§ 4 Primitive Near-Rings

§ 4 Primitive Near-Rings

102 $ 4 PRIMITIVE NEAR-RINGS This paranraph presents a discussion o f t h e " b u i l d i n q stones, near-rinqs a r e made o f " , Similar t o r ...

999KB Sizes 0 Downloads 121 Views

102

$ 4 PRIMITIVE NEAR-RINGS

This paranraph presents a discussion o f t h e " b u i l d i n q stones, near-rinqs

a r e made o f " ,

Similar t o r i n q theory,

the so-called t h e "atoms"

"primitive near-rinqs".

a r e n o t t h e simple near-

r i n g s as one m i o h t e x p e c t a t a f i r s t g l a n c e . an i m p o r t a n t c o n n e c t i o n (4.47).

g i v e n a n e a r - r i n q N,

f r u i t s (= N-groups)

r e c o q n i z e them b y

we l o o k a t a l l o f i t s

and ask, w h e t h e r t h e r e a r e f a i t h f u l and

' ' e n o u g h s i m p l e " o n e s amonq t h e m . N " p r i m i t i v e on t h i s N-group". p r e c i s e we f i x

however,

The i d e a t o c o n s i d e r p r i m i t i v e

n e a r - r i n g s comes f r o m t h e b i b l e ( " Y o u w i l l their fruits"):

There i s ,

If t h i s i s t h e c a s e , we c a l l

S i n c e "enouqh s i m p l e "

i s not

i t s menninq i n w a n t i n g N-qroups o f t y p e v.

The r e s u l t i n q c o n c e p t i s t h a t o f " v - p r i m i t i v i t y " . We g e t t h e h i e r a r c h y 2 - p r f r n i t i v i t y < T > l - p r i m i t i v i t y < Z ' mitivity,

discuss conditions,

O-pri-

w h i c h f o r c e some o f t h e s e c o n c e p t s

t o c o i n c i d e a n d make a l o t o f w o r k t o w a r d s a d e n s i t y t h e o r e m which i s c o m p a r a t l e t o t h e c e l e b r a t e d one i n r i n o t h e o r y due

t o N . J a c o b s o n . We r e a l l y q e t o n e f o r 2 - p r i m i t i v e n e a r - r i n q s w i t h i d e n t i t y (4.52).

A d d i n q a c h a i n c o n d i t i o n , we a r r i v e a t

a Wedderburn-Artin-like

s t r u c t u r e theorem (4.60).

Before that,

we g e t " b e t t e r a n d b e t t e r " d e n s i t y - l i k e s t r u c t u r e t h e o r e m s f o r 0-,

1- a n d 2 - p r i m i t i v e n e a r - r i n g s .

theorems on v - p r i m i t i v e symmetric v - p r i m i t i v e

I t comes o u t t h a t m a n y

n e a r - r i n q s c a n be d e r i v e d f r o m z e r o -

n e a r - r i n q s w h e r e t h e y a r e much e a s i e r

t o o b t a i n s i n c e t h e s e ones behave more l i k e r i n q s . many p r o o f s c o n c e r n i n g e v e n z e r o - s y m m e t r i c

However,

near-rinqs

differ

t o t a l l y f r o m t h e comparable ones i n r i n g t h e o r y . Anyhow,

t h e " b u i l d i n g stones" mentioned above ( 2 - p r i m i t i v e

n e a r - r i n g s w i t h i d e n t i t y ) a r e shown t o b e d e n s e i n or

Maff(r) ( i f

MGo"k51 ( r ) t M c ( T ) fixed-point-free

No

i s a ring) or i n

( i f No

MGo,{al

i s a non-ring),

automorphism group

where

(r).

AutN 0

HomD(r,r)

(r)

or

Go

i s the

I n particular,

4a General

103

i f Go = ( i d ) , t h e l a t t e r t w o o n e s a r e Mo(r) a n d M ( r ) . F i n a l l y , t h e d e n s i t y p r o p e r t y i s s e e n t o be a k i n d o f a n i n t e r p o l a t i o n p r o p e r t y and a " p u r e l y i n t e r p o l a t i o n - t h e o r e t i c " r e s u l t w i l l be o b t a i n e d . R e c a l l a g a i n ( p . 1 ) t h a t r * = r \ { o ) , a n d so o n .

a 1

G E N E R A L

1 . ) DEFINITIONS A N D E L E M E N T A R Y RESULTS 4.1

CONVENTION I n a l l w h a t f o l l o w s , w w i l l be a n y n u m b e r unless otherwise specified.

E I O , ,Zl ~ 4.2

DEFINITION

( a ) 1.4 i s c a l l e d u - p r i m i t i v e on

Nr:

<->

Nr

is f a i t h f u l

o f type w.

y:

( b ) ri i s v - p r i m i t i v e : <=> 3 N r E N N i s w - p r i m i t i v e on ( c ) I A N i s c a l l e d a u - p r i m i t i v e i d e a l o f N : <-> N/I w - p r i mi t i ve . 4.3

Nr. is

T h e n the following

PROPOSITION L e t ' I be an i d e a l o f N . conditions are equivalent: ( a ) I i s w-primitive. (b)

3 NrENq:

I =

(o:r)

( c ) 3 L s$, N : I = ( L : N ) Proof.

( a ) ->

Nr is

A A

o f type w.

L i s v-modular.

( b ) : I i s w - p r i m i t i v e -> N/I i s u - p r i m i t i v e N / I r -> Nr ( a s i n 3 . 1 4 ( b ) ) i s o f t y p e w a n d

o n some I = (o:r).

( b ) -> ( c ) : L e t r be = Ny p I o l . ( 0 : ~ )= : L . Then 'L L i s m o d u l a r . By 3 . 4 ( e ) , N / L r , so L i s w-modular. Finally, I = ( o : r ) = (o:N/L) = (L:N). nN

( c ) => ( a ) : T a k e N / L = : r . T h e n ( a s above) I = (L:N) = ( o : r ) .

Nr

i s o f type w and

8 4 PRIMITIVE NEAR-RINGS

104

4.4

COROLLARY

The f o l l o w i n g c o n d i t i o n s a r e e q u i v a l e n t :

(a) N i s w-primitive. (b) (c)

4.5

I01

3

i s a w-primitive ideal.

L 3% N :

t w-modular A (L:N)

IOI.

=

REMARKS ( a ) Observe t h a t ( c ) i n 4.3 and 4 . 4 q i v e " i n t r i n s i c " characterizations o f primitivity

-

t h a t w i l l be

f o r i t e n a b l e s one t o r e c o g n i z e

extremely helpful,

p r i m i t i v i t y " w i t h i n N". (b) I f

N i s v - p r i m i t i v e on r t h e n IA N

if

i s a w-primitive

(c) 2-primitivity

Nv

( d ) The n e a r - r i n g s (e)

ideal then

r

Io?

1 4

N.

and

i m p l i e s 1 - p r i m i t i v i t y and t h i s i n t u r n

implies 0-primitivity n e a r - r i nqs.

N $. f 0 1 ,

( a l w a y s o n t h e same g r o u p ) .

o f 3 .8 a r e e x a m p l e s o f w - p r i m i t i v e

(on Z4).

If N i s v-primitive

on

r

then

M(r)

N 4

(1.48).

( f ) See 95 o f B e t s c h ( 3 ) f o r a d i s c u s s i o n o f t h e s p a c e s o f w-primitive 4.6

PROPOSITION L e t i d e n t i t y e.

( v = 1,2)

ideals

of

NEWo.

N contain either a l e f t or a riqht

Then

(a) Every u - p r i m i t i v e i d e a l I o f N i s modular.

(b) I f e i s a l e f t i d e n t i t y o f N t h e n N i s 1 - p r i m i t i v e iff N i s 2-primitive

(and i n t h i s case e i s a two-

sided identity). Proof.

( a ) I f e i s a l e f t i d e n t i t y i n N t h e n (because

N/I

i s w - p r i m i t i v e o n some

of

N/I

by 3.4(c).

So

N/Ir) e + I

\f nEN: e n

f

i s an i d e n t i t y

n e E n {mod I ) .

If e i s a r i g h t i d e n t i t y , t h e a s s e r t i o n i s t r i v i a l . (b) L e t N be I - p r i m i t i v e on 3.4(c),

Nr

e i s a two-sided

i s unitary.

Nr.

By

i d e n t i t y f o r N.

Flow a p p l y 3 . 7 ( c )

By 3 . 4 ( b ) ,

and 3 . 1 9 ( a ) .

105

4a General

4.7

PROPOSITION L e t FI be s i m p l e a n d N i s v - p r i m i t i v e on r. P r o o f . (o:r) 4 N , so the c o n t r a d i c t i o n

4.8

Nr

(o:r) = to1 Nr = { o l ) .

b e o f t y p e w . Then

(for

(o:r) = N

gives

PROPOSITION ( B e t s c h ( 3 ) ) . L e t t h e r i n g N be w - p r i m i t i v e on r . T h e n N i s a p r i m i t i v e r i n g on t h e N-module r ( ( N . J a c o b s o n ) , p. 4 ) .

Proof, I f

r

= Ny

abelian. If nEN:

then

% r -N N/(o:y)

nl+(o:$),

(r,+)

is

n 2 + ( o : y ) ~ N / ( o : y ) then

n(nl+(o:y)+n2+(o:y))

= n ( n , t ( o : y ) ) + n ( n 2 + ( o: y ) )

v

and

.

= nnlt(o:y)+nn2t(o:y)

=

Hence tf y l , y 2 ~ r nEN: n(y1ty2) nyltny2, and N r i s a ( r i n g - ) module. Each N-submodule o f N r i s a n i d e a l , s o = l o ) o r = r . F i n a l l y , Nr p { o ) by a s s u m p t i o n , s o Nr i s i r r e d u c i b l e a n d N i s p r i m i t i v e on r . 4.9

C O R O L L A R Y (Ramakotaiah ( 1 ) ) . I f N i s commutative and u - p r i m i t i v e then N i s a f i e l d .

