J. Quant. Specrrosc. Radial.
Transfer, Vol. 19, pp. 11-50.
Pergamon Press 1978.
Printed in Great Britain
X-RAY SPECTROSCOPY OF MULTIPLY-CHARGED IONS FROM LASER PLASMAS V. A. BOIKO, A. YA. FAENOV and S. A. PIKUZ P.N. Lebedev Physical Institute, Academy of Sciences of the USSR, Leninsky Prospect 53, MOSCOW, USSR (Received 13 December 1976)
Abstract-Original results are reEororted on the observation and identification of spectra of multiply-charged ions in the range of A - 1.5-15A, which corresponds to transitions with a change of principal quantum number II. The main part of the review consists of tables with about a thousandspectrallines, whichhave been mainly observed in laser-plasma radiation, as well as in the solar corona and other laboratory sources at an electron temperature T, - 10’“K. The accuracy for the wavelengths (Al\) is the following: AAis equal to - 0.0005A for A - 2.5 A and it is equal to - 0.003A for A - 15A. The spectral lines are considered for the following transitions: l-n type for [HI-like ions (2 = 11-16)and [He]-like ions (Z = 1l-26); 2-n type for [Li]-like ions (Z= 1%26), [Be]-like ions (Z= 22-34) and [Ne]-like ions (Z= 26-42); 3-n type [Co]- and [Nil-like ions (Z = 73). The line-list contains about four hundred wavelengths for multiply-charged iron L-ions (Fe(XVll)-Fe(XXIV)) and is presented with identification of some of the transitions. The wavelengths and intensities of satellites of the [HI-like ions and [He]-like ions, which are caused by transitions from the doubly-excited autoionization states 2121’and ls2/2L’ of [He]-like ions (Z = I I-16) and [Li]-like ions (Z = 1l-26), respectively, are also considered.
1. INTRODUCTION HOT, DENSElaser plasmas”’ are unique bright sources of spectra of multiply-charged ions in the far vacuum U.V. (A - 10-500 A) and soft X-ray (A - l-10 A) regions.‘2’ In this review, results are reported on the observation and identification of spectra of multiply-charged ions in the range of A - 1.5-15 A, which correspond to transitions with a change of principal quantum number n (ions with nuclear charge 2 - 10-70 and isoelectronic sequences of atoms with Z- l-30 will be discussed). The main part of the review consists of tables of spectral lines which have been observed, for the most part, in laser-plasma radiation, as well as in the solar corona and other laboratory sources at an electron temperature T, - 10°K. To this date, only few data were available for soft X-ray, multiply-charged ion spectra. During a period of more than 30 yr since 1942, studies of spectra of the vacuum spark,“’ O-pinch, (4)flares. and active regions of the solar corona, (5)low-inductance vacuum spark,@’ and plasma focus”’ were restricted to observations of a few lines emitted by simple ions of several elements. The use of laser-plasma sources has made it possible to embark on a systematic study of this region.@@’ X-ray spectroscopy of multiply-charged ions is an effective instrument for diagnostics of super-dense thermonuclear laser plasmas [see Refs. (2,47)]. The problems of laser-plasma diagnostics with a temperature T, - 10’OK and density N, - 10’9-1022cmm3 by means of K-spectra of one-, two-, and three-electron systems with Z - 1l-23 are discussed in Ref. (38). Here, we shall restrict ourselves to the problem of identification and analysis of transition intensities from doubly-excited levels of [He]- and [Li]-like ions corresponding to the resonance line satellites of [HI- and [He]-ions, respectively. In this survey, we shall not describe spectral technique for the study of laser-plasma X-ray emission [see Ref. (39)]. It is worth noting that, to interpret the complex L- and M-spectra, and to measure absolute wavelengths of spectral lines in wide ranges (up to several octaves), it is necessary to employ defocusing instruments with convex crystals.C39*a) We call K-, L- and M-spectra those consisting of lines due to transitions to Is-, 2s- and 2p-, 3p- and 3d-levels, respectively, with changing principal quantum number (n + n’, n# n’). The following abbreviated notations will be used henceforth: [HI-ion denotes a hydrogen-like ion; [He]-ion denotes a helium-like ion; [Li]-ion denotes a lithium-like ion; etc. In some cases, the ions whose ground configuration consists of an Is-electron will be called K-ions [there are [HI11
V. A.
12
BOIKO
et al.
and [He]-ions]. In the same manner, the ions whose ground configuration consists of 2s- and 2p-electron will be called L-ions [there are [Li]-, [Be]-, . . . , [Ne]-ions]; etc.
2. THE
INTENSITIES
AND IDENTIFICATION OF IONS WITH Z= 11-26
OF K-SPECTRA
2.1 Optical transitions of K-ions Tables 1 and 2 contain the results obtained by the use of laser-produced-plasmas.‘20’ In Ref. (20), the experimental studies are characterized by the following features: (i) observations of spectral lines arising from transitions of the type Is-np and Is*-Imp up to n = 10 (see also Fig. 1); (ii) absolute wavelength measurement in wide spectral ranges; (iii) agreement with theory [see Ref. (48)] within an accuracy Ah/h - 10M4.The latter result indicates both good accuracy in the ..a_ pxnprimc-xtal -“y”.‘.“~a..Y’
nwthndc . ..W...VI”
nwd YYI..
in 1.1 cnprtra Yyw-....
rpoictratinn .~~LU.‘Y.L”.~
sad the ahrpnrp nf hrnadPnino Y.L.. LLl” UVo”La.,w “I PY~PCC~W I,..,V.,“.,~ “‘“YYV”.“b
and shifting of spectral lines in the laser-plasma spectra. Spectral resolution, which is necessary for observations of the fine structure of the resonance line Ly, of [HI-ions, was obtained only in the X-ray region (see Table 1). The study of the intensity ratio X = T( 1s - 2pI12)/T( 1s - 2p3,*) for a laser plasma in Ref. (44) shows that, in some cases, X is greater than 1 and reaches 1.7 (see Fig. 2). It may be shown that X must be less than 1 for an optically thin plasma. Here X is equal to 0.5, both for extremely small and extremely large electron densities; in the intermediate interval, X may reach 0.7-0.8 due to the additional population of the 2pu2 levels from 2s,,*. Thus, the experimentally observed cases of %‘> 1 should correspond to an optically-thick plasma. This may be seen from the data for different concentrations of the ions studied (see Fig. 2(a)). In Ref. (44), it is shown that, by making use of the usual radiational and collisional transitions, it is impossible to obtain X> 1.3 and the epxdrnwttnllv nrrnnntd r _....._- ___..J ~b&ified_ ya!up of X - ! .7 c.2~, he Y_ _ ___- 1.___ fnr - _. nnlv _..._rwith !h~ help of a new mechanism for radiation decay of a metastable level 2sm induced by collision with charged particles.
optical transitions in [HI-ions (2 = l&16); A is in A
Table 1. K-spectra; Ion Transition xi keV 1s 2%z-2P zp,,, 1s *s1,2-2p 2P,,z
Is zs-3p 1s 2s4p 1s 2ssp 1s iS_6p
*P 2P 2P ip
1s 2slp 2P Is *S-8p *P Accuracy + AA, A
Mg(XI1) 1.%3
AI(XII1) 2.304
Si(XlV) 2.675
ww 3.070
S(XV1) 3.494
5.3859 5.3802
4.7334 4.7274
-
-
0.003
0.0015
7.1759 7.1703 6.0524 5.7387 5.6035 5.5337 5.491 5.463 0.0015
6.1859 6.1798
8.461 -
8.4253 8.4194 7.1062 6.736 6.576 6.503 -
Na(XI) 1.649
1
10.026
0.0010
-
-
0.0010
0.0010
EHel CLil
Fig. 1. Spectra of magnesium (2 = 12) and aluminum (Z = 13) in first-order reflection from a mica crystal.
Is2 IS,-ts2p fP, I? ‘S,-ls2p ‘P, lsz’s,-ls3p ‘P, IS2 ‘.s,-ls4p ‘P, 1s* IS,-ls5p ‘P, ls”S,-ls6p ‘P, Is2 ‘S,-ls7p ‘P, 1s’ IS,,-ls8p ‘P, l?‘S,-ls9p ‘P, 1s* ‘S,-1slOp ‘f, Accuracy ? AI, A
Ion Transition xi, keV 9.2283 9.1682 7.8495 1.4128 7.3091 7.225 -
11.088 11.004 9.427 -
0.003
0.0015
-
1.162
I A65
-
NW)
NaW) 7.805 7.7565 6.6350 6.3137 6.1745 6.1005 6.059 6.0294 6.0095 5.992 0.0015
AI(XII) 2.086
0.0015
-
6.6871 6.6488 5.6810 5.4045 5.2850
0.0015
-
5.7919 5.7591 4.9180 4.6795 4.5755 4.520 4.485
P(XIV) 2.817 4.4669 4.4438 3.7879
5 Ml48 5.0374 4.2996 4.0889 3.998 3.949
0.0015
-
0.0005
-
-
-
Cl(XV1) 3.658
3.224
WV)
0.0005
0.0005
-
-
3.1926 3.1766 -
Ca(XIX) 5.129
-
-
3.5484 3.5309 -
K(XVII1) 4.611
optical transitions in [He]-ions (Z = 10-23); A is in A.
Si(XIII) ‘2.438
Table 2. K-spectra;
0.0@35
0.0005
-
-
-
-
2.6229 2.6101 -
Ti(XX1) 6.249 2.8848 2.8717 -
Sc(XX) 5.675
0.0005
-
-
-
2.3939 2.3823 -
V(XXI1) 6.851
14
V. A. BOIKO et al.
1.5% Mg
-
x (a)
Mg (XII)
13 i=P 2
AI(XIII)
Si(XIV)
I 3 75
I 3 P?
P(XV)
I
3
?T
(b) Fig. 2. [HI-ion doublets, Ly,-compoaent intensities; (a) densitometer traces of Ly, (ls*~,,~-2p~P,,,,,,,) lines for ion Mg(XII)(8.4253 A; 8.4194 A) at different concentrations of magnesium in the laser plasma; (b) densitometer trace of the lines 1s *S,,,-2p 2P,,,,,,, for the ions Mg(XII),AI(XIII), Si(XIV), P(XV).
2.2 Transitions from doubly-excited autoionization states The principal feature of K-spectra of multiply-charged ions is the presence of satellite lines situated mainly at the long wavelength side of [HI-ion and [He]-ion lines. These satellites are attributed to the transitions lsn’l’-nln’l’ and ls*n’I’-lsnln’l’ from doubly-excited autoionization states of [He]- and [Lil-ions, respectively. EDLENand TYREN’~~) were the first to observe (in 1939) the K-ion resonance-line satellites in
X-ray spectroscopy of multiply-charged ions from laser plasmas
15
the vacuum-spark, far-u-v. emission (A - 15-60 Ai, K-ions with Z = 5-9). The observations in the soft X-ray region were made a short time later by FLEMBER@(A - 6-15 A, [He]-ions with Z = 9-13). However, not until 1969 was an identification of these transitions proposed on the basis of theoretical calculations in the LS-coupling approximation.“” The discussion of experimental observations of satellites in spectra of a low-inductance vacuum spark, plasma focus, solar corona, and laser plasma, as well as the comparison of different measurements of wavelengths and identifications, are reported in Ref. (20). Further experiments were reported in Refs. (51-52) for a laser plasma, in Refs. (53-55) for the low-inductance vacuum spark, and in Ref. (56) for the solar corona. Two methods are used for the calculation of wavelengths and probabilities of transitions is based on perturbation-theory from the doubly-excited autoionization states. The first (57P48*58) expansion in a power series of l/Z; the secondo9@’ is based on Hartree-Fock functions. In both cases, the relativistic effects and the configuration interaction are taken into account. As is discussed in Ref. (61), both methods for Z > 20 provide wavelength-calculation accuracy of about 0.0005 A, which satisfies the experimental requirements. High spectral resolution in laser-plasma experiments makes it possible to measure the wavelengths of practically all of the most intense satellites, including the components of for the ions with Z = 1l-23 are listed in Table 3. In multiplets. Transitions from 1~2121’levels (*O) Ref. (20), the identification of these transitions was based on (i) comparison of theoretical wavelengths@@with experimental data and (ii) theoretical intensities for these transitions which correspond to populations of 1~2121’levels caused by dielectronic recombination. In Table 3, this identification is modified on the basis of an analysis using experimentally measured intensities, which is considered below (see Section 2.3 and Table 7). This change is connected with the inner-shell excitation of [Li]-ions [see the calculations in Ref. (60)]. In Table 3, we also list the wavelengths of [He]-ions of the Fe(XXV) resonance-line satellites, which were observed in low-inductance vacuum-spark spectra.‘53’ are listed in Table 4 for transitions from Observational results of laser-plasma emission’20~‘2’ 1~2131’states. It is noteworthy that these states may decay in two ways, namely, by generating satellites both of the resonance line ls* ‘So-ls2p’P1 and of the l~~~S~-ls3p’P~lines. Transitions from 2121’states observed in the form of satellites of Ly,[H]-ion lines’20Y52’ are presented in Table 5. Almost all of the transitions discussed in this section are long-wavelength satellites of corresponding lines of [HI- and [He]-ions. However, transitions from doubly-excited autoionization states may take place from the short-wavelength side of the resonance line.“‘@ The observations of short wavelength Ly,Mg(XII) satellites caused by 1~31-2131’ transitions are presented in Fig. 3 and in Table 6.
2.3 The analysis of intensities for K-ion line satellites The mechanism of formation of K-ion line satellite intensities, and its application to diagnostics of astrophysical and laboratory plasmas are discussed in Refs. (62-66, 11, 13,25,32, 67, 38, 43, 110-l 12). The high quality of the laser-plasma spectra allowed us to make detailed analyses and comparisons of experimental and theoretical data. For [HI-ion resonance-line satellites, the population of the corresponding doubly-excited states of [He]-ions was caused only by dielectronic recombinations. Relative intensities of satellites are determined by gJ,AJ(r, + ZA,), where A, and I’, are the probabilities of radiational and autoionization decays of doubly-excited states, respectively, g, is the statistical weight of the doubly-excited state s, and the summation in ZA, extends over all radiational transitions from the state s. For a Mg-plasma, the densitometer record of the spectral region registered in the second order is shown in Fig. 3. Experimental and theoretical data for the wavelengths and relative intensities of spectral lines are listed in Table 6. The error in measuring absolute values of wavelengths is as high as ? 0.0015 A. Theoretical intensities are calculated using the formulae of Ref. (13) for an electron temperature T, = 300 eV taking into account the modified values of excitation rates for the resonance level according to Ref. (68). There is good agreement between theoretical and experimental data for the majority of the groups of spectral lines denoted as 1,
‘P,
Accuracy c Ah, A
ls*‘SO-ls2p
Transition
0
-
0.003
lA
-
;
g i h
i
k
a
4 r b d
t
S
R II m I
Key
-
11.202
-
-
11.155
11.088
11.004 -
Experiment
&A
spectrum.“’
11.022 11X1683 11.0715 11.0822 11.0895 11.0903 11.1543 11.1561 11.1687 11.1718 11.1720 11.1953 11.1996 11.2801 11.2817 11.2819 11.2835 11.2851 11.2929 11.2937 -
Theory
*These were observed in a vacuum-spark
R
Key
Na(z = 11)
Experiment
9.1682 9.1680 9.2181 9.2209 9.2215 I 9.2303 9.2283 9.2343 9.2352 I 9.2833 9.2832 9.2853 I 9.2939 9.2972 9.2945 9.2974 1 9.3150 9.3160 9.3193 9.3193 9.3813 9.3829 9.3831 9.3857* 9.3849 9.3865 i 9.3909 9.3915* 9.3918_I + AA, A = 0.0015
Theory
;
K
i g i
b d a k
;
t
S
I
;
R
Key Experiment
7.7562 7.7565 7.7953 7.7957 7.7988 I 7.8059 7.805 7.8081 7.8090 I 7.8461 7.849 7.8480 I 7.8538 7.8572 7.8574 I 7.8709 7.875 7.8752 7.9237 7.9253 7.9255 7.9273 7.9290 7.9313 7.9323” f AA, A = 0.0015
Theory
”
u
;
h
g i
i
k
(I
b d
r
4
t
S
R n m I
Key
levels 1~2121’of [Li]-ions.
