o f v a r i o u s c o n s t i t u e n t s i n t h e sea by remote sensing methods i s somewhat l i m i t e d by t h e f a c t t h a t we can o n l y measure d i r e c t l y t h e o p t i c a l l y a c t i v e m a t t e r i n t h e water, phytoplankton pigments,

suspended matter, and y e l l o w substance.

such as The quan-

t i t y o f o t h e r substances can o n l y be estimated i n an i n d i r e c t way, u s i n g

known r e l a t i o n s h i p s between these substances and t h e o p t i c a l l y a c t i v e matter.

Many authors simply use t h e c o r r e l a t i o n s between t h e c o n c e n t r a t i o n o f

a given substance and sea b r i g h t n e s s i n one o r two s p e c t r a l bands.

This

method can o n l y be used under c e r t a i n c o n d i t i o n s , f o r we know t h a t b r i g h t ness i s n o t o n l y a f u n c t i o n o f water q u a l i t y b u t i t i s a l s o s t r o n g l y corr e l a t e d w i t h t h e downward s p e c t r a l i r r a d i a n c e . radiance v a r i e s g r e a t l y i n t h e B a l t i c area.

The downward s p e c t r a l i r For a d i r e c t study o f t h e

c h a r a c t e r i s t i c s o f water masses, we use t h e s p e c t r a l radiance index, p ( A ) , d e f i n e d by t h e expression:

Br(A)

= Bo(A) where B r ( A )

i s t h e sea radiance toward t h e n a d i r p o i n t and BO(A)

i s the

d i f f u s e radiance. When measurements a r e made t o study suspended and d i s s o l v e d matter i n t h e sea, r e f l e c t i o n s from t h e sea surface contaminate t h e data.

However, i n

s t u d i e s o f t h e c o n d i t i o n s o f t h e sea surface ( o i l s l i c k s , waves, e t c . ) ,

the

524

sun g l i t t e r s c o n s t i t u t e t h e main s i g n a l .

Experiments show t h a t , on a cloud-

l e s s day and w i t h a h i g h sun, about 40% o f t h e sea s u r f a c e i s covered w i t h sun g l i t t e r s i n t h e B a l t i c Sea.

I n order t o o b t a i n r e l i a b l e i n f o r m a t i o n on

subsurface l a y e r s i n t h e presence o f sun g l i t t e r s , we have t o make measurements when t h e h e i g h t o f t h e sun i s l e s s t h a n 50" o r t o i n c l i n e t h e r a d i o meter a t some angle from t h e n a d i r p o i n t i n t h e d i r e c t i o n f a c i n g t h e sun. Assuming t h a t a l l r a d i a t i o n r e g i s t e r e d i n near i n f r a r e d i s r e f l e c t e d o n l y from t h e water surface, we can then estimate c o r r e c t i o n s f o r r e f l e c t e d l i g h t i n t h e o t h e r s p e c t r a l bands. An a l t e r n a t i v e method i s t o use, lowing

expression

(Lokk

and

as a f i r s t approximation, t h e f o l -

Pelevin,

1978;

Pelevin,

Pelevina:'

and

Kel b a l ikhanov, 1979):

where R(A)

denotes t h e d i f f u s e s p e c t r a l radiance index, B&(A)

the zenith

p o i n t s p e c t r a l radiance and 0.02 i s t h e value o f t h e Fresnel c o e f f i c i e n t f o r o r t h o g o n a l l y f a l l i n g l i g h t beam radiance.

The u n d e r l y i n g assumption i s t h a t

t h e z e n i t h p o i n t and a 20° area around i t have equal b r i g h t n e s s .

We w i l l

have t h e b e s t r e s u l t s i f t h e s u r f a c e i s smooth. The two beam approximation discussed by Morel and' P r i e u r (1977) desc r i b e s t h e d i f f u s e s p e c t r a l radiance index by t h e expression:

where k i s a nondimensional c o e f f i c i e n t , p(A) t h e backward s c a t t e r i n g coe f f i c i e n t and K(A) t h e l i g h t a b s o r p t i o n c o e f f i c i e n t (absorbance). The absorbance can be c a l c u l a t e d i n t h e f o l l o w i n g way

where K ~ ( A ) denotes t h e absorbance by pure water,

a),

K

P

(A) t h e absorbance caused

(A) t h e absorbance caused Y by d i s s o l v e d o r g a n i c m a t t e r ( y e l l o w substance) and K~ t h e absorbance caused by phytoplankton pigments (mainly c h l o r o p h y l l

K

by n o n s e l e c t i v e p a r t i c l e s o r "grey" suspended m a t t e r .