LEX~(N):

(L:N) = {OI. L 9 N , s i n c e P r o o f , BY 4 . 4 ( ~ ) , 3 N i s c o m m u t a t i v e . By 3 . 2 5 , (L:N) is the greatest i d e a l i n L, s o L = (01 a n d N c o n t a i n s a r i g h t i d e n t i t y . By 1 . 1 0 7 ( c ) , N i s a r i n g , h e n c e a p r i m i t i v e r i n g by 4 . 8 a n d by ( N . J a c o b s o n ) , p . 7 a f i e l d . In ( 3 ) , R a m a k o t a i a h s h o w s t h a t i f I q N = N o a n d I €g0(t\1) t h e n I is a 0 - p r i m i t i v e ideal. Near-rinas N with a f a i t h f u l , s i m p l e , n o n t r i v i a l N-group a r e c a l l e d ? - p r i m i t i v e a n d a r e s t u d i e d in H a r t n e y ( 4 ) , M e l d r u m ( 7 ) , ( 1 3 ) . S e e a l s o B e i d l e m a n (7),(8),(9). H o l c o m b e blalker ( 1 ) s t u d y 3 - p r i m i t i v e n e a r - r i n q s PI, w h i c h m e a n s t h a t N h a s a f a i t h f u l N-group o f t y p e 3 ( s e e t h e l a s t l i n e s o f p. 80).

8 4 PRIMITIVE NEAR-RINGS

106

2 . ) T H E CENTRALIZER

4 . 1 0 DEFINITION E n d N ( r ) = H m N ( r , r ) =: C N ( r ) = : C i s c a l l e d t h e c e n t r a l i z e r o f Nr ( c f . K a a r l i ( 2 1 , R a m a k o t a i a h ( 3 ) ) .

A u t N ( r j =: G o .

A u t N ( r ) =: G N ( r ) =: G;

0

Go:

if

=

~ E C ;

otherwise 4 . 1 1 REMARKS ( a ) (C,.)

C Q = {o} ( b ) ~ E <=> (c) If 4 . 1 2 NOTATION

(ci,o)

.

N 4 M C N ( r ) (l-1 5

is f a i t h f u l then

NT

If

fn:

nEN,

l i k e w i s e .:G

a n d (Go,") are q r o u p s , ( " g r o u p s w i t h z e r o " ) a r e rnonoids.

i s a monoid, a n d (Go,,")

(GO,")

;

r

-+

'I

Y

-c

ny

;

FN(r):=

M&9.

ffnlnENl =: F .

4 . 1 3 PROPOSITION ( M l i t z ( 3 ) ) .

(a) If

= ImcM(r)I

(b)

tl

hECN(r):

(c) If Proof.

tl

CN(r)= fom) = : MF(r).

Nr i s m o n o g e n i c t h e n

Q =

r

(a) If YET:

WfEF: mof = h/n = id.

then

CN(r) = { i d } .

hECN(r)

and

fnEFN(r)

then

(hofn)(y) = h(ny) = nh(y) = ( f n o h ) ( y ) ;

so

hEMF(r).

sMF(r). I f y 1 , y 2 & r = Ny a n d y 1 = n l y A y 2 = n 2 y . Then

C o n v e r s e l y , l e t f be

n&N

then

f(nv1) =

3

nl,n2EN:

(fof,)(vl)

=

(fnof)(vl)

= nf(Y1)

and

107

4a General

Hence

feCN(r).

(b)V

heCN(r)

noc:R: h ( n o ) = n h ( o ) = n o .

( c ) f o l l o w s from ( b ) . 1.14 N O T A T I O N

eo:

=

e o ( N r ) := { y c r

el:

=

el(Nr):

Ny = NO =

Rl.

ri.

= C Y E ~ NY =

1 . 1 5 REMARKS ( B e t s c h ( 6 ) ) .

(a)

oEeo,

e l $. 0 ( c ) eon e l (b)

P 0.

so

eo

<->

Nr i s m o n o q e n i c . n $. r .

= 0 <->

r

( d ) Nr i s s t r o n q l y m o n o g e n i c -> ( e ) Nr

eo

i s u n i t a r y ->

and

=> y = l y c R

( f ) G ( B o ) = Bo g r o u p s on

=

A G(B1)

eo

and

(for

= R

w =

= Bow

el,

y e e 0 ->

Ny

R ==>

nocR => Nu = NnocNo = R =I>

so G i n d u c e s p e r m u t a t i o n

el, (if

WE^^)

+ 0)

el

on

el.

The n e x t p r o p o s i t i o n i s a " S c h u r - t y p e lemma". 4 . 1 6 P R O P O S I T I O N ( B e t s c h (S), M l i t z ( 3 ) ) . ( a ) Nr i s s i m p l e (hEC A 2

(b)

n

A

yEB1:

= { o } ->

h(y)EOl)

Nr i s N - s i m p l e

->

C = Colu M o n N ( r )

he6.

->

C = Epi,,,(r,Q)u E p i N ( r , r )

EpiN(r,n) = {el!). (c)

Nr i s N o - s i m p l e

=>

C = G0

and

.

(if

NEW,,

84 PRIMITIVE NEAR-RINGS

108

Proof. ( a ) follows from the f a c t t h a t h s C : Ker h so e i t h e r Ker h = Col ( t h e n h s M o n N ( r ) ) o r Ker h = r ( t h e n h = 0 ) . We may assume t h a t I f hEC A ] yeel: h(y)sel then h 9 6 , so h s M o n N ( r ) . Now h ( r ) = h(Ny) = Nh(y) = r . ( b ) V hsC: Im h = r .

Im h sN

r,

so e i t h e r

Im h = R

SIN

r

r,

+ Iol.

or

( c ) f o l l o w s from ( b ) . i n which We a r e mainly i n t e r e s t e d i n t h e c a s e t h a t C = G o , e v e r y n o n - z e r o N-endomorphism o f r i s an N-automorphism. 4.17 PROPOSITION (Betsch ( 6 ) ) .

( a ) G i s f i x e d - p o i n t - f r e e ( 1 . 4 ( b ) ) on e l . (b)

Nr i s s i m p l e t h e n

If

P r o o f . ( a ) Assume t h a t f o r

'd

6Er

3

= ny = 6 .

( b ) ->:

Then

nEN:

So

6 = ny.

C = Go <-> qEG

Then

and

1

A
yeel

r : r iN A. ~ ( y )= y .

g ( 6 ) = g(ny) = ng(y> =

g = id.

Assume t h a t h i s an N-isomorphism r + b c N h s C = G 0 c {6lu A u t N ( r ) , a c o n t r a d i c t i o n .

r.

I f hEC, h 6 then Ker h 9 r . s o Ker h = I o l . ?r T h e r e f o r e h i s a monomorphism and r Irn h . So Im h = r , a n d h s A u t N ( r ) . <=-:

-

4.18 C O R O L L A R Y ( B e t s c h ( 6 ) ) . I f Nr i s o f t y p e 1 o r i f i s s i m p l e a n d f i n i t e t h e n C = Go.

Nr

P r o o f . I f N r i s of t y p e 1 t h e n Nr i s s i m p l e . Assume t h a t h i s a n N-isomorphism r * A < N r. R e p r e s e n t r a s r = Ny and c a l l h ( y ) = : 6 . N6 = Nh(y) = h(Ny) = = h(r) = A. I f & E e l t h e n N6 = r . s o r = A , a c o n t r a d i c t i o n . I f beeo t h e n N6 = R = I o l , s o A = { o l a n d t h e r e f o r e r = C o l , which a q a i n i s a c o n t r a d i c t i o n .

109

4a General

Now a p p l y 4.15(d) a n d 4 . 1 7 ( b ) .

Nr

If 4.19 NOTATION

i s s i m p l e and f i n i t e ,

For

apply 4.17(bj.

y , 6 ~ ~ we r define (o:y)N

<->

6:

y

=

(0:a)

0 ?r

y

4.20

%

No

;

Go(y) = G o ( 6 ) .

6 : <->

REMARKS ( B e t s c h ( 5 ) ) .

(a)

%,?

( b ) The e q u i v a l e n c e c l a s s e s o f of (c)

r.

are equivalence relations i n

r.

on

Go

y,6Er:

=> (0:y)

%

y%6 -> NO

=

(for

p 6

(o:q(y))

The r e a s o n f o r d z f i n i n g

% %,%

?

are exactly the o r b i t s

= (0:s)

NO

via

3

%

y%6 ->

No

0

=> y a ) .

i n s t e a d o f N stems

f r o m 4 . 1 3 ( c ) : i n t h e f r e q u e n t case t h a t R = o t h e r w i s e be t h e a l l - r e l a t i o n i n a n y c a s e . 4.21 P R O P O S I T I O N (Betsch ( 6 ) ) . % t h e n ?, a n d % c o i n c i d e o n Proof.

If

nly

y%6

If

h : 'I ny

+

+

r

n6

= ( o : 6 ) =>

N = No

nl,n2~N n16

i s well defined.

t o be an N-automorphism,

Now

would

el.

= n 2 y ==> nl-n2E(o:y)

Therefore

r, ?

Nr i s u n i t a r y a n d

then f o r a l l

(y,6Ee1)

g ( y ) = 6 ==>

gEGo:

so

h ( y ) = h ( 1 y ) = 1 6 = 6,

= n26.

h turns out

hEG. hence

y

5

6.

84 PRIMITIVE NEAR-RINGS

110

3 . ) INDEPENDENCE A N D D E N S I T Y

An a p p r o p r i a t e frame f o r o u r

n e x t c o n s i d e r a t i o n s i s g i v e n by

4 . 2 2 D E F I N I T I O N ( M l i t t ( 9 ) ) . L e t M be a n a r b i t r a r y s e t a n d t h e s e t of a l l f i n i t e s u b s e t s o f M . A map f(M) r : f ( M ) + INo i s c a l l e d a r a n k map i f

(a) r(0) = 0 (b)

1

(c)

ti F€f!(M)

FE$(M)

mEM:

ti

r(F u E m l )

m,ncM:

= r(F)+a

with

aEI0,l)

[ r ( F u ( m l ) = r ( F W I n 1 ) = r ( F ) ->

r ( F w { m , n I ) = r(F)].

