Ó 2010 CEO Published by / E´dite´ par Elsevier Masson SAS All rights reserved / Tous droits re´serve´s
Original article Article original
Wire load–deflection characteristics relative to different types of brackets ristiques de charge– Comparaison des caracte rents types de brackets flexion de fils selon diffe Luca LOMBARDOa1,*, Angela ARREGHINIa2, Kholoud AL ARDHAb, Giuseppe SCUZZOa1, Kyoto TAKEMOTOc1, Giuseppe SICILIANIa3 a
Department of Orthodontics, University of Ferrara, Via Montebello, 31, Ferrara 44100, Italy Dubai, PO Box 212482, Dubai, United Arab Emirates c 2-5-7 Kudanminami, Chiyoda, Tokyo, 102-0074 Japan b
Available online: 3 Febuary 2011 / Disponible en ligne : 3 fevrier 2011
Summary
sume Re
Objective: To test the hypothesis that the dimension of the bracket, both in labial and in lingual orthodontics, is a relevant parameter to determine the forces acting on the teeth, and that some wires commonly used in labial orthodontics (0.016”diameter SS, TMA and Nitinol) are not suitable for the first phase of lingual treatment. Materials and methods: An ideal dental cast was bonded with eight different brackets (Damon 3MX, Ovation, Time 2, Innovation and Smart Clip Clarity on the vestibular face; STB, Adenta Time and Innovation-L on the lingual). After photographic documentation, the interbracket distance was calculated for each type of bracket, using ImageJ software. The mean elasticity modulus of the tested wires was obtained from the review of the available literature. The theoretical wire load on every tooth was calculated mathematically at three different levels of deflection (0.5 mm; 1.0 mm and 1.5 mm), on both the labial and lingual sides, for all types of bracket.
que (a) les dimensions des bracObjectif : Tester l’hypothese pertinent, en orthodontie vestibulaire kets sont un parametre et linguale, pour determiner les forces agissant sur les dents et en orthodontie (b) que certains fils habituellement utilises vestibulaire (0.016 SS, TMA et Nitinol) ne conviennent pas phase de traitement vestibulaire. a` la premiere dentaire ideal, nous Materiaux et methodes : Sur un modele avons colle huit brackets differents (Damon 3MX, Ovation, Time 2, Innovation et Smart Clip Clarity en vestibulaire ; prise STB, Adenta Time et Innovation-L en lingual). Apres e calculee pour chade photos, la distance interbrackets a et que type de bracket utilisant le logiciel ImageJ. Le module a et e obtenu en effectuant d’elasticit e moyen des fils testes une revue de la litterature disponible. Au moyen de calculs mathematiques, nous avons determin e la charge theorique par les fils sur chaque dent a` trois valeurs de flexion appliquee ^ es lingual et vestibu(0,5 mm ; 1,0 mm et 1,5 mm), des cot laire, pour chaque type de bracket. Resultats : L’arcade linguale est toujours plus courte dans le segment anterieur que l’arcade vestibulaire. Les differents brackets, ayant des dimensions differentes, influent sur la distance interbrackets et, par consequent, sur la charge sur de flexion importants, le Superelastic NiTi le fil. A` des degres eres exprime des forces leg continues qui sont significative ment plus faibles qu’avec les autres alliages etudi es.
Results: The lingual arch in the anterior segment is always shorter than the vestibular arch. The different brackets, having different dimensions, have an influence on the interbracket distance, and, consequently, on the wire load. At large deflections, superelastic NiTi expresses light and continuous forces, which are significantly lower than the other examined alloys.
Correspondence and reprints / Correspondance et tires a` part. e-mail address / Adresse e-mail :
[email protected] (Luca Lombardo) 1 Member of the University of Ferrara, postgraduate school of orthodontics (professor). 2 Member of the University of Ferrara, postgraduate school of orthodontics (postgraduate student). 3 Member of the University of Ferrara, postgraduate school of orthodontics (chairman). *
120
International Orthodontics 2011 ; 9 : 120-139 doi:10.1016/j.ortho.2010.12.011
Wire load–deflection characteristics relative to different types of brackets
ristiques de charge–flexion de fils selon diffe rents types de brackets Comparaison des caracte
Conclusion: The initial hypothesis was supported. Because of the reduced interbracket distance, the adoption of superelastic wires is required in lingual mechanics and with smaller diameter compared to labial mechanotherapy, in particular during the first phases of treatment. The use of a bracket with reduced mesiodistal dimensions can contribute to reduce the load on the teeth. Ó 2010 CEO. Published by Elsevier Masson SAS. All rights reserved
initiale a et e confirmee. En raison Conclusion : L’hypothese de la distance interbrackets reduite, les fils super-elastiques sont necessaires en mecanique linguale avec un diametre plus petit par rapport a` la mecanique vestibulaire, surtout pendant les premieres phases du traitement. L’utilisation d’un bracket avec des dimensions mesiodistales reduites peut contribuer a` diminuer la charge sur les dents. Ó 2010 CEO. E´dite´ par Elsevier Masson SAS. Tous droits re´serve´s
Key-words
s Mots-cle
·· ·
Interbracket distance. Superelasticity. Lingual mechanotherapy.
·· ·
Distance interbrackets. lasticite . Super-e canothe rapie linguale. Me
Introduction
Introduction
Lingual orthodontics is an effective alternative to traditional vestibular appliances, in particular for those patients who want to preserve a pleasant smile during the whole treatment time. Hohoff, investigating the reasons why people choose lingual orthodontics, found that their main aim is to preserve their professional image as they did not wish to be seen with a conspicuous metal appliance [1].
L’orthodontie linguale offre une alternative efficace aux appareils vestibulaires traditionnels, surtout chez les patients sirant conserver un sourire agre able pendant toute la dure e de tudie les raisons pour lesdu traitement. Hohoff et al. ont e quelles les patients choisissent l’orthodontie linguale et ont que leur objectif principal e tait de pre server leur image trouve vitant de se montrer avec un appareil professionnelle en e tallique clairement visible en bouche [1]. me anmoins, il est impossible de faire un simple transfert de la Ne canique vestibulaire a` la me canique linguale en raison des me rentes conditions qui caracte risent les deux faces [2]. diffe rence principale par rapport a` l’orthodontie convenLa diffe duite : l’arcade tionnelle est la distance interbrackets plus re vestibulaire est significativement plus longue que l’arcade lingion mandibulaire ante rieure [3]. guale, surtout dans la re Les brackets linguaux et vestibulaires disponibles sur le ont des dimensions me siodistales diffe rentes, ce qui marche influe sur la distance interbrackets. e par les fils orthodontiques e lastiques est La force exerce inversement proportionnelle au cube de la distance intersulte que me ^me des re ductions minimes brackets [4]. Il en re de la longueur d’arcade produiront une augmentation signifie a` la dent. cative de la force applique es, l’alignement dentaire a e te Depuis de nombreuses anne alise avec des fils en acier inoxydable (SS). En 1978, pour la re re fois, Andreasen et Morrow ont de crit les be ne fices, premie pour la pratique orthodontique [5], du Nitinol, qui propose une lasticite semblable a` celle de l’acier, mais avec moins de e . rigidite te introduit en 1979 et rapidement adopte en Le TMA a e s : excellente me moire de forme, raison de ses qualite faible, bonne formabilite et soudage direct. Le coeffirigidite leve qu’avec cient de friction est significativement plus e d’autres alliages [6].
However, it is not possible to simply transfer vestibular mechanics to lingual devices because of the different conditions prevailing on the two surfaces [2]. The main difference compared with traditional orthodontics is the smaller interbracket distance: the labial arch is significantly longer than the lingual arch, in particular in the mandibular anterior region [3]. The commercially available lingual and vestibular brackets have different mesiovestibular dimensions, and this influences interbracket distance. The force of elastic orthodontic wires is inversely proportional to the cube of the interbracket distance [4]. This means that even small reductions in the arch length lead to a significant increase in the force applied to the tooth. For many years, dental alignment was carried out with stainless steel (SS) wires. In 1978, for the first time, Andreasen and Morrow described the beneficial characteristics for orthodontic practice [5] of Nitinol, which displays elastic behavior similar to SS, but with lower stiffness. TMA was introduced in 1979 and was quickly adopted on account of its properties: excellent shape memory, low stiffness, good formability and direct welding. The coefficient of friction is significantly higher than with other alloys [6].
International Orthodontics 2011 ; 9 : 120-139
121
Luca LOMBARDO et al.