Using ( 4 ) ,

equation

( 3 ) can be w r i t t e n as R(A) = k

p(A)

p(A) + KW(A)

+ K

P

(A) + K (A) + Y

KM

'

(5)

525 For water, t h e f u n c t i o n p ( A ) v a r i e s slowly.

Q u a l i t a t i v e spectral distribu-

t i o n curves o f o t h e r q u a n t i t i e s are known.

The i n f l u e n c e o f t h e d i f f e r e n t

components on t h e s p e c t r a l curve R(A)

v a r i e s w i t h t h e wavelength.

The

dominant f a c t o r s i n v a r i o u s s p e c t r a l bands can be categorized as f o l l o w s :

550-600 nm

KM' M'

500-550 and 600-680 nm 400-500 nm 350-400 nm

K,, KM,

KM,

p,, B,, B,,

(p,

denotes

the

backward

scattering

from suspended m a t t e r ) K~(A)

K~(A), K~(A)

~ ~ 0 ~1 ~, 0 B(A) 1 , .

I n t h e case o f c l e a r oceanic water, d e r e t h e i n f l u e n c e o f some components i s small, results.

t h e system o f equations based on (5) gives s a t i s f a c t o r y

However, when t h e water c o n s i s t s o f a complicated m i x t u r e o f

o p t i c a l l y a c t i v e m a t t e r ( l i k e t h e B a l t i c Sea and t h e e s t u a r i e s o f l a r g e rivers),

t h e r e s u l t s are found wanting.

Accuracy i n such c o n d i t i o n s i s

determined by t h e s i m p l i f i c a t i o n s t h a t have been made on a case by case basis.

Choosing these s i m p l i f i c a t i o n s g i v e s us t h e p o s s i b i l i t y o f f i n d i n g

more s e n s i t i v e s p e c t r a l ranges and r e l a t i o n s f o r c a l c u l a t i n g t h e q u a n t i t a t i v e d i s t r i b u t i o n o f some substances.

As an example, F i g u r e 1 shows a map

based on measurements f r o m t h e h e l i c o p t e r a f t e r a s t r o n g storm i n t h e G u l f o f Riga (Pelevin, Gruzevich and Lokk, 1980).

The map shows t h e d i s t r i b u t i o n

( i n r e l a t i v e u n i t s ) o f y e l l o w substance i n t h e sea.

The r a t i o p369/p560

used t o d e s c r i b e t h e y e l l o w substance c o n t e n t o f t h e water.

is

The measure-

ments were confirmed by a n a l y z i n g water samples c o l l e c t e d a t various s i t e s from t h e h e l i c o p t e r f o r c a l i b r a t i o n and,determination o f t h e o p t i c a l charact e r i s t i c s o f t h e main o p t i c a l l y a c t i v e substances i n l a b o r a t o r y . A more p r e c i s e method i s one which u t i l i z e s t h e whole spectrum o f l i g h t backscattered from t h e sea.

Knowing t h e o p t i c a l c h a r a c t e r i s t i c s o f t h e most

i m p o r t a n t substances o b t a i n e d i n l a b o r a t o r y experiments f o r the study area, we can e s t i m a t e t h e u n i v e r s a l s p e c t r a l curves f o r d i f f e r e n t concentrations, g i v e n by

where

PA) = p'(A)

+ K

and where we denote by

P'

526

r

Fig. 1.

O i s t r i b u t i o n o f t h e r a t i o p369/p560 f o r t h e Riga G u l f area on t h e

b a s i s o f t h e d a t a o f 18 and 19 September 1977. d e f i n e d as follows

The numerical s c a l e i s

521 K

t h e n o n s e l e c t i v e absorbance by p a r t i c l e s ,

P

p'(A)

t h e backward s c a t t e r i n g c o e f f i c i e n t f o r w a t e r w i t h suspended matter,

K

t h e p u r e w a t e r absorbance,

W

t h e r e l a t i v e absorbances b y c h l o r o p h y l l and y e l l o w substance,

KP' KY c,

r e s p e c t i v e l y , and by

s

the

concentrations

of

chlorophyll

and

yellow

substance.

The c o n c e n t r a t i o n s o f o p t i c a l l y a c t i v e substances can t h e n be o b t a i n e d by comparing t h e measured s p e c t r a l d i s t r i b u t i o n curves w i t h t h e c a l c u l a t e d curves.

The "measured"

concentrations a r e , t h e s e t o f values f o r which t h e

c a l c u l a t e d spectrum i s most s i m i l a r t o the' observed s p e c t r a l c u r v e .