->

F i s then c a l l e d r-independent i f

r(F) = IF[.

4.23 R E M A R K

With r e s p e c t t o r - i n d e p e n d e n c e , S t e i n i t z ' s t h e o r e m i s f u l f i l l e d ( s e e A . Kertesz, "On independent s e t s of

e l e m e n t s i n a l g e b r a " , Acta S c i . M a t h . 260 - 2 6 9 ) . S e e a l s o K a a r l i ( 2 ) .

(Szesed) 21, 1960,

4.24 EXAMPLES

r ( F ) : = I F [ . Then r i s a r a n k f u n c t i o n a n d every ( f i n i t e ) subset i s r-independent.

( a ) Define

( b ) Take a v e c t o r s p a c e M o v e r a f i e l d K .

Set r(F): = = dim L ( F ) ( l i n e a r h u l l ) . r i s a rank function and r-independence i s j u s t l i n e a r independence.

( c ) Take a n N - g r o u p r a n d d e f i n e f o r e a c h

r(@) a s t h e number o f non % - e q u i v a l e n t g e n e r a t o r s ( i . e . r ( Q ) = l @ n 6 1 / Q l ) . Then r i s a r a n k f u n c t i o n a n d #

= {y l y . . . , y n l

i s r-independent

if

oEf(I')

#eel

tr i S j : v l h j . This independence i s c a l l e d %-independence. The same c a n be d o n e f o r 5.

and

111

4a General

In the theory of rings each primitive r i n g R i s isomorphic t o a " d e n s e " s u b r i n g T'? o f a r i n g HomD(I',I') f o r some i r r e d u c i b l e R-module I' a n d w i t h D = HomR(I',I') ( t h e c e n t r a l i z e r ) making Dr i n t o a v e c t o r s p a c e ( s e e ( N . J a c o b s o n ) , p . 26 3 1 ) . D e n s i t y means h e r e ( i n o u r n o t a t i o n ) t h a t SEN ( y l , ...,y s l lin. indep. i n r 1 61 6 5 ~ r 3 FeR j i E : ( l , sl: r(yi) = 6i.

-

...,

,...,

( I t i s c l e a r t h a t o n l y v a l u e s o f i n d e p e n d e n t e l e m e n t s c a n be arbitrarily prescribed.) We a r e g o i n g t o p r o v e s i m i l a r t h e o r e m s f o r n e a r - r i n g s . B u t b e f o r e d o i n g s o we h a v e t o t a k e a l o o k a t t h e d e n s i t y c o n c e p t ( s e e a l s o Adler ( 1 ) and Ramakotaiah-Rao ( I ) ) . 4 . 2 5 N O T A T I O N L e t M be a s u b s e t o f some a t o p o l o g y i n M as i n B e t s c h ( 7 ) :

We i n t r o d u c e

M(T).

I f mcM a n d y c r , d e f i n e S ( m , y ) : and q : = fS(m,y)[mcM A y E r 1 .

= Im'EM(m'(y)

= m(y)l

4 . 2 6 P R O P O S I T I O N ( B e t s c h (7),(11)). (a)

yis

t h e s u b b a s e o f some t o p o l o g y t o p o l o g y " ) on M.

i s dense i n M

( b ) NEM

<->

V

SEIN

tf m e M

w.r.t.

7

yl, . . . , y

7

(the "finite

<==>

s ~ r3

nEN

V

ie(l,

...,$ 1 :

: n ( q ) = m(v+

P r o o f . s t r a i g h t f o r w a r d and hence o m i t t e d . I n a l l t h a t f o l l o w s , " d e n s i t y " means " d e n s i t y w i t h r e s p e c t t o o f 4.26". 4.27 REMARKS ( a ) I f M and N a r e s u b n e a r - r i n g s o f M ( r ) t h e n i t i s easy t o see t h a t No i s d e n s e i n Mo i f f No+Mc(r) i s d e n s e i n Mo+Mc(r). N o t e t h a t N o t M c ( r ) a n d M o + M c ( r ) a r e no n e a r - r i n g s i n g e n e r a l ( s e e 4 . 5 3 ( e ) ) , e x c e p t i n some i m p o r t a n t s p e c i a l c a s e s . ( S e e 4 . 5 4 and 4 . 6 0 . )

112

$ 4 PRIMITIVE NEAR-RINGS

( b ) If N i s d e n s e i n i n Mo.

M then

9 {id)

( c ) Observe t h a t i f H

r

automorphism group of

tf

b

mEMH(r)

= NnMo(r)

i s dense

i s a fixed-point-free

MH(r) r

then

(since

Mo(l')

h(m(o)) = m(o)).

hEH:

If H = { i d )

No:

then

M(r).

MH(r) =

( d ) We w i l l b e m a i n l y i n t e r e s t e d i n n e a r - r i n g s w h i c h a r e d e n s e i n M (r) a n d 77 (I-):= M (r)+Mc(r) G: G: G: ( 4 . 5 2 and o t h e r s ; . 4 . 2 8 T H E O R E M ( R a m a k o t a i a h (2), B e t s c h ( 7 ) ) .

L e t H be a f i x e d -

r.

p o i n t - f r e e g r o u p o f a u t o m o r p h i s m s o f some g r o u p

(a)

W

v

A

(b)

ti

YET*

3

6Er

mEMH(r):

~ ' E P \ H ~ m: ( y ' ) =

tf S E N b

y1 y

0).

., Y ~ E ~ *

. .

,

Hyi

6 1 y . . . y 6 s ~ r 3 mEMH(r) (c) If

H

6

<->

b

SEN

tf

{id),

W

Mc(r)

(d) I f

3

61y

Proof.

W

nEN

c RH(r),

N

v

V SEN

<->

v

E

iE{l,...,sI:

, Hri

Y~,....Y,E~*

Hyi

...,d S € r 3

nEN

Hyj

tj i c { l , . . . , s I :

I n a n y c a s e we may assume t h a t RH(r) = MH(r)

otherwise (a)

aEHy

-fl

haEH:

Define

mEM(r)

by

a = h,(y)

m(y)

= 6

and

0

mEMH(r);

d e t e r m i n e d by t h e c o n d i t i o n s ( v y ' ~ r \ H y : m(y')

9j

= bi.

HH(r) <-> for

i

+j

= 6i.

{id),

for

(since H i s fixed-

haV)

m(a):= I

clearly

n(yi)

n(yi) H

i

for

M(r).

point-free).

A

=+

= 6i.

m(yi)

Hyj

=/=

N i s dense i n

ylY...,ysEr,

j

M H ( r ) <->

... ,s?:

i E { l ,

i

for

Hyj

i s dense i n

NrMH(r)

61y...y6s~r

= 6 A

(m(y)

= 0).

m(y)

aEHY

.

Then a&HY m i s uniquely = 6 A

113

4a General

( b ) D e f i n e maps

mi€MH(r)

b

= o

mi(y')

y'4Hyi:

m: = m l +

Then

with

...+m S

w i l l do t h e j o b .

By ( b ) a n d 4 . 2 6 ( b ) .

<-:

If

Hyi

p

Hyj

If

Hyi

= Hyj,

V

n(yj)

and

= tii

(as i n ( a ) ) .

( c ) =+:

->

mi(yi)

for

i

9 b

mEMH(r)

the result i s clear.

j,

= m(yi)

nEN: n ( y i )

a>

and t h e r e s u l t f o l l o w s a g a i n f r o m

= m(yj)

4.26( b ) . ( d ) +: By 4.27,

I f one

( s a y yl)

yi

= bi-6

V

fulfills

ncEMc(r) Take

= 61.

...,sl.

for

i ~ { 2 ,

ic{l,.,.,s):

Two o r m o r e

take

= 0,

map w h i c h i s c o n s t a n t no(yi)

n(yi)

=

MH(r).

t o be t h e

n0ENo

with n: = notn

Then

C

= tii.

c a n n o t be z e r o .

yi

(R,,(r))o

i s dense i n

No

If all

yi

the

0,

r e s u l t follows from ( c ) . <==: I f

and

yl,

SEN,

... , y S c r * define

61,...,6s~r,

Then

3

n(o) =

nEN 0,

iE{l,

nENo

so by 4 . 2 7 a )

,

Y ~ + ~= :o

..., s + l l :

and b y ( c ) ,

M i s dense i n

4.29 THEOREM ( B e t s c h ( 7 ) ) .

No

i

and

6s+1:

=

= tii.

H 5 Aut(T)

and

r

Then t h e f o l l o w i n g c o n d i t i o n s a r e e q u i v a l e n t :

(a)

i s discrete i n

RH(r).

(b)

i s discrete i n

MH(r).

( c ) H h a s o n l y f i n i t e l y many o r b i t s o n

( i n t h i s case, H

+ {id}.

( a ) ->

Then

r

t r i v i a l l y hold f o r

i s finite). since

MH(r),

as i n

r. H = {id).

S o we assume t h a t

MH(r)Em0.

(b): Trivial,

0.

Because o f

i s dense i n

4.26.

Proof. Again the r e s u l t s

j

g,,(r).

rev,

Let

n(yi)

for

Hyj

Hyi

MH(r) f

FIH(r).

§4 PRIMITIVE NEAR-RINGS

I14 ( b ) ->

( c ) : Assume t h a t H h a s i q f i n i t e l y many o r b i t s

r.

on

3

Then

If

msMH(r) a n d a n e i g h t o u r h o o d U o f m.

Take

3

SEN

y1

= HyJ

Hyi

assume t h a t

,..., y S ~ F :U

then Hyi

S(m,yi)

+ Hyj

for

S

3

fl

i = l

S(m,yi). So we w i l l

= S(m,yj).

i

p

j.

S i n c e H has i n f i n i t e l y many o r b i t s ,

3

y S t l E r \ ( { o l u Hyl u

\

Then

Then

ml:

=

= m.I

P0

If m ( y S t 1 ) = so

m2

Anyhow,

m2

0

0

3

Hy,).

