Journal Pre-proofs Zircon evidence for the Eoarchean (∼3.7 Ga) crustal remnant in the Sulu Orogen, eastern China Kun Zhou, Yi-Xiang Chen, Shao-Bing Zhang, Yong-Fei Zheng PII: DOI: Reference:
S0301-9268(19)30193-7 https://doi.org/10.1016/j.precamres.2019.105529 PRECAM 105529
To appear in:
Precambrian Research
Received Date: Revised Date: Accepted Date:
28 March 2019 4 October 2019 5 November 2019
Please cite this article as: K. Zhou, Y-X. Chen, S-B. Zhang, Y-F. Zheng, Zircon evidence for the Eoarchean (∼3.7 Ga) crustal remnant in the Sulu Orogen, eastern China, Precambrian Research (2019), doi: https://doi.org/10.1016/ j.precamres.2019.105529
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
© 2019 Published by Elsevier B.V.
1
2
3
4
Zircon evidence for the Eoarchean (~3.7 Ga) crustal remnant in
5
the Sulu Orogen, eastern China
6
Kun Zhou1, Yi-Xiang Chen*1,2, Shao-Bing Zhang1,2, Yong-Fei Zheng1,2
7 8 9 10
1. CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
11 12
2. CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei 230026, China
13
*
Corresponding author. Email:
[email protected]; Tel./Fax: +86 551 63600105.
Abstract
15 16
Zircon provides one of the best records of the formation and reworking of continental
17
crust in the early Earth. However, Hadean to Eoarchean zircons are relatively scarce
18
worldwide. Here we present the first report of relict Eoarchean magmatic zircons in granitic
19
gneisses from the Sulu Orogen, eastern China. Based on internal structures, trace element
20
contents, and U–Pb ages, we identified four groups of zircon domains with U–Pb ages of ~3.7
21
Ga (Group I), ~2.1 Ga (Group II), ~790 Ma (Group III), and ~720 Ma (Group IV). Group I
22
domains exhibit variable Th/U ratios, steep HREE patterns, and negative Eu anomalies. They
23
yield lower intercept U–Pb ages of 1.82–1.95 Ga and discordia upper intercept ages of
24
3.65–3.69 Ga that are similar to the oldest concordant spot age of 3680 ± 29 Ma. This
25
indicates their growth from an Eoarchean magma and reworking during the Paleoproterozoic.
26
The oldest Eoarchean domains with U–Pb ages of 3606 ± 28 to 3680 ± 29 Ma have low P
27
contents of 216–563 ppm and high (Y + REE)/P molar ratios of 1.13–3.34, consistent with an
28
igneous source. They show εHf(t) values of –2.8 to –0.9 at 3.67 Ga and TCHUR2 ages of 3.7–4.0
29
Ga, suggesting the growth of juvenile crust during the early Eoarchean. Group II to IV
30
domains have consistent TDM2 ages of 2.6–3.0 Ga, suggesting that they grew during multiple
31
reworkings of the Archean crust. Group II domains have variable Th/U ratios and steep to
32
flattened HREE patterns that suggest growth during Paleoproterozoic crustal anatexis. Groups
33
III and IV zircon domains have Th/U ratios and trace element contents that indicate growth
34
from magmas that formed during Neoproterozoic continental rifting. In view of the unique
35
feature of Neoproterozoic rifting magmatism in South China, the relict Eoarchean magmatic
36
zircons would have originated in the Yangtze Craton and then undergone multiple phases of
37
reworking during the Paleoproterozoic and Neoproterozoic. The results indicate the presence
38
of ~3.7 Ga relict magmatic zircons in the Sulu Orogen, and they represent the oldest remnants
39
of crustal material in the Yangtze Craton.
40 41
Keywords: Eoarchean; zircon; Hf isotopes; Sulu Orogen; Yangtze Craton; continental crust
43
1. Introduction
44
Hadean to Eoarchean crustal rocks and mineral relics are important in decoding the
45
physical and chemical properties of early Earth (e.g., Cavosie et al., 2006, 2019; Harrison,
46
2009; Bauer et al., 2017; Harrison et al., 2017; Trail et al., 2018). They provide direct records
47
on the formation conditions and geochemical compositions of the earliest continental crust.
48
However, such samples are rarely preserved, and among the few found worldwide are those in
49
the Anshan area of the North China Craton (Liu et al., 1992, 2008; Wan et al., 2019), the
50
Aktash Gneiss Complex in the Tarim Craton of northwestern China (Lu et al., 2008; Ge et al.,
51
2018), the Itsaq Gneiss Complex of Greenland (Nutman et al., 1996), and the Acasta Gneiss
52
Complex in northwestern Canada (Bowring et al., 1999; Bauer et al., 2017). Therefore, it is
53
essential to obtain more samples that represent the early Earth, and compare the material from
54
as many different locations as possible to gain insights into the nature of the early continental
55
crust (e.g., Burnham and Berry, 2017; Harrison et al., 2017; Boehnke et al., 2018; Trail et al.,
56
2018).
57
The ancient rocks, once formed, would have undergone complex deformation,
58
metamorphism, and anatexis during the evolution of the continental lithosphere (e.g., Nutman
59
et al., 2007; Lu et al., 2008; Bauer et al., 2017). Thus it is difficult to retrieve information on
60
the sources and formation conditions of such rocks (e.g., Bell et al., 2016). Zircon is a robust
61
accessory mineral and resistant to later modification by metamorphism and anatexis. With
62
advances in U–Pb dating and trace element and O–Hf isotope analyses, the mineral zircon has
63
become a valuable target for elucidating the growth and reworking of continental crust,
64
especially that of early Earth for which records of actual rocks are scarce (e.g., Wilde et al.,
65
2001; Harrison et al., 2005; Zhang et al., 2006a; Hoffmann et al., 2014; Valley et al., 2014;
66
Bauer et al., 2017). However, care is needed when using detrital zircons to reconstruct the
67
growth and reworking of continental crust due to the loss of information on the provenance of
68
these zircons.
69
The Yangtze and North China cratons are the two largest Precambrian blocks in China
70
(Zhao and Cawood, 2012; Zheng et al., 2013). Eoarchean to Paleoarchean rocks, as well as
71
rare occurrences of Hadean to Eoarchean detrital zircons, have been identified in China (Liu
72
et al., 1992, 2008; Zhang et al., 2006b; Wu et al., 2008a; Wan et al., 2019). Compared with
73
the widespread Archean rocks and crustal remnants in the North China Craton, only a few
74
pieces of Archean basement are exposed in the Yangtze Craton, such as the Kongling
75
Complex (e.g., Gao et al., 1999; Zhang et al., 2006a; Guo et al., 2014), the Yudongzi
76
Complex (e.g., Hui et al., 2017; Zhou et al., 2018), the Zhongxiang Complex (e.g., Wang et
77
al., 2018a; Wang et al., 2018b), and the Douling Complex (e.g., Wu et al., 2014). The records
78
of Archean crust in the Yangtze Craton are preserved as Archean rocks, relict zircon cores in
79
magmatic and metamorphic rocks, and detrital zircons in sedimentary rocks. A detrital zircon
80
with a U–Pb age of 3802 ± 8 Ma, found in the Yangtze Gorge, is the oldest detrital mineral
81
recorded in the Yangtze Craton (Zhang et al., 2006b). The existence of Eoarchean continental
82
crust is indicated by Hf model ages of a few Paleoarchean zircons within orthogneisses and
83
migmatites in the Kongling Complex (Zhang et al., 2006a; Jiao et al., 2009; Gao et al., 2011;
84
Guo et al., 2014). However, the crustal evolution of the Yangtze Craton during the Eoarchean
85
or earlier is still poorly constrained (e.g., Wu et al., 2008; Zhang and Zheng, 2013).
86
In this paper, we present the results of a combined study of whole-rock geochemistry,
87
zircon U–Pb ages, trace elements, and Lu–Hf isotope compositions for the granitic gneisses
88
from Yangkou in the Sulu Orogen, which was formed during the Triassic continental collision
89
between the North China and Yangtze cratons (Zheng et al., 2003, 2009, 2019). Our results
90
show the presence of ~3.7 Ga relict magmatic zircons, the oldest in the Sulu Orogen. Our
91
results also point to the exposure of a new area of Archean basement along the northern
92
margin of the Yangtze Craton.
93 94
2. Geological setting and samples
95
The Sulu Orogen is the eastern part of the Dabie–Sulu orogenic belt, which formed
96
during the northwards subduction of the South China Block (SCB) beneath the North China
97
Craton (NCC) in the Triassic (Cong, 1996; Zheng et al., 2003; Zhang et al., 2009). The
98
orogen is bounded by the Jiashan–Xiangshui Fault (JXF) to the south and the Wulian–Yantai
99
Fault (WYF) to the north (Fig. 1a). According to previous petrological and geochemical
100
studies it can be divided into a high-pressure (HP) metamorphic zone in the south and an
101
ultrahigh-pressure (UHP) metamorphic zone in the north (Xu et al., 2006; Zheng et al., 2019).
102
The HP zone is composed mainly of schist, paragneiss, orthogneiss, and marble along with
103
minor blueschist, while the UHP zone is predominantly granitic orthogneiss with minor
104
eclogite, paragneiss, quartzite, marble, and garnet peridotite. Both zones are intruded by
105
Mesozoic granites and overlain by Jurassic clastic strata with a covering of Cretaceous
106
volcaniclastics (Zhang et al., 1995; Zhao and Zheng, 2009). Previous geochronological and
107
geothermobarometric studies indicated that the protoliths of the gneiss and eclogite were
108
mostly of Neoproterozoic age along with some of Paleoproterozoic age (Tang et al., 2008;
109
Katsube et al., 2009; Zhang et al., 2009).
110
For our study, we collected four gneiss samples from the UHP metamorphic zone in the
111
Yangkou region, on the east coast of the Laoshan District (GPS: N36°13'21", E120°40'38";
112
Fig. 1b). The Yangkou region belongs to the central part of the Sulu Orogen and is well
113
known for its outcrops of UHP metamorphic rocks (Liou and Zhang, 1996; Ye et al., 2000;
114
Wang et al., 2014). The region is composed mainly of metagabbro, coesite-bearing eclogite,
115
serpentinized peridotite, and granitic gneiss, all of which are cut by lamprophyre and quartz
116
porphyry dikes of Cretaceous age (Zhang and Liou, 1997; Chen et al., 2002; Xia et al., 2018).
117
Most of the relict magmatic zircons in the eclogite and granitic gneiss yield middle
118
Neoproterozoic U–Pb ages of 770–780 Ma (Zheng et al., 2004; Wang et al., 2014; Wang et al.,
119
2017). Our samples (15Q35, 19Q03, 19Q04, and 19Q08) were collected from an outcrop of
120
granitic gneiss (see Fig. 1b for the location) that is exposed over an area of ~50 m2 close to
121
General Hill (Wang et al., 2014) and the Yangkou Unit (Zhang and Liou, 1997). All samples
122
are weakly deformed, have similar mineral textures and contents, and are composed of
123
30%–40% quartz, 25%–35% K-feldspar, 20%–25% plagioclase, and 10%–15% biotite
124
together with minor titanite, rutile/ilmenite, apatite, and zircon (Fig. 2). The biotite in these
125
samples generally shows a preferred orientation, and it has undergone retrogression so that it
126
shows irregular margins in thin sections. The mineral abbreviations used here are after
127
Whitney and Evans (2010).
128 129
3. Analytical methods
130
3.1. Whole-rock major and trace elements
131
Whole-rock major element compositions were measured at ALS Chemex, Guangzhou,
132
China. Sample powders (200 mesh) were fused with a lithium borate flux in an auto fluxer at
133
1050–1100 °C. A flat molten glass disc was prepared from the resulting melt and then
134
analyzed using X-ray fluorescence spectrometry (XRF). Whole-rock trace element
135
compositions were measured on an Agilent 7700e ICP–MS at SampleSolution Analytical
136
Technology, Wuhan, China. Sample powders were digested using HNO3/HF (1 ml: 1 ml) in a
137
Teflon bomb. After the initial digestion and evaporation to dryness, samples were then
138
refluxed with concentrated HNO3, and finally diluted in 2% HNO3. The final solutions were
139
analyzed by inductively coupled plasma–mass spectrometer (ICP–MS). Relative standard
140
deviations (RSD) were within ±1–2% for major element oxides, and the precision and
141
accuracy for most trace elements were better than ±5%.
142
143
3.2. Whole-rock oxygen isotopes
144
Whole-rock O isotope compositions were measured using the laser fluorination
145
technique at the CAS Key Laboratory of Crust–Mantle Materials and Environments in the
146
University of Science and Technology of China (USTC), Hefei, China. A sample of 1.2–2.0
147
mg was reacted with BrF5 under vacuum and a MIR-10 CO2 laser was used to extract O2. The
148
O2 was then transferred to a Finnigan MAT-253 mass spectrometer for oxygen isotope
149
measurements. The data are reported in standard δ18O notation relative to the reference
150
standard VSMOW. Two reference minerals, National Standard of China GBW04409 quartz
151
with 18O = 11.1‰ (Zheng et al., 1998) and in-house standard 04BXL07 garnet with 18O =
152
3.7‰ (Gong et al., 2007), were used for quality control. Reproducibility for measurements of
153
each standard on any given day was better than ±0.1‰ (1σ).
