X-ray molecular structure of synergistic complex

X-ray molecular structure of synergistic complex

INORG. NUCL. CHEM. LETTERS Vol. 13, pp. 363 - 365, 1977. Pergamon Press. Printed in G r e a t Britail X-RAY MOLECULARSTRUCTUREOF SYNERG...

123KB Sizes 0 Downloads 150 Views

INORG.

NUCL.

CHEM.

LETTERS

Vol.

13,

pp.

363

- 365,

1977.

Pergamon

Press.

Printed

in G r e a t

Britail

X-RAY MOLECULARSTRUCTUREOF SYNERGISTIC COMPLEX Uranyl di-thenoyltrifluoroacetonate tri-n-octylphosphino oxide

T.H. Lu, T.J. Lee, T.Y. Lee and C. Wong National Tsing Hua University, Hsinchu, Taiwan, China

(Received I0 May 1977)

Ferraro and Healy(1) f i r s t isolated the synergistic extractions UO2(TTA)2E* in c r y s t a l l i n e form.

Infrared studies of such complexes in

solution as well as in c r y s t a l l i n e state suggested that the structure of UO2(TTA)2E contains TTA's both as a monodentate and bidentate ligands in the complexes(1). numbers.

Thus, the uranium would have even coordination

In view of such interesting features, a crystal structural study

of one of the complexes is in order. UO2(TTA)2TOPOt , crystallizes in golden yellow, thin plates.

The

crystal is very soft and wax l i k e (m.p. 57°C). Crystal data: UC4oF6H5gO7PS2, FW = 1099, a = 15.234(3), b = 21.286(4), c = 16.410(3)~, B: 113.11(6) 0 , Dm = 1.47(4), Dc = 1.505 g . cm-3, Z = 4, space group P21/n.

A total of

1525 independent reflections (I>3o(1)) were collected on a Syntex P] autodiffractometer at ca. 30°C (Nb-filtered Mo K~, 0-20 scan).

The Lp and

absorption(2) corrections were made (~ = 50.4 cm- l , crystal size 0.I x 0.02 x 0.I mm). The structure was solved by the heavy-atom method.

Several cycles of

difference m a p - f u l l - m a t r i x least-squares procedures could locate U, P, O, and non-hydrogen atoms of two TTA's ( a n i s o t r o p i c a l l y f o r U, S, and P, R : 15%). In the f i n a l d i f f e r e n c e map three n-octyl groups appeared disordered; t h e i r electron densities being t a i l i n g o f f gradually toward the ends of the chains and t h e i r cross-sections e l l i p t i c a l .

Each of them was r e a d i l y

interpreted as two nearly p a r a l l e l h a l f chains.

The f i n a l refinement

included a l l these a l k y l carbons each with 0.5 occupancy and also the Jisorder of a thenoyl ring including $2 (see l a t e r discussion), R = 8%. Form factors were taken from International Tables for X-ray Crystallography Jol.l (1959), and that of U atom has been corrected for dispersion effect(3). The computations were carried out on a CDC Cyber 72 system using ORFLES, * TTA = {F3C.CO.CH.CO.SC4H3} - and E = neutral organophosphorus ester t TOPO = (n-C8HI7)3PO 363

364

Synergistic Complex

ORFFEE, and ORTEP, and other programs written in this laboratory.

The final

atomic parameters are listed in Table I .

4. TABLE I FRACTIONAL COORDINATES I X 1 0 ' l

T ATCN U 51 S2 P

X/A 16ASl 13 -253(22) -1678(1S) 3940112)

"

Y/B

Z/C

1671( 13 1491 9) 6TTI133 2742120I

Alto TEMPERATU4qE FACTORS FOR

U02(TTA)2TOP0 exp[-(Bllh2+B22k2+B3322+B12hk÷B13h~+B23kE)x10-4]

8 6 1 i 11 01560(12I -$6AC17) 2401(12)

811

B22

B$S

B12

B13

B23

S9C 2) 176(143 129(1S) 129(133

S9I 1) Y6[ 73 103(113 10S( 9)

9 9 ( 1) 147(133 158(183 146(131

- A I 2) 81163 -8(223 -94(18(

71( 2) B2(223 96(28) 49(21(

- 2 0 ( 21 -14(151 1~(2$1 -1~(18}

FRACTIONAL COORDINATES IXlO ~ ) AND ISOTROPIC TEMPERATURE FACTORS ATOM

X/A

F11 F23 F22 01 03 OS OT C12 CIA C16 C18 C22 CEA C26 C28

413(53 43615I 47(8) 295(23 1(23 29415I 19E(2) 13153 ISIS) 2sTeAl 42216) -920(53 -152(3( -5113] 80161

Y/B 105C33 180C$) 315(5) 14511) 142(13 226(2) 10212) "33133 32C2] SO(SI IS4(53 83{$) 120(2( 19TI23 267(6)

Z/C

B

-031SI -1141 262(7) $8(23 48(2) 1BE(2) 15412) -27715) -153131 -86C41 -19(b} -1614) 3813( 15013) 297C63

26.T(2.33 22.6(2.2) 2T*0(k*2) 10.AID,S) 10.210,8) 12,S(1.0) 12,4(0,91 14.3(2*O) 8.2(1.0( 11.5(1.53 22,3(2.33 IS.8(1.BI 9,BCl.2) 9,8(1.23 25,7C2,S)