\y'

eiE:MH(I')

...t e s )

m (el+

and

ml

If m ( Y s t l ) m1

...,s t l l

i t C l ,

Define

...

and

E

fl S(m,yi) i=l

then

ml(Ys+l)

then

m2(yStl) = Y

dp m . U c o n t a i n s an e l e m e n t

= 0

+m

...,s t l l :

= mltestl.

m2:

S

are

jE.Il,

5 U.

=I= m(yst,), ~

+

and

+ 0 ~= m

so

(

~

c a n n o t be

discrete. ( c ) ->

(a):

I f H h a s o n l y f i n i t e l y many o r b i t s o n

t h e n each element o f

MH(r)

and o f

flH(r) i s

u n i q u e l y d e t e r m i n e d b y i t s e f f e c t o n f i n i t e l y many s u i t a b l e elements o f So

7is

discrete.

r.

r

~

~

115

4b 0-primitive near-rings

b l 0-PRIMITIVE N E A R - R I N G S

Now we s h a l l p r o v e a " d e n s i t y - l i k e "

s t r u c t u r e theorem f o r

0 - p r i m i t i v e n e a r - r i n g s , Gle s t a r t w i t h z e r o - s y m m e t r i c o n e s . We may a s ~ u m e ( 1 . 4 6 ) t h a t i f N i s 0 - p r i m i t i v e o n r t h e n N Q M ( T ) . G e n e r a l i z a t i o n s c a n b e f o u n d i n M l i t z (4),(3),(12) a n d K a a r l i ( 6 ) .

4 . 3 0 T H E O R E M ( B e t s c h ( 6 ) ) . L e t NewO be 0 - p r i m i t i v e o n r . I f N i s a r i n g t h e n N i s a p r i m i t i v e r i n o on t h e N-module

r and Jacobson's d e n s i t y theorem i s a p p l i c a b l e . I f N i s a n o n - r i n g t h e n we q e t a k i n d o f a d e n s i t y property:

...,y , ~ r , i c { l , ..., s ? : nyi

(D): \ scIN

3

ncN

Proof.

61,...,6s~r

6i.

N i s a r i n g we o n l y h a v e t o a p p l y 4 . 8 .

If

Now l e t l e t

V

%-indep.

yl,

N

s be

I n t h e t e r m i n o l o g y o f (D),

be a n o n - r i n g . > 1

and f o r

v

Lemma.

t

...,S I : fl

kc{ttl,

Vtc{l,

...,s - 1 1

tc{l,

be t h e statement

i = l

...,s - 1 1 :

(0:Yi)

let

$ (0:Yk)

S(t)

,

S(t).

P r o o f . By i n d u c t i o n o n t . Since f o r

(o:y)

YEel

V

i d e a l o f N,

i,jE{l,

i s a maximal l e f t

...,s l :

(o:yi)~

( o : y . ) = ( o : y . ) => yi%yj -=> i = j . J 1 J Particularly: S(1): k~(2, s l : (o:yl)$

E ( o : ~ . ) =>

v

...,

9(O:Yk). Now assume Then Since

S(t),

t

fl

s 2 3

(O:Yi)$(O:Yk) i=l (o:yk)

and

and

...,sl.

k~ftt2,

(o:Yt+l)$(o:Yk)*

i s maximal,

t

[I

(o:yi)+(o:Yk)

i=1

= (o:Yt+l)+(o:Yk)

= N*

$ 4 PRIMITIVE NEAR-RINGS

116

Since N i s not a r i n q , by 3 . 4 ( i ) , $(o:yk) than S f t t l ) .

t

n

n (o:yttl)+

(o:vi)

i=l

which i s n o t h i n q e l s e

Now r e t u r n t o t h e p r o o f o f 4.28 and l e t yl, . . . , y , , be a s i n (D). A g a l n we u s e i n d u c t i o n o n 61,.,.,6 tc{l,

S

...,s l .

t = 1

If

then

b

Now assume t h a t

b

iE{1,

..., t l :

By t h e lemma,

3

Therefore

Now we t a k e

: nttlyi

t

n

i=l

Since

(o:vi)$(o:y

LYttl

RcL: Lyt+l

= 6i,

nlyl

3

= 61.

ntEN

= 6i.

ntyi

nttl:

nlaN:

tE{l,,..,s-ll

L: =

+ {ol.

Lyttl

3

ylEel

$N

t+l),

hence

(3*4(a)),

= 6ttl-nt6t+l

=

LYttl

r.

.

and g e t \1 i E { l , and t h e p r o o f i s c o m p l e t e . = Ltnt

...,t t l l :

4.31 R E M A R K S

(a)

(D)

i s no " r e a l " d e n s i t y p r o p e r t y s i n c e t h e r e i s no

n e a r - r i n g i n s i g h t i n which f i n i t e topology). ( b ) From

and

(D) i t

N i s dense ( w . r . t t h e

+)

f o l l o w s (Ramakotaiah ( 2 ) ) t h a t ,

if

SEIN

a r e %-independent,

yl,...,yscr

?r

i=l

= W(Yi))). ( c ) The c o n t e n t o f 1Bli

= 1,

(0)

m i g h t be v e r y t h i n :

i f e.g.

(D) i s t r i v i a l . So i t i s n o t t o o s u r p r i s i n g

t h a t t h e c o n v e r s e o f 4.28 does n o t h o l d :

+)

( B e t s c h ) : If o n e c h a n g e s o f k.25 t o Y':={S(m,y)ln&:Mn A y€e,(r)] t h e n o n e g e t s a " r e a l " d e n s i t y t h e o r e m w.r.t. t h e r e s u l t i n g c o a r s e r topology.See also 9.230.

4b 0-primitive near-rings

117

L e t N be t h e n o n - r i n q {fEMo(iZ4)lf(2)E{0,21Af(3) 3f(l)I. In z4, O 1 = { 1 , 3 1 , 1 % 3 %( D ) i s f u l f i l l e d , b u t I0,21 QN Z4, so Z4 i s n o t s i m p l e a n d t h e r e f o r e N i s n o t 0 - p r i m i t i v e on Z 4 .

( d ) ( D ) i s equivalent t o t h e following property: (0’):

3

v

SEN

iEI1,

nEN

yl,. . . , y ,cr,

%-indep.

mE:M(r)

.,.,sI: nyi = m ( y i ) .

Now we t u r n t o a r b i t r a r y n e a r - r i n n s . 4.32 T H E O R E M

( a ) Let N be 0 - p r i m i t i v e o n r. Case 1: Nor -/= { 0 1 . Then N o i s 0 - p r i m i t i v e on so 4.30 i s applicable ( f o r r ) , and NC Case 2 :

5

NO

Mc(r).

Nor

(01.

r,

Then

Mc(r)

N =

and

r

i s a

non-zero simple g r o u p i s 0 - p r i m i t i v e on r a n d ( b ) Conversely, i f e i t h e r N o N, E Mc(r) o r i f N = Mc(r) where r (01 i s s i m p l e t h e n N i s 0 - p r i m i t i v e on Proof.

( a ) Anyhow,

If and

Nor

I01

e

N,

Mc(r).

then NO

No

r.

r

i s 0 - p r i m i t i v e on

i s o f t y p e 0 by 3 . 1 8 ( a )

r

(3.15(a)).

“by f a i t h ” , s o R = r a n d N = N, = Mc(r) by 1 . 5 0 ( b ) . S i n c e Ncr i s s i m p l e i f f r i s s i m p l e , ( a ) i s shown ( o b s e r v e t h a t Ncr Col!). If

Nor

=

(01,

No

= {01

+

( b ) A g a i n b y 3 . 1 8 ( t h i s t i m e by ( b ) ) , i f

N r i s o f t y p e 0 . S i n c e NccMc(r), N o a n d N, ( a n d hence N ) a c t f a i t h f u l l y o n r , s o N i s 0 - p r i m i t i v e o n I’. I f N = Mc(r), r $. Iol and s i m p l e , t h e r e s u l t i s clear.

0 - p r i m i t i v e then

118

4.33

§ 4 PRIMITIVE NEAR-RINGS

R E M A RK

(D) w o u l d

and i n

No

= (0:6)

r,

( i n

if

n o t n e c e s s a r i l y mean t h e same i n would be d e f i n e d by

%

Nr

(o:y)

y%fi:<->

=

il). Cf. 4 . 1 9 .

ideal i s a

4 . 3 4 THEOREM ( R a m a k o t a i a h ( 1 ) ) . E a c h 0 - p r i m i t i v e prime i d e a l

dp N.

P r o o f . L e t I b e a 0 - p r i m i t i v e i d e a l o f N. L e t Nr b e o f t y p e 0 w i t h g e n e r a t o r yo s u c h t h a t I = ( 0 : r ) (4.3). Assume t h a t

Ji $ (o:r),

J1J2

Jir SO

9 N: J1J2tI

= JiNy

(o:r) = I,

=

c Jiyo

+ {ol.

= Jiyo

Jiyo

0

r.

Now

J1 $ I

A 5

A J2$I.

Jir.

Since

By 3 . 4 ( a ) ,

r,

= Jlr =

JlJ2r

a contradiction.

R E MA R K I n 5 . 4 0 we w i l l s e e t h a t t h e c o n v e r s e o f 4 . 3 4

holds i f 4.36

r.

dN

Jiyo

4.35

J1,J2

i ~ { 1 , 2 1 , Jir

For

so

3

N = No

h a s t h e DCCN.

THEOREM ( R a m a k o t a i a h ( 1 ) ) . E v e r y m a x i m a l m o d u l a r i d e a l

I of

Nsno

Proof.

i s a 0 - p r i m i t i v e one.

L e t I b e a m o d u l a r m a x i m a l i d e a l . By 3 . 2 2 ,

I is

c o n t a i n e d i n a modular maximal l e f t i d e a l L . Since (L:N)

i s the largest ideal of N contained i n L

( b y 3.25), we g e t

by 3.21(a). By 4 . 3 ( c ) ,

I?(L:N)

and

(L:N)

By t h e m a x i m a l i t y o f I,

I i s 0-primitive,

i s modular

I = (L:N).

s i n c e b y 3.29 L i s

0-modul a r . By t h e w a y ,

if N i s 0 - p r i m i t i v e on

n o t necessarily simple (K.

r

a n d Ny = : A t h e n A i s

Kaarli).

