Applied Mathematics and Computation 212 (2009) 229–233
Contents lists available at ScienceDirect
Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc
Weighted-Hardy functions with Hadamard gaps on the unit ball Songxiao Li a, Stevo Stevic´ b,* a b
Department of Mathematics, JiaYing University, 514015 Meizhou, GuangDong, China Mathematical Institute of the Serbian Academy of Science, Knez Mihailova 36/III, 11000 Beograd, Serbia
a r t i c l e
i n f o
a b s t r a c t We prove that an analytic function f on the unit ball B with Hadamard gaps, that is, P (the homogeneous polynomial expansion of f) satisfying f ðzÞ ¼ 1 n k¼1 P nk ðzÞ nkþ1 =nk P k > 1 for all k 2 N, belongs to the space Bap ðBÞ ¼ f j sup0
0 if and only if lim supk!1 kP nk kp n1 k a . Also we prove that the following asymptotic relation holds kf kBap supk2N kP nk kp n1 k a ¼ 0. These results confirm two limr!1 ð1 r2 Þa kRfr kp ¼ 0 if and only if limk!1 kPnk kp n1 k conjectures from the following recent paper [S. Stevic´, On Bloch-type functions with Hadamard gaps, Abstr. Appl. Anal. 2007 (2007) 8 pages (Article ID 39176)]. Ó 2009 Elsevier Inc. All rights reserved.
Keywords: Holomorphic function a-Bloch space Weighted-Hardy space Hadamard gaps Unit ball
1. Introduction Let B ¼ Bn be the open unit ball of Cn ; S ¼ oB be its boundary, D ¼ B1 the unit disk in C; dr the normalized rotation invariant Lebesgue measure on S, i.e., rðoBÞ ¼ 1 and HðBÞ the class of all holomorphic functions on B. P For f 2 HðBÞ with the Taylor expansion f ðzÞ ¼ jbjP0 ab zb , let
Rf ðzÞ ¼
X
jbjab zb
jbjP0
be the radial derivative of f, where b ¼ ðb1 ; b2 ; . . . ; bn Þ is a multi-index and zb ¼ zb11 zbnn . It is easy to see that
Rf ðzÞ ¼
1 X
kP k ðzÞ
k¼0
P if f ðzÞ ¼ 1 k¼0 P k ðzÞ (the homogeneous polynomial expansion of f). As usual, we write
kfr kp ¼
Z
jf ðrfÞjp drðfÞ
1=p
S
if p 2 ð0; 1Þ, and where fr ðfÞ ¼ f ðrfÞ; 0 6 r < 1. If p ¼ 1, then kf k1 ¼ supz2B jf ðzÞj. The a-Bloch space Ba ðBÞ ¼ Ba ; a > 0, is the space of all holomorphic functions f on B such that
ba ðf Þ ¼ supð1 jzj2 Þa jRf ðzÞj < 1: z2B
Ba is a normed space with the norm
kf kBa ¼ jf ð0Þj þ ba ðf Þ: * Corresponding author. E-mail addresses: [email protected], [email protected] (S. Li), [email protected] (S. Stevic´). 0096-3003/$ - see front matter Ó 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2009.02.019
S. Li, S. Stevic´ / Applied Mathematics and Computation 212 (2009) 229–233
230
Let Ba0 ðBÞ ¼ Ba0 denote the subspace of Ba consisting of those f such that
lim ð1 jzj2 Þa jRf ðzÞj ¼ 0:
jzj!1
This space is called the little a-Bloch space. For a ¼ 1 the a-Bloch space and the little a-Bloch space become the Bloch space B and the little Bloch space B0 . Some information on these spaces can be found, for example, in the following papers [4,7– 9,13,15,17,21,22] (on some related spaces of holomorphic functions on the unit ball, see also [5,18]). The weighted Hardy space Bap ðBÞ ¼ Bap consists of all f 2 HðBÞ such that
kf kBap :¼ sup ð1 r 2 Þa kRfr kp < 1: 0
The little weighted Hardy space is defined as follows:
Bap;0 ðBÞ ¼
f j limð1 r2 Þa kRfr kp ¼ 0; f 2 HðBÞ : r!1
We say that an analytic function f on the unit disk D has Hadamard gaps if f ðzÞ ¼ k 2 N. In [19] Yamashita proved the following result:
P1
k¼1 ak z
nk
where nkþ1 =nk P k > 1 for all
Theorem A. Assume that f is an analytic function on D with Hadamard gaps. Then for a > 0, the following two statements hold. a < 1. (a) f 2 Ba ðDÞ if and only if lim supk!1 jak jn1 k a 1a (b) f 2 B0 ðDÞ if and only if limk!1 jak jnk ¼ 0.