Figure

2 shows a c t u a l measured s p e c t r a l c u r v e s and F i g u r e s 3, 4 and 5 show v a r i o u s e s t i m a t e d model curves. Finally, the

i t may be t h a t measurements o f c h l o r o p h y l l c o n c e n t r a t i o n by

UNESCO method and b y t h e remote method a r e i n h e r e n t l y d i f f e r e n t .

I n one

case t h e a n a l y s i s a p p l i e s t o samples from d i s c r e t e depths which may a l l be outside

t h e maximum c o n c e n t r a t i o n

layers,

whereas i n t h e o t h e r case t h e

v a r i a b l e we measure accounts f o r a l l t h e c h l o r o p h y l l i n t h e a c t i v e l a y e r (really

up t o Secchy d i s c

v i s i b i l i t y depth) w i t h d i f f e r e n t i n f l u e n c e a t

d i f f e r e n t depths. CONCLUSIONS

We have shown t h a t i n f o r m a t i o n a b o u t t h e f u l l

spectrum o f u p w e l l i n g

l i g h t i s needed f o r w a t e r q u a l i t y s t u d i e s b y o p t i c a l remote s e n s i n g methods.

In w a t e r s w i t h a c o m p l i c a t e d c o m p o s i t i o n of o p t i c a l l y a c t i v e m a t t e r (e.g. estuaries,

c l o s e d seas) i n f o r m a t i o n i s needed a b o u t t h e o p t i c a l p r o p e r t i e s

o f t h e main components p r e s e n t i n t h e a r e a ( c h l o r o p h y l l , y e l l o w substance, etc.).

528

15-

10-

05 -

I

F i g . 2.

I

400

500

I

600

nm

Measured spectral radiance.

I

1.0

I L 400

Orno

I.

500

600

nm

3. Computed spectral radiance w i t h a ) c=O.1, y=O.O, 8=0.0020; b) c=O.Ol, ~ 1 . 0 , B=O.O018; C ) ~ ~ 2 . 0~ , 0 . 0 , B=O.O020; d) ~ ~ 2 . 0yzl.0, , B=O. 0020. Fig.

529

I

c= 20 p=(01+ 1.0 1

1.0- 10

- a

051

'0.1 500

400 Fig. 4.

600

700 nm

Dependence o f t h e s p e c t r a l radiance, p(A),

f i x e d c h l o r o p h y l l c o n c e n t r a t i o n (c=Zmg.m

-3

on t h e parameter p f o r

).

-

p = 0.1 m- 1

C =(Q5+ 5.0)

.

0.5

1.0 .

0.5 .

5.0

400 Fig.

5.

500

600

Dependence o f t h e s p e c t r a l

concentration f o r

p =

0 . 1 rn

-1.

700 nm

radiance,

p(A),

on t h e c h l o r o p h y l l

530 REFERENCES Eerme, K. and J . Lokk, 1980. On t h e B a l t i c Sea water b r i g h t n e s s and c o l o u r measurements by t h e research vessel "Ayu-Dag" i n August 1977. Proc. o f t h e 1 1 t h Conf. o f B a l t i c Oceanographers, V o l . 2, Rostock. Lokk, J. and V. P e l e v i n , 1977. The i n t e r p r e t a t i o n o f t h e spectrum o f t h e u p w e l l i n g r a d i a t i o n based on the B a l t i c Sea. Proc. o f t h e 1 1 t h Conf. o f B a l t i c Oceanographers, Vol. 2, Rostock. Morel, A. and P r i e u r , L., 1977. Analysis o f v a r i a t i o n s i n ocean c o l o r . Limnol. Oceanogr. , 22: 709-722. Pelevin, V.N., M.A. Pelevina and B.F. Kelbalikhanov, 1979. Upwelling spectrum s t u d i e s from aboard a h e l i c o p t e r ( i n Russian) Opticheskie metody i z u c h e n i j a okeanov i v n u t r e n n i h vodojemov, Novosibirsk. Pelevin, V . , A. Gruzevich and J. Lokk, 1980. On t h e p o s s i b i l i t y o f e v a l u a t i n g t h e d i s t r i b u t i o n o f y e l l o w substance i n t h e sea water by t h e outcoming r a d i a t i o n spectra ( i n Russian), Svetovye p o l j a v okeane., Mos kva. Schmidt, D. and K.A. U l b r i c h t , 1978. Mass occurrence o f blue-green algae i n t h e Western B a l t i c e v a l u a t i o n o f s a t e l l i t e imagery and i m p l i c a t i o n s on marine chemistry and p o l l u t i o n . Proc. o f t h e 1 1 t h Conf. o f B a l t i c Oceanographers, Vol. 1, Rostock.