F o r t h e r e s t o f t h i s s e c t i o n , we g i v e a d e s c r i p t i o n o f a c l a s s o f 0 - p r i m i t i v e near-rinqs which are n o t 1 - p r i m i t i v e . This d i s c u s s i o n i s d u e t o H o l c o m b e (5), w h e r e t h e p r o o f s c a n b e found,

too.

119

4b 0-primitive near-rings

4.37

4.38 DEFINITION I f

:'G

=

EFr, H < A u t ( T ) ,

(r,+)E(a,

t h e t r i p l e (T,B,H)

be the s e t of

r\el

NOTATION I f N r E N q , l e t A : = generators". If A sN r , let (cf. 3.14(a)!).

-

"non-

AutN/(o:A) ( A )

H ( B ) ~ B we , ,-all

c o m p a t i b l e i f a t l e a s t one o f t h e

following conditions i s satisfied:

r.

( a ) B i s no n o r m a l s u b g r o u p o f

3 YEAB 2 (3 h ' c H 3

(b) (c)

(3

A

4.39

BEB

tl

y~r\B

+

hEH : y+B h(y). R E B : y+B = h ' ( y ) ) h

1

Y ' E ~ \ B: h ' ( y ' ) - y ' & B ) .

be 0 - p r i m i t i v e on r , N a n o n - r i n o w i t h NE% i d e n t i t y a n d DCCL, a n d l e t A ( a s i n 4 . 3 7 ) b e an N - s u b g r o u p

THEOREM L e t

of

r

Then

such t h a t

i s not f a i t h f u l , b u t o f type 2.

NA

N i s n o t 1 - p r i m i t i v e on A,

many o r b i t s o n el,

G ( 4 . 1 0 ( b ) ) has f i n i t e l y

i s c o m p a t i b l e and

(T,A,G)

(where A i s a f i n i t e dimensional v e c t o r space o v e r the d i v i s i o n r i n g

GAvta)).

Conversely:

4.40

THEOREM L e t subgroup.

r

Let

b e an a d d i t i v e g r o u p and A be a n o n - z e r o

GA

be a r e g u l a r group o f

automorphisms

o f A w h i c h h a s o n l y f i n i t e l y many o r b i t s o n A. L e t H b e a subgroup o f (a)

( b ) each

Aut

(r,+)

such t h a t

i s compatible.

(r,A,H) hEH

i s r e g u l a r on

AA.

( c ) H h a s o n l y f i n i t e l y many o r b i t s o n (d)

hEH: h/,EG*.

Then

N = IfEMHu{a) ( r ) I f / A E M G A ( A ) l

0-primitive, a n d t h e DCCL.

b u t n o t 1 - p r i m i t i v e on

nA.

i s zerosymmetric,

r,

has an i d e n t i t y

5 4 PRIMITIVE NEAR-RINGS

120

r9

I f moreover

and A i s a f i n i t e d i m e n s i o n a l v e c t o r

A

tJ

s p a c e o v e r some d i v i s i o n r i n g D a n d i f then

N = If€M,,"~,)(r)lf/,EEndD(r))

r,

b u t n o t 1 - p r i m i ti ve on

"(

NE

hEH:

h/AED

i s also 0-primitive,

no,?i!z 3, , a n d

moreover

i s a ring.

o :A)

4 . 4 1 R E M A R K See a l s o H o l c o m b e ( 4 ) f o r t h e m o r e q e n e r a l c a s e t h a t A i s o n l y a f i n i t e u n i o n o f N-subgroups o f t y p e 2 w i t h zero intersection. 4.42

t h e n i n t h e n o n - r i n g case o f 4.30

GA = { i d )

REMARK I f

we g e t n e a r - r i n g s o f t h e f o r m N = ( f c M o ( r ) l f ( A ) F A ] ( s e e e . g . N o i n 3 . 8 ) . C f . R a m a k o t a i a h - R a o (1),(3),(4). Conversely,

(r,t)

if

i s a f i n i t e group and A a non-

t r i v i a l subgroup then

N:= { f E M o ( r ) l f ( A ) F A }

i s a finite

n e a r - r i n g w i t h i d e n t i t y , z e r o - s y m m e t r i c a n d 0-, b u t n o t 1 - p r i m i t i v e o n r. A i s j u s t t h e s e t o f n o n - g e n e r a t o r s and i s an N-subgroup s u c h t h a t N / ( o : A ) i s a non-ring if

lAI

> 2.

C\

1 - P R I M I T 1 V E N E A R - R I FIGS

Now l e t N b e 1 - p r i m i t i v e o n

r r

r.

C = Go

Then

(by 4 . 1 8 ) ,

i s n o t N-isomorphic t o a p r o p e r subgroup (4.17(bl),

= eouel

R = Col

(by 4.15(d)),

+

t~ L

Ak N , L EOI 3 Y E r : We s t i l l a s s u m e t h a t N E 4.43

THEOREM

Ly =

M(r).

or

r

R =

r

(3.2)

and

(by 3.4(a):.

r . Then Nor f ( 0 ) A R = r . T h e n N o r , Nc = Mc(r) a n d e l = r .

(a) L e t N be 1 - p r i m i t i v e on C a s e 1:

on

If

No

i s a r i n g then

i s 1-primitive

N i s dense i n

Maff(r)

where r i s a v e c t o r space o v e r t h e d i v i s i o n r i n g D : = HomN (F,r). 0

121

4c 1 -primitive near-rings

If

No i s n o t a r i n g t h e n applicable.

(D)

Case 2 : Nor ( 0 1 A R = ( 0 1 . Then m i t i v e on r a n d 4.30 h o l d s . Case 3: Nor = { o l . Then N = N, a s i m p l e g r o u p dp (01.

=

o f 4.30 i s

N = No

Mc(r)

i s 1-priand

r

is

( b ) C o n v e r s e l y , i f a n e a r - r i n g NEM(r) i s such t h a t N o i s 1 - p r i m i t i v e on r w i t h Nce(IO1, M c ( r ) l o r i f N = Mc(r) (r { o } a n d s i m p l e ) then N i s 1 - p r i m i t i v e on r .

+

+

P r o o f . ( a ) I f Nor (01, N o i s 1 - p r i m i t i v e on r by 3 . 1 8 ( a ) . S i n c e e a c h s t r o n g l y monogenic N-group has e i t h e r R = ( 0 1 o r n = r, t h e r e s t f o l l o w s from 1 . 5 0 , 3.9, 3 . 1 5 ( a ) , 4 . 2 7 ( a ) a n d 4 . 3 2 . ( b ) I f No i s 1 - p r i m i t i v e on r and N, = {O) o r 'L N, Mc(r) t h e n e i t h e r R = ( 0 1 o r R = r ( 1 . 5 0 ) , s o N i s 1 - p r i m i t i v e on r by 3 . 1 8 ( b ) and 3 . 1 5 ( a ) . 'L If N Mc(r), r s i m p l e and (01, then c l e a r l y

-

-

N i s 1 - p r i m i t i v e on

r.

+

4.44 R E M A R K 4.43 i s t h e main r e a s o n f o r d e f i n i n g " s t r o n g l y monogenic N-groups r" as i n 3 . l ( b ) a n d n o t by t h e c o n d i t i o n s "monogenic" and ycr: (Ny = R v Ny r)", f o r 4 . 4 3 would n o t be t r u e i n t h i s c a s e : Take 'l = H8, N o : = { f ~ M ~ ( r ) l f ( =P )f ( 6 ) c 1 0 , 2 , 4 , 6 1 A N,: = {fcMc(r)lf(0)c{0,2,4,611. A f ( 4 ) ~ { 0 , 4 ) ) and

'v

T h e n one can show t h a t N : = N o t N c i s a subnear-ring of M ( r ) enjoying the following properties:

Nr

and NO

r

a r e f a i t h f u l , s i m p l e a n d monogenic. Moreover,

ycr: (Ny = R = { 0 , 2 , 4 , 6 ) v Ny = r). B u t (01 f R r, and N o i s n o t 1 - p r i m i t i v e on r ( i t i s n o t e v e n t r u e t h a t f o r a l l y c r Noy i s e i t h e r = { o l , = R o r = r, s i n c e N04 = { 0 , 4 1 ) .

122

8 4 PRIMITIVE NEAR-RINGS

From 4 . 3 0 a n d 4.45

r

= e0u

el

we g e t w i t h a s t r a i q h t f o r w a r d p r o o f

N€TIO

THEOREM L e t t h e n o n - r i n a

r

be 1 - p r i m i t i v e on

but

without %-equivalent generators.

N

Then

i s dense i n t h e n e a r - r i n q

€370

For 1-primitive near-rinqs

{ f c M o ( r ) \ f ( e o ) = {oil.

w i t h D C C we g e t a w h o l e b u n c h

o f i m p o r t a n t r e s u l t s ( c f . Rarnakotaiah ( 3 ) , B e t s c h ( 1 0 ) ) : 4 . 4 6 THEOREM ( B e t s c h (3)).

Let

e n d o w e d w i t h t h e DCCL.

NEWO

be 1 - p r i m i t i v e on 7 and

Then

( a ) T h e r e a r e o n l y f i n i t e l y many % - e q u i v a l e n c e c l a s s e s i f N i s a non-rinq. (b)

3

S E N: ,,N

s. =

N-isomorphic

1 Li,

r)

l e f t i d e a l s and N-groups o f t y p e 1 ( s o

2.50 i s a p p l i c a b l e ! ) ; s =

f i n i t e l y many p a i r w i s e ( t o

Li

i = l

i f N i s a non-rinq then

Ir/%l-i.

( c ) A l l N - g r o u p s o f t y p e 0 a r e N - i s o m o r p h i c a n d o f t y p e 1. (d) N contains a r i g h t i d e n t i t y (not necessarily two-sided). (e)

N is s i m p l e .

( f ) N i s e i t h e r 2 - p r i m i t i v e o n 'I o r t h e r e i s n o N - g r o u p

o f t y p e 2, Proof.