P An analytic function on B with the homogeneous expansion f ðzÞ ¼ 1 k¼1 P nk ðzÞ (here, P nk is a homogeneous polynomial of degree nk ) is said to have Hadamard gaps if nkþ1 =nk P k > 1 for all k 2 N. Motivated by Theorem A, in [16] the second author of this paper proved the following result. P Theorem B. Assume a > 0; p ¼ 1; 2; 1, and f ðzÞ ¼ 1 k¼1 P nk ðzÞ is an analytic function on B with Hadamard gaps. Then the following statements hold. a < 1. (a) f 2 Bap ðBÞ if and only if lim supk!1 kPnk kp n1 k a ¼ 0. (b) f 2 Bap;0 ðBÞ if and only if limk!1 kP nk kp n1 k
For related results see, e.g., [1–3,6,10,11,14,20,22] and references therein. In [16] S. Stevic´ conjectured that Theorem B also holds for the case p P 1. Our aim here is to confirm the conjecture. Moreover we give an asymptotic relationship for the norm of the functions belonging to Bap . The main result in this paper is the following. P Theorem 1. Assume that a > 0; p > 0, and f ðzÞ ¼ 1 k¼1 P nk ðzÞ is an analytic function on B with Hadamard gaps. Then the following statements hold true: a < 1. Moreover, the following asymptotic relation holds: (a) f 2 Bap if and only if lim supk!1 kP nk kp n1 k
a kf kBap sup kPnk kp n1 : k
ð1Þ
k2N
a ¼ 0. (b) f 2 Bap;0 if and only if limk!1 kPnk kp n1 k
Throughout this paper, constants are denoted by C, they are positive and may differ from one occurrence to the other. The notation A B means that there is a positive constant C such that B=C 6 A 6 CB. 2. Proof of the main result Before proving Theorem 1 we quote an auxiliary result (see [23]). Lemma 1. Assume that p 2 ð0; 1Þ. If ðnk Þ is an increasing sequence of positive integers satisfying nkþ1 =nk P k > 1 for all k, then there is a positive constant A depending only on p and k such that 1 1 X jak j2 A k¼1
!1=2 6
1 2p
for any sequence ðak Þk 2 N.
p !1=p !1=2 Z 2p X 1 1 X 2 ink h a e dh 6 A ja j k k¼1 k 0 k¼1
S. Li, S. Stevic´ / Applied Mathematics and Computation 212 (2009) 229–233
231
Proof of Theorem 1. (a) The proof combines ideas from [14] and [16]. Let f 2 Bap . By Proposition 1.4.7 in [12], the definition of the radial derivative and Lemma 1, we have
Z
jRf ðrfÞjp drðfÞ ¼
S
Z Z 2p S
jRf ðrfeih Þjp
0
Z
1 X
S
dh drðfÞ ¼ 2p !p=2
n2k jPnk ðfÞj2 r2nk
p Z Z 2p X dh 1 nk Pnk ðrfeih Þ drðfÞ 2p k¼1 S 0
drðfÞ P npk r pnk
k¼1
Z S
jP nk ðfÞjp drðfÞ;
ð2Þ
for each k 2 N. Hence
ð1 rÞa nk r nk kPnk kp 6 ð1 r 2 Þa kRfr kp 6 kf kBap :
ð3Þ
1 nþ1
Choosing r ¼ 1 n1 in (3), and using the well-known inequality 1 þ n k
6 4; n 2 N, we obtain
a sup kPnk kp n1 6 Ckf kBap k
ð4Þ
k2N
as desired. a < 1. If p 2 ð0; 2, from (2) and by using the known inequality Now assume that lim supk!1 kPnk kp n1 k 1 X
!q
ak
6
1 X
k¼1
aqk ;
k¼1
where ak P 0; k 2 N; q 2 ð0; 1, we have that
kf kpBap sup ð1 r 2 Þpa
Z
0
1 X
S
6 C sup ð1 r 2 Þpa 0
6 C sup ð1 r p Þpa 0
!p=2
n2k jP nk ðfÞj2 r 2nk
1 X k¼1 1 X
6 C sup ð1 r Þ 0
ð5Þ
r pnk npk kPnk kpp r pnk npk kPnk kpp
k¼1 p paþ1
drðfÞ
k¼1
1 X X n¼1
! npk kPnk kpp
rpn
ð6Þ
nk 6n
!
