= (~ tP(r)HomuA w(~P(ea® e u ) P , P ) r~A
= tP(S)(HOmGL(W,)(qJ(eD TmI(wI), Tm'(wI))) ® HOmGL(Wl)(q~(eu) Tm2(w2, Tm2(w2))) = ~o(s)(~o(f(ml,
m2) ® (FSm tet ® FSm2eu)))
= ¢P[s(f(ml, m 2 ) ® ( J t
® Ju))]"
Here s = Y.~ A r and f ( m l , m2)=Tm'(fl)®Tm2(f2). Since dim W>_n,~o is 1-I, so we conclude that JI, U = ~ A r Ll, u = s [ f ( m l , m 2 ) Q ( J l ® J u ) ] , which proves (b), and also implies that el, u, e:~u e Jl, u. To prove (a) we show that e~, u = el, u and ~,u = el, u- But this is a trivial consequence of the following A.7. Lemma. Let n = m l + m 2, 2~-ml, li)--m 2, A(-)e l, e'aeFSm,, l l o e u, as in A. 1, and let 0 e Sn. Then
[f(ml, m2) ® (el ® eu)] OIf(ml m2) ® (el @e'.)l = I0 f ( m l , m2)®(e101eu®e'~02e' u)
ifO¢Sml×Sm2" if 0 =(01, 02)eSm, ×Sml.
Proof. Note that
Q = [ f ( m l , m2) ® (el ® eu)] 0 = f ( m l , ml) ® [(el ® eu) O]
etgffFSm2
Wreath products and P.I. algebras
145
So, if Oq. Sm, X Sm2, then
Q=
~ ao.f(ml,m2)®a ~S,., xSm2
(a,~•f).
Now, a[f(rn~,rn2)®(e'~ ®e'u)l=a(f(rnl,m2))®a(e'~ ®e'u) and since a*Sm XSm~, f(m~, m2)- a(f(m~, m2)) = 0 (f~ "f2 =0), which clearly implies the first part. The proof of the second part is similar and is based on the (obvious) fact that if 0 • Sin, x Sm~, then O(f(ml, m2)) =f(ml, m2) =f2(ml, m2). This completes the proof of the Lemma, which clearly implies that e~, u = e~, u and ~2u=~,t,u; thus completing A.6. [] To complete our investigation of 14,u we now give a complete system of primitive idempotents that decompose Ia, u as a direct sum of minimal left ideals. These idempotents, in general, are not orthogonal. First, from A.7 we deduce A.8. Corollary. Let 2 ~ ea, e'~, gt ~ e;, e'u and e~,u, e'~,u as in A.3. I f (ea ® eu)(e'~ ® e'u) = O, then ea, u. e'~.u =0 (and ~a,u-~,u=0). (Obvious.) A . 9 . N o t a t i o n . Let n = m~ + m2, A t-- m~, gt ~- m
T(2,1u)=l(T~,Tu)
2
a n d denote
T~ is standard ° f shape ~ 1" T u is standard of shape
Each (T~, Tu)• T(2,/~) defines an e;~,u, as in A.3, hence the corresponding minimal left ideal ( A - Sn)ea, u=Ja, u. We denote k(A,U) = ~] ( A - S , ) e ~ , u. T(Z,u)
A.10. Note. Order {T~} lexicographically, let T~ < T~ and let T~ ~ ea, T~ ~ e~. Then it is well known that ea. e~ = 0: the set {ea I e~ ,--,Ta} is 'one-sided orthogonal'. Same for {eule u ~ Tu}, and by a corresponding lexicographic order of T(it,/z), {ex, u [ea, u ~ (Ta, Tu) • T(2,/2)} is also one-sided orthogonal. By A.7, if ex, u, e'~,u are t since ),1),21 ~Sm, XSm2. as in A.7 a n d Yl ~ Y2 E/', t h e n (y!-1 e L u y l ) ( y 2-1 e,LuY2)=0, Thus, by an appropriate order, {y-lezuY ] e~,u "~"(Ta, Tu) • T(A,/a), y • F } is 'onesided orthogonal'. By a standard argument, this yields A . 1 1 . R e m a r k . Let K(;t,/a) be as in A.9. T h e n
K(A, lU) = @ (A - Sn)e;t,u = @ J;t,u. T(2, .u)
n
2
T(2, la)
2
Thus dimKO, u) = (ml)d; -d~. A.12. Note. It is well known that if {Tx} are all the standard tableaux of shape ~, then ~,lr~)FSmme;t=~{rA J;~=I;t' the minimal two-sided ideal I;tC_FSm~. Same for ~. This implies
A. Giambruno, A. Regev
146
A.13. Lemma. K()t,12)=(+~ A r[f(ml, m2)®(Ia ® Iu)]. Proof. By A.6(b), J~,u D-f(ml, m2)®(J~®Ju), hence
K(2,12) = @ Jx, u T(2,/~)
D-f(ml' m2) @ ( T(~2,I~)(Ja ® Ju))
= f(ml' m2) (~ (lA (~ Iu)"
Since K(2,12) is a left ideal, K(2,12)_~ E~A r[f(ml, m2)®(Ia®lu)]. The r.h.s is clearly a direct sum and therefore its dimension is (also) (n)d~du2; hence, by A.11, it is equal to the l.h.s. [] A.14. Lemma. With the above notations we have
[f(ml, m2)®(I
®Iu)]"[Tn(A)~(FSml
(~FSm)] =f(ml, m2)®(I ®Iu).