If N i s a ring,

(b)

-

( f) are e i t h e r well-known

o r t r i v i a l . So we w i l l a s s u m e t h a t

No

i s a non-rinq.

( a ) S u p p o s e t h a t t h e r e a r e i n f i n i t e l y many - - e q u i v a l e n c e

v,,vl.y2,...

classes w i t h representatives assume t h a t

i 2 1,

y o ~ e o . Then

hence

(o:yo)=(o:y1)=(o:~y1,y2))3'. d i c t i o n t o t h e DCCL.

( b ) Now l e t

Y

~

~

representatives of

YOEeOl

yl,

(o:yo)

y1yy21...~f31.

Y

.~'yS~

= N

p

.

We may

(o:yi)

for

So b y ( D ) o f 4 . 3 0

.

which i s a contra-

. b e. a c o m p l e t e s y s t e m o f

t h e %-equivalence classes w i t h

...,y S c e 1 .

Then

n

S

( 0 : ~ ~= ) I 0 1

i= 1

,

but

123

4c I-primitive near-rings

minimal l e f t i d e a l s . Now a p p l y 2 . 5 0 ( p )

tf

j E { l ,

...,sl:

to get

N =

'.1 L

Since

r

by 3 . 1 0 .

j = lj * ,-b

L j -N

L.$(o:Y~), J

( c ) Holds by t h e p r o o f o f ( b ) and 3 . 1 1 ( a ) .

N contains a riqht identity

( d ) By ( b ) a n d 3 . 2 7 ( d ) ,

N1 e. sided. (e)

o f 3.8

shows t h a t e i s n o t n e c e s s a r i l y t w o -

3

If I Q N,

L j n I = C O l .

minimal, IE(0:L.) J

. . . ,s l :

jc(1,

=

{O}

But %

(for

L j -N

LjL)I.

Lj

Since

ILjcInL

F), w h e n c e

j

=(O), I = {Ol.

is SO

( f ) By 4 . 7 o r b y ( c ) .

Note t h a t 4.46(a) i s not v a l i d f o r r i n g s : I f 2 s p a c e IR , c o n s i d e r e d a s a n H o m ( r , r ) - m o d u l e , (xELP)

are pairwise inequivalent w.r.t.

n e a r - r i n g which i s p r i m i t i v e on 4.47

=/=

i s the vector all

(1,x)

Hom(r,T)

i s a

a n d h a s t h e DCCL.

N contains a l e f t identity;

COROLLARY N E ' ~ ' ) ~ . D C C N , PI

r

%,

r

I 9 N,

{Ol. T h e n

(a) N !s

1 - p r i m i t i v e c=+

N i s 2 - p r i m i t i v e <->

N i s simple.

( b ) I i s 1 - p r i m i t i v e c->

I i s 2 - p r i m i t i v e <->

I i s maximal.

Proof.

( a ) By 3 . 4 ( c )

and 3.7(c),

2-primitivity coincide.

N i s simple then

If

by 3.4(b)

1 - p r i m i t i v i t y and

I n t h i s case,

I = N

N i s simple.

i s a m i n i m a l i d e a l and

a n d Lemma 3 i n t h e p r o o f o f 3 . 5 4

I : = N; t h e n

A =

r)

(with

N has a f a i t h f u l N-group

Nr

o f t y p e 1, s o N i s 1 - p r i m i t i v e . (b)

follows from (a).

K a a r l i ( 2 ) showed t h a t if N = No i s s i m p l e a n d U i s a m a x i m a l N subgroup of

N w i t h NU

{O} t h e n N i s I - p r i m i t i v e .

K a a r l i ( 4 ) and A d l e r ( 1 ) .

Cf.

also

124

9 4 PRIMITIVE NEAR-RINGS

d ) 2-PRIMITIVE N E A R - R I N G S

A g a i n we assume t h a t i f

N i s 2 - p r i m i t i v e on r then

NCM(r).

1 . ) 2-PRIMITIVE N E A R - R I N G S The s t r u c t u r e o f 2 - p r i m i t i v e n e a r - r i n g s c a n b e d e s c r i b e d as follows.

4.48 THEOREM ( a ) L e t N be 2 - p r i m i t i v e on Case 1:

Nor

I01 A R

r. Then = r. Then

No

i s 2-primitive

N, = M c ( r ) a n d e l = r . No i s a r i n g t h e n N i s d e n s e i n M a f f ( r ) (as i n 4.43); i f No i s a n o n - r i n g t h e n (0) o f 4 . 3 0 i s a p p l i c a b l e ( f o r No).

on

r,

If

Nor 9 { o }

A

R = {ol.

p r i m i t i v e on

r

and 4 . 3 0

Case 2 : Case 3 :

Nor

=

(01.

Then

Then

N

= No

i s 2-

i s applicable.

N = Mc(r)

and

r

is a

c y c l i c group o f prime order. Conversely,

(b)

if

Nce{{O),Mc(r))

No

i s 2 - p r i m i t i v e on

or if

N = Mc(r)

(r

r

o f prime o r d e r ) then N i s 2 - p r i m i t i v e on The p r o o f i s s i m i l a r t o t h e o n e o f 4 . 4 3

4.49

r

a n d if I A

unless order).

I = Mc(r)

r.

and t h e r e f o r e o m i t t e d .

Betsch ( 7 ) ) . I f N i s 2 - p r i m i t i v e { 0 1 , t h e n I i s 2 - p r i m i t i v e o n r, (where r i s n o t a c y c l i c qroup o f prime

T H E O R E M ( c f . F a i n (1) a n d

on

with

a c y c l i c group

N, I

p

125

4d 2-primitive near-rings

NEQ.

( a ) We f i r s t s h o w t h i s t h e o r e m f o r

Proof.

Ir

Ev d e n t l y , Assume t h a t If

3

IA =

i s faithful.

sI r.

A

Iol

then consider

{01.

~ E A : N6

Ir =

But

Therefore

INACIA =

i s f a i t h f u l . Hence

Iol, NA =

A = {o}.

If

I A

+ {ol

N6 =

I

so

(01,

3

then again

NA

If

NA.

6fA:

r

(01, and N A =

{Ol, A

I6

.b

since

sN f , =+

whence

Io1.

16 sN r , s o 16 = Consequently A = r , f o r I6cA. T h e r e f o r e I i s 2 - p r i m i t i v e o n r. ~ ( 1 6 )= (NI)~FIG,

r. Ir

Since

r.

( b ) Now l e t N b e a r b i t r a r y . We may assume t h a t

N

No,

=/=

I s excluded.

so case 2 o f 4.48

I f N f a l l s i n t o c a s e 1, No i s 2 - p r i m i t i v e o n r . BY 2.18 , I , = ~n ri, 2 N 0 ' I f I , p (0) t h e n I, i s 2 - p r i m i t i v e o n r , hence

I i s 2 - p r i m i t i v e on r by 3.18(b). I f I, = {Ol t h e n I e N c = Mc(r). S i n c e el = r , 10 AN r . 10 = { o l i m p l i e s t h a t f o r a l l y = n o c r and f o r a l l i E I i y = ino = 0 , so I = I o ) .

Hence

10

T a k e any

3

+ Io)

and so

mceMc(T);

is1 : io =

u.

10 =

m o =:p. C

r. Because o f

10 = ,'I

= i o = p = mco = mcy, h e n c e i = mc % I = Mc(r). If 3 P E P : r Zp, I is 2 - p r i m i t i v e o n r; i f not, I i s not 2-primitive. Now

yfr:

iy

-

a n d we g e t

If N i s i n c a s e 3, 4.50

REMARK

I i s t r i v i a l l y 2 - p r i m i t i v e on

4 . 4 9 c a n n o t b e t r a n s f e r r e d t o 0- o r 1 - p r i m i t i v i t y ,

n o t even f o r f i n i t e ,

abelian, zerosymmetric near-rings.

I t i s e a s y t o show t h a t i f N i s e . g . O - p r i m i t i v e o n I 9 N t h e n I r i s f a i t h f u l and monogenic. B u t n o t necessarily simple: T a k e r: = z 8 , A : = IO,2,4,61 a n d E: = I 0 , 4 l . N:

r.

= {ffMo(r)lf(A)rA

A f(5)=f(l)

h

f(7)=f(3)),

r

and

I:= (0:A).

9 4 PRIMITIVE NEAR-RINGS

126

N i s 0 - p r i m i t i v e on

r,

but

E d1

r.

Moreover,

s t r i c t l y monogenic and I has a r i q h t i d e n t i t y . e v e n b e 0 - p r i m i t i v e o n some o t h e r g r o u p Assuming t h a t ,

take

and ( 0 : 3 ) 1

I"

Ir

is.

I cannot

=:IyA:

Ir

i n

and p u t

L : = ( 0 : ~ ; ) ~Then . L i s a maximal l e f t i d e a l o f I ( 3 . 4 ( f ) ) L (0:1)1 , L ( 0 : 3 ) 1 ( s i n c e ( 0 : 1 ) 1 and (0:3)1 c a n n o t be m a x i m a l ) . T h e r e f o r e ( o : l ) I + L = ( f l : l ) I+ L = I . b u t ( 0 : l ) n (0:3) = E ~ I c - L , s o I w o u l d h a v e t o b e a r i n g

and

by 3.4(i),

a contradiction.

So p o i n t e d o u t , N N =

A s Y.S.

I

(0:l) n(0:3).

S e e m i n g l y t h e r e i s no "smal l e r " c o u n t e r e x a m p l e t h a n t h a t above w i t h 4096 e l e m e n t s . See a l s o 5 . 1 9 ( a ) . By t h e way, case

o n e c a n u s e Z o r n ' s lemma t o show t h a t i n a n y

I 9 N (I9 IO), N w - p r i m i t i v e )

h a s some I - g r o u p s

o f t y p e v. 4 . 5 1 COROLLARY ( F a i n ( 1 ) ) . L e t P b e a 2 - p r i m i t i v e i d e a l o f NET,. L e t I b e a n o t h e r i d e a l o f N c o n t a i n i n g P . Then P i s a 2-primitive

Proof. I

9 P,

A NIP,

ideal of I . and

NIP

'Ip p I01

and

i s 2-primitive.