In comparative mechanical studies carried out by Drake et al., TMA has shown greater elasticity and springback than SS making it appropriate in cases of severe malocclusion [7]. In recent years, superelastic NiTi wires have been introduced, in particular for the first steps of dental alignment, on account of their particular mechanical characteristics [8]. At small deflections they exhibit elastic behavior. Hence, the load is proportional to the deflection. However, after a given amount of wire deformation, NiTi “martensitic transformation” occurs as the shape of the crystals changes and the wire develops superelastic mechanical properties. As the deflection increases, the stress value remains fairly constant. This characteristic of the alloy is referred to as the “martensitic plateau” on the load-deflection curve [9]. A second characteristic of NiTi alloy is that the loading curve is different from the unloading curve. The difference between them is called “hysteresis”. The unloading curve has greater clinical value since it represents the forces acting on the teeth [10]. The increasing demand for lingual orthodontic treatment is forcing orthodontists to learn how to choose the appropriate type of bracket and wire and to exert physiological forces on the teeth without triggering root resorption [3]. The aim of this study was to test the hypothesis that the dimension of the bracket, in both labial and lingual orthodontics, is a relevant parameter when determining the forces that act on the teeth and that some wires commonly used in labial orthodontics are unsuitable for the first phase of lingual treatment.
tudes me caniques comparatives re alise es par Dans les e une e lasticite et un retour Drake et al., le TMA a montre lastique supe rieurs au SS, ce qui le rend utile dans les cas e ve res [7]. de malocclusions se res anne es, les fils super-e lastiques en NiTi ont e te Ces dernie s lors des premiers stades de l’aligneintroduits, surtout utilise ristiques me caniques ment dentaire, en raison de leurs caracte ` de faibles flexions, ils ont un comportement res [8]. A particulie lastique. En conse quence, la charge est proportionnelle a` la e s un certain degre de de formation, le flexion. Cependant, apre fil en NiTi subit une « transformation martensitique » se risant par un changement de forme des cristaux et le caracte veloppement de proprie te s me caniques super-e lastiques. de Avec l’augmentation de la flexion, la valeur de la contrainte crivant ainsi ce qui est appele le reste assez constante, de « palier martensitique » sur la courbe charge–flexion [9]. ristique de l’alliage NiTi concerne la Une seconde caracte rencie de la courbe de de charge. courbe de charge, qui se diffe rence entre les deux courbes s’appelle l’hyste re se. La La diffe charge a plus d’inte re ^ t dans le contexte clinique courbe de de sente les forces qui s’exercent sur les dents puisqu’elle repre [10]. La demande accrue de traitement orthodontique lingual oblige les orthodontistes a` apprendre a` choisir les types de brackets s afin d’exercer des forces physiologiques et de fils approprie sorptions radiculaires [3]. sur les dents sans provoquer de re tude e tait de tester l’hypothe se selon L’objectif de cette e laquelle, d’une part, la dimension du bracket, en technique linguale comme en technique vestibulaire, constitue un paratre pertinent pour de terminer les forces agissant sur les me s utilise s en orthodontie dents et, d’autre part, certains fils tre re phase d’un vestibulaire ne conviennent pas a` la premie traitement en lingual.
Materials and methods
riaux et me thodes Mate
To calculate the different interbracket distances when various brackets were used, an ideal dental cast was chosen for its characteristics: it featured right and left symmetrical halfarches, molar and canine Class I, normal overjet and overbite, no rotations and no diastemas. Incisors, canines and premolars were bonded on both the labial and lingual face, with four different types of brackets, as follows (fig. 1): — Damon 3MX (Ormco): vestibular segments 1 and 3; — Innovation-L (GAC): lingual segments 1 and 3; — Ovation (GAC): vestibular segments 2 and 4; — Evolution Brackets (Adenta): lingual segments 2 and 4. In a second stage, after photographic documentation, the lingual brackets at segments 1 and 4 were removed (GAC Innovation-L and Evolution Brackets Adenta, respectively), and STB brackets were bonded (fig. 2). Then, the dental cast was bonded as follows (fig. 3):
rentes distances interbrackets des Pour calculer les diffe s, nous avons choisi un mode le dentaire divers brackets utilise al en raison de ses caracte ristiques : he mi-arcades droite ide triques, absence de rotations et de diaste mes. et gauche syme
— Time 2 Bracket (by Micerium): segments 1 and 3;
122
molaires ont e te colle es sur les Les incisives, canines et pre deux faces, vestibulaire et linguale, avec quatre types de rents, et de la manie re suivante (fig. 1) : brackets diffe — Damon 3MX (Ormco) : secteurs vestibulaires 1 et 3 ; — Innovation-L (GAC) : secteurs linguaux 1 et 3 ; — Ovation (GAC) : secteurs vestibulaires 2 et 4 ; — Evolution Brackets (Adenta) : secteurs linguaux 2 et 4. me temps, apre s prise de photographies, les Dans un deuxie te de pose s (GAC brackets linguaux des secteurs 1 et 4 ont e Innovation-L et Evolution Brackets Adenta, respectivement) et te colle s (fig. 2). des brackets STB ont e le dentaire a e te colle avec les prescriptions Ensuite, le mode suivantes (fig. 3) : — Time 2 Bracket (Micerium) : secteurs 1 et 3 ;
International Orthodontics 2011 ; 9 : 120-139
Wire load–deflection characteristics relative to different types of brackets
ristiques de charge–flexion de fils selon diffe rents types de brackets Comparaison des caracte
[(Fig._1)TD$IG]
Fig. 1: a-b: typodont bonded with: Damon 3MX (by Ormco) in vestibular segments 1 and 3; Innovation-L (by GAC) in lingual segments 1 and 3; Ovation (by GAC) in vestibular segments 2 and 4; Evolution brackets (by Adenta) in lingual segments 2 and 4. avec : Damon 3MX (Ormco) sur les secteurs vestibulaires 1 et 3 ; Fig. 1 : a-b : typodont colle Innovation-L (GAC) sur les secteurs linguaux 1 et 3 ; Ovation (GAC) sur les secteurs vestibulaires 2 et 4 ; Evolution Brackets (Adenta) sur les secteurs linguaux 2 et 4.
[(Fig._2)TD$IG]
Fig. 2: a-b: typodont bonded with: Damon 3MX (by Ormco) in vestibular segments 1 and 3; Innovation-L (by GAC) in lingual segment 3; Ovation (by GAC) in vestibular segments 2 and 4; Evolution brackets (by Adenta) in lingual segment 2; STB brackets in lingual segments 1 and 4. avec : Damon 3MX (Ormco) sur les secteurs vestibulaires 1 et 3 ; Fig. 2 : a-b : typodont colle Innovation-L (GAC) sur le secteur lingual 3 ; Ovation (GAC) sur les secteurs vestibulaires 2 et 4 ; Evolution Brackets (Adenta) sur le secteur lingual 2 ; brackets STB sur les secteurs linguaux 1 et 4.
— Innovation (GAC): segments 2 and 4. Finally, Time 2 Brackets were removed and Smart Clip Clarity (3 M Unitek) were bonded at segments 2 and 4 (fig. 4). Six types of brackets used in this work were self-ligating (four on the labial side and two on the lingual) and two were traditional (one on the labial side and one on the lingual). The bonded casts were photographed with a gauge to calculate the proportions. Then, the digital images were analyzed with ImageJ software (National Institute of Health).
International Orthodontics 2011 ; 9 : 120-139
— Innovation (GAC) : secteurs 2 et 4. te de pose s et des Smart Clip Enfin, les Time 2 Brackets ont e te colle s sur les secteurs 2 et 4 (fig. 4). Clarity (3M Unitek) ont e s dans cette e tude e taient autoSix types de brackets utilise ligaturants (quatre en vestibulaire et deux en lingual) et deux taient traditionnels (un en vestibulaire et un en lingual). e les colle s e taient photographie s avec une jauge afin Les mode rise es de calculer les proportions. Ensuite, les images nume te analyse es avec le logiciel ImageJ (National Institute of ont e Health).
123
Luca LOMBARDO et al.
[(Fig._3)TD$IG]
Fig. 3: a-b: typodont bonded with: Time 2 bracket (by Micerium) in segments 1 and 3; Innovation (by GAC) in segments 2 and 4. avec : Time 2 bracket (Micerium) sur les secteurs 1 et 3 ; Innovation Fig. 3 : a-b : typodont colle (GAC) sur les secteurs 2 et 4.
[(Fig._4)TD$IG]
Fig. 4: a-b: typodont bonded with: Smart Clip Clarity (by 3M Unitek) in segments 2 and 4; Time 2 bracket (by Micerium) in segments 1 and 3. avec : Smart Clip Clarity (3M Unitek) sur les secteurs 2 et 4 ; Time 2 Fig. 4 : a-b : typodont colle Bracket (Micerium) sur les secteurs 1 et 3.