154 155
3.3. Zircon U–Pb ages and trace elements
156
Zircon grains were hand-picked, mounted in epoxy, and then polished to expose internal
157
domains. Cathodoluminescence (CL) images were obtained using a MIRA3 TESCAN
158
scanning electron microscope at the CAS Key Laboratory of Crust–Mantle Materials and
159
Environments in USTC, Hefei. Zircon U–Pb dating and trace element analyses were
160
conducted at the same laboratory using an Agilent 7900 ICP–MS connected to a GeoLas HD
161
193 nm ArF-excimer laser-ablation system. A laser beam diameter of 24 μm was used with a
162
repetition frequency of 4 Hz. The procedures followed those of Liu et al. (2008). Offline data
163
processing was performed using the Excel-based software ICPMSDataCal (Liu et al., 2008,
164
2010). During raw data processing, the time-resolved signal was checked carefully to avoid
165
mixing different zircon domains. Zircon standard 91500 was used as an external standard for
166
U–Pb dating calibration. During the analyses, zircon GJ-1 gave a concordia age of 602 ± 2
167
Ma (2σ, n = 36; Fig. S1), which is within analytical uncertainty of published results (e.g.,
168
Jackson et al., 2004). For trace element calibration, NIST610 was used as an external standard.
169
The analytical precision and accuracy were better than 10% for most trace elements. The spot
170
ages are presented with 1σ errors, and intercept ages from concordia diagram and weighted
171
means of spot ages are presented with 2σ errors.
172 173
3.4. Zircon Lu–Hf isotopes
174
Zircon Lu–Hf isotope compositions were measured using a Neptune Plus MC–ICP–MS
175
in combination with a Geolas HD excimer ArF laser ablation system at Wuhan Sample
176
Solution Analytical Technology, Hubei, China. The laser spot was 32 μm in diameter with an
177
ablation frequency of 8 Hz. The operating conditions for the laser ablation system and the
178
MC–ICP–MS instrument and analytical methods were the same as those described by Hu et al.
179
(2012). Off-line selection and integration of analytic signals, and mass bias calibrations were
180
performed using ICPMSDataCal (Liu et al., 2010). During the analytical sessions, zircon
181
standards GJ-1 and Temora-2 gave mean 176Hf/177Hf ratios of 0.282004 ± 0.000011 (2σ; n = 8)
182
and 0.282689 ± 0.000010 (2σ; n = 8), respectively (Fig. S1), which agree well with previous
183
results (e.g., Wu et al., 2006; Yuan et al., 2008). Initial Hf isotope ratios were calculated using the following parameters: 1.867 × 10–11
184 185
year–1 for the decay constant of
186
the
187
calculation of the depleted mantle Hf model ages, we used depleted mantle with a present-day
188
176Hf/177Hf
ratio of 0.28325 and
189
176Lu/177Hf
ratio of 0.015 for average continental crust (Griffin et al., 2002). The spot Hf
190
isotope compositions and model ages are quoted with 1σ errors, and weighted means are
191
quoted with 2σ errors.
192
176Hf/177Hf
and
176Lu/177Hf
176Lu
(Söderlund et al., 2004), and 0.282785 and 0.0336 for
ratios of chondrite, respectively (Bouvier et al., 2008). For
176Lu/177Hf
ratio of 0.0384 (Griffin et al., 2000), and a
193
4. Results
194
4.1. Whole-rock geochemistry
195
The whole-rock major and trace element compositions of the samples are presented in
196
Table 1. All four samples have similar granitic compositions with high contents of SiO2
197
(71.9–75.1 wt%) and K2O (4.72–6.16 wt%), and high K2O/Na2O ratios of 1.41–2.09. The
198
rocks are weakly peraluminous with A/CNK = 1.05–1.09 (Fig. 3). The trace element
199
compositions display negative anomalies of the high field strength elements (HFSEs) such as
200
Nb, Ta, Ti, and P, and there are no positive Eu anomalies (Fig. 3). They have Th/U ratios of
201
5.29–9.75 and Nb/Ta ratios of 10.2–15.9. Zircon saturation temperatures of 742–760 °C were
202
obtained following the experimental calibration of Watson and Harrison (1983). Their O
203
isotope compositions are generally homogeneous, with δ18OWR values of 5.4–6.1‰ (Table 1).
204 205 206
4.2. Zircon U–Pb ages and trace elements Zircons from all four samples were analyzed (Tables 2–3; Supplementary Tables S1–S2),
207
and they yielded apparent U–Pb ages that varied from 3680 ± 29 to 665 ± 8 Ma. Based on CL
208
images, trace element compositions (especially Th and U contents, and Th/U ratios), and
209
U–Pb ages, the zircon domains can be categorized into four groups (Figs. 4–9), as follows.
210
Group I zircon domains are relict cores that are present in all four granitic gneiss samples, 207Pb/206Pb
211
and they have apparent
ages of 3680 ± 29 to 2383 ± 46 Ma (Table 2). These
212
zircons yield discordia upper intercept ages of 3671 ± 58, 3655 ± 66, 3652 ± 59, and 3688 ±
213
140 Ma, and lower intercept ages of 1822 ± 64, 1941 ± 70, 1820 ± 83, and 1947 ± 100 Ma
214
(Fig. 5). These domains show variable contents of Th (53.7–453 ppm) and U (120–1192 ppm),
215
with Th/U ratios of 0.07–0.85. They exhibit negative Eu anomalies with Eu* = 0.03–0.39 and
216
variable (Yb/Gd)N ratios of 10.6–104. They have Hf contents of 8554–12587 ppm and P
217
contents of 183–728 ppm. Their Ti contents are 6.93–38.3 ppm and the Ti-in-zircon
218
temperatures are 709–874 °C (average 780 °C). Six zircon domains (35#14, 35#57, 35#60,
219
03#16, 04#19, and 08#05) yielded the oldest concordant spot ages of 3680 ± 29 to 3606 ± 28
220
Ma, close to the discordia upper intercept ages (Figs. 4–5). These domains display relatively
221
small ranges in Th/U ratios (0.43–0.85) and (Yb/Gd)N ratios (10.6–23.1) (Table 3). They
222
contain 8556–10261 ppm Hf, 216–563 ppm P, 0.32–4.05 ppm Al, and 15.6–37.0 ppm Ti with
223
Ti-in-zircon temperatures of 773–871 °C (average 808 °C).
224
Group II zircon domains were found in the zircons from three samples (15Q35, 19Q03, 207Pb/206Pb
225
and 19Q04), and they yield apparent
226
S1). Nine spots in zircons from sample 15Q35 gave an upper intercept age of 2118 ± 75 Ma
227
(MSWD = 1.19). Group II zircon domains contain 14.6–452 ppm Th and 61.2–904 ppm U,
228
and yield a large range of Th/U ratios from 0.08 to 7.38 and negative Eu anomalies (Eu* =
229
0.15–0.80). They generally have low contents of trace elements such as P (74.9–389 ppm), Ti
230
(4.73–16.6 ppm), and Y (44.3–770 ppm). Six concordant spots (35#20, 35#21, 35#23, 35#50,
231
03#09, and 04#12) display relatively homogeneous trace element contents with 2.00–3.46
232
ppm Al, 196–372 ppm P, 5.73–10.9 ppm Ti, 279–770 ppm Y, and (Yb/Gd)N ratios of
233
16.0–24.1.
234
ages of 2199 ± 84 to 1851 ± 70 Ma (Table
Group III domains display oscillatory zoning in CL images (Fig. 4). Most domains yield 206Pb/238U
235
Neoproterozoic
236
Ma (MSWD = 4.4). They have Th contents of 30.5–1535 ppm, U contents of 43.0–1703 ppm,
237
and Th/U ratios of 0.26–1.82 (Table S1; Fig. 7). They show negative Eu anomalies (Eu* =
238
0.01–0.71) and steep REE patterns with (Yb/Gd)N ratios of 15.5–53.1 (Table S2; Fig. 6).
239
These domains have variable contents of Al (0.14–35.2 ppm), P (151–785 ppm), Y
240
(291–3177 ppm), Nb (0.43–18.0 ppm), and Ti (1.83–12.1 ppm). Their Ti-in-zircon
241
temperatures range from 611 to 758 °C with an average of 660 °C.
242
ages of 836 ± 9 to 751 ± 11 Ma with a weighted mean of 790 ± 6
Group IV domains occur in the outer rims of zircon grains and they have dark CL
243
features with weak oscillatory zoning (Fig. 4). In comparison to Group III domains, they gave
244
younger
245
(MSWD = 4.4), except for three analyses that possibly indicate Pb loss (Table S1). They have
246
high contents of Th (704–5277 ppm) and U (664–2951 ppm), and Th/U ratios of 0.92–2.14
247
(Table S1; Fig. 7). These domains are characterized by high contents of trace elements such
248
as Al (10.3–562 ppm), P (424–2029 ppm), Y (2111–7469 ppm), and Nb (8.18–35.0 ppm).
249
They also exhibit steep REE patterns and negative Eu anomalies (Eu* = 0.19–0.35). Their Ti
250
contents are 4.17–38.5 ppm, corresponding to Ti-in-zircon temperatures of 669 to 875 °C with
251
an average of 774 °C.
206Pb/238U
ages of 748 ± 11 to 695 ± 11 Ma with a weighted mean of 720 ± 6 Ma
252 253
4.3. Zircon Lu–Hf isotopes
254
Ninety-eight Lu–Hf isotope analyses were made by LA–MC–ICP–MS on the same spots
255
as used for the LA–ICP–MS U–Pb dating (Table 4, Figs. 10–11). The U–Pb ages used in the
256
calculation of εHf(t) values and Hf model ages for Groups I–IV zircon domains are 3.67 Ga,
257
2.10 Ga, 790 Ma, and 720 Ma, respectively.
258
Group I zircon domains (n = 37) have
176Hf/177Hf
ratios of 0.280376–0.280533 and
ratios of 0.000466–0.002384 (Table 4). Their εHf(t) values range from –3.8 to 0.6
259
176Lu/177Hf
260
with an average of –1.6 ± 0.3 (Fig. 11a). They yield two-stage chondrite Hf model ages
261
(TCHUR2) of 3624–3960 Ma with an average of 3794 ± 22 Ma (Fig. 11b), and two-stage
262
depleted mantle Hf model ages (TDM2) of 3899–4166 Ma with an average of 4034 ± 18 Ma
263
(Fig. 11c). The six spots with the oldest Eoarchean U–Pb ages have εHf(t) values of –2.8 to
264
–0.9. They yield TCHUR2 ages of 3.74–3.96 Ga and TDM2 ages of 4.00–4.17 Ga. Because it is
265
still highly debatable whether there was any depleted mantle during the Hadean and
266
Eoarchean (e.g., Fisher and Vervoort, 2018), the calculated TCHUR2 ages may be more
267
appropriate for Group I domains. Notably, the TCHUR2 ages are significantly lower than the
268 269
TDM2 ages. Group II domains (n = 11) exhibit higher 176Lu/177Hf
271
(Fig. 10b) with TDM2 ages of 2.7–3.0 Ga. Group III domains (n = 26) have high
176Hf/177Hf
ratios of 0.281733–0.281933 and
ratios of 0.000804–0.004143 (Table 4). Their εHf(t) values are –20.0 to –13.9 and
273
176Lu/177Hf
274
TDM2 ages are 2.5–2.9 Ga (Fig. 10b).
275
ratios of 0.281316–0.281464 and
ratios of 0.000018–0.001642 (Table 4). Their εHf(t) values range from –5.4 to –1.2
270
272
176Hf/177Hf
Group IV zircon domains (n = 24) have 176Hf/177Hf ratios of 0.281743–0.281975 that are 176Lu/177Hf
276
similar to those of the Group III domains, but they exhibit much higher
ratios of
277
0.001577–0.006012, consistent with their high HREE contents. Their εHf(t) values are –22.0
278
to –15.2 and the TDM2 ages are 2.6–3.0 Ga (Table 4; Fig. 10b).
279 280
5. Discussion
281
5.1. The presence of Eoarchean (~3.7 Ga) crustal remnants
282
Many studies have been devoted to understanding the formation and evolution of the
283
Yangtze Craton in the South China Block. The oldest U–Pb age of 3802 ± 8 Ma was obtained
284
for a detrital zircon from sandstone of the Neoproterozoic Liantuo Formation, thus providing
285
the oldest age for any mineral in the Yangtze Craton (Zhang et al., 2006b). However, whether
286
this detrital zircon originated from within the Yangtze Craton is uncertain. Neither Eoarchean
287
rocks nor Eoarchean relict magmatic zircons that clearly originated in the Yangtze Craton
288
have been found in magmatic, sedimentary, or metamorphic rocks of the craton. A relict
289
zircon with a U–Pb age of 3.53 Ga was found in the granulite at Huangtuling in the Dabie
290
Orogen (Wu et al., 2008), suggesting the presence of a Paleoarchean crustal remnant. Guo et
291
al. (2014) identified 3.45 Ga granitic gneiss in the Kongling Complex, pre-dating the earlier
292
reported 3.3 Ga trondhjemitic gneiss (Gao et al., 2011) by 150 Myr. These Paleoarchean rocks
293
show Eoarchean Hf model ages, yet no Eoarchean rocks have been found to date (Gao et al.,
294
2011; Guo et al., 2014).