Al(z = 131 &A
transitions from the autoionization
Mg (z = 12) &A
Table 3. K-spectra;
Experiment
6.6488 6.6471 6.6776 6.6798 6.6812 6.6872 6.687 1 6.6880 6.6890 6.7181 6.7186 6.7200 6.7236 6.7271 6.727 6.7377 6.739 6.7420 I 6.7804 6.7821 6.7823 6.7842 6.783 6.7852 6.7868 6.7878_ %AA, A = 0.0015
Theory
Si(z = 14) &A
K ll v
i
6 d a k j g
4
t
;
R n m
Key Experiment 5.7593 5.7591 5.7836 5.7870 5.7874 5.7923 5.7924 5.7919 5.7933 5.8165 5.8185 5.8169 5.8204 5.8240 5.8230 5.8242 5.8316 5.8323 5.8365 5.8365 5.8673 5.8690 5.8692 5.869 5.8711 5.8728 5.8728 5.87390I r AA, A = 0.0010
Theory
P (z = 151 &A
c ?
ls22s *s,,* - 2s2p(‘P)ls
u
Accuracy 5 AA, A
Is* ‘S,,-ls2p ‘P,
Transition
R
Key
5.128
5.0964 5.1010
5.0903
5.0861
5.0648
5.0374 5.0565 5.0607
Experiment
? Ah, A = 0.0010
5.0379 5.0573 5.0612 5.0648 5.0655 5.0658 1 5.0846 5.0866 5.0871 1 5.0909 5.0910 I 5.0974 5.1015 5.1264 5.1281 5.1284 5.1288 5.1303 5.1321 5.1314
Theory
S (z = 16) A,A
K
4.5215
4.4925 4.4970
-
4.4837
4.4669
4.4438 4.4585 4.4630
Experiment
+ AA, A = 0.005
4.5228 4.5227
4.5211 4.5191 4.5217
4.4843 4.4876 4.4877 4.4927 4.4%7 4.5170 4.5188
; n k i 8 i 7 lA
4.4837 4.4822
4.4671 4.4669
4.4436 4.4593 4.4633 4.4658
Theory
%
:
S
R n m
Key
Cl (z = 17) LA
;:
U
;
: k i &? i
b Q r
:
S
R II m
Key
Table 3 (Cord)
3.5880
3.5657 3.5695
3.5614
3.5484
3.5309 3.5411 3.5456
Experiment
2 AA, A = 0.0005
3.5311 3.5415 3.5456 3.5468 3.5478 3.5486 1 3.5582 3.5585 3.5608 3.5623 3.5624 1 3.5655 3.5693 3.583 1 3.5850 3.5853 3.5873 3.5873 3.5884 3.5892
Theory
K (z = 19) A,A
;:
;
k i &? i e
r I b 4 r :
S
:
R
Key
1; f:
--
;: i &? i e
:
t I b 4
S
R R In
Key
-
3.2058 3.2097 -
3.203 1
3.1926
3.18%
3.1766 -
Experiment
+ AA, A = 0.0005
3.2269 3.2259
3.2057 3.2093 3.2208 3.2227 3.2230 3.2248 3.2250
3.1764 3.1849 3.1890 I 3.1897 3.1908 3.1919 \ 3.1989 3.1998 3.2019 3.2032 3.2031
Theory
Ca(2=2OJ A, A
2.8999 -
2.8%4
3 -
2.8848
2.8827
2.8717
Experiment
+ AA, A = 0.0005
2.8723 2.8793 2.8834 2.8838 2.8848 2.8861 J 2.8911 2.8925 2.8947 2.8955 2.8957 2.8974 2.9009 2.9105 2.9124 2.9128 2.9144 2.9147 2.9155 2.9167
Theory
SC (2 = 211 A, A
‘pm
‘P,,,
‘P,,, *p,,, 11zP,,T i ‘PM 4P,,* ls22s S,,*- 2s2p(3P)ls I ‘PI,* Accuracy + AA, A
u f
Experiment
spectrum.“”
2.6101 2.6097 2.6153 2.6195 2.6204 2.61% 2.6206 2.6221 2.6229 12.6253 2.6272 2.6295 2.6295 2.62% 2.6299 2.6319 2.6313 2.6355 2.6347 2.6421 2.6441 2.6451 2.6480 2.6466 2.6470 2.6411 2.6490 1 2 AA, A = 0.0005
Theory
tThese were observed in a vacuum-spark Sin reference wavelength.
;:
1?2p
ZP,,, -1s2p* IP,,,
*PI,2
e
i
‘P 112
ls~2p$j_ls2p~{~~
f
-1s2p*
ls22p *p,,,
g
*pm *p,,*
11 1
‘P,
*PI,*
Is2 ‘S&2p
Transition
;
r
R
Key
Ti (z = 22j A, A
k i g
i
4 a
b
:
m
S
II
R
Key
Table 3 (Contd)
Experiment
2.3813 2.3823 2.3858 2.3899 2.3888 2.3900 I 2.3909 2.3926 2.3907 2.3939 2.3943 2.3966 2.3986 2.3989 2.3992 2.3990 I 2.4013 2.4000 2.4033 2.4047 2.4100 2.4121 2.4125 2.4139 1 2.4140 2.4143 2.4150 2.4W0, -I-AA, A = 0.0005
Theory
V (z = 23) LA
;
;
: k r i &? i e
L I 4
In
S
R n
Key
1.8560
1.8563
1.8568 1.8574 1.8579 1.8589 1.8589 1.8606 1.8509 1.8618 I 1.8624 1.8620 1.8627 I 1.863 1 1.8631 1.8655 1.8655 1.8694 1.8717 - I.872 1.8722 I 1.8733 - 1.874 1.8739 I 1.8743 1.8762 F AA, A = 0.0005
I .8500$ 1.8520 -
Experimentt
1.8499 1.8520 1.8557
Theory
Fe (z = 26) A, A
*P-ls2p(‘P)3p *P-ls2p(‘P)3p *P-ls2p(‘P)3p *P-ls2p(‘P)3p *P-ls2p(‘P)3p *S,,2-ls2s(3S)3p 2S,,2-ls2s(‘S)3p *P-ls2p(‘P)3p *S-ls2p(‘P)3s *P-ls2p3p *S 9.1771
-
-
4.4474 -
4.452
Cl(z = 17) B FDNCW
-
3.5357 -
3.537
K(z= 19) B FDNCW
-
3.1809 -
3.181
Ca (z = 20) B FDNCW
-
6.748 7.773
6.780
6.824 6.805 6.792
Table 4 (Contd)
-
7.775
7.7819
6.8230 6.8032 -
Al(z = 13) B FDNCW
B, paper [20]. Latest data about 1~~21-1~2131’transitions see in Ref. (110). FDNCW, paper [29].
ls*3p *P-l 2p3p *S
‘;‘,‘41;;;f:9:d;);;;
7.998 9.190
9.1912
11.029
-
8.037
8.0358
-
-
8.092 8.071 8.057
8.0688 8.05 14
-
-
-
Mg(z = 12) B FDNCW
transitions from the autoionization
-
Na(z = 11) B FDNCW
I 4.4516
*P,*S ‘0 *Sn2 *D *P *P *P *D, *P *P
Element Transition Paper
ls*2p ls*2p ls*2p ls’2p ls22p ls*2s ls22s ls*3p ls23s ls*3p
Element Transition Paper
Table 4. K-spectra;
-
5.768 6.661
-
5.816 5.808
2.8755
2.8780 -
-
SC (z = 21) B FDNCW
-
6.6617
5.7931
5.8125 5.8031
Si (2 = 14) B FDNCW
-
-
-
-
2.6141
-
2.614
Ti (z = 22) B FDNCW
5.3802
5.3859
5.0126
-
P (z = 15) FDNCW
5.0395 5.0203 5.0199
B
levels 1~2131’of [Li]-ions.
-
5.049
-
-
2.3856
-
-
V (z = 23) FDNCW B
5.0415
5.0468
4.3705
4.395 3.386 -
S (z = 16) FDNCW
4.4013 4.3891 4.3822
B
5
4
s B m
_; n ‘;;
(51 = 2) d
B
6685’5 ZOBE’S
-
-
SXPP‘S
0100’0 -
waurydx~
M3N(ld
-
-
-
-
AJoaqJ
I PEP’S EZEP’S 9Ozp’s 9S6E.S ZS8E.9 86LE’S
ILEP’S
SSLP’S 19pP’S E6t47’5 91WS L6Cp’S
A’OaqL
PS6Z.9 IP8Z’9 9E9Z.9 8ESZ.9 LI SZ’9 OWZ’9 OLPZ’9 ZfPZ’9 P8ZZ’9 fL61’9 ZP81’9 $8L1’9
&I =Z)IV
8
6SLI’L i0LI.L
ZBZZ’L f 161’L
BISZ’L
$uam!ladxg
M3NC&l
*9Ll’L *ILI’L
IEZ’L
ISZ’L
-
y ‘Y
L1oaq.L
9pLI.L Z691’L
t0fZ.L ZI61’L
ZPLZ’L 919Z’L S6SZ’L fPSZ’L WZ’L S6PZ.L
IEIE’L L66Z’L
‘(SI-II = 2) sue!-[aH],lZIZ sIaha1 uo!pzyuo!olne
(PI = G!S
tl
5 c 6S81.9 86LI.9
-
P99Z.9 -
0100’0 -
luauyadx3
M3NCld
q981.9 eO81.9
OfZ’9
-
E9Z.9 -
-
-
f6P’8
B
aql mo13 suoysm~
(ZI = z)W
luaw!mIx~
M3Nad
*SZp’8 *6Ip’8
016P.8 ESPP’B ESZP’S P61P.8
8225’8
8Zf S’8
625’8
125’8
LWS‘S
865’8 f LS’8
‘sally
muads-x
h1’Jaq.L
Sff 5’8 EIfs.8 OPZS’X OEZS’B f61S.8 fP6P.8 IW8 8ZZV8 SLIP’8
0285’8 L6PSll
f 865’8
-
‘s a[qsL
7
’
EOO’O -
t
i
(II =Z)EN
t3
1
-
-
r--
(
wuryadxg
M3Nad
611'01
LSI'OI
OLI’OI
f61.01
-
aaualaJa~*
Iwga~oaq~
i(JoaqL
uowyyw
y ‘yv i(mnme ~uamams~a~ SfSZ’OI ‘dc dZSZ-OS, SZSI 6ZfZ’OI ‘dz -‘d, P161’01 ‘CT, -Id, VOLI’OI “d; -Id; 1891’01 ‘d< $z-‘d, dzs I 6LSI’OI ‘dr OLSI'OI ‘d; ZESI’OI ‘dt dzsz-‘sc SZSI 1021'01 ‘d, dzsz-‘3, szfl fPSO’O1 OS, ,“z-Id, dzsl
:[wawpadxa t(8p) ‘3ax tuoJ3 are sqi9uaIamrn aql 30 sanp
SIOO'O
WOJJ ‘a
055‘8
-
-
-
‘(62) ‘lax UIOJJ‘MaNad :(OZ)‘3aa
X-ray spectroscopy
of multiply-charged
7
21 31’
I I 11 I 234
iii 6
21
ions from laser plasmas
9
I(
Ikl(ll 8
0.50
0.55
i
Fig. 3. Satellites of the resonance doublets Ly, of Mg(XII).““’ (a) Laser plasma spectrum; (b) theoretical spectrum for Te = 300 eV; (c) spectrum of the solar corona.“‘) Table 6. Satellites of the line Ly, Mg(XII).“81
Key
Ion
I
2
Transition 3
D i\‘A 4
Laser plasma
Theory
4-z
g”r,fSA, 5
4% I, 6
1
AA ’ 7
8.405
2 3 4
8.4145
2.3
0.92
8.414 8.419 8.425
r,
IR 8
2.7
T,, eV
key?
9 295
2 394
100
-
I 5
6
5
8.431
-
6
8.435
-
-
7
8.440
-
--
6.1 8.445
6.2
290
8
9
8.491
4.4
290
9
10
8.523
8.2
225
10.11
8.533 8.549
2.6 9.35
150 310
12 13
I
8
11 12
Mg(XI)
2p2’DJs2p
‘P,
*For Te = 300 eV. tAccording to Fig. 3 and Ref. (111).
8.5497 11.3
10
22
V. A. BOIKO et al. R
?
Mg 2=12
I
L--_.Al-
9.15
9.2
9.25
9.3
w
._-LJ_-lmu 7.00 775
__~.I _-i _ ._L
j j I __I_-
6.70
6.65
705
%
% Fig. 4(a)
P z-15
z= 17 ‘I :I
n
Fig. 4(b)
kj
_-A
23
X-ray spectroscopy of multiply-charged ions from laser plasmas K
SC
1~20
Co
Z=l9
z-21
1
L_-_i-L’
-3.53
3.57 A
Ti
1
2.90
2.87
3.21
3.18
i
i v
Z=22
2~23
i
Fig. 4(c)
Te-840
Tz-540
2.42
2.40
238 1
k
II I ,111 I rr?lL qod* j
2.18
2.20
2.22
2.24
‘n
CBel -
h
Fe (XXV)
CBI IITe=780 Tz = 520
Fig. 4(d). Te, Tz in eV. Fig. 4. Long-wave satellites of resonance lines of [He]-ions with 2 = 12+ 26 (see Table 3). The theoretical wavelengths are marked. (a-c from Ref. (38); d from Ref. (112)).
24
V. A. BOIKO et al.
8, 9, 12 in Fig. 3 and Table 6. The values of 7’, obtained from the intensities of these satellites are almost the same. For the satellites of [He]-ion resonance lines, the populations of the corresponding doublyexcited states of the [Lil-ion are caused not only by dielectronic recombination but also by inner-shell excitation. This fact provides an opportunity to measure an ionization temperature 7’r(6s.67)Figure 4 shows the densitometer traces of the spectral regions for the elements with Z = 12-16, which contain the resonance lines of [He]-ions and their satellites. Table 7 gives the results of an analysis of relative intensities for the satellites, which are shown in Fig. 4, and which were obtained by using the theoretical calculations of Ref. (67). In addition to experimental data, Table 7 shows the contributions of dielectronic recombination and inner-shell excitation, which were determined by using the following procedure: (i) an electron temperature T, was obtained from the experimental satellite intensity j (or the sum of k and j) according to our method of calculations; (ii) for this value T,, the contributions of dielectronic recombination to the intensities of other satellite groups were determined in the same way (such theoretical contributions are marked by an asterisk *); (iii) after substracting these contributions from the experimental intensities of the satellites, we obtain the contributions of inner-shell excitation (such “semi-experimental” intensities are marked by two Table 7. Analysis of intensities of [He]-ions, resonance
lines of satellites.
Intensities R experiment in. c. ex.in. experiment (2 Z3) in.c. ex. in. experiment (I Si14) in. c. ex.in. experiment (I =‘l5) in. c. ex. in. experiment (z =s 16) in. c. ex. in. experiment (z ::7, in.c. ex. in.
n
m
100 100 100 100 100 100 -
I
s
t
23 4* -* 23 6* _* 31 9% _* 41 6* _* 44 8* _* -
-
y
r
b
d
u
7+ 12 3+5 5* +* 3+5t 2+1t 8+12 1* 2+5t I6 9* 7t St1 2+4 4* I* 1+3 1 s3t 41-7 3+6 5* 2* 1+5** _** 22+37 13* 9+24t
70 13* 1+2*
k
j
I4 14 -* 25 25 _* 36 36 _* 13 15 to* 15 _*_*_ 14 22 16” 22 _* _*
LI
7, eV
r, eV
N, cmm3
5.3 -
250
100
10ZO
260
130+ + 200
3 . lO2O
290
160
6. IO*’
500
2001 +35O
8 . 1020
2.8 -
520
240 + 480
102’
5.9 4.5 2.9 -
41 33* _*
48 48 _*
I.8 -
460
240-340
102’
k
j
Q
T, eV
T, eV
N, cmm3
80 87* -
110 110 _*
3.3 -
540
430
3 102*
43 s3* _*
73 73* _* 110 110 _*
3.3 1.9 -
670
460
1022
720
530
?
128 128 _* 140 140
1.2 0.9 -
790
480+ 630
?
890
590
7
Intensities
(z =“,9)
(I c=ao,
(z ?2l, Ti (2 = 22)
(z z23)
experiment in. c. ex. in. experiment in. c. ex. in. experiment in. c. ex. in. experiment in. c. ex. in. experiment in. c. ex. in.
R
nmsf
100 -
-
loo IO0 -
-
100
-
100 -
-
1 74 40f 5* 64 21s 4* 96 38 6* 135 44* 6* SO 41* 17*
b
q
r
a
d
68 28* 40t 40 l8* 22+ IS 3* 15* 27 3* 23t 150 2* 34’
125 106* 191 146 128* l8t 180 140* 40*
*Theoretical intensities see Section 3. I. “Semitheoretical” intensities 1 in. c., intensities, caused by dielectron recombination of [HI-ions. ex. in., intensities, caused by excitation from inner shells [Li]-ions. a, intensities ratio of resonance and intercombination lines of [He]-ions.
_*
-
X-ray spectroscopy
of multiply-charged
ions from laser plasmas
25
asterisks**), which have been used for the determination of the ionization temperature T,; (iv) using this value of T,, one can determine the contributions of inner-shell excitations to the intensities of satellites, which are blended in intercombination (these are also makred by an asterisk*). A zero contribution derived from the theory is also marked by.* The analysis of results listed in Table 7 makes it possible to see an increase of the contribution of the inner-shell excitation with increasing 2, to determine T, and tz, and to obtain the intensity of intercombination lines. The latter allowed us to determine an electron density N, according to the calculations of Refs. (13, 69). 3. IDENTIFICATION
OF L-SPECTRA
In the case of L-spectra, in contrast to K-spectra, the accuracies of theoretical values of wavelengths are not yet satisfactory. For reliable identification, it is necessary to compare theoretical and experimental results along the isoelectronic sequences at each step. For 2 - 25-30, the situation is complicated because of superposition of a great number of lines for different L-ions (see Fig. 5). In this section, we present the results for isoelectronic sequences of [Li]-, [Be]- and [Ne]-ions and pay considerable attention to the L-spectrum of iron ions (Z = 26) in the range of 6-17 A. This spectrum is of great importance for investigations of the solar corona.
Fig. 5. The spectral region of the copper (Z = 29) [Be] and [Ne]-ions are marked.