The interbracket distance was taken as the distance from the distal edge of the bracket on the mesial tooth to the mesial edge of the bracket on the distal tooth (i.e. to calculate the stress on tooth 12, the measurement was taken from the distal edge of bracket 1.1 and the mesial edge of the bracket on 13). Based on the observed interbracket distance, we calculated the hypothetical force produced by an ideal wire on a misaligned tooth, at three different levels of deflection in the horizontal plane: 0.5 mm, 1.0 mm, 1.5 mm. Four round 0.016 wires were used to calculate the load. The modulus of elasticity of the most widely used orthodontic wires was taken from the studies by Miura et al. [11] and Verstrynge et al. [6]: — SS: 17–20 103 kg/mm2; — Nitinol: 5–6 103 kg/mm2; 124
e e tait la distance entre le La distance interbrackets adopte siale et le bord me sial du bord distal du bracket de la dent me bracket de la dent distale (c.-a`-d. pour calculer la contrainte tait prise entre le bord distal du bracket de sur la 12, la mesure e sial du bracket de la 13). la 11 et le bord me e, nous Nous basant sur la distance interbrackets observe la force hypothe tique produite par un fil ide al avons calcule ale en malposition a` trois niveaux de flexion sur une dent ide dans le plan horizontal : 0,5 mm ; 1,0 mm et 1,5 mm. te utilise s pour calculer la charge. Quatre fils ronds 0,016 ont e lasticite des fils orthodontiques les plus utilise s a Le module d’e te emprunte aux e tudes de Miura et al. [11] et de Verstrynge e et al. [6] : — SS : 17–20 103 kg/mm2 ; — Nitinol : 5–6 103 kg/mm2 ;
International Orthodontics 2011 ; 9 : 120-139
Wire load–deflection characteristics relative to different types of brackets
ristiques de charge–flexion de fils selon diffe rents types de brackets Comparaison des caracte
— TMA: 6.5 – 10 103 kg/mm2; — Japanese NiTi: 3.8 103 kg/mm2. SS, TMA and Nitinol are elastic wires. The Japanese NiTi tested by Miura et al. [11] is superelastic, so the Ym parameter was found for every interbracket distance. Ym is the level of deflection at which the wire changes its behavior from elastic to superelastic. It is different for every interbracket distance. This value is needed to choose the mathematical formulae to use at the different levels of deflection. To calculate the stress acting on a single tooth at different deflections, the following mathematical formulae were used [9]. For elastic wires: F¼
192 IEY L3
With: — E: modulus of elasticity — I: moment of inertia: pD4/64 — D: diameter of the wire: 0.016 = 0.41 mm — L: interbracket distance — Y: deflection in the horizontal plane This mathematical relationship is also valid for superelastic wires in the elastic range (the linear part of the curve). However, for the superelastic plateau, a different formula is required [9]: F¼
16 IEU LD
U is an alloy parameter which can be estimated using a threepoint bending test to identify the point of martensitic transformation Ym. The following formula is then applied [9]: U¼
12 DY m L2
— TMA : 6,5–10 103 kg/mm2 ; — NiTi japonais : 3,8 103 kg/mm2. lastiques. Le NiTi japonais SS, TMA et Nitinol sont des fils e par Miura et al. [11] est super-e lastique. Ainsi, le parateste tre Ym a e te retrouve pour chaque distance interbrackets. me flexion auquel le comportement du fil se Ym est le niveau de de lastique en super-e lastique. Il est diffe rent pour transforme d’e chaque distance interbrackets. Cette valeur est essentielle matiques a` adopter aux diffe pour choisir les formules mathe rents niveaux de flexion. Pour calculer la contrainte s’exer¸cant sur une dent unique rentes, nous avons utilise les formules a` des flexions diffe matiques suivantes [9]. mathe lastiques : Pour les fils e
F¼
192 IEY L3
avec : lasticite — E : module d’e — I : moment d’inertie : pD4/64 tre du fil : 0,016 = 0,41 mm — D : diame — L : distance interbrackets — Y : flexion dans le plan horizontal quation est e galement valable pour les fils superCette e lastiques dans la gamme e lastique (la partie line aire de la e lastique, une forcourbe). Cependant, pour le plateau super-e rente est ne cessaire [9] : mule diffe
F¼
16 IEU LD
tre d’alliage qui peut e ^tre calcule en utilisant U est un parame un test de pliage en trois points pour identifier le point de transformation martensitique Ym. Dans ce cas, la formule e [9] : suivante est employe
U¼
12 DY m L2
Results
sultats Re
The interbracket distances with the different types of brackets are reported in Tables I–VIII. Note that the vestibular distance is always greater than the lingual. The only exception is the maxillary canine-second premolar distance where the vestibular side is bonded with Smart Clip Clarity brackets and the lingual with STB brackets. The interbracket distance is modified significantly by changes in the type of bracket.
rents types de brackets Les distances interbrackets des diffe es dans les Tableaux I–VIII. sont donne Notez que la distance vestibulaire est toujours plus grande que la distance linguale. La seule exception est la distance canine me pre molaire maxillaire ou` la face vestibulaire est – deuxie e avec des brackets Smart Clip Clarity et la face linguale colle e avec des brackets STB. La distance interbrackets est modifie de fa¸con significative avec les changements de type de bracket. es avec Dans le secteur vestibulaire, les dents maxillaires colle des brackets Time 2 avaient une distance interbrackets plus es avec d’autres brackets dans l’e tude, grande que celles colle s par les Damon 3MX. La distance interbrackets suivis de pre tait plus grande que pour les Ovation des Innovation GAC e GAC.
In the vestibular segment, the maxillary teeth bonded with Time 2 brackets showed a longer interbracket distance compared to those bonded with other brackets in the study, followed closely by Damon 3MX. The maxillary interbracket distance for Innovation GAC was longer than that for Ovation GAC.
International Orthodontics 2011 ; 9 : 120-139
125
Luca LOMBARDO et al.
Table I
Tableau I
Evolution Brackets Adenta interbracket distances (lingual segments 2 and 4).
Evolution Brackets (Adenta) : distances interbrackets (secteurs linguaux 2 et 4).
21–23
8.90
22–24
9.74
23–25
11.52
41–43
6.31
42–44
7.39
43–45
10.33
Table II
Tableau II
Innovation-L GAC interbracket distances (lingual segments 1 and 3).
Innovation-L (GAC) : distances interbrackets (secteurs linguaux 1 et 3).
11–13
8.63
12–14
9.25
13–15
11.28
31–33
6.79
32–34
7.70
33–35
10.52
Table III
Tableau III
Damon 3MX Ormco interbracket distances (vestibular segments 1 and 3).
Damon 3MX (Ormco) : distances interbrackets (secteurs vestibulaires 1 et 3).
11–13
16.19
12–14
15.26
13–15
12.67
31–33
12.48
32–34
14.14
33–35
12.73
In the mandibular arch, the anterior and posterior segments must be distinguished. In the central incisor-canine space, a longer interbracket distance is observed with Time 2 bracket, followed by Damon, Innovation and Ovation. In the posterior region of the arch, the Ovation and Innovation brackets were observed to have a longer interbracket distance, followed by Damon 3MX and Time 2 brackets. The Smart Clip Clarity brackets had the longest mesiodistal dimension in both the
126
` l’arcade mandibulaire, il faut distinguer entre les secteurs A rieurs et poste rieurs. Dans l’espace incisive centrale– ante une distance interbrackets plus canine, nous avons observe grande avec les Time 2 Bracket, suivis des brackets Damon, gion poste rieure de l’arcade, Innovation et Ovation. Dans la re ce sont les brackets Ovation et Innovation qui avaient la distance interbrackets la plus importante suivis des Damon 3X et des Time 2. Les boıˆtiers Smart Clip Clarity avaient la
International Orthodontics 2011 ; 9 : 120-139
Wire load–deflection characteristics relative to different types of brackets
ristiques de charge–flexion de fils selon diffe rents types de brackets Comparaison des caracte
Table IV
Tableau IV
Ovation GAC interbracket distances (vestibular segments 2 and 4).
Ovation (GAC) : distances interbrackets (secteurs vestibulaires 2 et 4).
21–23
14.80
22–24
14.23
23–25
12.18
41–43
10.83
42–44
14.02
43–45
13.21
Table V
Tableau V
STB interbracket distances (lingual segments 1 and 4).
STB : distances interbrackets (secteurs linguaux 1 et 4).
11–13
9.42
12–14
10.06
13–15
12.13
41–43
7.36
42–44
7.83
43–45
11.31
Table VI
Tableau VI
Time 2 Micerium interbracket distance (vestibular segments 1 and 3).
Time 2 (Micerium) : distance interbrackets (secteurs vestibulaires 1 et 3).
11–13
16.42
12–14
15.61
13–15
13.24
31–33
12.61
32–34
13.71
33–35
12.99
mandibular and the maxillary arch, and therefore the shortest interbracket distance among the samples analyzed. In the lingual segment, with respect to the other tested brackets, the STB had a greater interbracket distance for both the maxillary and the mandibular arch. The segment of maxillary arch bonded with Evolution brackets had a greater interbracket distance than the section bonded
International Orthodontics 2011 ; 9 : 120-139
siodistale la plus grande aux deux arcades et, dimension me quent, la distance interbrackets la plus courte parmi par conse chantillons e tudie s. les e Dans la zone linguale, les brackets STB avaient une distance interbrackets plus grande par rapport aux autres brackets s aux deux arcades. teste avec des brackets Le secteur de l’arcade maxillaire colle Evolution avait une distance interbrackets plus grande que
127
Luca LOMBARDO et al.
Table VII
Tableau VII
Innovation GAC interbracket distance (vestibular segments 2 and 4).
Innovation (GAC) : distance interbrackets (secteurs vestibulaires 2 et 4).
21–23
15.41
22–24
14.73
23–25
12.61
41–43
11.85
42–44
14.43
43–45
12.66
Table VIII
Tableau VIII
Smart Clip Clarity (3M Unitek) interbracket distance (vestibular segments 2 and 4).