Since 'Ip i s 2 - p r i m i t i v e . Hence

P i s 2-primitive i n I.

2 . ) 2 - P R I M I T I V E NEAR-RINGS I.IITH IDENTITY

I n t h i s case, Also,

if

N = No

(if

=

then

%

=

%

%

NE~,)

or

el

=

r

( i fN $ % ) .

(by 4.21).

Recall that a 1-primitive near-ring cfl0 with a l e f t identity i s a l r e a d y a 2 - p r i m i t i v e one w i t h i d e n t i t y ( 4 . 6 ( b ) ) . We a r e now i n a p o s i t i o n t o g e t a " r e a l " a n d f u n d a m e n t a l d e n s i t y theorem.

4d 2-primitive near-rings

N f N,

N

(case 1

No a non-ring

No

(case 2 o f

o f 4.48)

No a r i n q

=

127

4.48)

-

Ma f f ( r )

HomD ( r ,r 1

Dr a v e c t o r s p a c e $. fol

l'fc (r)

M C ( r ) = MC(r)

Go f i x e d - p o i n t -

0

0

r

f r e e on

(b) Conversely,

e v e r y n e a r - r i n g w h i c h i s dense i n Maff(r) o r HomD(r,r) (where r i s a non-zero v e c t o r space o v e r some d i v i s i o n r i n g D ) o r d e n s e i n (r) o r

MC 0

on Proof.

(r)

r,

fixed-point-free

(Go

where Co = G

w

0

2 - p r i m i t i v e on note that

1

= MC

r

(r)

4.28(c)

and has an i d e n t i t y .

No

i s therefore I f No i s a i s not a rinq,

on

r,

= MGoV{b}

(r)

since

Y I sN r .

then

My;

0

(r)

o(r)

= M

=

Go

(D)

o f 4.30,

and 4 . 2 7 ( a ) .

Mo(r),

=/=

If

and t h e r e s u l t f o l l o w s f r o m

equal t o )

If N

No

0

Go = { i d }

in

and has an i d e n t i t y

cannot occur.

i s fixed-point-free

Go

+ {id}

Go

0

r

CvcrJs(Y) =

gE:Go:

If

If

{61.

t h e s t a t e m e n t is c l e a r .

ring,

i s 2-primitive

on 7 )

( a ) I f N i s 2 - p r i m i t i v e on

t h e n case 3 i n 4.48

mc 0

No,

then (D)

of 4.30

implies that

N

which i s t r i v i a l l y dense i n ( s i n c e

MC

0

(r)

= MCal(r)

=

Mo(r).

apply again 4.27(a).

0

i s dense

8 4 PRIMITIVE NEAR-RINGS

128

( b ) Assume now t h a t N i s d e n s e i n H o m D ( r , r ) , where i s a n o n - z e r o v e c t o r s p a c e o v e r some s k e w - f i e l d D.

r

N i s a dense s u b r i n g and t h e r e f o r e a p r i m i t i v e

Then

r i n g o n r . F r o m t h i s we d e d u c e : I f N i s dense i n M a f f ( T ) then

i s dense i n

No

s o r h a s no n o n - t r i v i a l N o - s u b g r o u p s , HomD(r,r), a n d N i s 2 - p r i m i t i v e o n r. I f N i s d e n s e i n M O(r) GO

each dense s u b n e a r - r i n g of t h a t i s t r i v i a l l y 2 - p r i m i t i v e o n r. I f G o {id} t h e n M o(r) = FIG ( r ) a n d 4.28(c)

0

GO

Nr c a n n o t c o n t a i n n o n - t r i v i a l

shows t h a t

N-subgroups. Finally i f

in

(Tic

0

N i s dense i n

(r))o

a non-trivial

MC (r)

then

0

As above,

= MC ( I - ) .

r

No

i s dense

cannot c o n t a i n

0

No-subgroup (or one can use 3 . 1 8 ( b ) ) .

4.53 REMARKS (a) I t i s n o t t r u e t h a t each 2 - p r i m i t i v e n e a r - r i n q w i t h identity, N take

MC(r): and

N: =

and

No

a non-ring,

i s dense i n

=/=

No

r

f i n i t e w i t h I i d l f G s A u t ( r ) , G f i x e d - p o i n t free Nr h a s R = r, s o

F i G ( r ) . Then

CN(r) = { i d ) ( 4 . 1 3 ( c ) ) a n d t h e r e f o r e MC(r) = M(r). But N M ( r ) , s o N c a n n o t be d e n s e i n M ( r ) b y

+

4.29.

This i s a l a t e b u t convincing reason f o r

introducing t h i s crazy s w i t c h e s down t o

No

N, ( r ) ,

w h e r e one f i r s t

0

(by forming

Co = End

NO

(r)

t h e n back up b y a d d i n g a l l o f t h e c o n s t a n t s :

and

MC(r)

would be t o o b i g i n general. ( b ) 4 . 5 2 ( a ) does n e i t h e r h o l d f o r 0 - p r i m i t i v e n e a r - r i n g s with i d e n t i t y nor f o r 2-primitive near-rings without i d e n t i t y ( n o t even f o r

N =

No

and N f i n i t e ) :

129

4d 2-primitive near-rings

r:

n4

N : = {fcMo(T)\f(A)!!A) i s 0 - p r i m i t i v e on r w i t h i d e n t i t y , b u t n o t dense i n M C ( r ) = Mo(r) ( 4 . 2 9 ! ) . M: = { f E M o ( r ) l f ( 3 ) = 0 1 i s If

=

and

A:

= (0,2),

0

2 - p r i m i t i v e on

MC (r)

in

r,

w i t h o u t i d e n t i t y and a g a i n n o t dense

Mo(r).

=

0

(c) A l l 2-primitive near-rinas with i d e n t i t y on w h e r e No ( d ) 4.32,

i s a non-ring,

4.43

and 4.48

Z4,

w i l l b e c l a s s i f i e d i n 4.63.

reduce t h e theorv o f p r i m i t i v e

near-rings t o those o f p r i m i t i v e zero-symmetri c nearr i n g s . We w i l l t h e r e f o r e m a i n l y d e a l w i t h t h o s e o n e s

i n t h e sequel. (e) Recall (4.27(a))

that

Kc

general. H e r e i s some e x a m p l e :

= -x)

r

A!

=

i s "only a set" i n

(f) 0

G = {id,-idl

i s a fixed-point-free

IR.

= {o,id,-id}.

C:

XER:

f(-x)

(with

-id(x):

=

autsmorphism group on

Vc(IR)

= {fEM(IR)If(O)

= 0 A

-f(x)).

n If m c ( R ) = : N , t a k e nl: = sin+-pN and n2: = n C o n s i d e r n : = nlon2EM(IR ) . = id+pN. n no = s i n o ( i d t r ) - s i n ( % ) i s n o t an odd f u n c t i o n , t h u s n o t b e l o n g i n g t o MC(IR), w h e n c e ngN a n d N i s no n e a r - r i ng.

4.54

COROLLARY I f N i s 2 - p r i m i t i v e o n

r

with

AutN 0

(r)

= {id)

t h e n N i s dense i n e i t h e r one of t h e f o l l o w i n g n e a r - r i n o s ( n o t a t i o n as i n 4.52): H o m D ( r , r ) , Maff(r), Mo(r) o r

M(r) 4.55

(cf.

4.65).

THEOREM ( R a m a k o t a i a h non-ring on

r

classes w.r.t.

(2)).L e t

NET),

be a 2 - p r i m i t i v e

w i t h an i d e n t i t y . Then any two e q u i v a l e n c e

2

(except t h e zero class) are equipotent.

$4 PRIMITIVE NEAR-RINGS

130

T*/%

Proof. L e t E be i n

C o n s i d e r t h e map

and

a f i x e d element o f E.

E

f: G

+

E

9

+

q(E)

(with

Since G i s fixed-point-free

(4.52),

aqain).

f i s injective.

so f i s a b i j e c t i o n .

f i s surjective,

By d e f i n i t i o n ,

G=AutN(r)

3 . ) 2 - P R I M I T I V E Z E R O - S Y M M E T R I C N E A R - R I N G S WITH I D E N T I T Y A N D A M I N I M A L LEFT I D E A L . 4 . 5 6 THEOREM ( B e t s c h ( 7 ) , c f . D e s k i n s ( 2 ) ) . w i t h i d e n t i t y which i s 2 - p r i m i t i v e on

r

L e t N = N , b e a nr. and has a m i n i m a l

l e f t i d e a l L . Then %

(a) L = N r' ( b ) 3 e2 = eeL*:

L = Ne = L e

and

morphic t o Proof.

(a) Since

and

+ {ol,

Lr

3

W i t h y as a b o v e , and

m i ni m a l ) . k-%e

Pie

E

i s antiiso-

(eNe;). YEr:

+ {ol,

Ly

so

Ly =

r

Now we c a n a p p l y 3 . 1 0 .

yeel.

= ey

3

(C,,,(T),a)

Hence

(o:y)nL

= Le = L.

eEL":

e y = y.

=

and

e2 = e

{O} a n d L e

By ( a ) ,

Therefore

I01

(since L i s

Le

{Ol.

e2-eEL n ( o : y ) =

SN L,

Since

Le = L .

By L e C N e s L ,

C N ( r ) = CN(L) = CN(Ne)

( i t can

be e a s i l y v e r i f i e d t h a t N - i s o m o r p h i c N-groups have i s o m o r p h i c centralizer-semigroups). For

neN,

consider

d e f i n e d and

t n : Ne xe

+

+

Ne xene

.

i s well-

tn

E C ~ ( N ~ ) .