The accuracy of the wavelengths (AA) in Tables 8-13 is the following: AA is equal to - 0.003 A for A > 10 A (which is measured in the first order of reflection from a crystal) and it is equal to - 0.001-0.002 w for A < 10 A (which is measured in the second order). 3.1 [Li]-ion spectra (Z = 19-26) The earlier and most complete observations of ion spectra with Z = 19-26 in the range of A > 10 A were obtained with a low-inductance vacuum spark and a grazing-incidence spectrograph.“” The use of a laser plasma’22*23’has made it possible to reach the spectral range of A > 6.5 A, to observe a great number of transitions from levels with principal quantum number n > 3, and to obtain and identify the [Li]-ion of the Fe(XXIV) spectrum. It is noteworthy that, although the ionization potentials of [Li]-ions are not much greater than the ionization potentials of other L-ions, [ionization potentials for the [Lil-ions are only 1.5 times greater than those of the [Nel-ions], one can obtain the detailed and quite intense [L&ion spectra only at plasma temperatures which are sufficient for excitation of K-ion spectra. This problem is connected with the necessity of passing along a chain of ionization steps [Ne]+. . . + [Li] in a nonstationary plasma. For example, the spectral lines of the [Li]-ion of Fe(XXIV) have been observed only in rather strong solar corona flares [see Ref. (71)]. Table 6 lists the results obtained in Ref. (70) (vacuum spark) and Refs. (22-23) (laser plasma). When we had no experimental data, as for the laser plasma, we used theoretical values. These theoretical wavelengths were calculated according to the method described in
zP;;:-4dz;I::, *PI,*- zD,,*’5,z 16.427 2s zs,,*-4PzP,,* 15.755 *S,,z- *p,,, 2p 2P,,2-5dzD,,,,,,, 14.776 14.715 2P,,2- *Dw 2s zS,,2-5p2P,,,,,,, (14.147) 2p 2P~,2-6d2Dx,2.s,2(13.977) (13.914) *P,,z- ‘D,,* 2s zS,,2-6p2P,,,,,,, (13.407) 2~ fJ$d:~,,,,,z (13.533) 3,* (13.475) l/2 2s 2S,,,-7p2P,,2,3,, (12.996) 2~ *P,,,-8dz~,,2,,,, (13.261) (13.204) 2P,,z- *Dw 2s 2S,,2-8pzP,,,,,,z (12.744) 2~ $,z:9~:$,u,2 (13.080) 312 (13.025) 112 2s *S,,z-~P’P,,~,,,, (12.576)
4E’ 4F 4G 5C.D SE 5F, G 6C, D 6E 6F, G ;; D
*Calculation of U. I. Safronova[72];
9F, G
8F, G ;z D
7F, G ;z D
20.936* 20.894* 16.497 -
‘5,~ 2Dx,2 zP,,,- 2D,,, 2s zs,,2-3P2P,,* 2S,,*- *p,,, 2p *P,,,-4szs,,, 2p zp _ 2s
30 3E 3F 3G 4A :: D 14.738 14.658
14.745 14.661
14.091
13.192 13.120 12.636 12.476 12.411 1I .989 12.078 (12.021) Il.621 (11.836) (11.780) (11.394) (11.675) (11.620) (11.243)
-
11.845 I 1.777 11.377 11.204 11.141 10.785 10.846 10.785 10.443 10.628 10.576 (10.240) (10.481) (10.426) (10.104)
12.674
13.241 13.154
18.227* 18.062* 17.800* -
-
11.84
12.66
18.182 18.026 17.779 17.634 16.861 16.819 13.236 13.160
Sc(z=21) GFOC B
-
9.704 9.633 9.352 9.175 9.111 8.843 8.882 8.826 8.576 8.703 8.643 (8.399) (8.582) (8.527) (8.288)
10.413
14.929 14.758 14.592 14.578 14.435 13.870 13.828 10.853 10.768
-
10.412 (8.847) (8.778) (8.5 16) (8.365) (8.304) (8.066) (8.100) (8.042) (7.817) (7.936) (7.881) (7.664) (7.828) (7.774) (7.562)
9.493
14.871 13.602* 14.7 17 13.438* 13.307* 14.572 13.292 14.430 13.149 13.865 12.664 13.823 12.623 10.853 9.865 10.770 9.809
-
-
-
-
13.549 13.393 13.294 13.147 12.662 12.620 -
Cr (z = 24) B GFOC
1 8.694 8.684 8.090 8.029 7.797 (7.656) (7.595) (7.387) (7.413) (7.355) (7.158) (7.263) (7.208) (7.018) (7.164) (7.110) (6.925)
12.447 12.284 12.188 12.172 12.028 11.604 11.563 9.018 8.970 -
12.385 12.222 12.158 -
Mn (z = 25) B GFOC
B, the present paper and Refs. (22-23); GFOC, Ref. (70).
16.059 15.914 15.252 15.217 -
16.379 16.218 -
levels[22.23];
10.690 10.620 10.278 10.109 10.046 9.733 9.788 9.733 9.434 9.591 9.534 9.246 (9.459) (9.405) 9.128
11.452
16.440 16.288 16.067 16.049 15.907 15.253 15.211 11.958 11.872
V (z = 23) B GFOC
in [Li]-ions (Z = 19-26).
Ti (z = 22) B GFOC
transitions
( ), calculation over a formule for “hydrogen-like”
-
-
13.191 13.118 12.636 12.478
14.082
20.220 20.052 19.789 19.789 19.642 18.732 18.691 -
20.305* 20.140* 19.814* -
Ca (z = 20) GFOC B
22.163 22.020 -
-
K (z = 19) B GFOC
22.162* 22.596* 22.189*
Transition
3A 38 3c
Key
Table 8. L-spectra;
7.993 7.983 7.438 7.370 7.169 7.033 6.972 6.787 6.808 (6.752) (6.583) (6.672) (6.617) (6.45 1) (6.581) (6.527) (6.365)
11.426 II.261 Il.187 II.171 I I.030 10.663 10.619 8.37 1 8.285 8.316 8.231
-
-
-
-
-
-
-
Fe (z = 26) B GFOC
X-ray spectroscopy
of multiply-charged
ions from laser plasmas
27
Ref. (72) (marked*) by employing the simple formulae for hydrogen-like levels’23’[marked by brackets ()I. Very good coincidence of the calculated”*’ and experimental data should be noted. In the case of a laser plasma, the lines of ions with 2 < 24 were identified visually because the [L&ion spectra contain no lines of the other L-ions. This fact is illustrated in Fig. 6 for Ti(XX). For 2 = 26, the situation is more complicated (see below Fig. 13). That is why we use a calculation from Ref. (72) for identification; the accuracy has been verified for transitions of ions with low Z. Other verification of identification was made by comparison of spectrograms qbtained at varying laser-plasma temperatures.
Fig. 6. Spectrogram
of laser-plasma
radiation containing [Li]-ions of titanium (Z = 22).
The experimental data from Refs. (70) and (23) differ significantly for 2p - 3s transitions. The results obtained with better spectral resolution for a laser plasma seem to be more reliable [see the discussion in Refs. (22-23)]. 3.2 [Be]-ion spectra (Z = 22-34) Among L-ions, the spectra of the [Be]-ions are among the most complex. They contain a great number of lines observed in radiation from solar corona and laboratory sources. Up to now, there have been no papers which contain detailed calculations and experimental data for the X-ray [Be]-ion spectra. The wavelengths are presented for only four transitions of ions with Z = 22-26 in Ref. (73) and seven transitions of ions with Z = 19-28 in Ref. (74). Table 9, from Ref. (37), lists the results of [Be]-ion spectra-identification for Z = 22-3. These data are based on coincidence of theoretical and experimental wavelengths. As the nuclear charge Z was changed over a wide range along the isoelectronic sequence, the identification of Ref. (37) became more reliable (in the future, it will be necessary to use for this purpose relative intensities of spectral lines). 3.3 [Nel-ion spectra (Z = 26-42) [Ne]-ions have the lowest ionization potential among eight L-ions and show quite a simple L-spectrum. This fact enabled Tyren to make accurate wavelength measurements in 1938 and to identify some lines, in Fe(XVI1) and Co(XVII1) spectra, which were emitted by a vacuum spark in the region A - 12-17 A [see Ref. (76)]. It was not until 1967 that the transitions n’ = 3 + n = 2 for Ni(XIX), Cu(XX), Zn(XX1) with A - 10 A were identified with the help of a low-inductance vacuum spark. cn’ The identification of some transitions (with n’s6 and A > 8 A) was made in Ref. (78). Some lines of Fe(XVI1) ions were observed in plasma focus it became possible in 1974-75 to reach Z = 3942 spectra. (79)By using a laser plasma, (z4*30,40) (Y(XXX)-Mo(XXXII1)). Much attention has been paid to the investigation of Fe(XVI1) spectra in X-ray solar emission. One should especially note Ref. (83) where Fe(XVI1) and Ni(XIX) spectra were recorded with excellent resolution (for astrophysical observations). The spectra from Ref. (40) are presented in Figs. 7-12. The results of different papers on wavelength measurements, wavelength prediction, and the identification of [Ne]-ion spectral lines in the region of 26 < Z < 42, are listed in Table 8. The experimental intensities@@presented here are characterized by only a qualitative change of intensities along the [Ne]-ion isoelectronic sequence.
I
6 7 8 9 IO II I2 I3 I4 I5 I6 I7 I8 10 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
4
2
Key
16.802 16.736 16.71 -
_ _ _ -
16.514 _ _
I6 430 _ -
15.X65 _
I 15.742 _ _
-
_
16.719
_ _ _
16.440 16.414 16.178 _ -
15.866 _
15.742
15.738 _ -
Il.671
-
0
0’ 0 0 0 -
0
0 -
0 -
-
16.795
a -
-_
a
‘PIl1 ‘D, ‘F, I ‘D, ‘4
_ _
17.076: 17.181 17.076’
_ -
-
_
-
-
5
B
F
4
w
16811
0 0 0 -
3
B
‘P, ‘P, ‘P, ‘P, ‘s, ‘S, ‘D, ‘4 ‘P, ‘D, ‘D
‘D, ‘P, IP> IP, ‘P, ‘P, ‘F, ‘D ‘0: ‘D, ‘P, ‘D, ‘D, ‘D, ‘D, ‘S” ‘D, ‘D, ‘PC,2s’ ‘So-2.~3~ ‘P, 9”. ‘P, ?s?p ‘P,-2p3p ‘D? ‘P,‘P, ‘P,‘D: ‘P2‘S, IP, ‘PC,‘P,?P, ‘P,‘Po ‘P,‘P, ‘P.‘P.
‘So-2p3s ‘4. ‘P,2p’ ‘So-2p3d zszplP,.zs3F ‘P,2~’ ID,-2p3d ZsZp’P,-2s!d 2p’ ID,-2p3d 2~’ ‘P,-2p3d IP,ID,‘P,’ Dy Zp’ ‘P,-2p3d ‘PI‘PoIP,‘Pz‘P,‘P,. IP,‘P,Zs?p’P,-2s3d ‘PilP2Zs?p’P,-2p3p 2s2p ‘P,-2s3d ‘P,‘P,>?~?p ‘P,-2p3p 2s2p ‘P,-2S3.Y ‘P,-
2p’
Transition
(I = 22)
*a,
18.183 17.583 17.553 17.354 17.209 17.085 17.172 17.061 l6.%3 16.876 16.807 16.807 16.799 16.790 16.758 16.730 16.718 16.718 16.721 16.642 16.645 16.637 16.553 16.565 16.559 16.550 16.474 16.450 16.444 16.406 I6 161 16.002 15.842 15.801 15.871 15.831 15746 15.747 15.745 15.734 15.707 15685 15.675 I5 583 IS.?81
6
s
A
I7062 16.802 16.723 I6 70 16.422 15.863 15.744 -
1
F
Ah.
6
14.368 14.332 14.409 _
0
14.291 14 239 _ _
0 _
0 _
0
0 -
0
14.291
14.636 -
0 _
14.285 _
_ _
-
I4 3x
_
I4 878 _
a* _
0
14.877 -
14.976 -
-
0 _
14.986 _ -
0 _ _
_
I5.051
0
_
1 15.215 15.131 15.131 _
--
15.434 _ -
_ -
-
IO
F
14.886 14.929 -
15.215 15 159 _ _ _ _
15.551 15.436 15.357 _
0 _ _ _ _
0
0 0 0 _
_ -
-
_ _ _ -
B 9
G
8
B
(I = 23)
16.416 15.905 15.884 15.684 IS.580 15.455 I5.550 15.434 15.351 15.287 15.210 15.216 15.214 15.203 15.165 15.138 15.131 15.131 15.133 15.Oal 15.062 15.056 14.990 15.015 15.009 14.999 14.925 14.899 14.893 14.856 14.637 14.503 14.378 14.338 14.401 14.359 14.285 14.287 14 284 14.280 14.248 14.242 14.230 14.134 14.137
II
s
A “‘0 A
2
B
_ 14.288 _
-
14.395
-
-
0
0 ,I
0
_
14.878
0
0
I 0
0
_ 0 _
-
-
0 -
-
-
G’
14.982 -
-
_ _
15.214 15.136 15.13 _
_ _
15.436 -
-
_
-
-
I2
F
-
129x1
_
Ii.647
_ _
13.684
13.752
13.779 I3 870
I3 844
I3 950 _ _
14041 _ -
_ _ _ _
3
B
Lx, F
1
_ -
-
_
_ _ _ -
_
-
_
_
-
_
_
-
4
_ _ _ _ _ _ _ I: 1.760 _ _ _ _ _ _ _ _ 13.65 13.55 _
i
A
(I = 24)
S
14.8% 14.457 14.443 14.244 14.172 14.047 14.030 14.029 13.958 13.912 13.944 13.842 13.844 13.832 13.787 13.875 13.757 13.758 13.758 13.691 13.691 13.688 13635 13.673 13.667 13657 13.584 13556 13.550 13514 13.316 13.203 I3 107 13.069 13.1?3 13.081 13.016 13.020 13.016 12.979 12.982 12989 12.976 12.910 I?**?
5
F 6 14.03 13.840 13.765 l1.54? 13.121 I3 024 _
A rhar .Ao
Table 9. Transitions in [Be]-ions (Z = 22-34).
7
B
8 I
1
_
7
_
0 I
5 3 I?* 0 0 _
_
2’ 0
8
8
8 5
6
2 I 2
3
_
-
A..,
~.~
12.368 12.336 12.172 12079 II.997
_
12.447 12.507
12.488
12.553
12.580 12.670
12.656
12.738 12.706 12.738
12.816
12.935
3
13.199
-
8
B
-
2
-
G’
-
-
_-
_
9
F
rl
12.373 -
_
_ _ _ -
_ 1 12.643 12.51 _
A
(2 = 25)
s
II.808 II 7R7
13.580 13.200 13.191 12.993 12.948 12.822 12.812 12.808 12.747 12.715 12.741 12.645 12.651 12.638 12.586 12.676 12.561 12.562 12.561 12.499 12.498 12.4% 12.455 12.503 12.497 12.487 12.417 12.385 12.379 12.345 12.164 12.068 Il.997 II.959 12.007 Il.%5
IO
C’
-
12.379 12.010 -
12.81 12.645 12.571 -
II
F F
II
,
6
9 5
9 5
3 2
5
6 3
9
13’
6
I6
11.737 I 1.692 II.669 I I.692 Il.594 II.614 I.594 I I .525 II.632
10935
1l’36l ll.3?? II 14( 11.074 11.01x IO 980 II.018 10.980
I I.426
II 459
11.519
I
I
1
II.01 -
111160 _
c
I
_ _
I -_
Il.571 II 521 _
-
_
_ -
Il.730 -
Il.748
I5 I2 6 I2 14 9 14 13 5
Il.870
I3
_
I4
_ _
12.095
12.427
13
B
I 1,898
8 8
9
IO
I2
B
A ew AD
Fe (z = 26)
I I.358 II.352 II.319 II I53 I I.072 I I 020 10.984 I I.026 10.984 10.933 10.940 IO 933 10911 10904 10.931 I0915 IO.X33 111 P?,
II 511 Il.455 Il.453 II 452
12.431 12.101 I2.096 ll.9lM II.876 11.749 11.746 11.739 II.687 II.665 I I .686 II.598 II.606 Il.592 Il.534 11.626
2
S
IO.952
Il.599 11527
-
-
-
-
-
II.75
-
t
-
4
C
-
3
F
A
II.74 -
&hcor.
<
k?