Smart Clip Clarity (3M Unitek) : distance interbrackets (secteurs vestibulaires 2 et 4).
21–23
14.36
22–24
13.95
23–25
11.42
41–43
10.68
42–44
12.89
43–45
11.85
with Innovation-L. Conversely, in the mandible, a shorter interbracket distance was found with Evolution compared to Innovation-L. The ratio of the vestibular to the lingual interbracket distance for every tooth and for every pair of brackets is reported in Table IX. Considering the same tooth, the type of brackets significantly influenced the ratio of the vestibular to lingual interbracket distance, which ranged from a minimum value of 0.95 to a maximum of 1.99. The former was the maxillary canine-second premolar space, bonded with Smart Clip Clarity on the vestibular side and with STB on the lingual. The second was the mandibular central incisor-canine, bonded with vestibular Time 2 brackets and lingual Evolution brackets. Given that the load of an orthodontic wire is inversely proportional to the cube of the interbracket distance, the result was that, for the same wire diameter, lingual appliances provided forces which were up to 7.88 times greater than labial appliances. The single stress values applied on the teeth bonded with the different brackets are reported in Tables X–XVII.
128
avec Innovation-L. Inversement, a` la mandibule, celui colle une distance interbrackets plus courte avec nous avons trouve Evolution par rapport a` Innovation-L. Le rapport vestibulaire/lingual de la distance interbrackets est dans le Tableau IX. donne Quelle que soit la dent, le type de bracket a eu un impact significatif sur le rapport vestibulaire/lingual de la distance interbrackets qui variait entre une valeur minimale de 0,95 et re correspondait une valeur maximale de 1,99. La premie me pre molaire maxila` l’espace entre la canine et la deuxie es avec des brackets Smart Clip Clarity du co ^ te laires, colle ^ te lingual. La seconde vestibulaire et avec des STB du co correspondait a` l’espace entre l’incisive centrale et la canine es avec des brackets Time 2 vestibulaires mandibulaires colle et des brackets linguaux Evolution. que la charge d’un fil orthodontique est inverseEtant donne ment proportionnelle au cube de la distance interbrackets, il ^me diame tre de fil, les appareils linressort que, pour le me taient jusqu’a` 7,88 fois plus guaux exer¸caient des forces qui e grandes que les appareils vestibulaires. ^me contrainte applique e aux dents colLes valeurs de la me es avec les diffe rents brackets sont rapporte es dans les le Tableaux X–XVII.
International Orthodontics 2011 ; 9 : 120-139
Wire load–deflection characteristics relative to different types of brackets
ristiques de charge–flexion de fils selon diffe rents types de brackets Comparaison des caracte
Table IX
Tableau IX
Ratio of the vestibular to the lingual interbracket distance, for every pair of brackets.
Rapport vestibulaire/lingual de la distance interbrackets pour chaque paire de brackets.
Adenta Time
GAC Innovation-L
STB
1–3 Mx
1.82
1.88
1.71
2–4 Mx
1.57
1.65
1.52
3–5 Mx
1.10
1.12
1.04
1–3 Md
1.98
1.84
1.70
2–4 Md
1.91
1.84
1.80
3–5 Md
1.23
1.21
1.12
1–3 Mx
1.66
1.65
1.57
2–4 Mx
1.46
1.54
1.41
3–5 Mx
1.06
1.08
1.01
1–3 Md
1.72
1.59
1.47
2–4 Md
1.90
1.82
1.79
3–5 Md
1.28
1.25
1.17
1–3 Mx
1.84
1.90
1.74
2–4 Mx
1.60
1.69
1.55
Damon 3MX
Ovation
Time 2
3–5 Mx
1.15
1.17
1.09
1–3 Md
1.99
1.86
1.71
2–4 Md
1.86
1.78
1.75
3–5 Md
1.26
1.23
1.15
1–3 Mx
1.73
1.79
1.64
2–4 Mx
1.51
1.59
1.46
3–5 Mx
1.09
1.12
1.04
1–3 Md
1.88
1.75
1.61
2–4 Md
1.95
1.87
1.84
3–5 Md
1.22
1.20
1.12
1–3 Mx
1.61
1.66
1.52
2–4 Mx
1.43
1.51
1.39
3–5– Mx
1.01
1.02
0.95
1–3– Md
1.69
1.57
1.45
2–4– Md
1.74
1.67
1.64
3–5– Md
1.15
1.13
1.41
Innovation
Smart Clip Clarity
International Orthodontics 2011 ; 9 : 120-139
129
Luca LOMBARDO et al.
Table X
Tableau X
Load of the different wires (g), with the minimum and maximum E value. Evolution Adenta Bracket (lingual, segments 2 and 4).
SS min
SS max
TMA min
rents fils (g), avec la valeur E minimale et Charge des diffe rents fils (g). Evolution Adental Bracket maximale des diffe (secteurs linguaux 2 et 4).
TMA max
Nitinol min
Nitinol max
21–23
Ym = 0.45 Ya = 3200
Ya = 3629
Ya = 1221
Ya = 1878
Ya = 942
Ya = 1128
Ya = 640
Yb = 6400
Yb = 7258
Yb = 2442
Yb = 3757
Yb = 1885
Yb = 2257
Yb = 640
Yc = 9600
Yc = 10887
Yc = 3663
Yc = 5635
Yc = 2827
Yc = 3385
Yc = 640
22–24
Ym = 0.54 Ya = 2435
Ya = 2864
Ya = 949
Ya = 1429
Ya = 717
Ya = 858
Ya = 543
Yb = 4870
Yb = 5728
Yb = 1858
Yb = 2858
Yb = 1434
Yb = 1717
Yb = 585
Yc = 7305
Yc = 8592
Yc = 2937
Yc = 4287
Yc = 2151
Yc = 2575
Yc = 585
23–25
Ym = 0.76 Ya = 1464
Ya = 1722
Ya = 558
Ya = 859
Ya = 431
Ya = 516
Ya = 326
Yb = 2928
Yb = 3444
Yb = 1117
Yb = 1718
Yb = 862
Yb = 1032
Yb = 494
Yc = 4392
Yc = 5166
Yc = 1675
Yc = 2577
Yc = 1293
Yc = 1548
Yc = 494
41–43
Ym = 0.23 Ya = 8960
Ya = 10540
Ya = 3420
Ya = 5260
Ya = 2640
Ya = 3160
Ya = 903
Yb = 17920
Yb = 21080
Yb = 6840
Yb = 10520
Yb = 5280
Yb = 6320
Yb = 903
Yc = 26880
Yc = 31620
Yc = 10260
Yc = 15780
Yc = 7920
Yc = 9480
Yc = 903
42–44
Ym = 0.31 Ya = 5600
Ya = 6587
Ya = 2137
Ya = 3287
Ya = 1650
Ya = 1975
Ya = 771
Yb = 11200
Yb = 13175
Yb = 4275
Yb = 6575
Yb = 3300
Yb = 3950
Yb = 771
Yc = 16800
Yc = 19762
Yc = 6412
Yc = 9862
Yc = 4950
Yc = 5925
Yc = 771
43–45
Ym = 0.6 Ya = 2036
Ya = 2395
Ya = 777
Ya = 1195
Ya = 600
Ya = 718
Ya = 460
Yb = 4072
Yb = 4790
Yb = 1554
Yb = 2390
Yb = 1200
Yb = 1436
Yb = 556
Yc = 6108
Yc = 7185
Yc = 2331
Yc = 3585
Yc = 1800
Yc = 2154
Yc = 556
Among the elastic wires (SS, TMA, Nitinol), the load increased proportionally to the deflection (0.5 mm, 1.0 mm, 1.5 mm) and it increased with the modulus of elasticity. SS had the highest Young’s absolute value (17–20 103 kg/mm2), followed by TMA (6.5–10 103 kg/mm2) and Nitinol (5–6 103 kg/ mm2). Superelastic Japanese NiTi has a lower modulus of elasticity compared to the other wires considered. Consequently, even at small deflections, in the elastic interval, it provides lighter forces than the other wires.
130
NiTi Giapp
lastiques (SS, TMA, Nitinol), la charge augmenParmi les fils e tait proportionnellement a` la flexion (0,5 mm ; 1,0 mm, 1,5 lasticite . L’acier avait mm) et augmentait avec le module d’e leve e (17–20 103 kg/ la valeur absolue de Young la plus e mm2), suivi du TMA (6,5–10 103 kg/mm2) et du Nitinol (5–6 103 kg/mm2). lastique avait un module d’e lasticite Le NiTi japonais super-e aux autres fils e tudie s. Par conse quent, plus faible compare ^me a` des de flexions peu importantes, dans l’intervalle me lasticite , il de livrait des forces plus le ge res que les autres fils. d’e
International Orthodontics 2011 ; 9 : 120-139
Wire load–deflection characteristics relative to different types of brackets
ristiques de charge–flexion de fils selon diffe rents types de brackets Comparaison des caracte
Table XI
Tableau XI
Load of the different wires (g), with the minimum and maximum E value. Innovation- L GAC brackets (lingual segments 1 and 3).