295
Group I zircon domains show mostly high Th/U ratios of >0.1 and steep REE patterns
296
with marked negative Eu anomalies (Figs. 6 and 7), suggesting a magmatic origin (Rubatto,
297
2002; Chen and Zheng, 2017). The following three lines of evidence indicate that these
298
Eoarchean zircons are not detrital zircons derived from some other continent or terrane: (1)
299
the oldest zircon domains in the samples have concordant Eoarchean U–Pb ages of 3.61–3.68
300
Ga (n = 6); (2) Group I zircons in all four gneiss samples show very good discordant lines
301
with upper intercept ages of 3.65–3.69 Ga, consistent with the oldest concordant spot age of
302
3680 ± 29 Ma, which clearly indicates these zircon domains underwent Pb loss rather than
303
formed at different times under different conditions; and (3) these zircon domains show
304
almost constant
305
that they formed from the same magma source but underwent Pb loss during the
306
Paleoproterozoic. Therefore, it is confident that these Eoarchean magmatic zircons are not
307
recycled Eoarchean detrital minerals from unknown continents or terranes, and the data
308
strongly suggest that they are all from the same magma source. The zircons indicate the
309
presence of an Eoarchean (~3.7 Ga) crustal remnant in this region, which would be the oldest
310
known crustal remnant in the Yangtze Craton. These Eoarchean zircons have negative εHf(t)
311
values of –2.8 to –0.9 and TCHUR2 ages of 3.62 to 3.96 Ga, indicating their derivation from
312
juvenile crust during the early Eoarchean.
176Hf/177Hf
ratios with variable U–Pb ages (Fig. 10a), which also indicates
313
It is essential to clarify if these Archean zircons originated from the Yangtze Craton
314
rather than elsewhere (e.g., the North China Craton). The North China Craton was formed by
315
the accretion and amalgamation of Archean micro-continents, and it is characterized by an
316
Archean to Paleoproterozoic basement that is overlain by Mesoproterozoic to Cenozoic
317
sedimentary rocks (Zhai and Santosh, 2011; Zhao and Cawood, 2012; Zheng et al., 2013).
318
The South China Block is composed of the Yangtze Craton in the northwest and the
319
Cathaysia terrane in the southeast, which collided to form the Jiangnan Orogen during the
320
Neoproterozoic (Zheng et al., 2013). Magmatic rocks of middle Neoproterozoic age are
321
widespread in the periphery of the Yangtze Craton, but they are absent from the North China
322
Craton (Tang et al., 2007, 2008; Zheng and Zhang, 2007; Zhang and Zheng, 2013; Zhang et
323
al., 2014). In the four studied gneiss samples, the zircon domains with Eoarchean to
324
Paleoproterozoic U–Pb ages have coherent rims with middle Neoproterozoic U–Pb ages.
325
Group II domains exhibit Paleoproterozoic U–Pb ages of 1.9–2.2 Ga, which are
326
indistinguishable from the ages of ancient crustal rocks in the North China Craton.
327
Nevertheless, Groups III and IV domains show Neoproterozoic U–Pb ages of 790 ± 6 to 720
328
± 6 Ma, which are characteristic of the magmatism that accompanied a period of continental
329
rifting in the periphery of the Yangtze Craton (Zheng et al., 2004; Zhang and Zheng, 2013).
330
Therefore, the studied granitic gneiss has a tectonic affinity with the Yangtze Craton, and its
331
Eoarchean to Paleoarchean zircons were probably derived from the Archean basement of the
332
Yangtze Craton. Because the Sulu Orogen was produced during the northwards subduction of
333
the Yangtze Craton beneath the North China Craton during the Triassic, the protoliths of the
334
granitic gneiss must have been located along the northeastern margin of the Yangtze Craton.
335
Due to the scarcity of hydrous minerals in the protoliths of the granitic gneisses, no Triassic
336
zircon domains grew during this period of Triassic continental subduction (Zheng, 2009). For
337
this reason, the youngest U–Pb age of zircon rims in our samples is Neoproterozoic rather
338
than Triassic.
339
The trace element compositions of zircon can constrain the characteristics of the source,
340
thus helping our understanding of early Earth. It has been demonstrated experimentally that
341
apatite is more soluble in peraluminous than in metaluminous melts, which means that
342
peraluminous melts contain higher amounts of P (e.g., London, 1992; Pichavant et al., 1992).
343
The P contents of zircons in S-type granites are generally much higher than those of zircons in
344
I-type granites. Xenotime substitution (REE3+ + P5+ = Zr4+ + Si4+) in zircon from S-type
345
granites always leads to a strong correlation between the molar concentrations of P and (REE
346
+ Y), whereas an additional vacancy-related mechanism in zircon from I-type granites may
347
decouple this correlation to result in (REE + Y) > P (Burnham and Berry, 2017). The P
348
contents of zircon and the ratios of P to REE have been used as discriminants between I- and
349
S-type sources for Hadean zircons from Jack Hills, which were considered to have
350
crystallized mainly from I-type magmas formed by the melting of a reduced, garnet-bearing
351
igneous crust (Burnham and Berry, 2017). The Eoarchean zircons in our samples have low P
352
contents of 216–563 ppm and low P/(Y + REE) molar ratios of 1.13–3.34, consistent with
353
zircons from typical I-type granites (Fig. 8). Similarly, the Al in zircons can be used as
354
evidence for growth from peraluminous or metaluminous melts, regardless of their ages, as
355
the zircons from peraluminous rocks yield higher Al concentrations (mostly >4 ppm) than
356
those from metaluminous rocks (Trail et al., 2017). The Al contents in our Eoarchean zircons
357
range from 0.32 to 4.05 ppm, mostly lower than 4 ppm, indicating derivation from a
358
metaluminous source (Fig. 7f). Taken together, the trace element characteristics of our
359
Eoarchean zircon domains indicate they crystallized from the magma of a metaluminous
360
I-type granite.
361 362
5.2. Crustal growth and reworking during the Archean and Paleoproterozoic
363
Although the Yangtze Craton is generally considered to be much younger than the North
364
China Craton, more and more studies of zircon U–Pb geochronology indicate the presence of
365
Archean crustal remnants in the Yangtze Craton. In particular, the zircon age data exhibit two
366
peaks of Archean ages at 2.9–3.0 Ga and 2.5 Ga (Zhang and Zheng, 2013). The zircon U–Pb
367
ages record the times of crustal reworking through either magmatism or metamorphism, but
368
the zircon εHf(t) values and Hf model ages can be used to decode the nature of the source. In
369
the Yangtze Craton, both positive and negative εHf(t) values are associated with the Archean
370
U–Pb ages, indicating the growth of juvenile crust and reworking of ancient crust during the
371
Archean (e.g., Zhang et al., 2006a; Zhao et al., 2010; Zhang and Zheng, 2013). Our examples
372
of Eoarchean zircons have negative εHf(t) values of –2.8 to –0.9 and TCHUR2 ages of 3.74 to
373
3.96 Ga, indicating the growth and rapid reworking of juvenile crust during the early
374
Eoarchean.
375
So far, no positive Hf(t) values have been obtained for Paleoproterozoic zircons from the
376
Yangtze Craton (Zhang et al., 2006c; Wu et al., 2008; Wu et al., 2012; Yin et al., 2013; Zhang
377
and Zheng, 2013; Li et al., 2014; Chen and Xing, 2016). In terms of their Archean Hf model
378
ages, the Paleoproterozoic reworking of Archean crust by either magmatism or
379
metamorphism is indicated, with a possible link to the assembly of the supercontinent
380
Columbia (Zhang and Zheng, 2013). Our Group II zircons yield Paleoproterozoic U–Pb ages
381
of 1.94–2.20 Ga with TDM2 ages of 2.77–3.03 Ga, consistent with previous studies of zircons
382
in the Paleoproterozoic crustal rocks of the Yangtze Craton. The Archean Hf model ages are
383
consistent with the exposed Archean basements in the Kongling, Yudongzi, and Douling
384
complexes of the Yangtze Craton (Gao et al., 1999; Zheng et al., 2006; Wu et al., 2014; Hui et
385
al., 2017; Zhou et al., 2017; Zhou et al., 2018).
386
Two analytical spots on the Group II domains (35#13 and 35#47) gave low Th/U ratios
387
of 0.13–0.33, flat HREE patterns, weak negative Eu anomalies (Eu* = 0.67–0.80), and
388
apparent 207Pb/206Pb ages of 2039 ± 46 and 2028 ± 44 Ma. These characteristics are similar to
389
those of the zircons that formed during the granulite-facies metamorphism in the middle
390
Paleoproterozoic (e.g., Wu et al., 2008). Thus, these ages probably record the metamorphic
391
event at ~2.0 Ga. The other Group II zircon domains with concordant U–Pb ages of 1.94–2.15
392
Ma exhibit high Th/U ratios of 0.31–7.38, high (Yb/Gd)N ratios of 16.0–24.1, and steep
393
HREE patterns with negative Eu anomalies, indicating growth from granitic magmas.
394
Therefore, the Group II zircons record Paleoproterozoic tectonothermal events of
395
granulite-facies metamorphism and granitic magmatism in the Yangtze Craton.
396 397 398
5.3. Crustal reworking during the Neoproterozoic The two populations of zircons in our samples with U–Pb ages of 790 ± 6 Ma (Group III)
399
and 720 ± 6 Ma (Group IV) record crustal reworking by Neoproterozoic magmatic events
400
(Fig. 9). Both groups of Neoproterozoic magmatic zircons have TDM2 ages of 2.6–3.0 Ga (Fig.
401
10), suggesting that the reworked crust was generated in the Archean. The final emplacement
402
age for the protolith of the granitic gneiss is ca. 720 Ma, which is constrained by the youngest
403
group of Neoproterozoic zircon U–Pb ages. Based on the whole-rock diagram of total alkalis
404
vs. SiO2, all the samples fall in the granite field (Fig. 3a). Trace element compositions of these
405
samples show strong enrichments in large ion lithophile elements (LILEs) and depletions in
406
high field strength elements (HFSEs) (Fig. 3c). Considering their high SiO2 contents and the
407
moderate Zr/Hf and low Nb/Ta ratios, these samples share some of the features of fractionated
408
granites (Wu et al., 2007). The δ18O values of 5.4–6.1‰ indicate that their magmatic source
409
was not significantly affected by water–rock interaction or the incorporation of sediments.
410
The Neoproterozoic magmatism in the South China Block has been intensively studied
411
based on zircon U–Pb ages and Hf–O isotopes, which provide robust constraints on its
412
relationship with the assembly and breakup of the supercontinent Rodinia (e.g., Li et al., 1999;
413
Zheng and Zheng, 2007; Zheng et al., 2008a, 2008b; Zhang and Zheng, 2013; He et al., 2018).
414
The Neoproterozoic magmatic rocks commonly show two groups of U–Pb age peaks at
415
830–800 and 780–740 Ma (Zhang and Zheng, 2013). Both felsic and mafic intrusions with
416
U–Pb ages ranging from 860 to 750 Ma crop out along the western margin of the South China
417
Block (Zhao et al., 2018), and they indicate a series of continuous processes from oceanic
418
subduction through arc–continent collision to post-collisional reworking (Zhang and Zheng,
419
2013). In particular, the post-collisional reworking may have been caused by continental
420
rifting along preexisting suture zones (Zheng and Chen, 2017; Zheng and Zhao, 2017; He et
421
al., 2018; Zheng et al., 2019).
422
Continental rifting was extensive in the South China Block during the period of 830–720
423
Ma, as indicated by the occurrence of bimodal volcanic rocks, A-type granites, and
424
sedimentary basins in the periphery of the Yangtze Craton (Wang and Li, 2003; Li et al., 2005;
425
Zheng et al., 2008, 2009; Wang et al., 2010, 2012, 2018c). Group III and IV zircon domains
426
in our sample are probably the products of continental-rifting magmatism during the middle
427
Neoproterozoic. Nevertheless, there are large differences between the two groups of zircon
428
domains in their CL images and trace element compositions (Figs. 4–7). Group III domains
429
show bright CL images, a low average Ti-in-zircon temperature of ~660 °C, low U and Al
430
contents, and low Th/U ratios that average 0.92. In contrast, Group IV domains exhibit dark
431
CL images, high U contents, an elevated Th/U ratio of 1.48, a high average Ti-in-zircon
432
temperature of ~770 °C, and much higher Al contents. These differences may have been
433
dictated by differences in the compositions of the parental rocks and differences in the
434
conditions of crustal anatexis (e.g., Trail et al., 2017). During continental rifting, multiple
435
episodes of high-temperature metamorphism and anatexis may occur (Zheng and Chen, 2017;
436
He et al., 2018), which could be recorded by both groups of zircons. Whatever the details, it is
437
clear that both groups of zircons record distinctive magmatic events that occurred during
438
continental rifting in the middle Neoproterozoic.
439 440
6. Conclusions
441
Relict magmatic zircons with Eoarchean U–Pb ages of ~3.7 Ga are described for the first
442
time from the granitic gneisses at Yangkou in the Sulu Orogen. They show negative εHf(t)
443
values of –2.8 to –0.9 and two-stage chondrite Hf model ages of 3.74–3.96 Ga, indicating the
444
existence of Eoarchean crustal remnants along the northeastern margin of the Yangtze Craton
445
and the growth of juvenile crust during the early Eoarchean. The low P contents, high (Y +
446
REE)/P molar ratios, and low Al contents of these zircons suggest the melting of
447
metaluminous granite rocks. Three other groups of zircon domains have younger U–Pb ages
448
at ~2.1 Ga, ~790 Ma, and ~720 Ma. Their two-stage depleted Hf model ages of 2.6–3.0 Ga
449
suggest derivation through the episodic reworking of Archean crust. The Paleoproterozoic
450
zircon domains may have grown during magmatism in response to the assembly of the
451
Columbia supercontinent. The two groups of Neoproterozoic zircon domains show large
452
differences in their trace element characteristics, such as the Th/U ratios and the contents of
453
Ti, Al, P, and REEs, and they may have grown during repeated magmatism in response to the
454
continental rifting that took place during the breakup of Rodinia. Our study demonstrates the
455
presence of Eoarchean crustal remnants in the Yangtze Craton and multiphase reworking of
456
Archean crust during the Paleoproterozoic and Neoproterozoic.