‘P,-
29
‘P,-
‘P,'PC ‘P,. ‘P,‘P,-
‘P,-
40 41 42 43 44
45
‘PO. 2sZp'P,-2p3p ?s2p'P,-213s ‘P,-
38 39
34 35 36 37
‘D>
‘P” ‘F, ‘D, 'D. ‘0; ‘P, ‘D,
‘PI ‘P,
‘Cl ‘D, ‘D, ‘0; ‘P, ‘P,
‘0,)
‘PI
‘S, 'PI \P> ‘P. ‘P,
‘D,
6
10.552 10.503 ~ 10.445 IO.428 10.265 10.182 10.156 10.115 _ 10.115 IO.066
I 2 -
I
5
I
5
-
3*
_ 10.080 lO.c&l IO.062
10.556 10.493 10.452 10.447 IO.415 10.261 10.193 IO.158 IO.122 10.16o IO.118 10.072
IO.571{;;J;;
8
2
2
3
0
-
I
3 -
3 I 3 3 -
1 3 -
-
2 3
0
8* 3
8*
II
_
-
_
_ _
9:4 -
9.66 9.41 -
9.695
9.6944 9.6491 9.6437 9.623 9.6130 9.4707 9407 9.4126 9.3912 9.355 9.3570 9.3909 9.355 9.3487 _ 9.3072 _ 9.3173 9.3081 9.295 9.2949 9.2837 9.330 9.3240 _ 9.3050
7
9.755 (;:;J;:
_
_
10.090 10.103 10.098 ~ 9.%85 9.%7 9.9771 9.9662 10103 10.104 _ 9.9212 9.755 97654 9.8583 9.864 9.8701 9.8560 9.86 9.7847 9.79 97159 9.7713 _ 9.7689 9.934 9.9346 _ 9.7193 ~ 9.8833 _ 9.7178 9.695 9.6947 _ 9.7701 -
I
;
IO.811 IO.811 IO.800 10.760 10.743 IO.760
10933 {;;:;:3
_
10.276 $,"T
I
10.805 10.807 10.798 10.755 10.741 10.757 10.675 10.674 10.685 IO.671 IO.606 10.709 10.702 10.589 10.593I 10.588 10.585 10.534 10.543 i10.532 10.533 10.503 10.505
1
IO 10.534
II I41 (1;:;;;
9 lO52Y
8 2
7
(z=28)
il.423
ii&
I I 4 I 4
2 ‘D, ‘D, 2 '.S,, 4* ‘D, 4 3 ‘Pu‘D, _ 2s' 1S,-2s3p ‘P, 'S,,‘P, 3 2sZp'P,-2~39 ‘D2 5 ‘P,‘PI
‘P,. ‘Pz2sZp'P,-2s3d 'P,‘Pi. 2sZp'P,-2p3p ?s2p'P,-2s3d
22 23 24 25 26 27 28
30 31 32 33
‘P,. ‘P,-
2~’
‘P,. ID,‘P,-2p3d ‘P,‘P,. ‘P,‘PI.
6
2p2 'S,-2p31 'P, ‘4. ‘PI ‘P,. ‘PO 2p' 'S,,-2p3d‘P, 2s20'PI-2~3s 'S, ‘P,‘S, 2~’ ‘D;.2p3d ‘D; 2~21, 'Pi-2s$d 'D, 2~' ‘D>-2p3d ‘P, 2~’ 'P,-2p3d ‘D, ‘D >} ’‘PI. 0:. ‘P,
2 4
<
2
20 21
6 7 8 9 IO II I2 I3 I4 I5 16 I7 I8 IO
3 4
I
(I = 27)
I4
_ _
3
0 _ _ _ _ _ -
_
_
8772 _
8.8994 8.7664 8.7174 x.7075 _ 8.6746 8.7052 _ 8.6629 8.6248 _ 86364 _ 8.6263 _ 8.6161 8.6041 8.653 86497 8.6294 _ 8.5297 P CIP'I
_
8.933 {;:;;z
0
9.0406 8.9837
0’
-
_
_
9.3364 9.3553 9.2251 9.233 i 9.2391 92266 9.373 9.3681 _ 9.1920 9.0356 9.1319 _ 91448 _ 9.1306 _ 9.0533 8.981 8.9899 _ 9.0430 9.0397 9.2024 _ 8.9940 9.1551 _ 8.9929 8.981 8.9731 _ 9.0561 _ 9.0506
9331 9.355
_ 8.981
_
0 _
o* _ _ _ _ _
0 _ _ _ _ _
5%
0 0
9.520 {;
9.7461
o*
I3 9.737
0
I2
(I= ?9)
Table 9 (Cord)
3
4
8.6639 8.0614 8.6923 8.0976
;:;;;;
2
: 2 ~
,
I
1
8.056 8.009 _ 8.@39 8.078 7.999 8.056 _
_
8.0633 8.0910 8.0488 8.0135 8.0264 8.0156 8.0777 7.9954 8.0454 8.0239 7.9200 r,n,,o
7.5137 7.5389 7.4%7 7.4637 74778 7.4602 7.4480 7.3967 7.4792 7.3717 T*Yln
4
I
I
I
8.056
ig
2 2 0 0
8.4021 8.3483 8.2944 8.2891 8.2613 8.1365
(Zi
I
I
0
-
0
I
--
--
--
6
7.7780 2 7.7200 lo* ?.7148 -76883 7.6810 lo* 8092 {;:;;;; ;:;:;;
8.340 _ _ ~ 8.147
,,,
8.550 8.5480 7.9608 8.340 8.3458 7.7642 8.500 8.5044 8.340 8.3449 7.7635
{i:;;;; ;:$;;
8.720 8.7111 8.1220 8.550 8.54o2 7.9552 8.389 8.3831 7.7974 8.483 8.4829 7.9006 8.500 84%6 7.915 8.483 8.4824 7.9009 X.3995 7.8127 8, 8.340 8.3411 7.7589
8.658 8.702
5
9.0441 8.4061
8.856 {;I;2
9.051
:=3l
8*
I 8" 3 8* ~ o
G o
0 0 3 o
I
4
3
3* 0 -
2
2
2
(z=3Oj
8
-
7.3438 7.2039 7.2071 70307 7.0787 6.9440 6.9766
9
z = 33
72643
6%2 6.905 ~ 6.872
6.%2 _
7.081
6.%59 69541 6.9660 6.9874 6.8766 , -nar
7 1719 7.1709 7.0823 7.0465 7.0176 7.0407 6.9986 6.%74 6.9825 _
7.205 {;::"9;
7.274
6.5180 6.5067 6.4615 6.5419 6.4286
7.7998 6.7337 67?R7 6.7049 6.70% 6.5762 6.5%0 65683 6.58% 6.5477 6.5179 6.5339 -
7.230 {;I;;;; 6.7663 6.7534 68603 7.333 {;g 6.8551 -
7 1129 6.9517 6.7928 6.9023 6.9176 6.9035 6.8063 6.7603 7.274 {;:j;:; 6.8049 6.7991 74318 6.9536 7.230 7.2402 6.7666 ~ _
7.8522 7.6%0 7.6989 7.51% 7 5623 74288 7.4271 _
7.5918 74281 7.274 7.2698 7.3763 7.3912 7.3770 7.274 7.2841 7.230 7.2344
-
-
-
7
(z=32)
0
0
_
_ -
_ _
_ _
_
2'
2* 2*
2* _ _
_ _ _
~
I? 68839 6.7582 6.7615 6.5878 6.6404 6.5045 65410
63368 6.3247 6.4363 6.4311
6.5200 6.3370 _
6.2812 6.2910 6.1621 6.177 6 1866 _ 6.1602 6.177 6 1798 6.129 6.1382 6.1094 _ ?.9958 6.238 6.?465 _ 2.9711 6.048 6.0575 6 129 6.1370 6.011 60215 In__ _^.._
_
_
6.308 {$;
6.234 6.2372
6.322 _ _
_ _ _
6.368 {;g;
_
_
-
6.6788 6.5195 6.368 6.3602 6.4726 _ 64881 6.4741 6.36X 6.3729 6.322 6.3304
_ -
_
_
_ _ _
II
-
IO
_ _ _
(:= 34)
3G 3F 3E 30 3c 38 3A 4G 4F 4E 40 4c 5D 5C 60 6C 70 7c
Key
[2~9’,,,h W%,d, [~P’(~P~z),4d(2D,,,k DP~(~P,,z),44*Q,Jl, b5(*P4, 5d?D,,,)l,
[~P’(~P,,z), 5d?D,,,)l, [~P~(*J’&> 6d(2Dm)1, [~P’(~P,,J, 6d(2Ds,Jl, [2p5(‘P,,2), 7d(*D& [2~‘(‘J’,,2), 7d?D,,,)l,
2~9~ -
2s22p6 2~~2~’ -
2sZ2p6- [2PseP&, 3s1, - 12PTP1,2), 3s1, - [2~‘(~P,,z), 34%,A - [~P~(~&z), 3@D,,,)l, - [2p5(‘P,,,) 3d(2D5’2)] ’ 2s22p6 - [2s2~~3p(~P,,,)], - 12~2~63~(%,,)1, 2s22p6- [2PYPS,J, 4s1, - [~P~(*P,,A~sI,
Transition
6 10 11 5 9 8 9 12 15 6 4 3 4 4 2
-
B
15.449 15.260 15.013 13.892 13.834 12.678 12.525 12.325 12.269 12.125 11.249 11.132 10.774 10.640 10.506 10.386
-
B
-
-
12.262 12.12
-
17.051 16,774 15.453 15.261 15.012 13.887 13.820 -
T 17.051* 16.774* 15.452 15.260 15.012* 13.893 13.829 12.681 12.5 14 12.319 12.259 12.12* 11.247 11.125 10.762 10.649 10.516 -
SKRN
Fe (z = 26)
17.051s 16.775 15.453* 15.261* 15.013 13.888 13.823* 12.680 12.521 12.262 12.122* 11.250 11.129 10.77 10.66 10.50 -
CF
10.65 -
17.055 16.776 15.453 15.258 15.011 13.893 13.824 12.58 12.42 12.265 12.123 11.26 11.14 -
CPS
-
-
17.041 16.769 15.449 15.259 15.013 13.888 13.824 -
P 17.06 16.77 15.45 15.26 15.01 13.88 13.82 -
WRW 17.05 16.77 15.45 15.26 15.01 13.82 12.66 12.50 12.35 12.27 12.12 11.25 Il.14 10.76 10.66 10.52 10.39
MZhV
H 17.051 16.775 15.455 15.262 15.013 13.890 13.823 12.680 12.521 12.319* 12.264 12.124 -
Fe (z = 26)
17.055 16.775 15.447 15.260 15.014 13.885 13.823 12.681 12.520 12.267 12.128 11.251 11.129 10.775 10.639 -
B
17.05 16.77 15.453 15.26 15.012 13.82 12.68 12.51 12.32 12.26 12.123 11.25 11.125 10.77 10.65 10.50 10.39
MZhV
Table 10. L-spectra, transitions in [Ne]-ions (2 = 26-42). Means: pr. = prediction (extrapolation, calculations .);*in quoted papers this wavelength was used as reference;** was calculated over the formule with quant defect. T, paperL761; FCS, paperL771; SKRN, paperL781: CPS, paper[79]; B, the present paper and paper[24]; BNC, paper[301; P, papert801; MZhV,paper[811; WRW, paperL821; f-f, paperb31; CF, paper[%l.
3G 3F 3E 30 3c 3B 3A 4G 4F 40 4c 5D 5C 60 6C ID IC 8D
Key
B
10 - [2PSCP& 3s1, 8 - [2PYP,,J, 3s1, 5 - DP*(*~,,zL 3d(2Q,A 12 - [~P~(*PJ,J,3d@& - [2p5(2P,,2) 3d(‘D5’*)] IS 2s22p6- [2s2p63p(‘P,,,)], ’ 6 9 - WP~~P(‘P,,,)I, 2s22p6- [2P’eP&. 4s1, - I2PW,,*h 4s1, - [2~‘(*Pd 4d(2D5,A - [2p5(2P,,,h4d(2Ds,d, 2s22p’ - [2p5(*P,,J, Sd(2D&l, - I~P~(*P,,~).MZD,,,h 2s22p6- [~P~(~P,,J,W*Ds,A - [~P~(‘P,,,). W*D,,,)l, 2s22p6- [~P~(~P,,J,7d(2D,,A - [2p5(zP,,~).7d(2D5,2)1, 2~9~~ - [2~~(*J’m),W*D&l,
2w
Transition
15.439 15.170 14.038 13.862 13.631 12.654 12.5% Il.456 11.330 11.106 10.975 10.182 10.053 9.736 9.609 9.501 9.371 9.347
B
-
-
15.437 15.169 14.036 13.862 13.629 12.66 12.60 -
T
Co(z = 27)
-
15.432 15.169* 14.040 13.862* 13.628 12.656 12.593 11.458 11.324 11.103 10.97* 10.178 10.060 9.743 9.611 -
SKRN
11.105 10.971 10.176 10.055 9.737 9.612 9.491** 9.366** 9.341**
11.338
15.438 15.166 14.035 13.863 13.632 12.658 12.599 11.464
B
-
-
-
-
10 8 5 12 15 I 9
B 14.040 13.777 12.809 12.654 12.430 11.587 11.529 10.420 10.303 10.103 9.961 9.246 9.128 8.846 8.731 8.614 8.512 8.487
B
Table 10 (Contd)
-
14.03 13.77 12.80 12.64 12.42 11.59 11.53 -
FCS
Ni (z = 28)
-
14.03* 13.768 12.805 12.641 12.42* 11.582 11.522 10.417 10.306 10.102 9.97* 9.236 9.130 8.838 8.725 -
SKRN
-
9.97s
-
12.651 12.430
13.780 -
-
H 14.042 13.778 12.805 12.652 12.432 11.587 11.530 10.423 10.316 10.103 9.971 9.249 9.130 8.843 8.727 8.621** c?.509** 8.480**
B
2 = 28
-
10 8 5 12 15 8 10 -
B 12.830 12.573 11.737 11.597 1I.386 10.653 10.599 9.520 9.423 9.233 9.102 8.444 8.330 8.070 7.955 -
B
-
-
-
12.82 12.56 11.73 11.60 11.38 10.65 10.60 -
FCS
Cu (z = 29)
-
12.82* 12.558 11.732 11.593 11.38* 10.641 10.587 9.522 9.426 9.230 9.11* 8.437 8.320 8.056 -
SKRN
12.830 12.572 11.738 11.594 11.382 10.647 10.592 9.519 9.429 9.232 9.103 8.444 8.327 8.069 7.958 7.842*+ 7.703** 7.612**
B
3G 3F 3E 30 3c 38 3A 4G 4F 40 4c SD 5C 60 6C 70 7c 80 8C 9D 9c
Key
2s22ph- [2pYP&, 3s1, - [2PYP,,J. 3s1, - [2P’(2P3,*L 3dcD,,J11 - 12p5(*P,,z)>3d(‘D& - [2p5(‘P 112 ) 13d(2D5’*)l1 2s22p6- [2s2p63p(‘P,,,)], - WP~~P~*P~,J~, 2s22p”- [2p5(*P,,*),4slI - [2PS(*P,,A 4s1, - [2p’(*P& 4d(2D,,,)1, - [2pS(‘P,,*).4d(*DS,2)1, 2s22p6 - [2p’(‘P,,,), Sd(*D&l1 - [2p5(2P,,,), 5d(‘D,,Jl, 2s22p6- [2p’(‘P& 6d(‘D,,,)l, - [2p’?P,,,L 6d(*D,,z)l, 2s*Zp”- [2p5(*P,,2), 7d(2D,,,)1, - [2p5(2P,,,)> 7d(*D,,,)l, 2s22p”- [2pW’,,A 8d?D,,Jl, - [2p5(2P,,J, 8d@M11 2s*2p6 - [2~‘(~P,,z), 9d(*DyJl, - [2ps(2P,,2), 9d(*Ds,J11
Transition
11.76 II.51 10.80 10.67 10.47 9.77 -
11.769 11.516 10.796 10.663 10.462 9.815 9.762 8.722 8.658 8.467 8.340 7.738 7.625 7.390 7.287 7.198 7.102 7.073 6.983 7.001 6.898
IO 8
r -
I: 15 8 IO -
FCS
B
A ex0
B
,‘“P re,
Zn (2 = 30) A Pr B
I 1.769 11.515 10.796 10.664 10.459 9.816 9.762 8.724 8.646 8.469 8.342 7.739 7.625 7.393 7.287 7.196** 7.098** 7.075** 6.981** 6.996** 6.903**
A -0 BNC
11.73 11.49 10.80 10.67 10.47 9.82 9.77 8.73 8.65 8.46 8.33 -
Zn (2 = 30)
10.835 10.584 9.963 9.842 9.642 9.078 9.025 8.026 7.958 7.797 7.672 7.119 7.009 6.799 6.697 _
B
A Pl
2=31
IO 9 6 15 15 8 10 _
B
~cw rel
10.010 9.762 9.222 9.110 8.916 8.423 8.369 7.41 I 7.359 7.205 7.081 6.574 6.464 6.275 6.177 6.112 6.016 6.003 5.923 5.936 _
B
10.01 9.76 9.22 9.1 I 8.91 8.42 8.37 7.42 7.35 7.21 7.09 _
BNC
A exp 1A B
A,,
10.012 9.763 9.224 9.112 8.917 8.419 8.367 7.406 7.349 7.202 7.079 6.572 6.463 6.275 6.176 6.108** 6.016** 6.005** 5.917** 5.935** _
Ge (i = 32)
Table 10 (Cmtd)
, .i
10.010 9.764 9.216 9.109 8.913 8.415 8.362 -
BNC
9.273 9.031 8.563 8.461 8.269 7.829 7.778 6.856 6.806 6.674 6.551 6.085 5.979 5.810 5.713 _ -
B
A pr
z = 33
IO 10 6 20 15 8 IO _ -
B
re,
1-p
8.615 8.374 7.967 7.874 7.685 7.294 7.243 6.368 6.322 6.201 6.078 5.650 5.547 5.395 s.300 5.252 _ -
B
8.62 8.38 7.97 7.88 7.70 7.31 7.26 _ _ -
BNC
herp*A B
_ _ _ _ -
-
-
8.618 8.380 7.965 7.874 7.688 7.295 7.244 -
BNC
A,,. A
8.616 8.378 7.971 7.878 7.688 7.298 7.247 6.367 6.322 6.202 6.080 5.651 5.547 5.394 5.300 5.252** _ -
Se (z = 34)
8.04 7.80 7.45 7.36 7.18 6.82 6.77 5.94 5.89 S.78 5.66 _ -
BNC
A ew
8.029 7.792 7.439 7.352 7.166 6.818 6.768 5.920 5.886 5.778 5.658 5.261 5.160 5.024 4.931 _ -
B
A Pr
Br (z = 35)
7.499 1.265 6.957 6.878 6.694 6.383 [2s2pb3p(*P,,J], 6.334 [2~2~63~(*p,,*)i, 5.522 [2P’(*P,,*), 4s1, 5.494 [2P5(*P,,,), 431, [2p5(*P,,,), 4d(*4,*)1, 5.397 [2p’(*P,,,). 4d(*D,,*)l, 5.277 4.911 [2p’(*p,,*), W*D,,,)l, [2~~(‘f’,,,). 5d(*D,,*)l, 4.812 [2p’(*P,,*), W*Ds,*)l, 4.690 [2p’(*P,,,). W*Ds,*)l, 4.598
-
-
2s22p6 -
2s22pb-
-
2s22p62s22p6-
-
12P5(*P,,*), 3s1, L~P’(*&,*), 3d(*D,,*)l, PP’(*~,,*). 3d(*4,*)1, [2p’(*P,,*)> 3d(*D”*)l,
2S22Pb - [2Ps(*P,,*), 3s1,
3G 3F 3E 30 3c 3B 3A 4G 4F 40 4c 5D 5c 60 6C
B
Transition
Key
z=36
7.020 6.788 6.521 6.449 6.261 5.988 5.939 5.161 5.140 5.052 4.934 4.595 4.498 4.389 4.298
B
z=37
6.587 6.357 6.125 6.058 5.878 5.628 5.580 4.834 4.818 4.740 4.622 4.308 4.214 4.116 4.026
B
z=38
9 6 5 10 8 3 2 -
B 6.1% 5.%6 5.763 5.710 5.527 5.299 5.251 4.532 4.522 4.457 4.340 4.047 -
B
Y (2 = 39)
6.193 5.965 5.763 5.708 5.524 5.299 5.251 4.536 4.525 4.455 4.339 4.046 3.955 3.868 3.779
B 9 6 5 10 8 3 2 -
B 5.831 5.609 5.43I 5.313 5.198 4.997 4.950 4.265 4.251 4.197 -
B
Zr(z = 40)
Table 10 (Contd)
5.83 5.61 5.43 5.31 5.20 5.00 4.95 --
BNC 5.833 5.607 5.433 5.376 5.200 4.997 4.949 4.266 4.258 4.1% 4.080 3.809 3.720 3.642 3.554
B
(2 = 40)
5.832 5.612 5.433 5.373 5.203 4.998 4.957 -
BNC 9 6 5 IO 8 3 2 -
B 5.502 5.278 5.134 5.077 4.903 4.721 4.674 4.022 4.012 3.958 3.845 -
B
(z=41)
5.503 5.280 5.130 5.078 4.903 4.720 4.612 4.017 4.014 3.959 3.844 3.592 3.504 3.436 3.349
B
9 6 5 IO 8 3 2 -
B
5.202 4.980 4.847 4.804 4.630 4.464 4.416 3.788 3.7% 3.740 3.626 -
B
MO(z = 42)
5.200 4.980 4.851 4.805 4.630 4.465 4.417 3.790 3.789 3.741 3.621 3.393 3.307 3.241 3.160