SS min
SS max
TMA min
rents fils (g), avec la valeur E minimale et Charge des diffe maximale. Brackets Innovation-L GAC (secteurs linguaux 1 et 3).
TMA max
Nitinol min
Nitinol max
11–13
NiTi Giapp Ym = 0.42
Ya = 3500
Ya = 4117
Ya = 1335
Ya = 2054
Ya = 1031
Ya = 1234
Ya = 660
Yb = 7000
Yb = 8234
Yb = 2671
Yb = 4109
Yb = 2062
Yb = 2468
Yb = 660
Yc = 10500
Yc = 12351
Yc = 4006
Yc = 6163
Yc = 3093
Yc = 3702
Yc = 660
12–14
Ym = 0.49 Ya = 2835
Ya = 3335
Ya = 1082
Ya = 1664
Ya = 835
Ya = 1000
Ya = 616
Yb = 5670
Yb = 6670
Yb = 2164
Yb = 3329
Yb = 1670
Yb = 2000
Yb = 616
Yc = 8505
Yc = 10005
Yc = 3246
Yc = 4993
Yc = 2505
Yc = 3000
Yc = 616
13–15
Ym = 0.72 Ya = 1566
Ya = 1842
Ya = 597
Ya = 919
Ya = 461
Ya = 552
Ya = 349
Yb = 3132
Yb = 3685
Yb = 1195
Yb = 1839
Yb = 923
Yb = 1104
Yb = 505
Yc = 4698
Yc = 5527
Yc = 1792
Yc = 2758
Yc = 1384
Yc = 1656
Yc = 505
31–33
Ym = 0.26 Ya = 7225
Ya = 8500
Ya = 2758
Ya = 4241
Ya = 2129
Ya = 2548
Ya = 839
Yb = 14450
Yb = 17000
Yb = 5516
Yb = 8483
Yb = 4258
Yb = 5096
Yb = 839
Yc = 21675
Yc = 25500
Yc = 8274
Yc = 12724
Yc = 6387
Yc = 7644
Yc = 839
32–34
Ym = 0.34 Ya = 4870
Ya = 5728
Ya = 1858
Ya = 2858
Ya = 1434
Ya = 1717
Ya = 746
Yb = 9740
Yb = 11456
Yb = 3717
Yb = 5717
Yb = 2869
Yb = 3434
Yb = 746
Yc = 14610
Yc = 17184
Yc = 5575
Yc = 8575
Yc = 4303
Yc = 5151
Yc = 746
33–35
Ym = 0.63 Ya = 1931
Ya = 2271
Ya = 737
Ya = 1133
Ya = 569
Ya = 681
Ya = 435
Yb = 3862
Yb = 4542
Yb = 1474
Yb = 2267
Yb = 1138
Yb = 1362
Yb = 546
Yc = 5793
Yc = 6813
Yc = 2211
Yc = 3400
Yc = 1707
Yc = 2043
Yc = 546
The superelastic transition point Ym changes with the different interbracket distances: on the dental cast in the study, the minimum value was 0.23 mm, corresponding to the shortest interbracket distance (lingual Evolution, between 41 and 43), and its maximum value was 1.54 mm (vestibular Smart Clip Clarity, between 11 and 13). This superelastic wire provided lower forces than the other wires, in particular with reduced interbracket distance.
International Orthodontics 2011 ; 9 : 120-139
lastique Ym varie selon les Le point de transition super-e rentes distances inter-e lastiques : sur le mode le dentaire diffe tude, la valeur minimale e tait de 0,23 mm, cordans cette e respondant a` la distance interbrackets la plus courte tait (Evolution lingual entre 41 et 43). La valeur maximale e de 1,54 mm (Smart Clip Clarity vestibulaire entre 11 et 13). lastique de livrait des forces plus le ge res que les Ce fil super-e autres fils, en particulier dans le cas de distances interbrackduites. ets re
131
Luca LOMBARDO et al.
Table XII
Tableau XII
Load of the different wires (g), with the minimum and maximum E value. Damon 3MX Ormco brackets (vestibular segments 1 and 3).
SS min
SS max
TMA min
rents fils (g), avec la valeur E minimale et Charge des diffe maximale. Brackets Damon 3MX (Ormco) (secteurs vestibulaires 1 et 3).
TMA max
Nitinol min
Nitinol max
11–13
NiTi Giapp Ym = 1.49
Ya = 528
Ya = 621
Ya = 201
Ya = 310
Ya = 155
Ya = 186
Ya = 117
Yb = 1056
Yb = 1242
Yb = 403
Yb = 620
Yb = 311
Yb = 372
Yb = 235
Yc = 1584
Yc = 1863
Yc = 604
Yc = 930
Yc = 466
Yc = 558
Yc = 352
12–14
Tm = 1.33 Ya = 640
Ya = 742
Ya = 241
Ya = 370
Ya = 186
Ya = 211
Ya = 141
Yb = 1280
Yb = 1484
Yb = 482
Yb = 740
Yb = 372
Yb = 422
Yb = 282
Yc = 1920
Yc = 2226
Yc = 723
Yc = 1110
Yc = 558
Yc = 633
Yc = 373
13–15
Ym = 0.91 Ya = 1103
Ya = 1298
Ya = 421
Ya = 647
Ya = 325
Ya = 389
Ya = 246
Yb = 2206
Yb = 2596
Yb = 842
Yb = 1295
Yb = 650
Yb = 778
Yb = 450
Yc = 3309
Yc = 3894
Yc = 1263
Yc = 1942
Yc = 975
Yc = 1167
Yc = 450
31–33
Ym = 0.89 Ya = 1125
Ya = 1324
Ya = 429
Ya = 660
Ya = 331
Ya = 397
Ya = 251
Yb = 2250
Yb = 2648
Yb = 859
Yb = 1321
Yb = 663
Yb = 794
Yb = 456
Yc = 3375
Yc = 3972
Yc = 1288
Yc = 1981
Yc = 994
Yc = 1191
Yc = 456
32–34
Ym = 1.14 Ya = 794
Ya = 934
Ya = 303
Ya = 466
Ya = 234
Ya = 280
Ya = 177
Yb = 1588
Yb = 1868
Yb = 606
Yb = 932
Yb = 468
Yb = 560
Yb = 354
Yc = 2382
Yc = 2802
Yc = 909
Yc = 1398
Yc = 702
Yc = 840
Yc = 403
33–35
Ym = 0.92 Ya = 1087
Ya = 1279
Ya = 415
Ya = 638
Ya = 320
Ya = 383
Ya = 243
Yb = 2174
Yb = 2558
Yb = 830
Yb = 1276
Yb = 640
Yb = 766
Yb = 448
Yc = 3261
Yc = 3837
Yc = 1245
Yc = 1914
Yc = 960
Yc = 1149
Yc = 448
Discussion
Discussion
The results of this study demonstrate the importance of interbracket distance in determining the load of a wire on a single tooth. According to the study by Schudy and Schudy [12], the deflection of an orthodontic wire is directly proportional to the interbracket distance and inversely proportional to the wire cross-section. The delivered force increases with decreasing tooth size. Hence, the decrease in interbracket space. As a result, to reduce wire stress on the teeth, orthodontists must
sultats de cette e tude soulignent l’importance de la Les re terminer la charge de livre e distance interbrackets pour de e. par un fil a` une dent donne tude de Schudy et Schudy [12], la flexion En accord avec l’e d’un fil orthodontique est directement proportionnelle a` la distance interbrackets et inversement proportionnelle a` la section livre e augmente avec la diminution de la taille du fil. La force de de la dent. D’ou` la diminution de l’espace interbrackets. Par quent, pour re duire la contrainte impose e par le fil aux conse
132
International Orthodontics 2011 ; 9 : 120-139
Wire load–deflection characteristics relative to different types of brackets
ristiques de charge–flexion de fils selon diffe rents types de brackets Comparaison des caracte
Table XIII
Tableau XIII
Load of the different wires (g), with the minimum and maximum E value. Ovation GAC brackets (vestibular segments 2 and 4).
SS min
SS max
TMA min
rents fils (g), avec la valeur E minimale et Charge des diffe maximale. Brackets Ovation GAC (secteurs vestibulaires 2 et 4).