457 458
Acknowledgements
459
This study was supported by funds from the Natural Science Foundation of China
460
(41622302, 41590624, and 41773021), the Strategic Priority Research Program (B) of CAS
461
(XDB18020303), the Youth Innovation Promotion Association of CAS (2014300), and the
462
Fundamental Research Funds for the Central Universities. Thanks are due to Zi-Fu Zhao, Fei
463
Zheng, Guo-Chao Sun, Chun Sun, He-Zhi Ma, Jia-Wei Xiong and Yong-Jie Yu for their
464
assistance with sample collection, and to Ting Liang for her assistance with LA–ICP–MS
465
zircon dating and trace element measurements. Comments by two anonymous reviewers and
466
editors (Guochun Zhao and Xianhua Li) have greatly improved the presentation of the
467
manuscript.
469
References
470
Bauer, A.M., Fisher, C.M., Vervoort, J.D., Bowring, S.A., 2017. Coupled zircon Lu–Hf and
471
U–Pb isotopic analyses of the oldest terrestrial crust, the >4.03 Ga Acasta Gneiss
472
Complex. Earth Planet. Sci. Lett. 458, 37–48.
473
Bell, E.A., Boehnke, P., Harrison, T.M., 2016. Recovering the primary geochemistry of Jack
474
Hills zircons through quantitative estimates of chemical alteration. Geochim.
475
Cosmochim. Acta 191, 187–202.
476
Boehnke, P., Bell, E.A., Stephan, T., Trappitsch, R., Keller, C.B., Pardo, O.S., Davis, A.M.,
477
Harrison, T.M., Pellin, M.J., 2018. Potassic, high-silica Hadean crust. Proc. Natl. Acad.
478
Sci. 115, 6353–6356.
479
Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008. The Lu-Hf and Sm-Nd isotopic composition
480
of CHUR: constraints from unequilibrated chondrites and implications for the bulk
481
composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 48–57.
482 483 484 485
Bowring, S.A., Williams, I.S., 1999. Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada. Contrib. Mineral. Petrol. 134, 3–16. Burnham, A.D., Berry, A.J., 2017. Formation of Hadean granites by melting of igneous crust. Nat. Geosci. 10, 457–461.
486
Cavosie, A.J., Valley, J.W., Wilde, S.A., 2006. Correlated microanalysis of zircon: Trace
487
element, δ18O, and U-Th-Pb isotopic constraints on the igneous origin of complex >3900
488
Ma detrital grains. Geochim. Cosmochim. Acta 70, 5601–5616.
489
Cavosie, A.J., Valley, J.W., Wilde, S.A., 2019. The Oldest Terrestrial Mineral Record: Thirty
490
Years of Research on Hadean Zircon From Jack Hills, Western Australia. In:
491
Kranendonk, M.V., Bennett, V., Hoffmann, E., (Eds.) Earth's Oldest Rocks, 2nd Edition.
492
Elsevier, Amsterdam. pp. 255–278.
493
Chen, B., Jahn, B.M., Ye, K., Liu, J.B., 2002. Cogenetic relationship of the Yangkou
494
gabbro-to-granite unit, Su-Lu terrane, eastern China, and implications for UHP
495
metamorphism. J. Geol. Soc. London 159, 457–467.
496
Chen, K., Gao, S., Wu, Y.B., Guo, J.L., Hu, Z.C., Liu, Y.S., Zong, K.Q., Liang, Z.W., Geng,
497
X.L., 2013. 2.6–2.7 Ga crustal growth in Yangtze craton, South China. Precambr. Res.
498
224, 472–490.
499
Chen, Z.H., Xing, G.F., 2016. Geochemical and zircon U-Pb-Hf-O isotopic evidence for a
500
coherent Paleoproterozoic basement beneath the Yangtze Block, South China. Precambr.
501
Res. 279, 81–90.
502 503
Chen, R.X., Zheng, Y.F., 2017. Metamorphic zirconology of continental subduction zones. J. Asian Earth Sci. 145, 149–176.
504
Chen, Q., Sun, M., Zhao, G.C., Zhao, J.H., Zhu, W.L., Long, X.P., Wang, J., 2019. Episodic
505
crustal growth and reworking of the Yudongzi terrane, South China: Constraints from
506
the Archean TTGs and potassic granites and Paleoproterozoic amphibolites. Lithos 326,
507
1–18.
508 509
Cong, B., 1996. Ultrahigh-Pressure Metamorphic Rocks in the Dabieshan-Sulu region of China. Science Press, Beijing, 1–224.
510
Gao, S., Ling, W.L., Qiu, Y.M., Lian, Z., Hartmann, G., Simon, K., 1999. Contrasting
511
geochemical and Sm-Nd isotopic compositions of Archean metasediments from the
512
Kongling high-grade terrain of the Yangtze craton: Evidence for cratonic evolution and
513
redistribution of REE during crustal anatexis. Geochim. Cosmochim. Acta 63,
514
2071–2088.
515
Gao, S., Yang, J., Zhou, L., Li, M., Hu, Z.C., Guo, J.L., Yuan, H.L., Gong, H.J., Xiao, G.Q.,
516
Wei, J.Q., 2011. Age and Growth of the Archean Kongling Terrain, South China, with
517
Emphasis on 3.3 Ga Granitoid Gneisses. Am. J. Sci. 311, 153–182.
518
Ge, R.F., Zhu, W., Wilde, S.A., Wu, H., 2018. Remnants of Eoarchean continental crust
519
derived from a subducted proto-arc. Sci. Adv. 4 (2), eaao3159.
520
Gong, B., Zheng, Y.F., Chen, R.X., 2007. TC/EA-MS online determination of hydrogen
521
isotope composition and water concentration in eclogitic garnet. Phys. Chem. Miner. 34,
522
687–698.
523
Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., O'Reilly, S.Y.,
524
Shee, S.R., 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS
525
analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 64, 133–147.
526
Griffin, W.L., Wang, X., Jackson, S.E., Pearson, N.J., O'Reilly, S.Y., Xu, X.S., Zhou, X.M.,
527
2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes,
528
Tonglu and Pingtan igneous complexes. Lithos 61, 237–269.
529
Guo, J.L., Gao, S., Wu, Y.B., Li, M., Chen, K., Hu, Z.C., Liang, Z.W., Liu, Y.S., Zhou, L.,
530
Zong, K.Q., Zhang, W., Chen, H.H., 2014. 3.45 Ga granitic gneisses from the Yangtze
531
Craton, South China: Implications for Early Archean crustal growth. Precambr. Res. 242,
532
82–95.
533
Harrison, T.M., Blichert-Toft, J., Muller, W., Albarede, F., Holden, P., Mojzsis, S.J., 2005.
534
Heterogeneous Hadean hafnium: Evidence of continental crust at 4.4 to 4.5 Ga. Science
535
310, 1947–1950.
536 537 538 539 540 541
Harrison, T.M., 2009. The Hadean Crust: Evidence from >4 Ga Zircons. Ann. Rev. Earth Planet. Sci. 37, 479–505. Harrison, T.M., Bell, E.A., Boehnke, P., 2017. Hadean zircon petrochronology. Rev. Mineral. Geochem. 83, 329–363. He, Q., Zhang, S.B., Zheng, Y.F., 2018. Evidence for regional metamorphism in a continental rift during the Rodinia breakup. Precambr. Res. 314, 414–427.
542
Hoffmann, J.E., Nagel, T.J., Munker, C., Naeraa, T., Rosing, M.T., 2014. Constraining the
543
process of Eoarchean TTG formation in the Itsaq Gneiss Complex, southern West
544
Greenland. Earth Planet. Sci. Lett. 388, 374–386.
545
Hu, Z.C., Liu, Y.S., Gao, S., Liu, W.G., Zhang, W., Tong, X.R., Lin, L., Zong, K.Q., Li, M.,
546
Chen, H.H., Zhou, L., Yang, L., 2012. Improved in situ Hf isotope ratio analysis of
547
zircon using newly designed X skimmer cone and jet sample cone in combination with
548
the addition of nitrogen by laser ablation multiple collector ICP-MS. J. Anal. Atom.
549
Spectrom. 27, 1391–1399.
550
Hui, B., Dong, Y.P., Cheng, C., Long, X.P., Liu, X.M., Yang, Z., Sun, S.S., Zhang, F.F.,
551
Varga, J., 2017. Zircon U-Pb chronology, Hf isotope analysis and whole-rock
552
geochemistry for the Neoarchean-Paleoproterozoic Yudongzi complex, northwestern
553
margin of the Yangtze craton, China. Precambr. Res. 301, 65–85.
554 555
Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian J. Earth Sci. 8, 523–548.
556
Jackson, S. E., Pearson, N. J., Griffin, W. L., Belousova, E. A., 2004. The application of laser
557
ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon
558
geochronology. Chem. Geol. 211, 47–69.
559
Jiao, W.F., Wu, Y.B., Yang, S.H., Peng, M., Wang, J., 2009. The oldest basement rock in the
560
Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition. Sci. China Ser.
561
D: Earth Sci. 52, 1393–1399.
562
Katsube, A., Hayasaka, Y., Santosh, M., Li, S.Z., Terada, K., 2009. SHRIMP zircon U-Pb
563
ages of eclogite and orthogneiss from Sulu ultrahigh-pressure zone in Yangkou area,
564
eastern China. Gondwana Res. 15, 168–177.
565 566
Li, W.X., Li, X.H., Li, Z.X., 2005. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precambr. Res. 136, 51–66.
567
Li, L.M., Lin, S.F., Davis, D.W., Xiao, W.J., Xing, G.F., Yin, C.Q., 2014. Geochronology and
568
geochemistry of igneous rocks from the Kongling terrane: Implications for Mesoarchean
569
to Paleoproterozoic crustal evolution of the Yangtze Block. Precambr. Res. 255, 30–47.
570
Liou, J.G., Zhang, R.Y., 1996. Occurrences of intergranular coesite in ultrahigh-P rocks from
571
the Sulu region, eastern China: Implications for lack of fluid during exhumation. Am.
572
Mineral. 81, 1217–1221.
573
Liu, D.Y., Nutman, A.P., Compston, W., Wu, J.S., Shen, Q.H., 1992. Remnants of
574
Greater-Than-or-Equal-to 3800 Ma Crust in the Chinese Part of the Sino-Korean Craton.
575
Geology 20, 339–342.
576
Liu, D.Y., Wilde, S.A., Wan, Y.S., Wu, J.S., Zhou, H.Y., Dong, C.Y., Yin, X.Y., 2008. New
577
U-Pb and Hf isotopic data confirm Anshan as the oldest preserved segment of the North
578
China Craton. Am. J. Sci. 308, 200–231.
579
Liu, Y.S., Hu, Z.C., Gao, S., Gunther, D., Xu, J., Gao, C.G., Chen, H.H., 2008. In situ
580
analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without
581
applying an internal standard. Chem. Geol. 257, 34–43.
582
Liu, Y.S., Gao, S., Hu, Z.C., Gao, C.G., Zong, K.Q., Wang, D.B., 2010. Continental and
583
Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China
584
Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.
585
J. Petrol. 51, 537–571.
586
Liu, F.L., Liou, J.G., 2011. Zircon as the best mineral for P-T-time history of UHP
587
metamorphism: A review on mineral inclusions and U-Pb SHRIMP ages of zircons from
588
the Dabie-Sulu UHP rocks. J. Asian Earth Sci. 40, 1–39.
589 590
London, D., 1992. Phosphorus in S-Type Magmas: the P2O5 Content of Feldspars from Peraluminous Granites, Pegmatites, and Rhyolites. Am. Mineral. 77, 126–145.
591
Lu, S., Li, H., Zhang, C., Niu, G., 2008. Geological and geochronological evidence for the
592
Precambrian evolution of the Tarim Craton and surrounding continental fragments.
593
Precambr. Res. 160, 94–107.
594 595 596 597
McDonough, W.F., Sun, S.-s., 1995. The composition of the Earth. Chem. Geol. 120, 223–253. Middlemost, E.A.K., 1994. Naming materials in the magma/igneous rock system. Earth Sci. Rev. 37, 215–224.
598
Nutman, A.P., McGregor, V.R., Friend, C.R.L., Bennett, V.C., Kinny, P.D., 1996. The Itsaq
599
Gneiss Complex of southern west Greenland; The world's most extensive record of early
600
crustal evolution (3900–3600 Ma). Precambr. Res. 78, 1–39.
601
Nutman, A.P., Bennett, V.C., Friend, C.R., Horie, K., Hidaka, H., 2007. ~3,850 Ma tonalites
602
in the Nuuk region, Greenland: geochemistry and their reworking within an Eoarchaean
603
gneiss complex. Contrib. Mineral. Petrol. 154(4), 385–408.
604
Pichavant, M., Montel, J.M., Richard, L.R., 1992. Apatite Solubility in Peraluminous Liquids:
605
Experimental Data and an Extension of the Harrison-Watson Model. Geochim.
606
Cosmochim. Acta 56, 3855–3861.
607
Rubatto, D., 2002. Zircon trace element geochemistry: partitioning with garnet and the link
608
between U-Pb ages and metamorphism. Chem. Geol. 184, 123–138.
609
Söderlund, U., Patchett, P.J., Vervoort, J.D., Isachsen, C.E., 2004. The
176Lu
decay constant
610
determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions.
611
Earth Planet. Sci. Lett. 219, 311–324.
612 613
Sun, S.-s., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Spec. Publ. 42, 313–345.
614
Tang, J., Zheng, Y.F., Wu, Y.B., Gong, B., Liu, X.M., 2007. Geochronology and
615
geochemistry of metamorphic rocks in the Jiaobei terrane: constraints on its tectonic
616
affinity in the Sulu orogen. Precambr. Res. 152, 48–82.