B
I.455 I.364 1.381 1.371 1.298 1.288 I.268 -
B
z =74
V. A. BOIKO ef al.
34 Table Il. Longwavelengths satellites for the transition 2sz2p6[2p5(*p,,,), 3d (*QJ, in lW-ions.
h,A Ge (z = 32)
Y (2 = 39)
8.916* 8.931 8.940 8.947 8.952 8.959 8.965 8.986 8.994 9.002 9.008 9.015 9.024 9.032 9.041 9.049 9.066 9.087
5.521* 5.535 5.539 5.543 5.545 5.550 5.556 5.561 5.566 5.513 5.575 5.580 5.589 5.594 5.599 5.604 5.609 5.620 5.626 5.632 5.638 5.641 5.689 5.704
-
Table 12. L-spectra, about possible identification of nonidentified lines series of solar corona spectrum as for transitions in [Ne]-like ions of Zn(XXI). Transitions in Zn (XXI),observed in laser spectrum plasma Key* A,A 3G 3F 3E 30 3c 3B 3A 4G 4F 40 4c
I 1.769 11.516 10.796 10.663 10.462 9.815 9.762 8.722 8.658 8.467 8.340
Lines of solar corona sp_ectrum
LA DMC
NSK
11.75 11.50 10.80 10.63
11.76 11.52 10.81 10.65 10.44 9.81 9.13 8.67 8.35
9.85? 9.70 -
*Key, see in Table paper[86]; NSK, paper[71].
11.
DMC,
A-r interpretation of relative intensities of [Ne]-ion lines is rather difficult for a dense plasma. Even for solar-corona conditions, these intensities can not be described by a simple coronal model and, according to Ref. (84), the intensity of 2p-3s transitions is determined mainly by cascade processes. Detailed theoretical analysis of Fe(XVI1) and Ni(XIX) line intensities, including the transitions between 56 excitation levels of [Nel-ions for solar-corona conditions [see Refs. (83, SS)], leads to results which are in a good agreement with the experiments of Refs. (80) and (83). The [Ne]-ion spectra include also the intense satellites for Z - 40 (see Figs. 10 and 12). In Ref. (30), some satellites have been identified for the transitions 2p63s-2p53s3d ([Na]-ions) and 2p63s2-2p53s23d ([Mg]-ions). For a detailed identification of satellite structure [the number of such spectral lines for Z-40 is of the order of several tens; see Table 10 from Ref. (40)], it is necessary to make further calculations. In Table 12, we give probable identifications of some unidentified lines which have been observed in flare spectra of the solar corona and are described in Refs. (71) and (86) as transitions of [Ne]-ions of zinc. This identification is based on coincidences of wavelengths. To confirm the identifications of Table 12, more accurate wavelength measurements of the solar spectra are needed. The line with A = 8.35 A may be connected also with the transition in [Be]-ions of Zn(XXVI1) (see Table 9). 3.4 L-spectra ions of iron Fe(XVII)-Fe(XXIV) (A - 6.5-17 A) The importance of laboratory investigations of multiply-charged ions of iron is associated with their occurrence in space experiments; in 1978 and subsequent years, there will be a maximum of solar activity. Iron is the most abundant heavy element in the solar corona and its ion lines dominate in the X-ray emission of a hot plasma flares and active regions. K-spectra of iron ions (A - 1.5-1.9 A) are characterized by an electron temperature T, - 2-4 keV and the L-spectra (A - 6-17 A) by T, - 1 kev. The maxima of the line intensities in each of the iron L-ions are localized in narrow intervals of changing T,. This fact is useful in the investigation of the space-temporal structure of different regions of flares. K- and L-spectra of iron ions in flare emission were detected for the first time in 1967 and are described in Ref. (87). Further investigations were reported in the survey of Ref. (88) in Refs. (89-91) and in Ref. (71). Many research groups made considerable effort to reproduce these
X-ray spectroscopy
of multiply-charged
35
ions from laser plasmas
Table 13. L-spectra, wavelengths of spectral lines of Iron L-ions and their possible identification. Means: FC, paper[36]; SKRN, paper[78]; B, see Table 8, 9, IO of the present paper; K, paper[73]; F, paper[74]; D, paper[lOO];* for given wavelength we presented in the paper K another identification;t given identification in papers F and D is attached to another wavelength;* see Table 9. In the present table a sign ? is kept in those cases, when it is in paper K. Identification
Experimental results Present FC A, A I,,,. I
-
SKRN A, A I,,,.
2
-
3
-. -. -. 1 -
-
-
-
-
4
-
-
A rerl
Ion
A,A
Key
7
8
9
1
rel
5
6
6.583 6.725 6.787 6.808 6.972 7.000 7.033 7.066 7.106 7.143 7.169 7.210 7.230 7.277 7.355 7.370 7.438 7.445 7.472 7.612 7.680 7.733 7.755 7.778 7.826 7.849 7.854 7.883 7.901 7.983 7.993 8.082 8.118 8.159 8.167 8.180 8.210 8.231 8.240 8.273 8.285 8.303 8.315 8.334 8.348 8.371 8.406 8.439 8.452 8.472 8.494 8.510 8.521 8.529 8.543 8.550 8.558 8.563 8.575 8.583 8.590 8.601
<5 <5
XXIV -
<5
XXIV XXIV XXIV XXIV -
<5
<5 <5 15
18 IS 9 I8 16 I4 15 I9 25 36 28 20 I5 20 17 23 28 16 37 32 32 28 34 25 23 20 I5 21 I9 I7 35 14 40 25 30 58 I5 15 19 23 20 21 I8 14 17 21 24 26 40 21 17 22 29 26 20
XGV XXIV XXIV XXIV XXIV XXIV XXIV XXIV XXIV -
-
B B
-
-
Transition IO
2p(*P,,,)-Sd(*D,,z)
2p(*P,,,)-5d(*D,,z,,,,) -
-
-
-
-
-
-
-
-
-
-
-
-
-
36
V. A. BOIKO et al. Table 13 (Cot&) Experimental results FC
A, A
I,,,.
I
2
-
-
9.21 9.25 -
-
SKRN A, A I,,, 3
-
4
-
9.126 -
0 -
9.229 -
-
-
0 -
Identification Present paper h. A I,,, 5 8.614 8.630 8.643 8.664 8.672 8.714 8.723 8.731 8.736 8.741 8.752 8.763 8.775 8.786 8.797 8.807 8.814 8.823 8.850 8.862 8.860 8.900 8.908 8.915 8.921 8.935 8.946 8.960 8.977 8.992 9.006 9.013 9.022 9.033 9.042 9.053 9.058 9.065 9.073 9.082 9.093 9.110 9.120 9.129 9.145 9.155 9.163 9.183 9.190 9.199 9.208 9.215 9.220 9.231 9.241 9.248 9.262 9.271 9.287 9.299 9.320 9.331 9.344 9.355 9.364
6 45 24 18 34 61 23 16 35 28 22 42 32 15 13 10 16 34 20 18 16 12 16 15 22 16 22 19 44 25 37 50 26 21 I1 17 13 17 38 21 38 17 41 28 24 40 31 28 59 31 28 26 36 28 37 45 34 37 18 22 27 15 18 18 33 33
Ion 7
XXII XXII -
-
A, A
Key
8
9
10
--
-
-
-
-
-
-
-
-
-
9.126 9.229 -
K
-
Transition
2~(2~,,,)-4~(2s,,,)
? -
K
-
~P~~P,,~~-~s~~s,,,~?
-
X-ray spectroscopy
of multiply-charged
ions from laser plasmas
31
Table 13 (Cot&) Experimental results FC A. A
I,,.
1
2
9.19 9.84 9.99 10.04 10.05 10.10 10.12 10.22 -
-
SKRN A, A I,.,. 3
-
1 -
4
46 28 21 -
1
9Yla 9.541 9.559 9.58 I 9.599 9.619 9.644 9.663 9.675 9.6% 9.713 9.728 9.752 9.785 9.805 9.817 9.848 9.882 9.906 9.925 9.953 9.981 9.996 10.010 10.034 10.047 10.065 10.071 10.095 10.116 10.128 10.134 10.160 10.179 10.205 10.224 10.252 10.269 10.300 10.322 10.344 10.354 10.366 10.386 10.408 10.438 10.462 10.486 10.506 -
1
10.534 10.569
0 -
9.646 -
-
9.703 -
-
9.793 -
-
1
I
1
I -
10.053 -
-
10.128 -
-
10.230 -
-
10.344 -
-
10.443 -
-
2 1 1
32 41 22 27 19 26 37 34 50 32 31
9.568 -
9.990 -
IO.50 10.53 10.57
9.380 9.389 9.401 9.412 9.421 9.433 9.440 9.451 9.460 9.475 9.486
0 -
1 0 0 -
10.35 10.44 10.46 -
6
9;07 -
9.841
2 3 1 2 0 0 -
5
-
1 -
-
10.516 10.571
Identification Present gaper .k A I,,,
1
1
I
I
1
1
-
55 35 II 28 17 I9 27 37 39 17 II 31 32 42 I2 I2 15 11 21 60 49 62 78 a5 36 25 42 52 40 60 56 21 40 31 16 17 27 27 58 48 14 19 30 21 19 28 30 32
Ion
A, A
Key
7
a
9
-
-
XXII -
9.568 -
K
XXII XXII -
9.646 -
XXII -
9x93 -
-
XXII -
9.841 -
-
XXII -
10.053 -
-
XXII XXII XXII
-
XXII XVII XXII XVII -
Transition IO
2~2p~(~D,,,)-2~~4p(*D~,~) ?
-
-
K
2~2p~(~S,,~)-2~~4p(*P,,~) ?
K
2~2p~(~S,,J-2~*4p(~P~,J ?
K
2~2p~(‘S,,~)-2~~4p(*P~,~) ?
K
2~2p*(*P,,~)-2~~4p(~P,,,) ?
K
2p3(4S,,,)-2s24s(2S,,2) ?
IO.10 -
K
2p’(*D,,,)-2?4d(*D,,,)
10.127 10.230 -
K
2p’(2D~,,)-2s24d(ZD,,,) ?
9;03 -
10.344 10.443 -
-
-
-
-
-
-
?
-
K
2p3(ZP,,,)-2s24d(2D,,,) ?
K B -
2p3(2P,,&2s24d(2D,,,) ? 2s22p6(‘S,,)-2s”2p57d(‘P,)
K -
2p’(2P,,2)-2s24s(2S,,2) ? 2s22p6(‘So)-2s22p57d(‘D,) -
-
B -
-
-
-
38
V. A. BOIKO et al Table 13 (Confd) Experimental results FC h, i
I,,,
I
10.59
-
I
10.66
-
10.77 IO.81 10.82
-
I 1.026
-
11.129 II.164
-
SKRN A, A I,,, 3
4
-
-
10.649 10.762
4 4 -
IO.81I 10.873 10.926 10.97 II.021 I I.074 Il.125 II.160 -
6 -
-
-
I I.325
2
-
4 -
-
I 1.247 11.280 I I.318 11.360 -
5
6
10.582 10.619 10.640 10.663 10.687 10.722 10.739 -
24 103 44 80 32 20 37 65 35 I6 I9 76 94 59 I? 53 99 120 30 16 5
-
10.774 IO.813 10.826 10.854 10.877 10.903 10.927 10.935 10.964 10.980 II.018 I 1.030 II.047 I 1.074 I I.093 Il.113 I I.132 I I.145 II.166 II.171 Il.187 II.199 II.219 II.233 I I .249 II.261 Il.280 Il.299 I I.325 11.333 11.361 11.384 II.399
110 I25 49 IO 30
0 -
2 0 2 0
-
II.250
I 1.289
-
3
-
-
2
-
Identification Present paper A. A I,,,
4 2
3 -
-
32 25 61 I85 42 15 36 48 44 61 47 4s -
II.419
3
I I .420
4
I 1.426
125
I 1.440 -
5 -
1 I.440 -
4 -
II.442 II.459
180 59
II.480 Il.521 11.571 11.637 -
-
Il.485
86
11.493 I38
11.524 I 1.592 I 1.637 I I.698 I 1.742
II.730
4 2 -
-
11.519 II.525 11.548 II.574 11.594 II.614 11.632 11.650 I 1.669 1I .692 11.718 II.737
I55 I25 68 59 142 85 47 29 59 115 59 I45
I I.748
130
Ion
XXIV XVII XXIV XVII XXII XXII x%1 XXIII XXIII XVIII XXIV XXIII XVII XXIII XXIV XXIV XVII XXIV XVIII XVIII XXIII XXIII XXIII r XXII XXIV 1 XXIII XVIII XXII I XXIII XXIII XXIII XXIII XVIII XXIII XXIII XXIII XXII XXII XXIII XXIII 1 XXII XXIII
LA
Key
8
9
-
B
B
-
-
11.280 Il.318 -
IO -
B
-
II.021 -
Transition
B B B B B B B K B B
w*s,,J-~P(‘P,,,) 2s’2ph(‘S,)-2s’2p’6d(‘P,) WS,,~)-~P(‘P,,J ?s’?p’(‘S”)-2s22p’6d(‘D,) 2~2p(~P,.‘P,
‘Pz)-Zs3p(‘P,,‘P,‘D,) 2s2p(‘P,)-2s3p(‘P,) 2s2p(‘P,. ‘P,, ‘P,)-2s3p(‘S,. ‘P,,‘!‘,) *** *ix* ***
-
2p~(‘P3,*)-2p4(‘S)4d(*D~,*) 2p(‘P,,J-3d(‘D,,J 2s2p(‘P,)-2s3p(‘S,) -
B B -
2s2ph(‘So)-2s’2p~Sd(‘P,) 2s2p(‘P,)-2~3p(‘D,) -
B B
2p(‘P,,&3d(*D,,J 2p(*P,,,)-3d(*D,,z)
B B K -
2s’2p6(‘S,)-2s22p~5d(3D,) 2&P,,&3s(‘&z) 2pS(‘P,,&2p4(‘D)4d(20,12) -
K B B
2p’(‘P,,&2p4(‘P)4d(*D,,,) 2s2p(3P,)-2s3d(‘D,) -
B F B B K F B B B B
~s~P(~P,)-~P~P(~PJ ~s~P(~P,,~)-~s~P(‘P)~P(*D,,~) ~P(~P,,J-~s(%,,) 2p’(‘P,)-2p3d(‘F,) 2p5(ZP~,J-2p4(3P)4d(*P~,~) 2s2~(2P~,~)-2s2~(3P)3~(2Ds,~) ***
K B B B F F B B K B
2p’(‘P,,>)-2p4(‘P)4d(‘Pj,J 2p2(‘D&2p3d(‘P,, ‘FJ ***
2s2p(‘P,)-2s3d(3D,,,) -
II.410 II.440 Il.458 II.571 II.65 Il.679 11.742 -
2s2p(‘P2)-2s3d(‘D,,‘Dz) 2pz(zP,,3P,. ‘P2)-2p3d(3D,,‘P,,3P2) 2p’(‘PJ-2p3d(‘D,) -
2p*(‘P,)-2p3d(‘Dz) 2~*2~(2~,,,)-~s~P()P)~P(*P,,,) ~s*~P(*P,,,)-~~~P(‘P)~P(*P,,,) *** 2s2p(‘P,)-2s3d(‘DJ 2p?P,,J-3d(*D,,J ? ***
X-ray spectroscopy
of multiply-charged
39
ions from laser plasmas
Table 13 (Co&) Experimental results
Identification Present
FC .k ‘A I,,, I Il.112 -
11.865 -
11.956 11.994 -
2
-
2 -
1 2 1 -
12.122
I5
12.145 -
-
12.233 12.262 -
3
-
-
12.016 12.076 -
-
SKRN A, A I,,,.