Proof. Clearly, 1.h.s. _ r.h.s. Since Tn(A) is F-spanned by the elements f ( i ) = f/~ ® . - - Q f / , ,
ij ~ {1,2},
the proof now easily follows from the following observation: If a ~ Sin, × Sin2, then
I0 (f(ml'm2)®a)'f(i)=
f(ml, m 2 ) ® a
if f(m ,
m2).f(i),
if f ( i ) = f ( m l , m 2 ) .
[]
A.15. Theorem. With the notations of A.3, Ix, g = ~)r,r(~,u) ( A - Sn)(y-lezuy), i.e. {y-lex, uy } is a complete set o f primitive idempotents for I~, u (each
(A ~ Sn) (Y- 1ex, u Y) = (A ~ S, ) ex. u y is a m in im al left ideal in A - Sn). Proof. Since I~, u is the minimal two-sided ideal _ J~,u, hence I~,u=K(A, 12). (A-Sn). Clearly A - S n = ( ~ y ~ r [Tn(A)®(FSmt®FSm2)] )', hence, by A.14, h,u= vZ,y~r K(A,12)y. - - t n ~ 2,,~,,~, r / 2 d 2 [ E l = ( n l ) and dimK(A,p) =(m,)d~d~ n 2 2 (A.11), therefore Now, dimla, u-~md ILu=@y~rK(A, 12)y. The theorem now follows from A.11. [] i A.16. Remark. Let el=),{le~,uyl, e2=Y 2-1 e~,u~ 2 be two idempotents as in A.15. Then there exists r/eS,, such that eE=r/-~elr/.
Proof. This is well known in FSn: there exist 0i E Sin,, i = 1, 2, such that
e'~ = 0~1e~01 and
e'u = 0~1eu02 .
Since 0 = 01 02 commutes with f ( m l, m2), hence e~, u = 0-1 ex,u 0, so e2 = r/- 1el r/where r/= Y1-10y2. [] A.17. Right ideals. We now decompose I~, u into minimal right ideals.
Wreath products and P.L algebras
Define ~ p : A - S n ~ A - S
n by a = a l ® . . . ® a n ,
147
treSn, ~ p ( a ® t r ) = t r - ~ ( a ) ® t r -1,
and extend linearly to A - S~. Check that tp((a ® a ) . (b ® r)) = tp(b ® r ) . ~o(a ® tr). Thus tp is an anti-isomorphism of A - Sn with itself. Clearly, ~p(ea®eu)=e~®e u and ~p(f(ml, m2))=f(ml,m2), hence q~(ex,u)=ex, uThus ~p(Jx,u)=~p((A-Sn)ex, u)=eg, u ( A - S ~ ) is the corresponding minimal right ideal. The decomposition of Ix, u into such ideals is now clear.
Branching in 7/2- S n The embedding of A - S n into A - Sn ÷z can be done in m a n y ways, and we choose a natural one: Sn embeds naturally into Sn+l (Sn = {a e Sn+l I tr(n + 1) = n + 1}). Identify now a l ® . . . ® a n ® t r ~ A - S ~ with a l ® . . . ® a ~ ® t r - - a l ® . . . ® a n ® l ® t r e A - S , + I , to have A - S , c _ A - S , + I . Given Jx, u c_A - S~ as before, we shall give its branching in A - Sn ÷1 by calculating (A - S~ ÷ l) Jx, u as a sum of irreducibles in A - S~ + 1. A.18. Note. Let R 9_ S be finite-dimensional F-algebras with 1 = 1R = ls such that R is a free right S module, and let J C S be a left ideal. Then R J = R ® s J (via r ® j ~ r- j ) . In particular, (A -
1)"
-- (A -
1)®A-s
A.19. Notation. Let 2 I - m 1 and identify a partition with its Young diagram. Then denote 2 + = all the diagrams obtained from 2 by adding one cell. Similarly for lz ÷, where/z ~- m2. A.20. Branching in F S m --~FSm+I is well known: If J~ is a minimal left ideal in FSm, then FSm+ 1• J2---(~a'ea* J2" We can now prove A.21. The Branching theorem. With the above notations,
Proof. Since T m ' ( f l ) ® Tm2(f2)® 1 ®(ea ® e u) =- Tm'(fl)® Tm=(fz)®(ea ® e u ) e J~,u we have T m ' ( f l ) ® T m 2 ( f 2 ) ® f i ® ( e a ® e u ) e ( A - S , + l ) J a , u for both i = 1,2. Case 1: i = 2 , so f ( m l , m 2 + l ) ® ( e a ® e u ) e ( A - S n + l ) J ~ , u. Since f ( m l , m2+l) commutes with Sin, × Sm2+1,
(A - Sn+ l)Ja, u ~-f(ml, m2 + l) ®(Ja ® FSm2+leu) = • I/EI.t ÷
[f(ml, m2+l)®(J~®Ju)l.