p 1 X X pa a C sup ð1 r p Þpaþ1 nk ðrp Þn 6 sup kPnk kp n1 k k2N
0
n¼1
0
n¼1
nk 6n
p 1 X a 6 C sup kPnk kp n1 sup ð1 r p Þpaþ1 npa ðr p Þn k k2N
p a 6 C sup kPnk kp n1 ; k
ð7Þ
k2N
where we have used the fact that there is a positive constant C independent of n such that
X
npka 6 Cnpa
nk 6n
(here is used the assumption that nkþ1 =nk P k > 1 and the formula for the sum of a geometric progression) and the following well-known estimate: 1 X
nb qn 6 Cð1 qÞðbþ1Þ ;
n¼1
b > 0; q 2 ½0; 1Þ, see, for example, [23]. From (4) and (7) the asymptotic relation in (1) follows in this case. If p P 2, then by Jensen’s inequality from (5) we get
kf kpBa p
2 pa
6 C sup ð1 r Þ 0
1 X
!p=2 n2k r 2nk kPnk k2p
ð8Þ
k¼1
and consequently
2 1 X a kf k2Bap 6 C sup kPnk kp n1 sup ð1 r 2 Þ2a n2k a r 2nk k k2N
0
k¼1
S. Li, S. Stevic´ / Applied Mathematics and Computation 212 (2009) 229–233
232
from which the implication follows as in the case p 2 ð0; 2. (b) Let f 2 Bap;0 , then for every e > 0 there is a d > 0 such that
ð1 r2 Þa
Z
1=p jRf ðrfÞjp drðfÞ < e;
ð9Þ
S
whenever d < r < 1. From the first inequality in (3), and (9), we have
ð1 rÞa nk r nk kPnk kp < e 1 for every k 2 N and r 2 ðd; 1Þ. Choosing r ¼ 1 n1 ; where nk > 1d ; we obtain k
a n1 kPnk kp < 4e: k
From this and since
lim
k!1
e is an arbitrary positive number it follows that
a kP nk kp n1 k
¼ 0:
a ¼ 0. Then for every Now assume that limk!1 kP nk kp n1 k
a1
kPnk kp 6 enk ;
e > 0 there is a k0 2 N such that
for k > k0 :
From this, (2) and by the proof of (a), when p 2 ð0; 2, we have that
ð1 r2 Þpa kRfr kpp 6 Cð1 r 2 Þpa
1 X k¼1
r pnk npk kP nk kpp 6 Cð1 r2 Þpa
k0 X
rpnk npk kPnk kpp þ C ep ð1 r2 Þpa
1 X k¼k0 þ1
k¼1
6 Cð1 r 2 Þpa Pnk
! 1 X X pa p p p paþ1 ðr Þ þ C e ð1 r Þ nk r pn
6 Cð1 r 2 Þpa Pnk
1 X ðr p Þ þ C ep ð1 r p Þpaþ1 npa rpn 6 Cð1 r 2 Þpa Pnk ðr p Þ þ C ep ;
0
0
n¼1
r pnk npka
nk 6n
n¼1
0
ð10Þ
where P nk is a polynomial of degree nk0 . 0 Letting r ! 1 0 in (10), and using the fact that
lim ð1 r 2 Þpa Pnk ðrÞ ¼ 0
r!10
0
it follows that:
lim supð1 r 2 Þa kRfr kp 6 C 1=p e: r!10
Since e is an arbitrary positive number the implication follows in this case. The implication for case p P 2 follows similarly, from the following inequality:
ð1 r2 Þpa kRfr kpp 6 Cð1 r 2 Þpa
1 X
!p=2 n2k r 2nk kPnk k2p
;
k¼1
which easily follows from (2) (see (8)). Hence, we omit this part of the proof. Acknowledgement The first author of this paper is supported by NSF of Guangdong Province (No. 7300614). References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