11.862 -
11.987 -
12.12
-
-
0
15
-
-
-
-
12.259 12.274 12.319
-
12.385 12.401 12.411 12.427
0
2 2 1
12.399
12.438 12.454 12.494 12.521
1
12.444 12.514
12.548 12.578 12.585 -
12.680 12.714 12.726 12.741 12.767 12.808 12.842 12.882
1 1 -
-
2 2 1 2
-
4 1 1 1
-
3 3 2
>
re,
4
5
6
-
11.767
100
11.789 130
1
-
1
-
6
-
1
12.585 12.681 12.756 12.780 12.803 12.834 -
Jperl
5 2 3
-
11.797 11.815 11.823 11.837 11.846 11.870 11.886 11.898 11.948 11.960 11.976 12.004 12.027 12.045 12.053 12.077 12.095 12.125
12.158 12.174 12.193 12.202 12.236 12.269 12.297 12.325
3 -
12.354 12.380 12.393 12.412 12.421
3 2 -
12.436 12.462 12.497 12.525
2 2 -
12.555 12.579 12.586 12.606 12.623 12.653 12.678 12.714 12.740 12.766 12.789 12.812 12.822 12.834 12.846 12.861 12.888.
1 2 3 3 -
128 82 92 135 82 82 92 78 128 90 125 130 72 150 60 97 91 63
2s 20 70 60 130 150 130 117
Ion
A, A
Key
7
8
9
XXII XXII XXII XXII XXIII XXII XXII XXII XXIII XVII I XXII XXI -
-
XXII XVII XVII ( XXI 75 XXI 135 XXII 126 114 XXI 104 XXIII I XXI 84 XXI % 93 XXI 88 XVII XXI 72 XXI 107 XXII 107 53 XXI 44 32 75 XVII 79 XXI XXI 47 xx 88 52 115 XXI xx 122 xx 107 xx 115 xx 105 xx 112
-
10
-
11.784 11.801 -
F F -
11.865 11.89
K F B K F F B B F K -
11.956 12.020 12.049 12.120 12.145 -
Transition
-
2p(2P,,z)-3d(24,,)
2s2p2(4P,,2)-2s2p(3P)3d(4P,/,) 2p2(‘SJ-2p3d(‘P,) 2p(‘P&-3d(‘D,,,)
?
-
2s2p2(2P,,2)-2s2p(‘P)3d(2D5,2) 2s2pZ(2D,,2)-2s2p(3P)3d(2F,,2) -
2p2(‘D2,3P,)-2p3s(‘P,,‘P,,) 2s22p6(‘So)-2s22p54d(‘P,) 2s2p2(2Dj,2)-2s2p(3P)3d(?F,iz) 2p2(‘Po)-2p3d(‘P,) ? -
-
12.230 12.338 12.354 12.385 -
F B -
2s2p2(2D,,,)-2s2p(3P)3d(2D5,2)* -
B F F K -
2s22p6(‘So)-2s22ps4d(‘P,) 2s22p2(3P2)-2s2p3d(‘P2) 2s22p2(‘P2)-2s22p3d(3D,)
12.408 -
F B K K K B K K K K
2s22p2(‘D2)-2s22p3d(‘F,)* 2p2(‘S,,)-2p3s(‘P,) 2s22p2(‘D2)-2s22p3d(‘F,) ?** 2p2(‘P,)-2p3d(‘P2) ? -
12.427 12.438 12.494 12.521 12.548 12.573 12.599 -
-
12.697 12.726 12.741
B F K K
12.808 12.824 12.834 12.855 12.858 12.883
K F K F F F
2s22p6(‘S0)-2s2p54d(3D,) -
~P(~P,~~)-~s(~S,,,) 1
-
2p’(‘S,,)-2p3d(‘P,)?
2s22p6(‘So)-2s22p54s(‘P,) 2s22p2(‘P2)-2s22p3d(‘D3) ?** 2p2(‘P,)-2p3d(‘D2) ?** ~P(~P~,~~~s(~S,,~) ?
-
2~~(~P,)-2p3d(~D,) ? 2~~2p~(‘S,)-2~~2p’4s(~P,) 2s2p3(3D&2s2p2(4P)3d(3FJ 2p2(‘D2)-2p3d(‘D2) ? 2p3(4S3,2)-2p2(3P)3d(2PyJ ? 2p2(‘S,,)-2p3d(3P,) ? 2s22p3(2D3,2)-2s22p2(‘D)3d(2F5,2) 2~~2p’(~S~,,)-2~~2p~(~P)3d(~P,,~) ?** 2s22p’(4S,,2)-2s22pZ(‘P)3d(4Pj,2) 2s22p’(4S3,2)-2s22p2(3P)3d(4Pf,2) 2s22p3(2D,,,)-2s22p2(‘D)3d(2P 3,~ ‘42)
40
V. A. BOIKO et al. Table 13 (Contd) Identification
Experimental results Present FC A, A I,,, 1 12.915 12.924 12.980 13.012 13.052 13.084 13.095 13.14 13.159 13.1% 13.250 13.265 13.2% 13.307 13.317 13.351 13.374 13.339 13.422 13.442 13.464 13.497 13.518 13.547
13.575 13.631 13.644 13.667 13.695 13.705 13.720 13.733 13.763 13.770 13.793 13.823 13.888 13.934 13.953 14.020 14.046 14.120 14.150 14.202
SKRN A. A I,,,
2
3
4
-
-
1
12.930 12.990 13.052 13.084 13.151 -
-
1 2 3 2 2
^i 1
4
6 -
-
13.467 13.518 -
-
2
-
2 3 2 1 2 1
3 10 10 2 3 4
-
13.183 13.249 13.332 13.387 13.416 -
1
6 4 6
13.570 13.654 13.711 13.750 13.770 13.780 13.829 13.893 13.958 14.031 14.053 14.129 14.160 14.207
3
-
2 -
: 2
-
2
2
3
-
5
-
1
1
-
1
3 2 1 0 3 2 7
A fper[
.
rel
5
6
12.909 12.925 12.945 12.970 12.983 12.995 13.030 13.052 13.085 -
108 112 105 60 80 72 70 19 136 44 53 68 36 IO 30 49 75 65 88
XX xx XX XX xx xx XX xx XXI XX XX XXI XXI XXI XIX XIX XIX XIX
90 77 50 67 155 88 -
XIX XXII XXI XIX XX XIX XIX XIX I XIX XIX XIX XIX XIX XIX XX XIX XXII XIX XIX XXII
13.136 13.146 13.163 13.1% 13.237 13.267 13.298 13.324 13.359 13.377 13.408 13.426 13.448 13.468 13.508 13.523 13.560 13.580 13.602 13.614 13.647 13.673 13.702 13.721 13.741 13.770 13.798 13.834 13.851 13.892 13.938 13.962 14.026 14.040 14.066 14.124 14.155 14.204
54 66 32 33 60 83 92 73 73 -51 77 91 69 48 56 66 60 51 51 101 83 126
Ion
A, A
Key
7
8
9
12.907 12.924 12.980 13.00 13.012 13.067 13.090 13.141
F K K F K F F K
13.158 13.183 13.205 -
K K F
13.249 13.265 13.296 13.307 13.322 13.368 13.372 13.399 13.416 13.422 13.442 13.473 13.497 13.509 13.539 13.547 13.543 -
K K K K K F F K K K K F K F F K F
13.575 13.605 13.631 13.644 13.667 13.695 13.711 13.718 13.742 13.750 -
K F K K K K K F F K -
2p4(3P,)-2p3(2D)3d(3PZ)? 2s22p4(3P,)-2s22p3(ZP)3d(3P2) 2p4(‘P1)-2p1(2D)3d(3D2)?** 2p4(3P,)-2p3(4S)3d(3D,) ? 2p3(4S,,J-2pZ(3P)3d(4PS,2) ? 2p4(‘Dz)-2p3(4S)3d(3DJ ? Zp’(‘D, 2)-2sZ3d(ZD,,2)? 2s22p4bP,)-2s22p3(2D)3d(3D,)* 2s*p4(‘D2)-2s2p3(‘D)3d(‘F~)* 2p3(*D,,,)-2s23d(*D,,,) ? -
13.770 13.780 13.806 13.82
K K F F B B K D
2p3(ZD,,,)-2s23d(ZD,,,) ? 2p3(2D,I,)-2sZ3d(*D,,J ? 2s*2p4( D2)-2?2p’(‘D,) 2~*2p~(~P,,‘P,)-2s~2p~(~D)3d(~D,,~D~) 2s22p6(‘S,)-2s2p63p(‘P,) 2~*2p~(‘S&2~2p~3p(~P,) 2p’(2P,,,)-2p4(‘S)3d(2D& 2p’(*P,,J-2p4(‘S)3d(ZD,/,)* -
K K D D D
2p5(ZP,,,)-2p4(‘S)3d(2Dyz)** 2p3(‘P,,,)-2s*3d(*D1,,) ? -
xxrr XXII XIX XIX XVII XVII XVIII XVIII XVIII XXII XVIII XVIII XVIII
13.934 13.954 14.031 14.053 14.121 14.150 14.20
Transition 10 2s22p3(2D5,J-2s22p2(1D)3d(2F,,2) 2s22p3(4S,,Z)-2s22p2(3P)3d(4P,,,) ?** 2p3(4S,,,)-2pZ(3P)3d(4P,,J ? 2s22p3(2D,,&2s*2p2(3P)3d(2D5,2)* 2p3(2D,,&2p2(3P)3d(2Pj,J ? 2s22p3(2P3,2)-2s22p2(‘D)3d(2Ds,J* 2s*2p3(2D,,J-2s22p2(3P)3d(4F,,2)* 2p’(*P,,,)-2p2(3P)3d(2Px,2) ?** 2pZ(‘P,)-2p3s(‘PJ ? 2p3(2D,$-2p2(3P)3d(4P,,J ? 2s22p3( P&-2s22p2(3P)3d(2D5,2)* 2p2(3P,)-2p3s(3P,) 2p*(‘D,)-2p3s(‘P,) ? 2p2(‘P,)-2p3s(‘P,) ? 2p4(3P,)-2p3(2P)3d(3P,) ? 2p4(‘PJ-2p3(‘P)3d(‘Pz)** 2s22p4(3P2)-2s22p3(2P)3d(3Dj)* 2s22p4(‘P,)-2s22p’(*P)3d()DZ)* 2p4(3P2)-2p3(2D)3d(3PJ ?** 2s2pz(zP3,J-2s23p(2P,,,) ? 2p’(‘S,)-2p3s(‘P,) ? 2s22p4(‘P )-2s22p3(*P)3d(‘P )* 2s22p3(2P:,,)-2s22p2(3P)3d(2i’j,2)* 2p4(‘D,)-2p3(2P)3d(3PJ 2s22p4(3P,)-2sZ2p3(2D)3d(3S,)* 2s22p4(‘D,)-2s22p3(*P)3d(‘FJ* 2p4(3PO)-2p3(3D)3d(3P,)? 2s22p4(3P2)-2s22p3(2D)3d(3DJ -
2p5(2P,,&2p4(‘S)3d(ZD>,J 2p5(*P,,J-2p4(‘D)3d(2Dm)* 2p5(2P,,J-2p4(1D)3d(2DyJ*
X-ray spectroscopy
of multiply-charged
41
ions from laser plasmas
Table 13 (Co&) Experimental results
Identification Present
FC k A Ir,,
SKRN A, A Ir,,.
1
2
3
14.255 14.35 1 14.373 14.418 14.453 14.485 14.535 14.549 14.580 14.609 14.669 14.703 14.733 14.750 14.770 14.804 14.870 14.908 14.927 14.971 15.013 15.042 15.069 15.083 15.110 15.158 15.173 15.222 15.237 15.261
4 4 4
14.260 14.373 14.422 -
15.288 15.341 15.361 15.413 15.453 15.490 15.558 15.567 15.598 15.624 -
3
1
5
3
-
5 2 0 3
14.666 14.711 -
1 0 -
2
14.760 -
0 0 -
2
2 2 9 4
1 1 1 -
4
-
3 10
-
rd.
14.48 1 14.542 14.587 -
15.070 15.132 -
-
1
2 4 4 4 2 3 3
14.812 14.857 14.942 15.012 -
6
-
15.76 15.767 15.828 15.869 -
2 4 8 8
16.004 16.024 16.074 16.164
8 5 5 4
-
2
-
10 1 0 -
15.184 -
-
15.260
6
15.306 15.343 15.368 15.452 15.498 -
15.626 15.74 -
0
0 0
0 3 0
-
1 1 -
15.82 15.866 15.913 15.979 16.006 16.065 -
~ rperl
Ion
h,A
Key
6
7
8
9
14.258 14.351 14.373 14.387 14.419 14.456 14.487 14.538 -
83 91 105 75 80 60 50 68 88 53 59 58 49 64 38 -
14.255 14.361 14.373 14.419 14.467 14.485 14.536 14.551 14.581 14.669 14.711 -
D D D -
14.580 14.614 14.668 14.707 14.734 14.754 14.804 14.859 14.872 14.927 14.968 15.013 15.091 -
XVIII XVIII XVIII XVIII XVIII XVIII XVIII XVIII XVIII XVIII XXII XVIII XVIII XXII XIX XIX XVII XIX XIX XIX XIX XIX XIX XIX XVII I XVIII XIX XIX XIX XIX XIX XVII XVIII XVIII XIX -
14.772 14.804
15.176 15.239 15.260 15.294 15.340 15.449 15.488 15.508 15.536 15.585 15.611 15.622 15.635 15.686 15.761 15.806 15.684 15.918 -
-
54 38 46 46 112 69 58 69 96 58 59 59 78 77 88 77 78 90 75 77 79 120 105 140 -
-
-
-
-
XVIII XVIII XVIII XVIII XVIII XVIII XVIII XVIII XVIII
Transition 10
D D D D D D K K -
2pS(2P ,,2.,,2)-2P4(‘D.3P)3d(2P~ ,z, *F5,*)* 2pS(*P,,~)-2p4(‘D)3d(2S,,2)* 2p5(2P,,,)-2p4(3P)3d(4P~,~)* ~P’(~P 312 )-2p4(3P)3d(4F 512)*
D K K -
2p5(2P,,,)-2p4(3P)3d(4p,,,)* 2p5(2P,,~)-2p4(3P)3d(~~~,~) -
14.927 14.971 -
K K l3
15.069 15.083 15.110 15.132 15.158 15.173 -
ii K K K K K -
~P~(~P 2)-2p3(‘P)3s(‘P I) 7 ~P~(‘P~)-~~~(~S)~S(~S,)? 2s22p6(‘S0)-2s22p53d(‘P,) ~P~(‘P,)-~~~(*P)~s(~P,) ? 2p4(‘P,)-2p3(‘D)3s(‘P,) ? ~P~(~P)-2p3(*D)3s(‘P ) ? ~P~(~P~)-~P’(%)~s(~S; ? 2p4(‘D~)-2p3(‘P)3s(‘d,) ? ~P~(~P,)-~~~(~S)~S(‘S,)? -
15.237 -
K B D K K K K K B D -
-
14.857 -
15.258 15.288 15.306 15.341 15.361 15.413 15.491 15.567 -
2p’(2P,,,)-2p4(‘p)3d(4P?,2)* 2pS(2P,,,)-2p4(3P)3d(4p,,,)* 2p5(2P,,*)-2p4(3P)3d(‘4)
2p’(2P,,2)-2s23s(zS,,2) ? -
-
2p’(*P,,,)-2s*3s(*S,,*)
-
?