148
A. Giambruno, A. Regev
It follows from A.6 that
(A-Sn+l)'J;~,u~_ E J;~,u" lt' Ei.t +
Moreover, ~,,,~u. Ja, u=@~,,~,+J~,u since these irreducibles are pairwise nonisomorphic.
Case 2: I = 1. Similarly, let f ( m l + 1, m 2 )
= T m, ( f l ) (~) T m 2 ( f 2 ) t ~ f l ,
and let
(Sm, +l ×Sin2) ~= Sin, +1(1, 2, ...,ml, n + 1)× Sm2(ml + 1, ...,n). Then (Sin, +1 x Sin2)~ and f(m I + 1, m2) commute. By exactly the same arguments as above. (A-Sn+l)Jx, u Z_@~,~a+Jx'u where jx,,u=Ja;u. Since all these irreducibles are pairwise non-isomorphic, \
® ltt ' E l t +
Calculate dimensions: [ n + l '~d d
d i m J ~ ; U = k m l + l , ] ~ u'
dim J~,u, =
n+l)
m 2+ 1
d~ du,,
so the dimension of the r.h.s is
E 2'~2 ÷
m I
+1
A,du + E d;~du, u'~u" \m2 + 1
=(ml+l)!mz! du"
(
)
~, dz, + m l !
~'~a + k v' ") = (ml + 1)dz
(m2+l)!
d,t"
(
~, d u,
u,~u + L v J
)
= (m2+ 1)du
= 2 ( n + l ) ( n )d~du= 2(n+l)d~,u ml
which obviously is the dimension of the 1.h.s. Thus 1.h.s = r.h.s, so []
References [1] S.A. Amitsur, Identities in rings with involution, Israel J. Math. 7 (1969) 63-68. [2] S.A. Amitsur and A. Regev, P.I. algebras and their cocharacters, J. Algebra 78(I) (1980) 248-254. [3] A. Berele and A. Regev, Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras, Advances in Math., to appear. [4] A. Berele and A. Regev, Applications of hook Young diagrams to P.I. algebras, J. Algebra 82(2) (1982) 559-567. [5] I.N. Herstein, Rings with Involution (Univ. of Chicago Press, Chicago, 1976).
Wreath products and P.L algebras
149
[6] G. James and A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia of Math. and its Applications (Addison-Wesley, Reading, MA, 1981). [7] V.K. Kharchenco, Identities involving automorphisms, Siberskii Matem. Zhurnal 17 (1976) 446-467 (Russian). (English transl. December 1976, 349-363.) [8] I.G. MacDonald, Polynomial functors and wreath products, J. Pure Appl. Algebra 18 (1980) 173-204. [9] S. Montgomery, Fixed rings of automorphism groups of associative rings. Lecture Notes in Math. 818 (Springer, Berlin, 1980). [10] A. Regev, Existence of identities in A ®B, Isreal J. Math. 2(2) (1972) 131-152. [11] A. Regev, The T-ideal generated by the standard identity Sa[Xl,XE,X3], Israel J. Math. 26(2) (1977) 105-125. [12] A. Regev, The representations of Sn and explicit identities for P.I. algebras, J. Algebra 51 (1) (1978) 25-40. [13] A. Regev, Algebras satisfying a Capelli identity, Israel J. Math. 33(2) (1979) 149-154. [14] A. Regev, The representations of wreath products via double centralizing theorems, Preprint. [15] L. Rowen, Polynomial Identities in Ring Theory (Academic Press, New York, 1980). [16] W. Specht, Eine Verallgemeinerung der symmetrischen Gruppe, Schriften Math. Seminar Berlin 1 (1932) 1-32. [17] A. Young, QSA V, Proc. London Math. Soc. (2) 31 (1930) 273-288.