617
Tang, J., Zheng, Y.F., Wu, Y.B., Gong, B., Zha, X.P., Liu, X.M., 2008. Zircon U-Pb age and
618
geochemical constraints on the tectonic affinity of the Jiaodong terrane in the Sulu
619
orogen, China. Precambr. Res. 161, 389–418.
620
Trail, D., Tailby, N., Wang, Y.L., Harrison, T.M., Boehnke, P., 2017. Aluminum in zircon as
621
evidence for peraluminous and metaluminous melts from the Hadean to present.
622
Geochem. Geophy. Geosy. 18, 1580–1593.
623
Trail, D., Boehnke, P., Savage, P.S., Liu, M.C., Miller, M.L., Bindeman, I., 2018. Origin and
624
significance of Si and O isotope heterogeneities in Phanerozoic, Archean, and Hadean
625
zircon. Proc. Natl. Acad. Sci. 115, 10287–10292.
626
Valley, J.W., Cavosie, A.J., Ushikubo, T., Reinhard, D.A., Lawrence, D.F., Larson, D.J.,
627
Clifton, P.H., Kelly, T.F., Wilde, S.A., Moser, D.E., Spicuzza, M.J., 2014. Hadean age
628
for a post-magma-ocean zircon confirmed by atom-probe tomography. Nat. Geosci. 7,
629
219–223.
630
Wan, Y.S., Xie, H.Q., Dong, C.Y., Kröner, A., Wilde S.A., Bai, W.Q., Liu, S.J., Xie, S.W.,
631
Ma, M.Z., Li, Y., Liu, D.Y., 2018. Hadean to Paleoarchean Rocks and Zircons in China.
632
In : Kranendonk, M.J.V., Bennett, V.C., Hoffmann, J.E., (Eds.), Earth's Oldest Rocks,
633
2nd Edition. Elsevier, Amsterdam. pp. 293–327.
634 635
Wang, J., Li, Z.X., 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia breakup. Precambr. Res. 122, 141–158.
636
Wang, X.L., Shu, L.S., Xing, G.F., Zhou, J.C., Tang, M., Shu, X.J., Qi, L., Hu, Y.H., 2012.
637
Post-orogenic extension in the eastern part of the Jiangnan Orogen: evidence from ca
638
800–760 Ma volcanic rocks. Precambr. Res. 222–223, 404–423.
639
Wang, Q., Wyman, D.A., Li, Z.X., Bao, Z.W., Zhao, Z.H., Wang, Y.X., Jian, P., Yang, Y.H.,
640
Chen, L.L., 2010. Petrology, geochronology and geochemistry of ca. 780 Ma A-type
641
granites in South China: petrogenesis and implications for crustal growth during the
642
breakup of the supercontinent Rodinia. Precambr. Res. 178, 185–208.
643
Wang, L., Kusky, T.M., Polat, A., Wang, S.J., Jiang, X.F., Zong, K.Q., Wang, J.P., Deng, H.,
644
Fu, J.M., 2014. Partial melting of deeply subducted eclogite from the Sulu orogen in
645
China. Nat. Commun. 5, 5604.
646
Wang, S.J., Wang, L., Brown, M., Piccoli, P.M., Johnson, T.E., Feng, P., Deng, H., Kitajima,
647
K., Huang, Y., 2017. Fluid generation and evolution during exhumation of deeply
648
subducted UHP continental crust: Petrogenesis of composite granite-quartz veins in the
649
Sulu belt, China. J. Metamorph. Geol. 35, 601–629.
650
Wang, K., Li, Z.X., Dong, S.W., Cui, J.J., Han, B.F., Zheng, T., Xu, Y.L., 2018a. Early
651
crustal evolution of the Yangtze Craton, South China: New constraints from zircon
652
U-Pb-Hf isotopes and geochemistry of ca. 2.9–2.6 Ga granitic rocks in the Zhongxiang
653
Complex. Precambr. Res. 314, 325–352.
654
Wang, Z.J., Deng, Q., Duan, T.Z., Yang, F., Du, Q.D., Xiong, X.H., Liu, H., Cao, B.F., 2018b.
655
2.85 Ga and 2.73 Ga A-type granites and 2.75 Ga trondhjemite from the Zhongxiang
656
Terrain: Implications for early crustal evolution of the Yangtze Craton, South China.
657
Gondwana Res. 61, 1–19.
658
Wang, W., Zhao, J.H., Zhou, M.F., Pandit, M.K., Zheng, J.P., 2018c. Depositional age,
659
provenance and tectonic setting of the Meso- and Neoproterozoic sequences in SE
660
Yangtze Block, China: implications on Proterozoic supercontinent reconstructions.
661
Precambr. Res. 309, 231–247.
662
Watson, E.B., Harrison, T.M., 1983. Zircon Saturation Revisited: Temperature and
663
Composition Effects in a Variety of Crustal Magma Types. Earth Planet. Sci. Lett. 64,
664
295–304.
665 666 667 668
Watson, E.B., Wark, D.A., Thomas, J.B., 2006. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. 151, 413–433. Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. Am. Mineral. 95, 185-187.
669
Wilde, S.A., Valley, J.W., Peck, W.H., Graham, C.M., 2001. Evidence from detrital zircons
670
for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409,
671
175–178.
672
Wu, F.Y., Yang, Y.H., Xie, L.W., Yang, J.H., Xu, P., 2006. Hf isotopic compositions of the
673
standard zircons and baddeleyites used in U-Pb geochronology. Chem. Geol. 234,
674
105–126.
675
Wu, F.Y., Zhang, Y.B., Yang, J.H., Xie, L.W., Yang, Y.H., 2008a. Zircon U-Pb and Hf
676
isotopic constraints on the Early Archean crustal evolution in Anshan of the North China
677
Craton. Precambr. Res. 167, 339–362.
678
Wu, Y.B., Zheng, Y.F., Gao, S., Jiao, W.F., Liu, Y.S., 2008b. Zircon U-Pb age and trace
679
element evidence for Paleoproterozoic granulite-facies metamorphism and Archean
680
crustal rocks in the Dabie Orogen. Lithos 101, 308–322.
681
Wu, Y.B., Gao, S., Zhang, H.F., Zheng, J.P., Liu, X.C., Wang, H., Gong, H.J., Zhou, L., Yuan,
682
H.L., 2012. Geochemistry and zircon U-Pb geochronology of Paleoproterozoic arc
683
related granitoid in the Northwestern Yangtze Block and its geological implications.
684
Precambr. Res. 200, 26–37.
685
Wu, Y.B., Zhou, G.Y., Gao, S., Liu, X.C., Qin, Z.W., Wang, H., Yang, J.Z., Yang, S.H., 2014.
686
Petrogenesis of Neoarchean TTG rocks in the Yangtze Craton and its implication for the
687
formation of Archean TTGs. Precambr. Res. 254, 73–86.
688 689
Wu, F.Y., Liu, X.C., Ji, W.Q., Wang, J.M., Yang, L., 2017. Highly fractionated granites: recognition and research. Sci. China Earth Sci. 60, 1201–1219.
690
Xia, B., Brown, M., Wang, L., Wang, S.J., Piccoli, P., 2018. Phase Equilibrium Modeling of
691
MT-UHP Eclogite: a Case Study of Coesite Eclogite at Yangkou Bay, Sulu Belt, Eastern
692
China. J. Petrol. 59, 1253–1280.
693
Xu, Z.Q., Zeng, L.S., Liu, F.L., Yang, J.S., Zhang, Z.M., McWilliams, M., Liou, J.G., 2006.
694
Polyphase subduction and exhumation of the Sulu high-pressure-ultrahigh-pressure
695
metamorphic terrane. Geol. Soc. Am. Spec. Pap. 403, 93–113.
696 697
Ye, K., Cong, B.L., Ye, D.I., 2000. The possible subduction of continental material to depths greater than 200 km. Nature 407, 734–736.
698
Yin, C.Q., Lin, S.F., Davis, D.W., Zhao, G.C., Xiao, W.J., Li, L.M., He, Y.H., 2013. 2.1-1.85
699
Ga tectonic events in the Yangtze Block, South China: Petrological and
700
geochronological evidence from the Kongling Complex and implications for the
701
reconstruction of supercontinent Columbia. Lithos 182, 200–210.
702
Yuan, H.L., Gao, S., Dai, M.N., Zong, C.L., Gunther, D., Fontaine, G.H., Liu, X.M., Diwu, C.,
703
2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element
704
compositions of zircon by excimer laser-ablation quadrupole and multiple-collector
705
ICP-MS. Chem. Geol. 247, 100–118.
706 707
Zhai, M.G., Santosh, M., 2011. The early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Res. 20, 6–25.
708
Zhang, R.Y., Liou, J.G., Ernst, W.G., 1995. Ultrahigh-pressure metamorphism and
709
decompressional P-T paths of eclogites and country rocks from Weihai, eastern China.
710
Isl. Arc 4, 293–309.
711 712
Zhang, R.Y., Liou, J.G., 1997. Partial transformation of gabbro to coesite-bearing eclogite from Yangkou, the Sulu terrane, eastern China. J. Metamorph. Geol. 15, 183–202.
713
Zhang, S.B., Zheng, Y.F., Wu, Y.B., Zhao, Z.F., Gao, S., Wu, F.Y., 2006a. Zircon isotope
714
evidence for ≥ 3.5 Ga continental crust in the Yangtze craton of China. Precambr. Res.
715
146, 16–34.
716
Zhang, S.B., Zheng, Y.F., Wu, Y.B., Zhao, Z.F., Gao, S., Wu, F.Y., 2006b. Zircon U-Pb age
717
and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean
718
crust in South China. Earth Planet. Sci. Lett. 252, 56–71.
719
Zhang, S.B., Zheng, Y.F., Wu, Y.B., Zhao, Z.F., Gao, S., Wu, F.Y., 2006c. Zircon U-Pb age
720
and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China.
721
Precambr. Res. 151, 265–288.
722 723
Zhang, R.Y., Liou, J.G., Ernst, W.G., 2009. The Dabie-Sulu continental collision zone: A comprehensive review. Gondwana Res. 16, 1–26.
724
Zhang, S.B., Tang, J., Zheng, Y.F., 2014. Contrasting Lu-Hf isotopes in zircon from
725
Precambrian metamorphicrocks in the Jiaodong Peninsula: Constraints on the tectonic
726
suturebetween North China and South China. Precambr. Res. 245, 29–50.
727 728
Zhang, S.B., Zheng, Y.F., 2013. Formation and evolution of Precambrian continental lithosphere in South China. Gondwana Res. 23, 1241–1260.
729
Zhao, G.C., Cawood, P.A., 2012. Precambrian geology of China. Precambr. Res. 222, 13-54.
730
Zhao, Z.F., Zheng, Y.F., 2009. Remelting of subducted continental lithosphere: Petrogenesis
731
of Mesozoic magmatic rocks in the Dabie-Sulu orogenic belt. Sci. China Ser. D: Earth
732
Sci. 52, 1295–1318.
733
Zhao, X.F., Zhou, M.F., Li, J.W., Sun, M., Gao, J.F., Sun, W.H., Yang, J.H., 2010. Late
734
Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW China:
735
Implications for tectonic evolution of the Yangtze Block. Precambr. Res. 182, 57–69.
736
Zhao, J.H., Li, Q.W., Liu, H., Wang, W., 2018. Neoproterozoic magmatism in the western
737
and northern margins of the Yangtze Block (South China) controlled by slab subduction
738
and subduction-transform-edge-propagator. Earth Sci. Rev. 187, 1–18.
739
Zheng, Y.F., Fu, B., Li, Y.L., Xiao, Y.L., Li, S.G., 1998. Oxygen and hydrogen isotope
740
geochemistry of ultrahigh-pressure eclogites from the Dabie Mountains and the Sulu
741
terrane. Earth Planet. Sci. Lett. 155, 113–129.
742
Zheng, Y.F., Fu, B., Gong, B., Li, L., 2003. Stable isotope geochemistry of ultrahigh pressure
743
metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics
744
and fluid regime. Earth Sci. Rev. 62, 105–161.
745
Zheng, Y.F., Wu, Y.B., Chen, F.K., Gong, B., Li, L., Zhao, Z.F., 2004. Zircon U-Pb and
746
oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the
747
Neoproterozoic. Geochim. Cosmochim. Acta 68, 4145–4165.
748 749 750 751
Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., Zhang, M., Pearson, N., Pan, Y.M., 2006. Widespread Archean basement beneath the Yangtze craton. Geology 34, 417–420. Zheng, Y.F., Zhang, S.B., 2007. Formation and evolution of precambrian continental crust in South China. Chinese Sci. Bull. 52, 1–12.
752
Zheng, Y.F., Gong, B., Zhao, Z.F., Wu, Y.B., Chen, F.K., 2008a. Zircon U-Pb age and O
753
isotope evidence for Neoproterozoic low-18O magmatism during supercontinental rifting
754
in South China: Implications for the snowball Earth event. Am. J. Sci. 308, 484–516.
755
Zheng, Y.F., Wu, R.X., Wu, Y.B., Zhang, S.B., Yuan, H., Wu, F.Y., 2008b. Rift melting of
756
juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and
757
granitic rocks in the Jiangnan Orogen, South China. Precambr. Res. 163, 351–383.
758 759
Zheng, Y.F., 2009. Fluid regime in continental subduction zones: petrological insights from ultrahigh-pressure metamorphic rocks. J. Geol. Soc. 166, 763–782.
760
Zheng, Y.F., Chen, R.X., Zhao, Z.F., 2009. Chemical geodynamics of continental
761
subduction-zone metamorphism: Insights from studies of the Chinese Continental
762
Scientific Drilling (CCSD) core samples. Tectonophysics 475, 327–358.