TMA max
Nitinol min
Nitinol max
21–23
NiTi Giapp Ym = 1.25
Ya = 691
Ya = 813
Ya = 263
Ya = 406
Ya = 203
Ya = 243
Ya = 154
Yb = 1382
Yb = 1626
Yb = 527
Yb = 812
Yb = 407
Yb = 487
Yb = 308
Yc = 2073
Yc = 2439
Yc = 790
Yc = 1218
Yc = 610
Yc = 730
Yc = 385
22–24
Ym = 1.15 Ya = 777
Ya = 914
Ya = 297
Ya = 456
Ya = 229
Ya = 274
Ya = 173
Yb = 1555
Yb = 1829
Yb = 594
Yb = 913
Yb = 458
Yb = 548
Yb = 347
Yc = 2332
Yc = 2743
Yc = 891
Yc = 1369
Yc = 687
Yc = 822
Yc = 400
23–25
Ym = 0.84 Ya = 1237
Ya = 1456
Ya = 472
Ya = 726
Ya = 364
Ya = 436
Ya = 279
Yb = 2475
Yb = 2912
Yb = 944
Yb = 1453
Yb = 729
Yb = 872
Yb = 472
Yc = 3712
Yc = 4368
Yc = 1416
Yc = 2179
Yc = 1093
Yc = 1308
Yc = 472
41–43
Ym = 0.67 Ya = 1764
Ya = 2074
Ya = 673
Ya = 1035
Ya = 519
Ya = 622
Yb = 3528
Yb = 4149
Yb = 1346
Yb = 2070
Yb = 1039
Yb = 1244
Yb = 526
Yc = 5292
Yc = 6223
Yc = 2019
Yc = 3105
Yc = 1558
Yc = 1866
Yc = 526
42–44
Ya = 393
Ym = 1.12 Ya = 814
Ya = 958
Ya = 310
Ya = 478
Ya = 240
Ya = 287
Ya = 182
Yb = 1629
Yb = 1916
Yb = 621
Yb = 956
Yb = 480
Yb = 574
Yb = 364
Yc = 2443
Yc = 2874
Yc = 931
Yc = 1434
Yc = 720
Yc = 861
Yc = 406
43–35
Ym = 0.99 Ya = 974
Ya = 1145
Ya = 371
Ya = 571
Ya = 286
Ya = 343
Ya = 217
Yb = 1948
Yb = 2291
Yb = 743
Yb = 1143
Yb = 573
Yb = 686
Yb = 431
Yc = 2922
Yc = 3436
Yc = 1114
Yc = 1714
Yc = 859
Yc = 1029
Yc = 431
use elastic wires with a smaller cross-section, and also brackets with relatively small dimensions. The type of bracket becomes a relevant parameter when lingual mechanics is used, as can be seen from the comparison of the eight types of tested appliances. In his 1987 study, Moran [2] found that the mean ratio of the vestibular-to-lingual interbracket distance in anterior segments is 1.47. Thus, the forces delivered on the lingual side are about three times greater than on the labial side. This finding is confirmed by the measurements taken in our work:
International Orthodontics 2011 ; 9 : 120-139
lastiques avec un diadents, le praticien doit utiliser des fils e tre re duit de me ^me que des brackets avec des dimensions me devient un pararelativement petites. Le type de bracket utilise tre pertinent lorsqu’une me canique linguale est adopte e, me comme le fait apparaıˆtre une comparaison des huit types de s. dispositifs teste tude datant de 1987, Moran [2] a trouve que le Dans son e rapport vestibulolingual moyen pour la distance interbrackets rieurs e tait de 1,47. Ainsi, les forces dans les segments ante es du co ^ te lingual sont trois fois plus importantes que exerce ^ te vestibulaire. Ce re sultat est confirme par les mesures du co
133
Luca LOMBARDO et al.
Table XIV
Tableau XIV
Load of the different wires (g), with the minimal and maximum E value. STB brackets (lingual segments 1 and 4).
SS min
SS max
TMA min
rents fils (g), avec la valeur E minimale et Charge des diffe maximale. Brackets STB (secteurs linguaux 1 et 4).
TMA max
Nitinol min
Nitinol max
11–13
Ym = 0.51 Ya = 2698
Ya = 3175
Ya = 1030
Ya = 1584
Ya = 795
Ya = 915
Ya = 608
Yb = 5396
Yb = 6350
Yb = 2060
Yb = 3168
Yb = 1590
Yb = 1831
Yb = 610
Yc = 8094
Yc = 9525
Yc = 3090
Yc = 4752
Yc = 2385
Yc = 2746
Yc = 610
Ya = 2196
Ya = 2583
Ya = 838
Ya = 1289
Ya = 647
Ya = 774
Ya = 495
Yb = 4392
Yb = 5166
Yb = 1676
Yb = 2578
Yb = 1294
Yb = 1549
Yb = 571
Yc = 6588
Yc = 7749
Yc = 2514
Yc = 3867
Yc = 1941
Yc = 2322
Yc = 571
12–14
Ym = 0.58
13–15
Ym = 0.84 Ya = 1258
Ya = 1480
Ya = 480
Ya = 738
Ya = 370
Ya = 443
Ya = 283
Yb = 2516
Yb = 2960
Yb = 960
Yb = 1477
Yb = 741
Yb = 887
Yb = 474
Yc = 3774
Yc = 4440
Yc = 1440
Yc = 2215
Yc = 1111
Yc = 1330
Yc = 474
41–43
Ym = 0.31 Ya = 5600
Ya = 6587
Ya = 2137
Ya = 3287
Ya = 1650
Ya = 1975
Ya = 781
Yb = 11200
Yb = 13175
Yb = 4275
Yb = 6575
Yb = 3300
Yb = 3950
Yb = 781
Yc = 16800
Yc = 19762
Yc = 6412
Yc = 9862
Yc = 4950
Yc = 5925
Yc = 781
42–44
Ym = 0.35 Ya = 4666
Ya = 5490
Ya = 1781
Ya = 2740
Ya = 1375
Ya = 1645
Ya = 734
Yb = 9332
Yb = 10980
Yb = 3562
Yb = 5480
Yb = 2750
Yb = 3291
Yb = 734
Yc = 13998
Yc = 16470
Yc = 5343
Yc = 8220
Yc = 4125
Yc = 4936
Yc = 734
43–45
Ym = 0.73 Ya = 1545
Ya = 1817
Ya = 590
Ya = 907
Ya = 455
Ya = 544
Ya = 348
Yb = 3090
Yb = 3634
Yb = 1180
Yb = 1814
Yb = 910
Yb = 1089
Yb = 508
Yc = 4635
Yc = 5451
Yc = 1770
Yc = 2721
Yc = 1365
Yc = 1633
Yc = 508
the values we found ranged from a minimum of 0.95 to a maximum of 1.99. In the posterior regions of the arch, the forces on the lingual side are comparable with those on the vestibular side, because of the similar interbracket distance. In only one space (maxillary canine-second premolar), the vestibular interbracket distance was found to be smaller than the lingual one, when comparing the larger vestibular bracket (Smart Clip Clarity) with the shorter lingual one (STB). Otherwise, the forces can be up to 7.88 times larger where the interbracket distance is smaller, in particular when relatively large lingual brackets are used.
134
NiTi Giapp
es dans notre e tude : les valeurs que nous avons releve es allaient de 0,95 a` un maximum de 1,99. Dans les trouve gions poste rieures de l’arcade, les forces du co ^ te lingual re es du co ^te vestibulaire en sont semblables a` celles retrouve entre les distances interbrackets respecraison de la similarite me pre motives. Pour un espace seulement (canine – deuxie une distance interlaire maxillaires), nous avons observe ^te vestibulaire par rapport au co ^ te brackets plus petite du co le bracket vestibulaire le lingual lorsque nous avons compare plus grand (Smart Clip Clarity) avec le bracket lingual le plus troit (STB). Autrement, les forces peuvent e ^tre jusqu’a` e 7,88 fois plus importantes avec une distance interbrackets duite, en particulier lorsque les brackets linguaux utilise s re sont assez larges.
International Orthodontics 2011 ; 9 : 120-139
Wire load–deflection characteristics relative to different types of brackets
ristiques de charge–flexion de fils selon diffe rents types de brackets Comparaison des caracte
Table XV
Tableau XV
Load of the different wires (g), with the minimum and maximum E value. Time 2 Micerium brackets (vestibular segments 1 and 3).
SS min
SS max
TMA min
rents fils (g), avec la valeur E minimale et Charge des diffe maximale. Brackets Time 2 (Micerium) (secteurs vestibulaires 1 et 3).