C o n s i d e r n e x t t h e map

h:

eNe ene

+ +

CN(Ne). tn

If

e n e = erne

so h i s w e l l - d e f i n e d . C l e a r l y , t h e n t n = t,, h i s an a n t i h o r n o m o r o h i s m . I f h ( e n e ) = h ( e m e )

t n = t,

and

Specializing

then

tj X E N : x e n e = t n ( x e ) = t m ( x e ) = xeme. x = :e

we g e t

e n e = eme

and h i s

shown t o b e i n j e c t i v e . Finally,

b

c€CN(IJe)

3

nEN:

c ( e ) = ne.

ene = e c ( e ) = c ( e 2 ) = c ( e ) = ne aet

c ( x e ) = x c ( e ) = xene

tn(xe),

Therefore

a n d f o r a l l X E N we

so c = tn.

4d 2-primitive near-rings

131

and h i s s u r j e c t i v e , hence an a n t i i s o m o r p h i s m . COROLLARY ( B e t s c h ( 7 ) ) .

4.57

N ~ r t ) h a s an i d e n t i t y a n d

If

a minimal l e f t i d e a l L t h e n a l l f a i t h f u l N-groups o f type 2 ( i f those e x i s t ) a r e N-isomorphic

(r,

determines t h e p a i r

I f e i s as i n 4.56(b),

t h e group

CN(r))

u n i q u e l y "up t o i s o m o r p h i s m " .

i s a group w i t h z e r o and L = Ne a s a f i k e d - p o i n t -

(eNe,.) a c t s on

(eNe\{O),*)

( t o L ) and N

f r e e a u t o m o r p h i s m g r o u p (by r i g h t m u l t i p l i c a t i o n ) . Hence e " b r i n g s b a c k " some i n f o r m a t i o n o n 4.58

r

out of NSM(T). C f .

REMARK F o r m o r e i n f o r m a t i o n o n t h e s e t o p i c s ( a p a r t i a l c o n v e r s e o f 4 . 5 6 , t h e u n i q u e n e s s o f (r, CN(r)), s e e B e t s c h ( 6 ) a n d 5 7 a ) , i n p a r t i c u l a r 7.5.

4.)

4.59

COROLLARY L e t 2.50

( f o r "),

(2.50(a)

be a 2 - p r i m i t i v e n e a r - r i n g w i t h

NEW,

5

i s applicable,

hence a l s o

a n d G h a s f i n i t e l y many o r b i t s o n

and 4.21),

i s d i s c r e t e "on

r,

w h i c h i s t h e same a s t o s a y t h a t

MG(r)

Z

(4.29).

7a) f o r the information t h a t i f a f i x e d - p o i n t - f r e e

automorphism group H o f

r

h a s f i n i t e l y many o r b i t s o n

MC(r) h a s t h e DCCL. See a l s o K a a r l i 4.60

etc.)

2 - P R I M I T I V E P!EAR-RINGS WITH I D E N T I T Y A N D MINIMUM CONDITION

DCCL a n d i d e n t i t y . T h e n 4 . 4 6

See

9.227.

r

then

( 2 ) and Oswald ( 1 0 ) .

THEOREM ( B e t s c h ( 7 ) ) . L e t N b e 2 - p r i m i t i v e o n r w i t h D C C f o r t h e l e f t i d e a l s o f No and w i t h a n i d e n t i t y . Then N i s equal t o one o f t h e f o l l o w i n g n e a r - r i n g s ( n o t a t i o n as i n 4.52):

NpNo

N - N o

No a r i n g

Maff(r) H o m D ( r , r )

No a n o n - r i n g

Mc ( r ) 0

MC(r)

dimDr f i n i t e Go h a s f i n i t e l y many

o r b i t s on

r

132

$ 4 PRIMITIVE NEAR-RINGS

P r o o f . f o l l o w s from 4 . 5 2 and 4.59.

Note t h a t

Rc (I') 0

i s a n e a r - r i n g i n t h i s case ( f o r i t equals N ) . 4 . 6 1 COROLLARY I f N h a s a n i d e n t i t y , i s 2 - p r i m i t i v e o n r a n d i f t h e n o n - r i n g No h a s t h e DCCL a n d A u t N ( r ) = ( i d ) 0

N = M(r) ( i f N No) or o t h e r w i s e N = Mo(r). I n b o t h c a s e s , r ( a n d t h e r e f o r e N, t o o ) i s f i n i t e . So t h e D C C i m p l i e s f i n i t e n e s s ! then e j t h e r

4.62

R E M A R K These r e s u l t s i l l u s t r a t e some r e m a r k s i n t h e

preface: w h i l e the "elements o f r i n q theory" a r e r i n g s

o f l i n e a r mappings on r , t h o s e ones f o r n e a r - r i n q t h e o r y a r e n e a r - r i n g s o f a r b i t r a r y mappings ( p e r h a p s w i t h some r e s t r i c t i o n s ) o n

r.

4 . 6 3 THEOREM ( K a a r l i ( 4 ) ) I f

-

then

I a-S z- N

and i f S / I

i s 2-primitive

I d- N .

Proof. Since I i s a 2 - p r i m i t i v e l e f t i d e a l o f S,

I = (L:S)s

h o l d s f o r some 2 - m o d u l a r l e f t i d e a l L o f S b y 4 . 3 . By 3 . 3 4 ,

L 2NS.

Consequently,

Hence

I

=

(L:SINn S

and ( L : S l N 2 N .

I i s an i d e a l o f N .

See a l s o K a a r l i ( 2 ) a n d R a m a k o t a i a h ( 2 ) .

I n t h e l a t t e r paper i t

i s shown t h a t i f N€Hl i s f i n i t e a n d 2 - p r i m i t i v e o n

r,

if N i s a

lrl-1 i s a p r i m e t h e n e i t h e r N=M(T) o r N=Mo(T) n o n - r i n g and i f or ~ N ~ = ~ i r f~ zr ; i s a b e l i a n , N z N rOr h o l d s i n t h e l a s t c a s e ( t h i s r e s u l t can be deduced f r o m 4.55

and 4.61).

133

4d 2-primitive near-rings

5.)

AN APPLICATION TO INTERPOLATION T H E O R Y

4.64

reg

DEFINITION I f

and

NEM(r),

N i s said t o f u l f i l l

the f i n i t e interoolation property I f

w

SE:nU

3

ncN

v

w

Y1#...*YSEr,

Yi

sl:

n(yi)

i c { l #...,

t

Yj

9

for

\I

j

61’..-’6sEr

= 6i.

T h e r e i s an o b t r u s i v e s i m i l a r i t y t o t h e d e n s i t y c o n c e p t s .

In

fact: 4.65

Let

THEOREM

N I M(r)

with

N

and

No

No

not a ring.

Then t h e f o l l o w i n g c o n d i t i o n s a r e e q u i v a l e n t :

r*,

( a ) No i s 2 - f o l d t r a n s i t i v e o n

r

( b ) N i s 2 - p r i m i t i v e on

Go = { i d ) .

with

( c ) N f u l f i l l s the f i n i t e i n t e r p o l a t i o n property.

Proof.

( a ) ->

(b):

Nr i s t r i v i a l l y f a i t h f u l , 2 - f o l d

t r a n s i t i v i t y implies 1-fold i n turn that Some

6cA”

No6 =

r

and

Nr

{ol.

If

W

ycr

Then A =

r.

t r a n s i t i v i t y and t h i s

I o l 9 A sN r , 0

2

n,ENo:

+

take

no6 = y .

9

So

If Goy 5: G o 6 but y 6 and ( s a y ) 6 o, take 0 . Then noEN 0 w i t h n o y = o A no6 (0:6) , s o y+6 i n (0:Y) NO NO Nor * h e n c e (4.20(c)), a contradiction, Therefore Goy 9 G o 6 some

+

Go = { i d } .

(b)

(c):

b y 4.54

( c ) ->

(a):

trivial.

K a i s e r ( l ) , Lausch ( 5 ) , Ramakotaiah ( 3 ) .

Cf.

and 4.28(d).

P l i t z (12),(13),

P i l z ( 2 5 ) and

134

5 4 PRIMITIVE NEAR-RINGS

4 . 6 6 REMARKS

( a ) So i f a n e a r - r i n g N o f m a p p i n g s o n r i n t e r p o l a t e s a t o and 2 o t h e r p l a c e s then N i n t e r p o l a t e s a l r e a d y on an a r b i t r a r y ( f i n i t e ) n u m b e r o f p l a c e s . Compare t h i s w i t h the corresponding "1 i n e a r " r e s u l t i n r i n g theory ( ( N . J a c o b s o n ) , C o r o l l a r y t o theorem 1 on p . 3 2 ) . This i s a " p u r e l y i n t e r p o l a t i o n - t h e o r e t i c " r e s u l t . ( b ) I t c a n be s h o w n t h a t i f N f u l f i l l s t h e f i n i t e i n t e r p o l a t i o n p r o p e r t y a n d 1i-l > 3 t h e n N o i s a non-

ring. 4 . 6 7 C O R O L L A R Y T a k e r = (IR,+). Then a n y o n e o f t h e f o l l o w i n g n e a r - r i n g s and a l l n e a r - r i n g s c o n t a i n i n q o n e o f t h e m h a v e t h e p r o p e r t i e s t h a t Pi i s 2 - p r i m i t i v e on r w i t h N No, Go = { i d ) and No n o t a r i n g :

+

[XI,N 2 :

t h e n e a r - r i n g o f a l l s t e p f u n c t i o n s on IR the subnear-ring of M(1R) g e n e r a t e d by t h e t r i g o n o metric polynomials.

N1: N3:

= IR

F o r a l l o f them f u l f i l l t h e f i n i t e i n t e r p o l a t i o n p r o p e r t y w h i c h q u a l i f i e s them f o r 4 . 6 5 . The a u t h o r h o p e s t h a t n e a r - r i n g s o f i n t e r p o l a t i n g f u n c t i o n s become i n t e r e s t i n g f o r s p p r o x i m a t i o n t h e o r y ( b e c a u s e t h e s e f u n c t i o n s c a n be i t e r a t e d w . r . t . 0 ) . After a l l t h a t complicated s t u f f the r e a d e r will p o s s i b l y a g r e e w i t h t h e a u t h o r t h a t t h e p r i m i t i v e n e a r - r i n q s have s u c c e s s f u l l y r e v e n g e d t h e i r d i s c r i m i n a t i n g name.

,