763 764 765 766 767 768
Zheng, Y.F., Xiao, W.J., Zhao, G.C., 2013. Introduction to tectonics of China. Gondwana Res. 23, 1189–1206. Zheng, Y.F., Chen, R.X., 2017. Regional metamorphism at extreme conditions: Implications for orogeny at convergent plate margins. J. Asian Earth Sci. 145, 46–73. Zheng, Y.F., Zhao, Z.F., 2017. Introduction to the structures and processes of subduction zones. J. Asian Earth Sci. 145, 1–15.
769
Zheng, Y.F., Zhao, Z.F., Chen, R.X., 2019. Ultrahigh-pressure metamorphic rocks in the
770
Dabie-Sulu orogenic belt: compositional inheritance and metamorphic modification.
771
Geol. Soc. London Spec. Publ. 474, 89–132.
772
Zhou, G.Y., Wu, Y.B., Wang, H., Qin, Z.W., Zhang, W.X., Zheng, J.P., Yang, S.H., 2017.
773
Petrogenesis of the Huashanguan A-type granite complex and its implications for the
774
early evolution of the Yangtze Block. Precambr. Res. 292, 57–74.
775
Zhou, G.Y., Wu, Y.B., Li, L., Zhang, W.X., Zheng, J.P., Wang, H., Yang, S.H., 2018.
776
Identification of ca. 2.65 Ga TTGs in the Yudongzi complex and its implications for the
777
early evolution of the Yangtze Block. Precambr. Res. 314, 240–263.
779
Figure captions
780
Figure 1. (a) Simplified geological map of the Sulu Orogen. Abbreviations: WYF =
781
Wulian–Yantai Fault; JXF = Jiashan–Xiangshui Fault. (b) Sketch map of the Yangkou region
782
on the east coast of the Laoshan district within the central Sulu belt, showing the location of
783
granitic gneiss samples (yellow star with red outline).
784 785
Figure 2. Field photographs and photomicrographs of granitic gneisses in the Yangkou region.
786
(a) Field outcrop of granitic gneiss. (b) Hand specimen of granitic gneiss sample 15Q35. (c–f)
787
Petrographic characteristics of granitic gneiss samples 15Q35 (c and d) and 19Q04 (e and f).
788
Panels (c) and (e) are under plane-polarized light, and (d) and (f) under cross-polarized light.
789
Mineral abbreviations are after Whitney and Evans (2010).
790 791
Figure 3. Whole-rock major and trace element compositions of the granitic gneisses from
792
Yangkou in the Sulu Orogen. (a) Total alkalis vs. SiO2 diagram. The classifications are after
793
Middlemost (1994) and Irvine and Baragar (1971). (b) A/NK vs. A/CNK diagram, where
794
A/CNK = Al2O3/(CaO + Na2O + K2O) molar ratio. (c) Primitive-mantle-normalized trace
795
element patterns. (d) Chondrite-normalized REE patterns. Chondrite values are after Sun and
796
McDonough (1989), and primitive mantle values are after McDonough and Sun (1995).
797 798
Figure 4. CL images of zircons from the granitic gneisses at Yangkou showing their apparent
799
U–Pb ages (Ma) and εHf(t) values. The red circles denote the U–Pb age spots, and the circles
800
in sky blue denote the Lu–Hf isotope spots. Scale bar = 100 μm.
801 802 803
Figure 5. Zircon U–Pb concordia diagrams for the granitic gneisses at Yangkou.
804
Figure 6. Chondrite-normalized REE patterns for zircons from the granitic gneisses of
805
Yangkou. Chondrite REE values are after Sun and McDonough (1989).
806 807
Figure 7. Trace element vs. U–Pb age diagrams for zircons from the granitic gneisses of
808
Yangkou. In (a), the Ti-in-zircon temperature (°C) was calculated using the calibration of
809
Watson et al. (2006). For each panel, we only considered concordant ages with discordance
810
<10%.
811 812
Figure 8. The relationship between the molar concentrations of REE + Y and P in zircons
813
from the granitic gneisses of Yangkou. Only concordant ages with discordance <10% were
814
considered. The spots in cyan and light-yellow are data for zircons from the granites of the
815
Lachlan Fold Belt (LFB) (Burnham and Berry, 2017). The solid lines (after Burnham and
816
Berry, 2017) are considered to be the boundary lines for the discrimination of magmatic
817
zircons from I- and S-type granites.
818 819
Figure 9. U–Pb ages and Hf isotope compositions of zircons from the granitic gneiss at
820
Yangkou. (a) Histogram of all zircon U–Pb ages for the granitic gneiss samples. Note that
821
only concordant ages are plotted. The data in the light gray color are for Archean igneous
822
zircons in the TTG rocks of the Yangtze Craton. Literature data: Zhang et al. (2006b), Zheng
823
et al. (2006), Jiao et al. (2009), Gao et al. (2011), Chen et al. (2013), Guo et al. (2014), Wu et
824
al. (2014), Hui et al. (2017), Wang et al. (2018a), Wang et al. (2018b), Zhou et al. (2018), and
825
Chen et al. (2019). (b) Histogram of Neoproterozoic U–Pb ages of zircons (Groups III and IV)
826
from the Yangkou granitic gneiss samples.
827 828
Figure 10. (a) Plot of
176Hf/177Hf
vs. U–Pb age for zircons from the granitic gneisses at
829
Yangkou. (b) Plot of εHf(t) vs. U–Pb age for zircons from the granitic gneiss at Yangkou.
830
Archean igneous zircons from the TTG rocks of the Yangtze Craton are also shown on the
831
plot in a light gray color.
832 833
Figure 11. The Lu–Hf isotope compositions of Group I domains of zircons from the granitic
834
gneiss samples of Yangkou. Histograms of (a) εHf(t) values and (b–c) two-stage Hf model
835
ages (TCHUR2 & TDM2). The value of t(Ma) used in the calculations was 3.67 Ga.
Supporting Information
837 838 839
Table S1. U–Pb isotope data for Group II to IV zircons from the granitic gneisses at Yangkou
840
in the Sulu Orogen
841 842
Table S2. Trace element compositions (ppm) of Group II to IV zircons from the granitic
843
gneisses at Yangkou in the Sulu Orogen
844 206Pb/238U
845
Figure S1. (a) Concordia diagram and (b) weighted mean
846
GJ-1 calibrated against 91500. (c–d) 176Hf /177Hf ratios of zircon standard GJ-1 and Temora-2
847
measured during the analytical sessions.
848 849
age for zircon standard
850 851 852 853
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
854 855 856
857 858 859 860 861 862
Figure 10
863
864 865 866
867 868
Figure 11
869 870 871
Table 1. Whole-rock major and trace element as well as oxygen isotope compositions of granitic gneisses from Yangkou in the Sulu Orogen Sample 15Q35 Major elements (wt%) SiO2 72.78
19Q03
19Q04
19Q08
19Q03R
71.91
75.11
74.93
72.28
TiO2
0.14
0.15
0.23
0.15
0.15
Al2O3
13.98
14.38
12.81
13.45
14.48
Fe2O3T MnO MgO CaO Na2O
1.52 0.03 0.31 0.85 2.95
1.50 0.02 0.21 1.05 3.18
1.80 0.04 0.37 0.89 3.33
1.37 0.02 0.21 0.98 3.32
1.51 0.02 0.21 1.06 3.21
K2O
6.16
6.05
4.72
4.72
6.07
P2O5 0.05 LOI 0.70 Total 99.47 A/CNK 1.07 Trace elements (ppm) Rb 125 Sr 288 Y 27.4 Zr 114 Nb 4.87 Cs 0.91 Ba 3766 La 102 Ce 105 Pr 12.3 Nd 36.9 Sm 5.27 Eu 1.40 Gd 4.09 Tb 0.72 Dy 4.16 Ho 0.85 Er 2.47 Tm 0.36 Yb 2.26 Lu 0.34 Hf 2.93 Ta 0.41 Pb 13.3 Th 9.33 U 1.37 Sr/Y 10.5 (La/Yb)N 32.4 Eu* 0.92 TZr(°C) 760
0.05 0.72 99.22 1.05
0.05 0.72 100.07 1.05
0.05 0.86 100.06 1.09
0.05 0.74 99.78 1.05
120 306 29.1 102 5.15 0.86 3828 96.2 107 12.5 38.3 5.61 1.43 4.52 0.71 4.28 0.84 2.58 0.40 2.62 0.39 2.66 0.51 14.4 10.0 1.89 10.5 26.3 0.87 749
107 200 12.1 111 8.82 0.81 2528 40.3 57.0 5.10 15.2 2.09 0.72 1.75 0.24 1.57 0.35 1.20 0.21 1.61 0.30 3.05 0.56 11.7 8.80 1.19 16.5 17.9 1.15 760
95.6 287 9.32 103 3.98 0.71 3030 45.4 78.1 5.52 15.8 1.90 0.83 1.28 0.23 1.36 0.30 0.98 0.17 1.15 0.20 2.66 0.36 14.0 9.94 1.02 30.8 28.3 1.63 757
120 305 28.9 93.4 5.09 0.87 3787 97.2 106 12.7 38.6 5.80 1.49 4.66 0.70 4.36 0.87 2.56 0.39 2.58 0.41 2.44 0.52 14.9 10.0 1.95 10.5 27.0 0.88 742
5.9
5.8
6.1
δ18OWR (‰)
5.4
872 873 874
Note: Eu* = EuN/(SmN*GdN)0.5, and the subscript N denotes the normalization to the chondrite values of Sun and McDonough (1989). The calculation of zircon saturation temperature TZr(°C) is after the equation of Watson and Harrison (1983). 19Q03R denotes the replicate analysis of the sample 19Q03.
875 876 877 878
h (ppm)
Table 2 U-Pb isotope data for Group I zircons in the Yangkou granitic gneisses from Yangkou in the Sulu Orogen
U (ppm)
Th/U
207Pb/206Pb
1σ
207Pb/235U
Isotopic ratios 1σ
115 54.3 220 53.7 172 164 213 121 172 82.4 139 92.4 65.9 64.2 94.2 70.0 232 222 61.0 282 74.2 89.3 140 93.3 193
182 121 257 143 245 423 376 267 506 468 446 162 171 721 500 369 952 388 726 584 1054 945 1127 556 388
0.63 0.45 0.85 0.38 0.70 0.39 0.57 0.45 0.34 0.18 0.31 0.57 0.39 0.09 0.19 0.19 0.24 0.57 0.08 0.48 0.07 0.09 0.12 0.17 0.50
0.34381 0.34051 0.33159 0.32258 0.31554 0.30676 0.30313 0.30113 0.29965 0.28907 0.28377 0.26487 0.26151 0.25888 0.23952 0.23357 0.22104 0.20668 0.20655 0.18765 0.17778 0.17379 0.17309 0.16474 0.15318
0.00779 0.00744 0.00824 0.00976 0.00676 0.00709 0.00764 0.00832 0.00653 0.00736 0.00614 0.00599 0.00802 0.01168 0.00659 0.00670 0.00679 0.00652 0.00449 0.00509 0.00450 0.00694 0.00447 0.00493 0.00416
34.69865 35.24113 31.38921 32.57752 29.28191 29.17624 29.21932 24.70462 24.65630 22.60951 21.79237 21.16996 19.66073 16.07262 18.06706 16.40198 13.39438 13.20733 12.85976 10.78594 9.38539 9.01887 9.23150 8.66435 7.73282
69.0 136 119 125 295 162 371 300
120 318 810 319 468 253 665 1192
0.58 0.43 0.15 0.39 0.63 0.64 0.56 0.25
0.3304 0.2937 0.2747 0.2255 0.2229 0.2219 0.1790 0.1770
0.0078 0.0071 0.0065 0.0098 0.0083 0.0100 0.0064 0.0199
34.0454 25.0344 21.6931 15.3436 14.5662 14.7907 11.7840 10.0353
879 880 881
1σ
207Pb/206Pb
0.78052 0.90816 0.68992 0.96148 0.61660 0.69626 0.75040 0.64994 0.56245 0.53984 0.48066 0.50147 0.48284 0.36218 0.55767 0.47484 0.45230 0.44627 0.28164 0.30287 0.24744 0.23300 0.22842 0.22588 0.20391
0.72574 0.74411 0.68763 0.72290 0.66583 0.68473 0.69086 0.58893 0.59122 0.56461 0.55100 0.57389 0.53736 0.44860 0.53598 0.50475 0.43310 0.45681 0.44910 0.41339 0.37762 0.37737 0.38220 0.38260 0.36448
0.00754 0.01134 0.00812 0.00889 0.00606 0.00934 0.00836 0.00685 0.00800 0.00727 0.00638 0.00675 0.00639 0.00442 0.00795 0.00693 0.00658 0.00643 0.00409 0.00490 0.00422 0.00434 0.00398 0.00447 0.00404
3680 3665 3624 3582 3550 3505 3486 3476 3468 3413 3384 3276 3257 3240 3117 3077 2989 2880 2879 2722 2632 2595 2588 2505 2383
29 33 38 47 32 36 39 43 34 40 34 35 48 71 44 45 49 52 35 45 42 67 44 51 46
3630 3645 3531 3568 3463 3459 3461 3297 3295 3210 3175 3146 3075 2881 2993 2901 2708 2695 2669 2505 2376 2340 2361 2303 2200
0.8023 0.6661 0.4978 0.5244 0.3594 0.3984 0.2993 0.2844
0.7388 0.6120 0.5761 0.4894 0.4676 0.4784 0.4399 0.4051
0.0105 0.0098 0.0076 0.0078 0.0060 0.0060 0.0054 0.0050
3620 3439 3333 3020 3002 2995 2644 2625
36 38 37 69 60 73 59 189
3611 3310 3170 2837 2787 2802 2587 2438
206Pb/238U
1σ
22 26 22 29 21 24 25 26 22 23 22 23 24 22 30 28 32 32 21 26 24 24 23 24 24
3518 3586 3374 3507 3290 3363 3386 2985 2994 2886 2829 2924 2772 2389 2767 2634 2320 2425 2391 2230 2065 2064 2087 2088 2003
28 42 31 33 24 36 32 28 32 30 27 28 27 20 33 30 30 28 18 22 20 20 19 21 19
23 26 22 33 24 26 24 26
3566 3078 2933 2568 2473 2520 2350 2193
39 39 31 34 27 26 24 23
Table 2 (continued)
Th (ppm)
U (ppm)
Th/U
207Pb/206Pb
1σ
362 189 224 96.7
713 584 665 852
0.51 0.32 0.34 0.11
0.3277 0.2700 0.2573 0.1796
0.0060 0.0071 0.0091 0.0118
33.7023 20.4699 18.3691 9.8785
453 281 195 76.8 111 139 95.8
1044 840 963 199 1037 636 242
0.43 0.33 0.20 0.39 0.11 0.22 0.40
0.3387 0.3144 0.2312 0.2016 0.1909 0.1744 0.1599
0.0063 0.0113 0.0133 0.0091 0.0170 0.0039 0.0042
34.1182 27.2857 15.4133 11.7972 11.4182 10.2185 8.3556
882 883 884
Apparent ages (Ma) 1σ 207Pb/235U 1σ
206Pb/238U
Isotopic ratios 207Pb/235U 1σ
Apparent ages (Ma) 1σ 207Pb/235U 1σ
206Pb/238U
1σ
207Pb/206Pb
0.6046 0.5326 0.3810 0.2547
0.7398 0.5458 0.5143 0.3975
0.0069 0.0073 0.0056 0.0041
3606 3306 3231 2650
28 41 56 109
3601 3114 3009 2424
0.6647 0.6482 0.4309 0.2861 0.3463 0.2065 0.1922
0.7435 0.6385 0.4783 0.4242 0.4199 0.4215 0.3895
0.0085 0.0060 0.0052 0.0048 0.0060 0.0044 0.0040
3657 3543 3061 2839 2750 2611 2454
28 55 92 73 152 37 44
3613 3394 2841 2588 2558 2455 2270
206Pb/238U
1σ
18 25 20 24
3570 2808 2675 2157
26 31 24 19
19 23 27 23 28 19 21
3584 3183 2520 2279 2260 2267 2121
31 24 23 22 27 20 18
Note: ‘Conc.’ indicates age concordance, defined as (206Pb/238U age)/(207Pb/206Pb age)*100%.