TMA max
Nitinol min
Nitinol max
11–13
NiTi Giapp Ym = 1.54
Ya = 505
Ya = 595
Ya = 193
Ya = 297
Ya = 149
Ya = 178
Ya = 114
Yb = 1011
Yb = 1190
Yb = 386
Yb = 594
Yb = 298
Yb = 357
Yb = 228
Yc = 1516
Yc = 1785
Yc = 579
Yc = 891
Yc = 447
Yc = 535
Yc = 342
12–14
Ym = 1.39 Ya = 589
Ya = 693
Ya = 225
Ya = 346
Ya = 173
Ya = 208
Ya = 133
Yb = 1179
Yb = 1386
Yb = 450
Yb = 692
Yb = 347
Yb = 416
Yb = 266
Yc = 1768
Yc = 2079
Yc = 675
Yc = 1038
Yc = 520
Yc = 624
Yc = 368
13–15
Ym = 1.00 Ya = 965
Ya = 1136
Ya = 368
Ya = 567
Ya = 284
Ya = 340
Ya = 217
Yb = 1931
Yb = 2272
Yb = 737
Yb = 1134
Yb = 569
Yb = 681
Yb = 435
Yc = 2896
Yc = 3408
Yc = 1105
Yc = 1701
Yc = 853
Yc = 1021
Yc = 434
31–33
Ym = 0.91 Ya = 1114
Ya = 1311
Ya = 425
Ya = 654
Ya = 328
Ya = 393
Ya = 251
Yb = 2228
Yb = 2622
Yb = 850
Yb = 1308
Yb = 657
Yb = 786
Yb = 456
Yc = 3342
Yc = 3933
Yc = 1275
Yc = 1962
Yc = 982
Yc = 1179
Yc = 456
32–34
Ym = 1.07 Ya = 868
Ya = 1021
Ya = 331
Ya = 509
Ya = 256
Ya = 306
Ya = 195
Yb = 1736
Yb = 2042
Yb = 663
Yb = 1019
Yb = 512
Yb = 612
Yb = 391
Yc = 2604
Yc = 3063
Yc = 994
Yc = 1528
Yc = 768
Yc = 918
Yc = 419
33–35
Ym = 0.96 Ya = 1023
Ya = 1403
Ya = 390
Ya = 600
Ya = 301
Ya = 360
Ya = 230
Yb = 2046
Yb = 2406
Yb = 780
Yb = 1200
Yb = 603
Yb = 721
Yb = 443
Yc = 3069
Yc = 4209
Yc = 1170
Yc = 1800
Yc = 904
Yc = 1081
Yc = 443
The inverse relationship between the load of a wire and the cube of the interbracket distance explains why the stress increases significantly with small reductions in distance. SS, TMA and Nitinol wires display a linear relationship between stress and strain, as described by Hooke’s law [4]. Even if TMA and Nitinol have a lower absolute elasticity value with respect to SS, at large deflections, the delivered force is very high. Consequently, they are not appropriate for the first stages of dental alignment and for lingual mechanotherapy [13]. The widespread use of superelastic alloys in orthodontics offers new and major treatment possibilities. They are wires
International Orthodontics 2011 ; 9 : 120-139
e entre la charge du fil et le cube de la La relation inverse distance interbrackets explique l’augmentation significative ductions de distance. de la contrainte avec de petites re Selon la loi de Hooke [4], les fils SS, TMA et Nitinol montrent aire entre la contrainte et la flexion. Me ^me si le une relation line lasticite absolue plus faible TMA et le Nitinol ont une valeur d’e par rapport au SS, a` des niveaux de flexion importants, la force e est tre s e leve e, les rendant inapproprie s pour les exerce res phases de l’alignement dentaire ainsi qu’en premie canothe rapie linguale [13]. me quente des alliages super-e lastiques ouvre de L’utilisation fre s de traitement importantes. Ces fils ont nouvelles possibilite
135
Luca LOMBARDO et al.
Table XVI
Tableau XVI
Load of the different wires (g), with the minimum and maximum E value. Innovation GAC brackets (vestibular segments 2 and 4).
SS min
SS max
TMA min
rents fils (g), avec la valeur E minimale et Charge des diffe maximale. Brackets Innovation (GAC) (secteurs vestibulaires 2 et 4).
TMA max
Nitinol min
Nitinol max
21–23
Ym = 1.35 Ya = 612
Ya = 720
Ya = 233
Ya = 359
Ya = 180
Ya = 216
Ya = 138
Yb = 1224
Yb = 1440
Yb = 467
Yb = 718
Yb = 360
Yb = 432
Yb = 276
Yc = 1836
Yc = 2160
Yc = 700
Yc = 1077
Yc = 540
Yc = 648
Yc = 373
22–24
Ym = 1.24 Ya = 700
Ya = 823
Ya = 267
Ya = 411
Ya = 206
Ya = 247
Ya = 158
Yb = 1400
Yb = 1647
Yb = 534
Yb = 822
Yb = 412
Yb = 494
Yb = 316
Yc = 2100
Yc = 2470
Yc = 801
Yc = 1233
Yc = 618
Yc = 741
Yc = 390
23–25
Ym = 0.91 Ya = 1114
Ya = 1311
Ya = 425
Ya = 652
Ya = 328
Ya = 393
Ya = 251
Yb = 2228
Yb = 2622
Yb = 850
Yb = 1304
Yb = 657
Yb = 786
Yb = 456
Yc = 3342
Yc = 3933
Yc = 1275
Yc = 1956
Yc = 985
Yc = 1179
Yc = 456
41–43
Ym = 0.80 Ya = 1349
Ya = 1587
Ya = 534
Ya = 792
Ya = 397
Ya = 476
Ya = 304
Yb = 2698
Yb = 3174
Yb = 1068
Yb = 1584
Yb = 795
Yb = 952
Yb = 485
Yc = 4047
Yc = 4761
Yc = 1602
Yc = 2376
Yc = 1192
Yc = 1428
Yc = 485
42–44
Ym = 1.19 Ya = 746
Ya = 878
Ya = 285
Ya = 438
Ya = 220
Ya = 263
Ya = 168
Yb = 1493
Yb = 1756
Yb = 570
Yb = 876
Yb = 440
Yb = 527
Yb = 336
Yc = 2239
Yc = 2634
Yc = 855
Yc = 1314
Yc = 660
Yc = 790
Yc = 398
43–45
Ym = 0.91 Ya = 1103
Ya = 1298
Ya = 421
Ya = 648
Ya = 325
Ya = 389
Ya = 249
Yb = 2206
Yb = 2596
Yb = 842
Yb = 1296
Yb = 650
Yb = 778
Yb = 454
Yc = 3309
Yc = 3894
Yc = 1263
Yc = 1944
Yc = 975
Yc = 1167
Yc = 454
which exhibit elastic behavior at small deflections, so that the load is proportional to the deflection. At large deformations, above a specific value, the elastic deformation is non-linear and the stress remains almost constant. The shorter the interbracket distance, the lower the value of the deflections at which the martensitic transformation occurs [10]. Muraviev et al. [9] obtained a mathematical formula for the calculation of the stress that a superelastic wire of known diameter provides in the martensitic plateau. For simplicity,
136
NiTi Giapp
lastique a` des niveaux de flexion faibles, un comportement e de telle sorte que la charge est proportionnelle a` la formation. En cas de de formations importantes, de rieures a` une valeur spe cifique, la de formation e lastique supe aire et la contrainte reste presque constante. Plus n’est pas line la distance interbrackets est courte, plus faible sera la valeur de flexion a` laquelle se produit la transformation martensitique [10]. labore une formule mathe matique pour Muraviev et al. [9] ont e calculer la contrainte fournie sur le palier martensitique par un lastique de diame tre connu. Pour plus de simplicite , fil super-e
International Orthodontics 2011 ; 9 : 120-139
Wire load–deflection characteristics relative to different types of brackets
ristiques de charge–flexion de fils selon diffe rents types de brackets Comparaison des caracte
Table XVII
Tableau XVII
Load of the different wires (g), with the minimum and maximum E value. Smart Clip Clarity 3M Unitek brackets (vestibular segments 2 and 4).
SS min
SS max
TMA min
rents fils (g), avec la valeur E minimale et Charge des diffe maximale. Brackets Smart Clip Clarity (3M Unitek) (secteurs vestibulaires 2 et 4).
TMA max
Nitinol min
Nitinol max
21–23
NiTi Giapp Ym = 1.18
Ya = 756
Ya = 890
Ya = 289
Ya = 444
Ya = 223
Ya = 267
Ya = 170
Yb = 1513
Yb = 1780
Yb = 578
Yb = 888
Yb = 446
Yb = 534
Yb = 341
Yc = 2269
Yc = 2670
Yc = 867
Yc = 1332
Yc = 669
Yc = 801
Yc = 400
22–24
Ym = 1.11 Ya = 826
Ya = 972
Ya = 315
Ya = 485
Ya = 243
Ya = 291
Ya = 186
Yb = 1653
Yb = 1945
Yb = 630
Yb = 970
Yb = 487
Yb = 583
Yb = 373
Yc = 2479
Yc = 2917
Yc = 945
Yc = 1455
Yc = 730
Yc = 874
Yc = 412
23–25
Ym = 0.76 Ya = 1454
Ya = 1711
Ya = 555
Ya = 854
Ya = 428
Ya = 513
Ya = 328
Yb = 2909
Yb = 3422
Yb = 1110
Yb = 1708
Yb = 857
Yb = 1026
Yb = 498
Yc = 4363
Yc = 5133
Yc = 1665
Yc = 2562
Yc = 1285
Yc = 1539
Yc = 498
41–43
Ym = 0.65 Ya = 1851
Ya = 2177
Ya = 706
Ya = 1087
Ya = 545
Ya = 653
Yb = 3702
Yb = 4355
Yb = 1413
Yb = 2174
Yb = 1090
Yb = 1306
Yb = 538
Yc = 5553
Yc = 6532
Yc = 2119
Yc = 3261
Yc = 1635
Yc = 1959
Yc = 538
42–44
Ya = 417
Ym = 0.95 Ya = 1046
Ya = 1231
Ya = 399
Ya = 614
Ya = 308
Ya = 369
Ya = 236
Yb = 2093
Yb = 2462
Yb = 799
Yb = 1229
Yb = 617
Yb = 738
Yb = 446
Yc = 3139
Yc = 3693
Yc = 1198
Yc = 1843
Yc = 925
Yc = 1107
Yc = 446
43–45
Ym = 0.80 Ya = 1349
Ya = 1587
Ya = 515
Ya = 792
Ya = 397
Ya = 476
Ya = 304
Yb = 2698
Yb = 3174
Yb = 1030
Yb = 1584
Yb = 795
Yb = 952
Yb = 485
Yc = 4047
Yc = 4761
Yc = 1545
Yc = 2376
Yc = 1192
Yc = 1428
Yc = 485
this force is considered to be constant, even if it increases slightly along the plateau. Miura et al. [11] tested the mechanical proprieties of a superelastic NiTi wire with a three-point bending test. After drawing the load-deflection curve, he identified the deflection point of martensitic transformation Ym. This allowed him to extract all the parameters for the calculation of the theoretical force of the wire. When we compared elastic and superelastic wires, Japanese NiTi was shown to exert lower stress, even at small deflections, since its Young’s absolute value is lower than that of SS, TMA and Nitinol. The forces it provides at large deflections are fairly constant, and significantly lower than those generated
International Orthodontics 2011 ; 9 : 120-139
re e comme e tant constante, me ^me si cette force est conside ge rement le long du palier. elle diminue le les proprie te s me caniques du fil NiTi Miura et al. [11] ont teste lastique avec un test de pliage en trois points. Apre s super-e la courbe de contrainte–flexion, il identifiait le avoir dessine point de flexion de la transformation martensitique Ym. Celuiduire tous les parame tres pour calculer la ci lui permettait de de orique du fil. force the les fils e lastiques et superLorsque nous avons compare lastiques, le NiTi japonais exer¸cait une contrainte infe rieure, e ^me a` des niveaux de flexion peu importants, puisque sa me rieure a` celle du SS, du TMA valeur de Young absolue est infe livre a` des degre s de flexion et du Nitinol. Les forces qu’il de
137
Luca LOMBARDO et al.