ATOM

X/A

Y/E

2/C

B

CIRI CIPS CIP5 C1PT CEP| CEPS CZP5 C2P7 CSPI CSP$ CSPS C$P7 CIPIP C|PSP CIPSP CEPTP CEPIP CZPSP CEPSP CEPTP CSPIP CSPSP CEPSP CSPTP

445 S9O 694 860 SAD SO0 185 144 300 196 S, -1S 4SE 650 T0T eON 406 420 288 225 2TS 157 105 2S

264 2BS 181 162 269 195 136 $3 SkS 449 490 499 286 286 175 162 2ST 284 244 118 $~S 640 922 480

195 186 270 $91 330 440 47? 550 2S2 122 114 2Si 2SA 260 SS0 4SA 342 4TS 513 620 244 100 200 299

14.? 16.9 20.1 22.3 14.8 16.9 22.1 25.1 14. E 16.3 19.E 21.3 16.7 16.9 20.1 22*3 14.8 16.9 22.1 25.1 14,8 16.3 19.2 21.3

ATOM

X/A

F12 F21 F23 02 04 06 C11 C13 C15 C1T C21 C23 CES C2T

450;5) 5513) -)4(4( 11312) 108131 126(3) -53(53 10914) 143141 30214) -2T4143 -232(2) -62(3) 3014)

ATOM CIP2 C IP 4 CIP6 CIPS C2P2 C2P4 C2P6 C2P8 CSP2 CSPk CSP6 CSP8 C)P2P C1PAP C1P6P CIPOP CEPEP CEP4P CEPSP C2PEP C3P2P CSPAP CSPAP CSPOP

Y/D

Z/C

8

90(3) 35(5} 25414) 33515} 231(3} 2Tllk) 96(13 -41{2~ 22212) 18312~ 230(2) 1413) -38(3) --243(k) "4(33 -228(3) T1(23 -92(3( 116(33 -22143 52(2) -61(33 136(13 51123 154(21 82(3} 2 2 3 ( 3 ) 198(4}

X/A

Y/R

Z/C

497 66B T98 836 315 248 223 ~0 236 120 26 -121 'SO 720 798 890 410 366 313 131 196 92 52 -85

250 240 188 132 206 130 97 00 375 450 530 S2S 253 243 136 132 190 128 106 85 379 411 S$7 SO0

183 200 317 464 364 425 $62 500 130 170 213 279 280 305 366 $10 380 476 $98 585 IS9 135 260 300

25.4(2,3) 29.3(2,53 23.3(2.5) 10.4(0,8J 11,9(0,91 1200(1,01 13.B(l,BI 11,1(1.33 9,$11.2( 10*9(l*kl 9.1(1.31 4.1(0.73 8.3(1.1} 12.1(1,~) B 15.1 19.5 21.0 2~*0 15.7 20.0 2~.2 25.3 16.0 1e.2 20.~ 24.1 15.1 19.5 21,8 24,0 1SeT 20*0 24,2 25,3 16,0 18.2 20.4 24.1

i.

S2: 3/4S+I/4C, C23: I/4S+3/4C.

2.

C m P n and CmPnP denote the m u t u a l l y c o r r e s p o n d i n g two half c a r b o n atoms of the octyl groups.

The t e m p e r a t u r e

factor

of each a t o m is the average of the c o r r e s p o n d i n g two half C's.

(e.s.d.'s are 2-3).

As shown in F i g . l , the U atom has a pentagonal bipyramidal geometry. Four 0 atoms from two bidentate TTA's and the 0 atom of TOPO l i e on the basal plane, and 2 uranyl 0 atoms occupy apexes. The phosphino oxide is bonded to the U atom directly in between the CF3 groups. The two TTA's are coplanar within 0.2 X i f the F atoms are not included.

In TTA I I , the

thiofuryl ring (including S2) is disordered so that there is a 75% probability that the ring is as i t appears in F i g . l , and 25% that i t has undergone a rotation of 180° around the C24-C25 bond. This thiofuryl ring forms a dihedral angle of lO° with the rest of TTA I I , while TTA I is planar with a maximum deviation of ca. 0.01 ~.

The two CF3 groups are considered undergoing rotation

Synergistic Complex

365

)c,s

IF,, 03

CtP2

C~P6 ..~Cl

CSP6

Fig.1

Perspective drawing of the molecule. (One of the two components

is shown for the

disordered parts.)

as appeared on the difference maps (and very large temperature factors). uranyl U-O, (I.74(5)~) and the other U-O (2.31(5)R) distances are normal.

The The

U-O-P angle is 170(5) o , and P is within 0.2 R on the plane determined by the two TTA's. Packing of the crystal is normal and loose, so that no intermolecular o atomic contact is less than 3.6 A. We thank National Science council of Republic of China for financial support. REFERENCES (I)

J.R. Ferraro and T.V. Healy, J. Inorg. Nucl. Chem., 24, 14.63 (1962).

(2) (3)

A.C.T. North, D.C. P h i l l i p s and F.S. Mathews, Acta Cryst., A24, 351 (1968). C.H. Dauben and D.H. Templeton, Acta Cryst. 16, 841 (1955).