51
2 2 5 1 1 4 7 3 1 4 3 6 5
4 2 7 4 3 5 5 9 7 3 6
8 4 6 1
6 8 5
886 887 888 889
Table 3 Trace element compositions (in ppm) for Group I zircons in the Yangkou granitic gneisses from Yangkou in the Sulu Orogen
P
Ti
Y
Hf
Nb
Ta
La
Ce
Pr
Nd
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
T (°C)
E
414 216 563 231 543 493 401 370 464 358 559 466 313 183 231 360 521 728 326 542 522 512 248 421 592
14.3 16.4 15.6 15.9 11.6 15.8 13.3 11.6 9.57 19.6 21.3 10.0 13.4 27.1 13.1 11.2 10.6 8.47 13.8 11.0 21.2 11.3 15.5 12.2 10.1
1143 506 1847 517 1745 1512 1259 1202 1228 757 1415 1031 782 368 443 723 904 1527 634 1602 1017 820 649 1000 1311
8937 9283 8556 9500 8554 9344 10132 8751 11027 11148 10020 9377 9161 11380 10550 9866 10843 9510 11072 10230 10708 11721 12587 10641 9860
3.53 3.39 3.83 3.97 3.58 9.27 10.0 5.72 6.68 8.31 7.44 3.63 4.35 9.37 6.96 10.9 5.07 9.13 11.7 8.18 6.70 17.9 13.5 11.9 4.88
1.81 1.66 2.07 1.89 1.91 7.74 10.3 3.80 3.79 9.88 5.54 2.08 2.38 7.20 4.78 9.20 5.83 4.35 14.0 5.76 11.1 37.6 22.6 6.96 2.46
0.02 0.00 0.08 0.01 0.02 0.12 0.02 0.02 0.04 0.02 0.03 0.00 0.22 0.02 0.03 0.01 0.04 0.01 0.04 0.04 0.15 0.06 0.02 0.10 0.04
7.67 5.99 10.4 6.43 9.07 9.53 10.2 7.10 11.5 6.21 9.00 7.96 6.87 5.91 14.2 8.50 13.0 15.5 6.44 17.1 4.42 5.03 19.4 13.3 12.7
0.13 0.02 0.37 0.03 0.23 0.20 0.09 0.11 0.06 0.03 0.09 0.03 0.04 0.01 0.11 0.03 0.05 0.08 0.04 0.08 0.09 0.05 0.03 0.07 0.06
2.46 0.54 5.43 0.68 3.73 3.40 1.24 2.19 0.88 0.57 1.69 0.94 0.74 0.21 1.48 0.73 0.61 1.55 0.77 1.05 0.52 0.50 0.26 1.48 1.11
4.18 1.17 10.1 1.74 7.53 6.46 3.03 4.02 2.37 1.39 4.19 3.05 2.19 0.29 2.74 1.87 1.21 3.97 1.40 3.21 0.88 0.82 0.72 3.66 3.38
0.55 0.10 0.86 0.15 0.67 0.54 0.16 0.49 0.20 0.18 0.48 0.31 0.23 0.09 0.30 0.17 0.08 0.28 0.27 0.27 0.10 0.07 0.17 0.41 0.31
24.7 8.26 49.1 8.84 41.9 31.6 22.6 25.3 19.1 10.7 26.2 20.5 15.2 3.40 13.7 11.3 12.4 31.6 9.59 30.5 7.00 5.45 6.96 24.0 27.1
8.62 3.21 15.8 3.47 13.7 10.8 8.57 8.83 7.59 4.42 9.52 7.52 5.43 1.50 3.91 4.30 5.08 11.0 3.61 11.0 3.95 2.73 2.98 8.04 9.49
103 42.1 178 43.1 162 135 110 106 103 57.6 122 90.2 68.6 24.7 40.7 57.3 68.0 136 49.7 140 66.1 47.6 43.5 86.7 113
39.6 17.2 64.2 17.5 60.1 51.5 42.4 40.8 42.6 24.8 48.8 34.9 26.3 11.2 14.0 23.9 29.0 52.4 19.9 55.3 33.5 25.7 19.5 33.6 44.5
169 80.5 270 81.2 258 229 197 180 194 118 226 156 119 63.4 62.9 116 146 229 96.8 247 194 149 105 157 195
33.4 16.9 53.1 17.2 49.6 46.4 40.8 35.9 40.9 27.4 48.4 30.9 24.6 16.5 13.6 25.8 32.6 45.9 20.9 49.8 53.2 40.6 27.0 33.4 38.1
308 158 456 162 433 425 386 319 367 270 472 283 228 175 139 254 308 397 218 446 603 435 300 306 337
57.4 31.0 83.6 32.0 80.2 83.3 77.6 62.4 72.4 57.8 95.2 54.5 45.3 40.3 29.2 54.1 62.7 74.1 46.0 88.0 134 96.6 70.3 61.6 64.6
773 786 781 783 754 783 767 754 737 804 812 741 767 837 765 751 746 726 770 749 811 751 781 759 742
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
336 387 265 407 600 562 635 431
17.0 16.1 22.8 9.80 21.0 7.29 10.2 19.6
1507 1272 532 869 1460 1520 1855 1041
8827 8939 10897 9544 8770 9197 8863 11378
4.00 5.79 7.93 5.10 5.54 5.46 8.91 13.4
2.02 2.67 2.90 2.44 2.17 2.61 4.20 12.4
0.04 0.01 0.01 0.03 0.04 0.01 0.02 0.05
4.83 6.32 14.9 13.3 14.2 11.8 16.9 11.9
0.32 0.17 0.01 0.05 0.11 0.07 0.06 0.03
4.04 2.37 0.35 1.22 2.18 1.57 1.94 0.63
8.07 4.87 0.61 3.44 4.96 4.69 4.97 1.99
1.48 0.86 0.08 0.30 0.28 0.42 0.40 0.16
40.0 26.8 4.24 20.5 32.5 31.0 36.6 15.0
13.0 9.09 1.80 6.79 11.5 11.1 13.0 5.54
147 112 29.1 75.6 130 135 161 75.7
53.1 43.2 14.4 29.0 48.3 52.5 62.7 32.2
218 187 85.5 129 208 226 279 160
41.7 37.6 24.5 26.5 40.8 44.8 55.0 37.1
352 335 282 229 349 398 484 368
66.3 65.2 74.9 45.1 68.3 74.8 92.3 78.7
790 784 819 739 810 714 743 804
0. 0. 0. 0. 0. 0. 0. 0.
890 891 892 893 894
Table 3 (continued)
P
Ti
Y
Hf
Nb
Ta
La
Ce
Pr
Nd
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
T (°C)
E
6 7 9 8
538 412 456 309
37.0 13.2 38.3 16.6
2098 1048 1238 710
10261 9774 11071 11165
8.95 7.99 9.0 16.3
6.30 6.21 7.06 19.8
0.01 0.11 1.02 0.53
16.1 10.3 16.2 7.11
0.24 0.10 0.28 0.15
4.01 1.38 2.62 1.17
7.93 3.03 3.64 0.96
0.27 0.19 0.31 0.32
46.3 18.2 23.3 6.53
15.4 6.84 8.39 2.96
189 86.2 102 46.6
71.8 34.1 41.0 21.5
317 160 187 117
63.2 33.9 39.2 28.7
553 314 362 293
105 64.3 73.2 62.6
871 766 874 787
0. 0. 0. 0.
0 3 3 5
402 267 692 581 429 554 542
30.4 26.7 27.2 14.9 19.5 12.4 6.91
2886 1441 1109 1026 886 1054 1034
9815 10307 11203 9900 9964 10041 9842
13.4 13.2 27.0 5.72 12.1 14.2 5.78
7.57 7.45 36.0 2.89 8.69 8.34 2.69
0.19 0.51 0.01 0.03 2.54 0.02 0.02
22.2 18.2 15.0 8.21 14.5 13.4 10.1
0.35 0.27 0.02 0.06 0.10 0.06 0.05
6.50 2.65 0.59 0.80 0.29 0.93 1.70
11.6 4.86 0.98 2.07 1.04 3.10 4.07
0.27 0.19 0.14 0.29 0.15 0.30 0.32
59.3 26.5 9.2 18.1 8.88 21.8 22.0
21.5 9.93 4.50 6.59 4.09 7.78 7.52
264 125 71.0 85.3 59.8 93.7 89.2
101 49.2 33.8 33.8 27.5 35.9 35.5
434 217 183 156 144 161 151
83.5 43.7 44.5 32.5 33.4 32.3 31.1
703 381 452 297 324 287 292
128 70.1 97 58.1 67.6 56.5 57.8
849 835 837 777 803 760 709
0. 0. 0. 0. 0. 0. 0.