by SS. This means that superelastic wire proprieties are useful on the vestibular side in cases of large deflections, and on the lingual side, even for small deflections, because of the reduced interbracket distance. It is noteworthy that the force values reported in the tables belong to the loading curve. The stress acting on the teeth is described by the unloading curve. The difference between the two curves increases as the hysteresis increases [4]. Miura et al. [11] report that, for the Japanese NiTi wire they tested, the unloading curve was about half the loading curve. The values we calculated in this study are theoretical since several of the wire parameters, such as the point of martensitic transformation, were obtained in vitro using three-point bending tests, in ideal and controlled conditions. As reported by Wilkinson et al. [14], wire performances can differ significantly if the experimental model is changed. It must be borne in mind that the friction between the teeth and in the wireligation-bracket complex can drastically modify the level of stress delivered to the teeth [14]. Using elastomeric ligation, Kasuya et al. [8] demonstrated that the friction is so great that the behavior of superelastic wire is modified and its properties diminished. Conversely, laboratory tests show that self-ligating brackets enhance the superelastic proprieties of the wire [8]. Although approximate and theoretical, the loading values we found nevertheless highlight the importance of making an appropriate choice of brackets and wire characteristics, in particular if lingual mechanics is chosen.
leve s sont assez constantes et significativement moins e leve es que celles ge ne re es par le SS. Cela signifie que les e te s du fil super-e lastique utilise en vestibulaire sont proprie sence de flexions importantes, ainsi que du co ^ te utiles en pre ^me en cas de flexions mineures, en raison de la lingual, me duite. distance interbrackets re Il est important de noter que les valeurs des forces fournies dans les tableaux se rapportent a` la courbe de charge. La e sur les dents est de crite par la courbe de contrainte place charge. La diffe rence entre les deux courbes augmente de re se [4]. avec l’augmentation de l’hyste Miura et al. [11] rapportent que, sur le fil NiTi japonais qu’ils ont , la courbe de de charge e tait approximativement la moitie teste de la courbe de charge. es dans cette e tude sont the oriques puisLes valeurs calcule tres de fil, tel que le point de transque plusieurs des parame taient obtenus in vitro en utilisant formation martensitique, e des tests de pliage en trois points, dans des conditions de ^ le ide ales. Comme l’ont constate Wilkinson et al. [14], contro les performances des fils peuvent varier de fa¸con significative le expe rimental. On doit tenir en cas de changement de mode compte du fait que la friction entre les dents et dans le s complexe fil–ligature–bracket peut modifier de fa¸con tre rable le niveau de contrainte s’exer¸cant sur les dents conside lastome riques, Kasuya e al. [8] [14]. Utilisant des ligatures e que la friction est tellement e leve e que le comporont montre lastique s’en trouve modifie de telle sorte tement du fil super-e te s diminuent. Inversement, des tests de que ses proprie montre que les brackets auto-ligaturants laboratoire ont de liorent les proprie te s super-e lastiques du fil [8]. ame oriques et approximatives, les valeurs de charge Quoique the es nous aident a` comprendre a` quel que nous avons trouve livre es, point il est important, en ce qui concerne les forces de ristiques des fils, de bien choisir ses brackets et les caracte surtout lors d’un traitement en technique linguale.
Conclusions
Conclusions
Our hypothesis was supported by the study performed: — the type of bracket has a relevant influence on the interbracket distance and, consequently, on the forces delivered to the teeth; — elastic wires commonly used in the vestibular technique (0.016 SS, Nitinol and TMA) are not suitable for lingual orthodontics, in particular during the first phase of treatment on account of the excessive forces they generate; — superelastic wires are the first choice in cases of severe crowding and with lingual mechanotherapy, on account of their ability to deliver light, continuous forces at large deflections.
se de de part a e te confirme e par l’e tude : Notre hypothe a un impact pertinent sur la dis— le type de bracket utilise quence, sur les forces tance interbrackets et, en conse livre es aux dents ; de lastiques utilise s habituellement en technique ves— les fils e tibulaire (0,016 SS, Nitinol et TMA) ne conviennent pas en re phase du orthodontie linguale, surtout pendant la premie ne rent ; traitement en raison des forces excessives qu’ils ge lastiques sont les fils de choix dans les cas — les fils super-e ve re et pour la me canique linguale, en d’encombrement se a` de livrer des forces le ge res et raison de leur capacite s de flexion importants. continues avec des degre
Conflict of interest statement
re ^t Conflit d’inte
None.
Aucun.
138
International Orthodontics 2011 ; 9 : 120-139
Wire load–deflection characteristics relative to different types of brackets
ristiques de charge–flexion de fils selon diffe rents types de brackets Comparaison des caracte
References/References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.
Hohoff A, Wiechmann D, Fillion D, Stamm T, Lippold C, Ehmer U. Evaluation of the parameters underlying the decision by adult patients to opt for lingual therapy: an international comparison. J Orofac Orthop 2003;64(2):135–44. Moran KI. Relative wire stiffness due to lingual versus labial interbracket distance. Am J Orthod Dentofac Orthop 1987;92:24-32. Fuck LM, Wiechmann D, Drescher D. Comparison of the initial orthodontic force systems produced by a new lingual bracket system and a straight-wire appliance. J Orofac Orthop 2005;66:363–76. Garrec P, Jordan L. Stiffness in bending of a superelastic NiTi orthodontic wire as a function of cross-sectional dimension. Angle Orthod 2004;74:691–6. Andreasen GF, Morrow RE. Laboratory and clinical analysis of Nitinol wire. Am J Orthod 1978;73:142–51. Verstrynge A, Van Humbeeck J, Willems G. In-vitro evaluation of the material characteristics of stainless steel and beta-titanium orthodontic wires. Am J Orthod Dentofac Orthop 2006;130:460–70. Drake SR, Wayne DM, et al. Mechanical properties of orthodontic wires in tension, bending and torsion. Am J Orthod 1982;82:206–10. Kasuya S, Nagasaka S, Hanyuda A, Ishimura S, Hirashita A. The effect of ligation on the load deflection characteristics of nickel titanium orthodontic wire. Eur J Orthod 2007;29 (6):578–82 [Epub 2007 Sep 14]. Muraviev SE, Ospanova GB, Shlyakhova MY. Estimation of force produced by nickeltitanium superelastic archwires at large deflection. Am J Orthod Dentofac Orthop 2001;119:604–9. Bartzela TN, Senn C, Wichelhaus A. Load-deflection characteristics of superelastic NickelTitanium wires. Angl Orthod 2007;6:991–8. Miura F, Mogi M, et al. The super-elastic property of the Japanese NiTi alloy wire for use in orthodontics. Am J Orthod Dentofac Orthop 1986;90:1-10. Schudy GF, Schudy FF. Interbracket space and interbracket distance: critical factors in clinical orthodontics. Am J Orthod Dentofac Orthop 1989;96:281–94. Satoh K, Osawa H, Yoshizawa M, Nakano H, Hirasawa T, Kihira K, et al. Mechanical properties of several nickel-titanium alloy wires in three-point bending test. Am J Orthod Dentofac Orthop 1999;115:390–5. Wilkinson PD, Dysart PS, Hood JA, Herbison GP. Load-deflection characteristics of superelastic nickel-titanium orthodontic wires. Am J Orthod Dentofac Orthop 2002;121:483–95.
International Orthodontics 2011 ; 9 : 120-139
139