K.L. Avetisyan, Hardy–Bloch type spaces and lacunary series on the polydisk, Glasgow Math. J. 49 (2) (2007) 345–356. K.L. Avetisyan, Weighted integrals and Bloch spaces of n-harmonic functions on the polydisc, Potential Anal. 29 (1) (2008) 49–63. J.S. Choa, Some properties of analytic functions on the unit ball with Hadamard gaps, Complex Variables 29 (1996) 277–285. D. Clahane, S. Stevic´, Norm equivalence and composition operators between Bloch/Lipschitz spaces of the unit ball, J. Inequal. Appl. 2006 (2006) 11 pages (Article ID 61018). X. Fu, X. Zhu, Weighted composition operators on some weighted spaces in the unit ball, Abstr. Appl. Anal. 2008 (2008) 8 pages (Article ID 605807). D. Girela, J.A. Pelàez, Integral means of analytic functions, Ann. Acad. Sci. Fenn. 29 (2004) 459–469. S. Li, Fractional derivatives of Bloch type functions, Siberian Math. J. 46 (2) (2005) 308–314. S. Li, S. Stevic´, Riemann–Stieltjes type integral operators on the unit ball in Cn , Complex Variables Elliptic Equations 52 (6) (2007) 495–517. S. Li, H. Wulan, Characterizations of a-Bloch spaces on the unit ball, J. Math. Anal. Appl. 343 (1) (2008) 58–63. X. Meng, Some results on Q K;0 ðp; qÞ space, Abstr. Appl. Anal. 2008 (2008) 9 pages (Article ID 404636). J. Miao, A property of analytic functions with Hadamard gaps, Bull. Austral. Math. Soc. 45 (1992) 105–112. W. Rudin, Function Theory in the Unit Ball of Cn , Springer-Verlag, New York, 1980.
S. Li, S. Stevic´ / Applied Mathematics and Computation 212 (2009) 229–233 [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23]
233
S. Stevic´, On an integral operator on the unit ball in Cn , J. Inequal. Appl. 1 (2005) 81–88. S. Stevic´, A generalization of a result of Choa on analytic functions with Hadamard gaps, J. Korean Math. Soc. 43 (3) (2006) 579–591. S. Stevic´, Boundedness and compactness of an integral operator on a weighted space on the polydisc, Indian J. Pure Appl. Math. 37 (6) (2006) 343–355. S. Stevic´, On Bloch-type functions with Hadamard gaps, Abstr. Appl. Anal. 2007 (2007) 8 pages(Article ID 39176). S. Stevic´, Norm of weighted composition operators from Bloch space to H1 l on the unit ball, Ars. Combin. 88 (2008) 125–127. X. Tang, Extended Cesàro operators between Bloch-type spaces in the unit ball of Cn , J. Math. Anal. Appl. 326 (2) (2007) 1199–1211. S. Yamashita, Gap series and a-Bloch functions, Yokohama Math. J. 28 (1980) 31–36. H. Wulan, K. Zhu, Lacunary series in Q K spaces, Studia Math. 178 (2007) 217–230. R. Zhao, A characterization of Bloch-type spaces on the unit ball of Cn , J. Math. Anal. Appl. 330 (1) (2007) 291–297. K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Springer, New York, 2005. A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959.