1 5
895 896 897
Note: Eu* = EuN/(SmN*GdN)0.5, and N denotes the normalization to the chondrite values of Sun and McDonough (1989). The calculation of Ti-in-zircon temperature is after the equation of Watson et al. (2006), assuming the activity of SiO2 and TiO2 to be 1. 52
898 899
53
901 902 903 904
No. -Pb)
Group
60 14 57 38 69 54 18 19 27 06 70 67 30 07 45 33 41 31 56 15 28 21 13 47 23 34 42 11 46 32 53 65 52 12 09
I I I I I I I I I I I I I I I I I I I I II II II II II II III III III III III III III IV IV
Table 4 Zircon Lu–Hf isotope compositions for the Yangkou granitic gneisses from Yangkou in the Sulu Orogen 176Yb/177Hf
1σ
176Lu/177Hf
1σ
176Hf/177Hf
1σ
εHf(t)
1σ
TDM1 (Ma)
1σ
TDM2 (Ma)
1σ
TCHUR1 (Ma)
1σ
0.031631 0.017956 0.040866 0.014622 0.034921 0.040846 0.029539 0.021479 0.022979 0.021271 0.033695 0.025657 0.013427 0.015180 0.022608 0.033578 0.065612 0.036206 0.037386 0.032309 0.015073 0.013060 0.011510 0.000647 0.015549 0.049990 0.047364 0.026390 0.067705 0.065840 0.038960 0.025173 0.022936 0.064552 0.175255
0.000227 0.000099 0.000671 0.000272 0.000393 0.000470 0.000262 0.000181 0.000362 0.000236 0.000821 0.000325 0.000127 0.000123 0.000367 0.000446 0.002619 0.000573 0.000210 0.000203 0.000222 0.000123 0.000244 0.000023 0.000101 0.000379 0.001365 0.001516 0.001462 0.001627 0.001108 0.000526 0.000704 0.000925 0.001211
0.001012 0.000571 0.001373 0.000466 0.001137 0.001358 0.000966 0.000732 0.000765 0.000709 0.001087 0.000849 0.000505 0.000550 0.000798 0.001076 0.002384 0.001449 0.001265 0.001014 0.000547 0.000446 0.000415 0.000018 0.000524 0.001642 0.001580 0.000941 0.002367 0.002500 0.001486 0.000972 0.000893 0.002248 0.006012
0.000010 0.000005 0.000021 0.000007 0.000010 0.000012 0.000005 0.000007 0.000009 0.000005 0.000027 0.000006 0.000003 0.000003 0.000017 0.000008 0.000083 0.000024 0.000012 0.000010 0.000006 0.000003 0.000010 0.000001 0.000002 0.000015 0.000047 0.000044 0.000044 0.000046 0.000044 0.000015 0.000021 0.000033 0.000024
0.280396 0.280416 0.280456 0.280384 0.280401 0.280451 0.280393 0.280389 0.280403 0.280376 0.280403 0.280426 0.280388 0.280419 0.280413 0.280457 0.280533 0.280475 0.280423 0.280447 0.281417 0.281384 0.281316 0.281389 0.281428 0.281464 0.281852 0.281755 0.281756 0.281795 0.281799 0.281826 0.281807 0.281791 0.281877
0.000013 0.000015 0.000016 0.000012 0.000014 0.000014 0.000011 0.000011 0.000012 0.000012 0.000012 0.000015 0.000013 0.000012 0.000015 0.000014 0.000013 0.000011 0.000016 0.000018 0.000011 0.000011 0.000017 0.000017 0.000017 0.000013 0.000017 0.000013 0.000014 0.000013 0.000014 0.000014 0.000012 0.000013 0.000012
-2.8 -0.9 -1.5 -1.8 -2.9 -1.7 -2.8 -2.3 -1.9 -2.7 -2.7 -1.3 -1.8 -0.8 -1.6 -0.8 -1.4 -1.0 -2.4 -0.9 -1.7 -2.7 -5.0 -1.9 -1.2 -1.6 -16.2 -19.3 -20.0 -18.7 -18.0 -16.8 -17.4 -20.2 -18.9
0.8 0.9 0.9 0.8 0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.9 0.8 0.8 0.9 0.9 0.8 0.8 0.9 0.9 0.9 0.9 1.0 1.0 1.0 0.9 0.6 0.5 0.5 0.5 0.5 0.5 0.4 0.5 0.4
3940 3869 3896 3901 3946 3902 3939 3921 3906 3935 3939 3883 3899 3864 3896 3866 3895 3878 3929 3872 2533 2570 2660 2535 2517 2542 1997 2096 2176 2129 2065 2000 2021 2118 2224
18 20 21 16 19 19 15 15 16 15 17 20 17 16 19 19 21 15 21 24 15 14 23 22 23 18 24 18 20 18 20 19 17 19 19
4101 3992 4027 4045 4109 4037 4101 4074 4050 4097 4099 4013 4041 3983 4033 3982 4017 3999 4082 3993 2801 2863 3009 2814 2774 2794 2689 2881 2924 2844 2801 2725 2764 2881 2802
33 37 38 32 35 35 30 30 31 31 32 36 33 32 36 35 36 30 38 42 32 32 43 43 43 35 38 29 31 29 32 31 27 30 26
3789 3710 3737 3747 3795 3743 3789 3769 3751 3785 3788 3725 3745 3704 3739 3703 3731 3716 3776 3711 2173 2217 2320 2181 2154 2170 1539 1663 1736 1679 1620 1551 1577 1671 1735
20 23 24 19 22 22 17 17 18 18 19 22 20 19 22 22 24 17 24 27 17 16 26 26 27 21 28 21 23 21 23 22 20 22 22
176Yb/177Hf
905 906 907
No. U-Pb) #55 #01 #02 #51 #04
Group IV IV IV IV IV
#16 #26 #02 #35 #15 #33 #30 #08 #09 #13 #23
I I I I I I I I II II III
Table 4 (continued) 1σ
0.6 0.4 0.5 0.7 0.5
TDM1 (Ma) 2146 2096 2124 2141 2102
1.2 1.2 1.4 1.0 1.1 0.9 1.0 1.2 1.1 1.0 1.0
3879 3901 3836 3849 3813 3866 3861 3926 2662 2686 2155
1σ
176Lu/177Hf
1σ
176Hf/177Hf
1σ
εHf(t)
1σ
0.052206 0.087386 0.069020 0.046261 0.091413
0.000384 0.000778 0.000780 0.000378 0.000455
0.001766 0.003013 0.002536 0.001612 0.003161
0.000007 0.000018 0.000023 0.000009 0.000016
0.281752 0.281838 0.281799 0.281750 0.281840
0.000018 0.000012 0.000014 0.000019 0.000013
-21.3 -18.9 -20.0 -21.3 -18.9
0.039807 0.034703 0.024409 0.025738 0.030550 0.033185 0.050147 0.028092 0.045034 0.035072 0.050946
0.000346 0.000942 0.000157 0.000376 0.000368 0.000238 0.000386 0.000357 0.001997 0.000400 0.000442
0.001223 0.001111 0.001035 0.000854 0.000979 0.001063 0.001609 0.001011 0.001615 0.001316 0.001869
0.000011 0.000028 0.000009 0.000015 0.000011 0.000006 0.000012 0.000007 0.000069 0.000013 0.000013
0.280458 0.280433 0.280476 0.280452 0.280489 0.280455 0.280500 0.280407 0.281376 0.281343 0.281750
0.000026 0.000025 0.000031 0.000016 0.000019 0.000014 0.000017 0.000024 0.000023 0.000018 0.000018
-1.1 -1.7 0.0 -0.4 0.6 -0.8 -0.6 -2.4 -4.6 -5.4 -20.0
54
1σ
25 18 20 26 19
TDM2 (Ma) 2953 2801 2872 2953 2800
1σ
39 27 30 41 29
TCHUR1 (Ma) 1710 1634 1673 1706 1638
35 33 41 22 26 19 24 32 32 25 25
4002 4038 3935 3958 3899 3983 3971 4078 2984 3029 2921
60 56 68 40 46 37 42 55 54 44 43
3718 3744 3669 3686 3644 3704 3696 3773 2310 2341 1719
41 38 47 25 30 22 27 37 36 29 29
29 21 23 30 23
#27 #11 #17 #03 #28 #18 #32 #14 #07 #19 #04 #29 #12 #01 #34
III III III III III III III III IV IV IV IV IV IV IV
0.060055 0.081598 0.044215 0.020990 0.048981 0.041102 0.069736 0.057762 0.043416 0.090011 0.068022 0.067899 0.080565 0.094586 0.085483
0.000615 0.000872 0.000577 0.000234 0.000331 0.000789 0.000969 0.000914 0.002233 0.000546 0.000972 0.000547 0.000387 0.001286 0.001734
0.002189 0.002894 0.001433 0.000804 0.001782 0.001546 0.002499 0.001996 0.001577 0.003158 0.002409 0.002387 0.003808 0.004148 0.003278
0.000020 0.000024 0.000015 0.000010 0.000012 0.000029 0.000030 0.000025 0.000075 0.000023 0.000027 0.000013 0.000021 0.000044 0.000063
0.281827 0.281817 0.281863 0.281733 0.281764 0.281829 0.281802 0.281797 0.281744 0.281869 0.281821 0.281768 0.281826 0.281884 0.281755
0.000019 0.000019 0.000020 0.000019 0.000018 0.000023 0.000019 0.000017 0.000018 0.000021 0.000019 0.000018 0.000015 0.000018 0.000032
-17.4 -18.1 -15.7 -20.0 -19.4 -17.0 -18.5 -18.4 -21.5 -17.9 -19.2 -21.1 -19.7 -17.8 -22.0
1.0 1.0 1.0 1.0 1.0 1.1 1.0 0.9 1.0 1.0 1.0 1.0 0.9 0.9 1.3
2065 2119 1972 2118 2131 2026 2118 2096 2148 2059 2085 2161 2161 2094 2233
27 28 28 26 25 32 27 24 26 31 28 25 23 27 48
2763 2806 2658 2924 2888 2736 2828 2822 2967 2736 2820 2937 2850 2732 2991
46 47 48 46 44 54 45 42 46 50 47 43 38 43 74
1610 1662 1513 1691 1692 1573 1667 1649 1714 1588 1630 1718 1697 1614 1790
31 33 32 30 29 37 31 28 29 36 33 29 27 32 56
#19 #04 #10
I I I
0.035975 0.025894 0.040366
0.000187 0.000167 0.000483
0.001181 0.000891 0.001449
0.000006 0.000005 0.000019
0.280460 0.280437 0.280479
0.000016 0.000022 0.000017
-0.9 -1.0 -0.9
1.0 1.1 1.0
3872 3873 3874
21 30 23
3991 3996 3992
40 52 41
3710 3713 3711
25 34 26
1σ
1σ 57 44 57 48 44 47 45 47 44 46 43 43 49 39
TCHUR1 (Ma) 2319 2206 2316 1556 1457 1512 1680 1532 1582 1574 1636 1636 1518 1547
1σ
33 23 33 27 26 29 26 28 25 28 25 25 32 22
TDM2 (Ma) 3006 2849 3002 2726 2545 2602 2857 2651 2722 2698 2810 2834 2569 2703
23 21 24 29 26 32 30 33 35 30 28 57 31 19 24
4166 4059 4043 4043 4001 3950 2749 2662 2718 2709 2997 2716 2744 2581 2959
42 39 44 50 47 56 47 52 54 49 46 85 50 36 41
3837 3760 3747 3749 3717 3680 1640 1569 1629 1575 1771 1592 1616 1434 1756
27 24 28 34 30 37 35 39 41 36 32 66 37 22 28
908 909 910 911
No. U-Pb) #12 #15 #18 #03 #17 #11 #05 #06 #07 #08 #16 #09 #01 #13
Group II II II III III III III III III III IV IV IV IV
#05 #21 #14 #24 #18 #02 #08 #22 #19 #07 #04 #11 #01 #20 #15
I I I I I I III III III IV IV IV IV IV IV
912 913 914 915
Table 4 (continued) 1σ
176Lu/177Hf
1σ
176Hf/177Hf
1σ
εHf(t)
1σ
0.019394 0.002297 0.016513 0.029121 0.072621 0.095755 0.059786 0.066935 0.065534 0.075027 0.078537 0.068368 0.123619 0.078103
0.000409 0.000119 0.000905 0.000125 0.000758 0.001138 0.000308 0.000760 0.002399 0.000902 0.001091 0.000706 0.002564 0.000922
0.000617 0.000074 0.000567 0.001142 0.002687 0.003200 0.002196 0.002453 0.002310 0.002694 0.002862 0.002257 0.005425 0.002635
0.000011 0.000004 0.000034 0.000006 0.000034 0.000031 0.000016 0.000032 0.000074 0.000029 0.000034 0.000021 0.000089 0.000020
0.281326 0.281376 0.281325 0.281828 0.281933 0.281914 0.281784 0.281881 0.281847 0.281863 0.281832 0.281813 0.281975 0.281877
0.000024 0.000017 0.000024 0.000019 0.000018 0.000020 0.000018 0.000020 0.000018 0.000019 0.000017 0.000017 0.000020 0.000015
-5.0 -2.4 -4.9 -16.8 -13.9 -14.8 -18.9 -15.6 -16.8 -16.4 -19.0 -19.4 -15.2 -17.3
1.2 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.0 1.0 0.9
TDM1 (Ma) 2661 2558 2658 2006 1940 1995 2126 2001 2042 2041 2096 2089 2032 2017
0.049497 0.047690 0.031686 0.051529 0.031103 0.026657 0.091785 0.078512 0.092629 0.070706 0.079768 0.088409 0.085659 0.055128 0.086109
0.001163 0.001182 0.000116 0.000604 0.000189 0.000155 0.000874 0.001533 0.001244 0.000977 0.000479 0.000365 0.000913 0.000925 0.000713
0.001416 0.001538 0.000972 0.001574 0.000924 0.000861 0.003673 0.003588 0.004143 0.003462 0.002614 0.003855 0.003895 0.001755 0.003030
0.000030 0.000033 0.000007 0.000017 0.000005 0.000008 0.000021 0.000056 0.000034 0.000016 0.000015 0.000013 0.000058 0.000023 0.000023
0.280395 0.280453 0.280420 0.280463 0.280437 0.280456 0.281855 0.281893 0.281876 0.281886 0.281743 0.281887 0.281875 0.281921 0.281766
0.000017 0.000015 0.000018 0.000022 0.000020 0.000024 0.000020 0.000022 0.000023 0.000021 0.000019 0.000038 0.000021 0.000014 0.000017
-3.8 -2.1 -1.8 -1.8 -1.1 -0.2 -17.2 -15.8 -16.7 -17.4 -22.0 -17.5 -18.0 -15.3 -21.4
1.0 1.0 1.0 1.1 1.1 1.2 1.0 1.0 1.1 1.0 1.0 1.5 1.0 0.9 0.9
3984 3917 3903 3907 3877 3845 2110 2049 2107 2052 2209 2072 2093 1908 2201
176Yb/177Hf
Note: The “t” used for calculation of εHf(t) and Hf model ages for Group I, II, III and IV zircon domains are 3.67 Ga, 2.10 Ga, 790 Ma and 720 Ma, respectively.
916 917
55
38 26 37 31 31 33 30 33 29 32 30 29 38 26
Highlights
918 919 920
Eoarchean zircons as old as 3.7 Ga are found in Neoproterozoic granitic gneisses;
921
The Eoarchean zircons show negative εHf(t) values of -2.8 to -0.9 and CHUR Hf model ages of 3.74-3.96 Ga;
922 923
The Eoarchean zircons were derived from reworking of the early Eoarchean crust;
924
Paleoproterozoic to Neoproterozoic zircons were derived from reworking of the Archean crust;
925 926 927
The relict zircons of Eoarchean age record the growth and reworking of the most ancient crust in the Yangtze Craton.
928 929 930
Conflict of Interest
931 932 933 934
I, on behalf of all the authors, declare that we have no conflict of interest of our
935
present work.
936 937
Yi-Xiang Chen
938
October 4, 2019
939
56