-
~P~(~P)-2p3(*P)3$P ) 2s22p6&)-2s22p53d(‘D,) ~P’(*P~,,)-~P~(‘S)~~(*S,,~)
2p4(‘P,)-2p3(‘D)3s(‘P,) ? 2p4(‘Dz-2p3(2P)3s(3P,) ? 2p4(‘D )-2p3(‘D)3s(‘P ) ? 2p4(3P:)-2p3(2D)3s(‘P:) ? 2p4(‘D2)- 2p’(*D)3~(~P,) ? 2s22p6(‘S0)-2s22pS3d(3P,) ? ~P’(~P,,~)-~P~(~s)~s(ZS,,~)
-
i -
~P~(*P,,,)-~P~(‘D)~~(ZD,,,)
15.598 15.623 15.764 15.826 15.869 -
K D D D D -
2p4(‘S,)-2p3(*P)3s(“P,) -
15.979
K
16.003 16.024 16.073
D D D
2P5(zp,,~)-2~4(3P)3s(4P,,~~ 2P5(2p,,,)-2P4(‘p)3s(4p,/2)1; ~P~(~P,,~)-~P~(~P)~s(~P,,~)* ~P~(*P~,,)-~P~(~P!~~(~P~,~)
16.164
K
2s2p”(‘S,,,)-2~2p’(‘P)3s(‘p,I,)
~P~(‘P,,~)-~P~(‘D)~s(‘D~,*)
2p5(2~,,,)-2p4(3~)3~(z~,,~)
-
-
2P5(2p,,~)-2P4(3p)3~(zp~,~)* ~P’(*P,,~)-~P~(‘D)~s(ZD~~Z)* -
._
42
V. A. BOIKO et al. Table 13 (Contd) Identification
Experimental results FC A, A I,,,
SKRN .L A I,,,
Present paper A. A I,,,
1
2
3
4
5
6
16.236 16.270 16.303 16.336 16.775 16.892 17.051 17.127
2
-
-
-
-
I I
-
-
-
-
-
-
-
2 20 2 20 2
16.506 16.774 17.051 -
Ion
A.A
Key
1
8
9
XVIII XVIII
16.236 16.270
K D
-
-
-
Transition 10 ~PW,,~)-~P~OP)~S(~P,,~) 2~5(*~,,~)-2~4(3~)3~(4~~,~)
-
-
-
-
-
-
-
-
-
16.775 17.051
-
XVII XVII -
17.345 -
;
-
2p63s2~‘S,)-2p’3s23d(1P,) -
17.500 -
K -
2p63s(2S,,2)-2p53s2(*P~,~) -
17.345 17.161
1
-
-
-
-
Xv
17.367 17.450 17.469 17.500 17.548 17.597 17.622
2 2 2 4 I 1 2
-
-
-
-
XVI -
-
-
I 2 -
K K
2p6(‘&)-2p53s(‘P,) 2p6(‘S,)-2p53s(‘P,) -
-
spectra under laboratory conditions. The spectra of the last K-ionization stages (Fe(XXV), Fe(XXV1)) were obtained and identified (including the satellite structure of resonance lines) and today they are successfully compared with astrophysical observations [see Refs. (6, 92-94, 53, 65, 67)]. However, the question about final and reliable identification of lines belonging to L-spectra of ions Fe(XVII)-Fe(XXIV) is still unsolved. This is due to the fact that the iron spectrum, in the range of A - 6-17 A, consists of many hundreds of superimposed lines of eight L-ions. Therefore, the identification of these spectra, even under laboratory conditions, is still very difficult. Two problems may be singled out: (i) to obtain the list of spectral-line wavelengths (which are necessarily contained in the L-spectrum of iron ions) and are measured with satisfactory accuracy and to determine relative intensities for these lines; (ii) to make a successful identification of spectra obtained under different conditions of excitation. Line-list. The first line-list contained 86 spectral lines of iron L-ions with an accuracy of - 0.01 a in the range of A - 10-17 A; it was obtained by using a low-inductance vacuum spark spectrograph. C95)In Ref. (96) more extensive data were combined with a grazing-incidence vacuum spark, reported with an accuracy of about - 0.005 A. The use of the low-inductance combined with a defocosing convex crystal spectrograph, (‘*)did not make it possible to observe the short wavelength region. In both experiments, (K’~) the shortest wavelength was A - 9.2 A. The plasma-focus experiment of Ref. (79) had not given any additional information. Measurements of iron L-ion wavelengths in the laser-plasma spectrum are described in Refs. (22) and (39) with an accuracy of 0.001-0.003 A. These data are presented in the left-hand part of Table 13, together with the results of Refs. (96) and (78). All intense lines of the laser-plasma spectrum with A < 9.5 A were observed in the second-order reflection from a mica crystal (the measuring accuracy was within - 0.001 A). Relative intensities were corrected for film response and filter absorption. The change of the reflectivity coefficient of a mica crystal was not taken into account and, therefore, only intensities of close-lying lines could be compared. As may be seen from Table 13, the laser-plasma spectrum has a greater number of spectral lines, especially in the short wavelength range, than the spectra obtained in previous experiments. The lines with A - 6.5-lO A are due to the transitions from L-ion levels with large principal quantum numbers. For example, in Ref. (22), the Fe(XXIV) ion transitions 2tn (where n = 3-7) were identified. In Fig. 13, the densitometer record of a short wavelength part of the L-spectra of iron ions is presented. The differences between the spectra of laser plasmas and those of low-inductance vacuum
X-ray
6
spectroscopy
8
of multiply-charged
IO
12
;
8
laser plasmas
43
14
ii
Mg(XI) Mg(X,II;
ions from
co
IO
14
I2
16
i
Ni 2-3
6
8
IO
I2
14.
i Fig. 7. Densitometer
traces
of regions of the iron (2 = 26). cobalt (Z = 27), nickel Transitions in the [Nel-ions are marked.
(Z = 28) L-spectra.
sparks are not obviously connected with the spectral analysis employed because, in Refs. (22), (40) and (78) crystal spectrographs of the same type were used. Hence, the appearance of more than 110 short wavelengths in the laser-plasma spectrum shows essential differences for the excitation conditions. Identification of the iron L-spectrum. In the right-hand part of Table 13, the results of identification of Fe(XVII)-Fe(XXIV) ion X-ray lines are summarized. The first efforts to identify the iron L-spectrum were based on Hartree-Fock calculations, whose accuracy was insufficient and amounted to 0.1 A for A - 10-17 %,[see the survey in Ref. (98)]. Furthermore, the experimental resolution in Refs. (79, 97, 78) was also not quite good enough and, therefore, the identifications in these studies were rather poor. An attempt to identify some of the iron ion lines, both from solar-flare and the vacuumspark spectra, was made recently,‘99’ with the help of extrapolated experimental data, for
V. A. BOIKO et al. 2-3
CU
Zn
Fig. 8. Densitometer
traces of regions of the copper (Z = 29) and zinc (Z = 30) L-spectra. [Ne]-ions are marked.
2-6
4
5
6
2-4
2-5
7
Transitions
in
2-3
8
9
IO
Fig. 9. L-spectra of ions of germanium (Z = 32), selenium (Z = 34), and yttrium (Z = 39).
transitions of the type 2-3 (A - 14-30 A) of the L-ion with 2 = 19-24 (K-Cr). Extrapolations of the data, obtained with the help of a laser plasma in Ref. (99), were compared with the line-list from Ref. (78) (see also Table 13). However, the difference between experimental and extrapolated wavelengths was significant and exceeded the accuracy (- 0.01 A) of experimental and extrapolation results. In the identification columns of Table 13, we used the following data: (i) The data of this paper for the ions of Fe(XVII), Fe(XXII1) and Fe(XXIV) from Tables 10, 9, 8, respectively. Further identification was based on a coincidence of our laser plasma spectrum wavelengths with (ii) the extrapolated data from Ref. (99) and (iii) with experimental wavelengths (A - 1416 A), which for the Fe(XVII1) ion were identified”““’ on the basis of Hartree-Fock calculations (with inclusion of relativistic corrections and configuration interaction). The remaining wavelengths maybe attributed to (iv) the identification given in the Table of Ref. (73). There are some disagreements in the data, e.g. between the Fe(XVII1) ion from Ref. (73) and the more reliable data from Ref. (100). Now a few words about a layout of Table 10. Column 8 contains the values of the wavelengths, which are identified in the indicated paper in column 10. For identifications taken from this paper, we do not give the value of wavelength in column 8 because it is already presented in column 5. If two identifications of one wavelength are available, then both of these are indicated in Table 10.
X-ray
spectroscopy
of multiply-charged
45
ions from laser plasmas 2-3
Ge(XXlll)
IO
9
6
7
6
2-3 r‘
I
1
/I
Se(xxV)
-
-
2D-3d
2-4
Se
(XXIV)
2-3
Y(XXX)
4
2;;13s
5
6 i
Fig. 10. Densitometer traces of regions of the L-spectra of germanium (Z = 32), selenium (2 = 34) and yttrium (Z = 39). Transitions in [Ne]-ions (for example, 2-3, 2-4) and groups of transitions in [F&ions (for example, 2p-3s.. .) are marked. Satellites, caused by transitions in [Na]- and [Mg]-ions, are marked for yttrium.
It should be noted that, although Table 13 indicates some progress in the interpretation of iron ion L-spectra, the identifications are, sometimes questionable. The basic advances made with the help of laser plasmas are as follows: (i) spectra were obtained in the short wavelength region; (ii) significantly higher spectral resolution was achieved and allowed observation of more complex spectra in those cases where only individual spectral lines were registered earlier, (iii) an increase was achieved in the reliability of identification by investigating isoelectronic spectra for a wide range of Z. In the future, more attention should be paid to the calculation of transitions from levels with n > 3, as well as to obtaining experimental results for different conditions of laser-plasma heating and aiming at quasi-selective excitation of spectra for various iron L-ions.
V.
A. BOIKO et al.
2s22p6-2,t?3s{
2s’ 2$-2$3d
2s22p6-2*2p=*
i (
MotXXXIII)
Fig. 11. Densitometer traces of regions of zirconium (Z = 40), niobium (Z = 41) and molybdenum (Z = 42) L-spectra with [Ne]-ion lines.
2p-3d
Fig. 12. Satellite structure of the lines, corresponding to the transitions 2p3d, 4. M-SPECTRA
for the [Ne] ion of Y(XXX).
(Z-50-70)
The M-spectra of heavy-element ions are of significant interest today in view of thermonuclear fusion investigations (impurities in plasmas of Tokamaks, laser-produced plasmas with heavy shells, etc.) and laser-plasma injectors of multiply-charged ions for nuclear physics research. In contrast to the K- and L-spectra, the interpretation of the more complicated M-spectra is still at a more primitive stage of development. One may note EdlCns measurements at A - 40-100 A for the fifth period of the periodic system and a classification of 3p63d9-3p53d” transitions for 2 = 35-51 (Br-Sb). (“i) In Refs. (102) and (103), resonance transitions were investigated for 3d9-3d84p of [Co]-ions with 2 = 31-34 (Ga-Se) [see Refs. (104), (105)]. In Ref. (106), a study was made of the 3d’“-3d94p, 4f resonance transitions of [Nil-ions and the 3d9-3d*4p transitions of [Co]-ions with Z = 39-42 (Y-MO) at A - 45-350 A. In the laser-plasma
X-ray spectroscopy
r-
47
FeCXXIV)
2-6
2-7
ions from laser plasmas
of multiply-charged
2-5
r
n
ill
I I
I
6.5
7.0
7.5
8.0
8.5
i
9.0
8.5
9.5
I
2-7
I IIIII
2-6
ri
III I I
2-5
10.5
II
I
I 2-3 I
I
I II
Fe(XXIII) Ill
I II
II
11.5
a
2_4
FelXVIIl
12 2-3
I
Fe(XVII1
rl
I
12.5
’
n
r-
2-4
1
10.5
FeCXXIV)
2-3
II
ii
1
10.0
13
0
A
Fig. 13. Spectrum of iron L-ions. Some transitions
13.5
from Table
I4 13 are also marked.
emission, 3d”-3d94p, 4f transitions of [Nil-ions with 2 = 50 (Sn) were observed at A - 13-25 A and, with Z = 62,64,66 (Sm, Gd, Dy), at A - 9-12 A,‘301as well as 3d”4s-3d94s, 4p transitions of [Cu]-ions with Z = 29 (Sn) at A - 25 A.(“) In a study of laser-plasma emission described at A -6 A in Ref. (24), it was possible to observe spectral lines of multiply-charged ions with Z = 73, 74 (Ta, W). The ionization stage of these ions Zi - 50 was estimated from the ionization potentials on the basis of the obvious assumption that the most intense lines are resonance transitions of the 3-4 type. At the end of 1975, some new results for M-spectra of multiply-charged ions of W, Pt, Au (Z = 74, 78, 79) were obtained with the help of the exploding wire technique. (lo’) Along with the experiments of Refs. (27) and (30) and Cowan’s calculations, these data allowed an identification of some transitions of [Co]-ions and [Nil-ions. (‘0~ These results made it possible for us to identify”@” a number of transitions of [Co]- and [Nil-ions of Ta(XLVI1) and Ta(XLV1) (see Table 14 and Fig. 14)). The data reported above illustrate the posibilities of using a laser plasma as an injector of multiply-charged ions for nuclear physic applications. Today, for example, it is possible to obtain the ions of uranium (Z = 92) with the ionization stage Zi - 6&70 in the laser plasma, heated by irradiation with flux densities of 10’4-10’5 W/cm’.
48
V. A. BOIKO et al. Table 14. Transitions of Co- and Ni-like ions of tantalua(Z = 73) (accuracy of wavelength measurements = ? 0.005 A).
Key
(a)
Transition
3d”‘-3d’4p
Ion
?,A
Ta(XLVI)
3dv-3dx4p
Ta(XLVI1)
(c)
3d”-3d94f
Ta(XLV1)
3d9-3dx4f
Ta(XLVI1)
Ion
?,A 5.423 5.390
3p6-3p54d
(e)
?
3d”‘-3d96p, 6f
(0
(b)
(d)
7.535 7.442 7.417 7.390 7.352 7.297
Transition
Key
Ta(XLV1)
7.046 7.002 6.169 6.120 6.082 6.048 6.021 5.980 5.938 5.895 5.774
4.742 4.698 4.642 4.636 4.585 4.541
TaCXLVIl, Ta(XLVII)
L
4
I1
5
6
7
8
%
Fig. 14. Spectrum of tantalum (2 = 73) in a laser plasma (see Table 14 for the transitions).
5. CONCLUSIONS
The data reported in this survey characterize the laser-produced plasma as a unique source of soft X-ray and vacuum u.v.-spectra of multiply-charged ions. In the region of A - 1.5-15 A, the spectra obtained by us contain - lo4 spectral lines; about lo3 lines were already identified. We hope that these results will stimulate further theoretical studies, which will make it possible to perform complete identification. Acknowledgements-We would like to express our thanks to N. G. BASOV,0. N. KROKHINand I. I. SOBEL’MAN for the permanent interest in our work, and to L. A. VAINSTEIN,L. P. PRESNYAKOV, U. J. SAFRONOVA and E. A. YUKOVfor many useful discussions.
REFERENCES I. 2. 3. 4. 5. 6. 7.
N. G. BASOVand 0. N. KROKHI~,JETP 46, 171 (1%4). V. A. BOIKO,0. N. KROKHINand G. V. SKLIZKOV,Trydi FIAN 76, 186 (1974). H. FLEMBERG,Ark. Mat. Astr. Fys. 28A(18), 1 (1942). A. J. BEARDEN.D. L. RIBE, G. A. SAWYERand T. F. STRATTON, Phys. Rev. Left. 6. 257 (1961) W. M. NEUPERT,W. J. GATES,M. SWARTZand R. YOUNG,Aslr. J. Letl. 149, L79 (1967). L. COHEN.U. FELDMAN,M. SWARTZand J. U. UNDERWOOD, JOSA 58,843 (1968). N. J. PEACOCK.R. J. SPEERand M. G. HOBBY,J. Phys. BZ, 798 (1969).
X-ray spectroscopyof multiply-chargedions from laser plasmas
49
8. E. V. AGLITSKY,V. A. BOIKO,S. M. ZAHAROV, G. V. SKLIZKOVand A. N. FEDOROV,Brief Corn. in Physics, FIAN, No. 12, 36 (1971). 9. P. J. MALLOZZI,H. M. EPSTEIN,R. G. INNG, D. C. APPLEBAUM,B. P. FAIRANDand W. J. GALLAGHER,In Fundamental and applied laser physics. Proc. of the Esfahan Symposium, 20 Aug.-S Sept., 1971 (Edited by M. S. FBLD, A. JAYAN and N. KURNIT),p. 165. Wiley-Interscience, New York (1973). 10. E. V. AGLITSKY,V. A. BOIKO,L. A. VAINSTEIN,S. M. ZAHAROV,0. N. KROKHINand G. V. SKLIZKOV,Opt. i Spectr. 35, %3 (1973). II. E. V. AGLITSKY,V. A. BOIKO,L. A. VAINSTEIN,S. M. ZAHAROV,0. N. KROKHIN,U. I. SAFRONOVA and G. V. SKLIZKOV, Transitions from double-excited states of [He]- and [Li]-like multiply charged ions (observations and calculations in laser plasmas). Preprint No. 113, Lebedev Phys. Inst., Moscow (1973). 12. E. V. AGLITSKY,V. A. BOIKO,A. V. VIN~CRAWVand E. A. YLIKOV,Xlth Int. Conf. on Phenomena in Ionized Gases, p. 254, Prague 1973. 13. E. V. AGLITSKY,V. A. BOIKO, A. V. VIN~G~UWVand E. A. YIJKOV, Qwontouaja electronica 1, 579 (1974); Sou. J. Quant. Etectr. 4, 322 (1974). 14. D. J. NAGEL, 0. C. BARR, P. G. BURKHALTER,G. A. D~SCHEK, C. M. DOZIER, U. FELDMAN,B. M. KLEIN, J. H. MCCRARY,J. M. MCMAHONand R. R. WHITLOCK,6th European Conf. on Controlled Fusion and Plasma Physics, Moscow, Vol. 1, p. 447, 1973. 15. D. J. NAGEL, P. G. BURKHALTER, C. M. DOZIERand J. F. HOLZIRICHTER, B. M. KLEIN, J. M. MCMAHON,J. A. STAMPER and R. R. WHITLOCK,Phys. Rev. Left. 33(13), 743 (1974). 16. N. J. PEACOCK,M. G. HOBBYand M. GALANTI,J. Phys. B. 6, L298 (1973). 17. E. V. AGLITSKY,V. A. BOIKO,S. hf. ZAHAROV,S. A. PIKUZ and A. YA. FAENOV,Erief corn. in Physics, Lebedev Phys. Inst., No. 12, 12 (1973). 18. E. V. AGWTSKY,V. A. BOIKO, S. M. ZAHAROV,N. A. KONOPLEV,S. A. PIKUZ and A. YA. FAENOV,Review tables of laboratory and astrophysical measurements of the wavelengths of [HI-, [He]- and [L&like ions of Na, Mg, Al, Si, P. S, Cl, K, Ca, Ti and V. Preprint No. 163, Lebedev Phys. Inst., Moscow (1973). 19. E. V. ACLITSKY,V. A. BOIKO,S. M. ZAHAROV,S. A. PIKUZ and A. YA. FAENOV,JETP Lerr. 19, 16 (1974). 20. E. V. AGLITSKY,V. A. BOIKO, S. M. ZAHAROV, S. A. PIKUZand A. YA. FAENOV,Qwantouaja electronica 1,908 (1974); Sou. J. Quant. Electr. 4, 500 (1974). 21. P. J. MALLOZZI,H. M. EPSTEIN,R. G. JUNG, D. C. APPLEBAUM,B. P. FAIRAND,W. J. GALLAGHER,’ R. L. VECKERand M. C. MUCKERHEIDE, J. Appl. Phys. 45(4), 1891 (1974). 22. E. V. AGLITSKY, V. A. BOIKO, S. A. PIKUZ and A. YA. FAENOV,Identification of lines of Fe XXIV in the range 6.5-11.5 A, being observed in a laser plasma spectrum. Preprint No. 56, Lebedev Phys. Inst., Moscow (1974). 23. E. V. AGLITSKY, V. A. BOIKO,S. A. PIKUZ and A. YA. FAENOV,Qwantovaja electronica 1, 1731 (1974). Sot. J. Quant. Electr. 4, 956 (1975). 24. E. V. AGLITSKY,V. A. BOIKO,0. N. KROKHIN,S. A. PIKUZ and A. YA. FAENOV,Qwant. electr. 1, 2067 (1974); Sou. J. Quant. Electr. 4, 1152 (1975). 25. V. A. BOIKO,0. N. KROKHIN,S. A. PIKUZ and A. YA. FAENOV,Qwant. electr. 1,2178 (1974); Sov. J. Quant. Electr. 4, 1212 (1975). 26. P. G. BURKHALTER, D. J. NAGELand R. R. WHITLOCK,Phys. Rev. A, 9(6), 23331 (1974). 27. P. G. BURKHALTER, E. FELDMANand R. D. COWAN,ROSA 64(8), 1058 (1974). 28. LJ. FELDMAN,G. A. D~SCHEK,D. J. NAGEL,W. E. BEHRINGand R. D. COWAN, Astrophys. J, 187,417 (1974). 29. U. FELDMAN,G. A. D~SCHEK,D. J. NAGEL,R. D. COWANand R. R. WHITLOCK,Astrophys. J. 192,213 (1974). 30. P. G. BURKHALTER, D. J. NAGELand R. D. COWAN,Phys. Rev. A 11(3), 782 (1975). 31. V. A. BOIKO,0. N. KROKHIN,S. A. PIKUZ, A. YA. FAENOVand A. Yu. CHUGUNOV,Plasma Fizika 1,309 (1975). 32. V. A. BOIKO, S. A. PIKUZ and A. YA. FAENOV,Qwantovaja electronica 1216 (1975); Sou. J. Quant. Electr. 5, 1216 (1975). 33. V. A. BOIKO,0. N. KROKHIN,S. A. PIKUZ, A. YA. FAENOVand A. Yu. CHUGUNOV,Plasma’s Fizika 1,782 (1975); SOV. J. Plasma Phys. 5,658 (1975). 34. V. G. PEREGUDOV, E. N. RAGOZINand V. A. CHIRKOV,Qwantowaja electronica 2, 1844 (1975); Sov. J. Quant. Electr. 5, 1012 (1975). 35. J. C. CONTURAND,C. FAURE and J. L. R~~CHICCIOLI,Proc. 12th Intern. Conf. on Phenomena in Ionized Gases, Eindhoven, 1975. 36. N. G. BASOV,I. A. BEREGNOI,V. A. BOIKO,V. A. DANILICHEV, V. D. ZVORIKIN,V. V. IGNATIEV,I. V. HOLINand A. Yu. CHUGUNOV,JTP I.&t. 1, 1105 (1975). 37. V. A. BOIKO,S. A. PIKUZ, U. I. SAFRONOVA and A. YA. FAENOV,1. Phys. B, Atom. and Molec. Phys. 10, 1253 (1977). 38. V. A. BOIKO, S. A. PIKUZ and A. YA. FAENOV,X-ray spectroscopy of a laser plasma-I. Spectral intensities and diagnostics. Preprint No. 17, Lebedev Phys. Inst., Moscow (1976). 39. V. A. BOIKO, S. A. PIKUZ and A. YA. FAENOV,X-ray spectroscopy of a laser plasma-II. Wavelengths and identifications of spectra lines. Preprint No. 19, Lebedev Phys. Inst., Moscow (1976). 40. V. A. BOIKO, S. A. PIKUZ and A. YA. FAENOV,X-ray spectroscopy of a laser plasma--III. Wavelengths and identification of spectra of [Nel-ions (Z = 26142) and L-spectra of iron. Preprint No. 20, Lebedev Phys. Inst., Moscow (1976). 41. V. A. BOIKO,Works of the seminar “Automatization phenomena in atoms”. Moscow State Univ., Moscow (1976). 42. V. P. BAYANOV,S. S. GULIDOV,A. A. MAK, G. V. PEREGUDOV,I. 1. SOBELMAN,A. D. STARIKOVand V. A. CHIRROV, JEW Lett. 23, 206 (1976). 43. Yu. A. MIKHAILOV,S. A. PIKUZ, G. V. SKLIZKOV,A. YA. FAENOVand S. I. FRDOTOV, Observation of spectra of Ti(XXI)-Fe(XXV) in the X-ray radiation of a laser plasma with the help of spectrograph. Preprint No. 21, Lebedev Phys. Inst., Moscow (1976). 44. I. L. BEIGMAN,V. A. BOIKOand S. A. PIKUZ, A. YA. FAENOV,JEW 71,975 (1976). 45. N. G. BASOVand 0. N. KROKHIN,Westnik Acad. Nauk SSSR No. 6,55 (1970). 46. Yu. V. AF~NASIEV,E. G. GAMALY,0. N. KROKHIN and V. B. ROWNOV,Westnik Acad. Nauk SSSR NO. 12,2O (1974). ~--__ 47. A. V. VINOORADOV, I. I. SOBELMANand E. A. YUKOV,Qwantovaju electr. 1, 268 (1974); Sov. J. Quant. Elec. 4, 149 (1974). 48. L. A. VAINSTEINand U. I. SAFRONOVA, Wavelengths and transition probabilities for the ions-I. Preprint Inst. Spectr. Acad. Nauk No. 6, Moscow (1975). QSRTVoL19,No. I-D
50
49. 50. 51. 52. 53.
V. A. BOIKOet al.
B. E. EDLEN and F. TYREN.Narure 143,940 (1939). A. H. GABRIEL and C. JORDAN, Narure 221, 947 (1%9). N. J. PEACOCK, M. G. HOBBYand M. GALANTI, J. Phys. E 6,298 (1973). U. FELDMAN, G. A. D~SCHEK, D. J. NAGEL,R. D. COWAN and R. R. WHITL~CK, Asrrophys. 1. 192,213 (1974). E. YA. GOL’Z,U. I. ZITNIK,E. YA. KONONOV, S. L. MANDEL’SHTAM and Yu. V. SIDEL’NIKOV, DAN SSSR 220, 560 (1975). 54. J. J. TURECHEK and H. J. KUNZE.Z. Phys. A273, 111 (1975). 55. W. A. CULIERS, R. U. DATLAand H. R. GRIEM,Phys. Reo. A, 12, 1408(1975). 56. J. H. PARKINSON, Solar Phys. 42, 183 (1975). 57. L. A. VAINSTEIN and U. I. SAFRONOVA, Brie/ corn. in Phys, Lebedev Phys. Inst., No. 3.40 (1972). 58. S. GOLDSMITH, J. Phys. B. 7,231s (1975). 59. A. H. GABRIEL, Mon. Nor. R. Asrr. Sot. 160, 99 (1972). 60. C. P. BHALLA,A. H. GABRIEL and L. P. PRESNYAKOV, Mon. Nor. R. Asrr. Sot. 172, 359 (1975). 61. L. P. PRESNYAKOV, UFN 119,49 (1976). 62. A. H. GABRIEL and C. JORDAN, Narure 221,947 (1%9). 63. A. H. GABRIEL, C. JORDAN and T. M. PAGET,Proc. 6th hr. Conj. on Phy its of Electronics and Atomic Collisions, p. 558. Cambridge, Mass. (1%9). 64. A. H. GABRIEL and T. M. PAGET,J. Phys. B 5,673 (1972). 65. A. H. GABRIEL, Mon. Nor. R. Asrr. So;. 160, 99 (1972). 66. L. A. VAINSTEIN. I. A. ZITNIK.V. V. KORNEV and S. L. MANDEL’~AM. Brief corn. in Phvs. Lebedev Phvs. Inst., No. 3, 35 (1972). 67. C. P. BHALLA,A. H. GABRIEL and L. P. PRESNYAKOV, Mon. Nor. R. Asrr. Sot. 172, 359 (1975). 68. L. A. VAINSTEIN, JEFF 67,63 (1974). 69. A. V. VINOGRADOV, I. Yu. SKOBELEV and E. A. YUKOV,Qwantovaja electronica 2, 1165(1975); Sou. J. Quanr. Elecrr. 5, 630 (1975). 70. S. GOLDSMITH, U. FELDMAN, L. ORENand L. COHEN, Asrrophys. 1. 174,209 (1972). 71. W. M. NEUPERT, M. SWARTZ and S. 0. KASTNER, SolarPhys.31, 171 (1973). 72. U. I. SAFRONOVA, JQSRT 15,231 (1975). 73. R. L. KELLYand I. L. PALUMBO, Atomic and Ionic Emission Lines below 2000 Angstrom. NRL Report 7599 (1973). 74. B. C. FAWCE~and R. W. HAYESS, Mon. Nor. R. Asrr. Sot. 170, 185 (1975). 75. Yu. I. GRINEVA. V. V. KORNEEV. V. V. KRUTOV. S. L. MANDEL’SHTAM, I. A. SYLWESTER. L. A. VAINSTEIN, A. M. URNOV ’ and I. A. ZHITN~K, Solar Flare Spectra in the Vicinity of the Mg(XII) Resonance Line at 8.42 A. PreprintFZAN No. 66, Moscow (1975). 76. F. TYREN,Z. Phys. 111,314 (1938). 77. U. FELDMAN, L. COHEN and M. SWARTZ, Astrophys. J. 148,585 (1%7). 78. M. SWARTZ, S. KASTNER, E. ROTHE and W. NE~PF.RT, J. Phys. B 4, 1747 (1971). 79. J. P. CONNERADE. N. J. PEACOCK and R. J. SPEER,Solar Phvs. 14. 159 (1970). 80. J. H. PARKINSON,’ Astron. Asrrophys. 24, 215 (1973). _ 81. I. L. BEIGMAN, Yu. I. GRINEVA, V. V. KORNEES, V. V. KRUTOV, S. L. MANDEL’SHTAM, L. A. VAINSTEIN, B. N. VASILIEV and I. A. ZHITNIK, The solar subflare X-ray spectrum. Preprint FIAN No. 67, Moscow (1974). 82. A. B. C. WALKER, JR., H. R. RUGGE and K. WEISS,Asrrophys. J. 194,471 (1974). 83. R. J. HIJTCHEON, J. P. PYEand K. D. EVANS,Mon. Not. R. Asrr. Sot., 175,489 (1976). 84. I. L. BEIGMAN and A. M. URNOV,Opt. i Specrr. 27, 380 (1%9). 85. M. LOULERGUE and H. NUSSBAUME~, As&n. Asrrophys. 24, 209 (1973). 86. G. A. DOSCHEK. J. F. MEEKINS and R. D. COWAN,Solar Phvs. 29. 125 (1973). 87. W. M. NEUPER~,E. I. GATES,M. SWARTZ and R. YOUNG,Airrophys. Ji Let;. 149, L79 (1%7). 88. G. A. D~SCHEK, Space Sci. Rev. 13,765 (1972). 89. B. N. VASILIEV,Yu. I. GRINEVA,I. A. ZJITNIK,V. I. KAREV, V. V. KORNEEV,V. V. KRUTOVand S. i. MANDEL’SHTAM, Brief corn. in Phys. Lebedev Phys. Inst., No. 3,29 (1972). 90. G. A. D~SCHEK, J. F. MEEKINS and R. D. COWAN,Solar Phys. 29, 125 (1973). 91. Yu. I. GRINEVA, V. I. KAREV,V. V. KORNEEV, V. V. KRUTOV, S. L. MANDEL’SHTAM, L. A. VAINSHTEIN, B. N. VASILIEV and I. A. ZHITNIK, Solar Phys. 29,441 (1973). 92. T. N. LIE and R. C. ELTON,Phys. Rev. A 3,865 (1971). 93. R. C. ELTONand T. N. LINE,Space Sci. Rev. 13, 747 (1972). 94. B. S. FRAENKEL and 3. L. SCHWOB, Phys. Lerr. 40(l), 81,83 (1972). 95. U. FELDMAN and L. COHEN, Asrrophys. 1. 151, L55 (1%8). %. L. COHENand U. FELDMAN, Asrrophys. J. 160, LlOS (1970). 97. J. P. CONNERADE, Astrophys. L 162, L139 (1970). 98. I. L. BEIGMAN, Int.erpretationof X-ray solar spectra. Astr., VINITI, Moscow (1974). 99. B. C. FAWCETT and R. W. HAYESS,Mon. Nor. R. Asrr. Sot. 170, 185 (1975). 100. U. FELDMAN, G. A. D~SCHEK, R. D. COWAN and L. COHEN, ROSA 63, 1445 (1973). 101. B. EDLEN,Atomic Spectra. Hand&h der Physik, Bd. 27, Berlin (1964). 102. E. YA. KONONOV,Opt. i Specrr. 23, 170 (1%7j. 103. L. I. ZVEREVA and E. YA. KONONOV, Opt. i Specrr. 24,827 (1968). 104. V. P. AKSENOV and A. N. RYABZEV, Opt. i Specrr. 37,860 (1974). 105.a. N. RYABZEV, Opt. i Specrr. 39,417 (1975); 39,801 (1975). 106. E. ALEXANDER, M. EVEN-Z• HAR,B. S. FRAENKEL and S. GOLDGMITH, ROSA 61,508 (1971). 107. C. M. DOZIER, Atomic Specrroscopy Symposium, paper 2.5, p. 31. College Park, Maryland, Sept. 1975. 108. P. G. BURKHALTER, Aromic Specrroscopy Symposium, paper 2.4,29. College Park, Maryland, Sept. 1975. -109. V.-A. BOIKO,T. G.~VANOVA,i. A. PIKUZand A. YA. F~NOV, Blief corn.in ihys. Lebedei Phys. Init., No. 10.26 (1976). 110. V. A. BOIKO,S. A. PIKUZ,U. I. SAFRONOVA and A. YA. FAENOV, Satellitesto the He-lie ion ls21S,-ls-‘p’P, lines with z = 12.. . 19 in laser plasmas. Preprint N147, Lebedev Phys. Inst. (1977), Mon. Nor. R. Ask Sot. in press (1978). 111. V. A. BOIKO,S. A. PIKUZ,U. I. SAFRONOVA and A. YA. FAENOV, Mon. Nor. R. Asrr. Sot. in press (1977). 112. U. A. MIKHAILOV, S. A. PIKUZ,G. V. SKLI~KOV, A. YA. FAENOV and S. I. FEIXI’IQV, at. i Specrr. 42,811 (1977).