4870666 Computer tomographic phantom

4870666 Computer tomographic phantom

xv New Patents energy beam is then fired at the object, causing the more heat efficient object to destroy the brain tumor area. This procedure is re...

146KB Sizes 0 Downloads 86 Views

xv

New Patents

energy beam is then fired at the object, causing the more heat efficient object to destroy the brain tumor area. This procedure is repeated until the entire tumor is eradicated by the highly localized hyperthermia. The above procedure can be used to deliver hyperthermia, chemotherapy, radiotherapy and other agents or treatments to the brain and other parts of the body as well.

4870363 APPARATUS FOR CREATING A MAGNETIC FIELD GRADIENT AND THE EXAMINATION OF A SURFACE LAYER OF A BODY Mohamed M Yassine, Bernar Querleux, Luc Darrasse, Jalmes Herve Taquin Jacques Saint, Michel Sauzade, Jean-Lu Leveque, Les Ulis, France assigned to L’Oreal The apparatus (1) is constituted by: device (3) for creating a homogeneous main magnetic static field (HO) orientated along a determined direction (Oz) in which static field there is placed the body (2) to be examined; devices for creating magnetic field gradients in a space of the body to be examined along three directions of the space; radio frequency excitation device (E) and a device (R) for the detection of the nuclear magnetic resonance signals produced by the body to be examined. The one, (Dx) of the devices for creating the gradients is constituted by a unilateral system wherein the device (6) for creating the magnetic field gradient along one direction (Ox) of the space are entirely situated on one and the same side of an open surface (P) while the body to be examined (2) is situated on the side of the surface (P) which is opposite to that where the device (6) is located, which are capable of creating a transverse gradient in relation to the direction (Oz) of the main static field, on the side of the surface where the body ( 2) to be examined is situated. Such a device (Dx) is particularly suitable for NMR imaging of the human skin.

4870666 COMPUTER TOMOGRAPHIC PHANTOM Albert H R Lonn assigned to General Electric Company A reference phantom system for quantitative computer tomography employs a flexible reference phantom with means for urging the

flexible reference phantom into contact along the curved surface of the lumbar region of a human patient. In one embodiment, the reference phantom is pre-curved in an arc greater than required. Pressure from the weight of a patient laying upon the reference phantom is effective for straightening out the curvature sufficiently to achieve substantial contact along the lumbar region. The curvature of the reference phantom may be additionally distorted by a resilient pad between the resilient phantom and a table for urging it into contact with the lumbar region. In a second embodiment of the invention, a flexible reference phantom is disposed in a slot in the top of a resilient cushion. The Bexibility of the reference phantom and the stiffness of the resilient cushion are matched so that the reference phantom is deformed as it is urged into contact with the lumber region of a patient whereby substantially continuous contact is achieved with the reference phantom along substantially the entire contiguous length of the lumbar region. The resilient cushion and reference phantom may be enclosed in a flexible container. A partially curved reference phantom is a slot in a resilient cushion is also contemplated.

4870667 RADIATION DETECTOR Carl J Brunnett, Rodney A Mattson assigned to Picker International Inc An improved computed tomography radiation detector is disclosed. One embodiment includes first and second layers of crystalline scintilation material mutually aligned in a path of x-rays to be detected, to receive the x-rays in sequence. The layer upstream in the x-ray path comprises a scintillation material having a relatively high efficiency for converting x-ray energy to light. The downstream one of the layers comprises a scintillation material having a relatively lower efficiency for x-ray/light conversion. A photodiode is positioned to view both scintillation layers simultaneously and to respond to scintillations in either or both. Scintillation crystal material surfaces can be coated with reflective material to enhance the effects of their scintillations. The photodiode thus combines x-ray indicating scintillations from both crystals while in analog form. The detector exhibits enhanced response to lower energy x-rays. Another embodiment comprises a photodiode and an optically coupled scintillation crystal, with the photodiode upstream in the x-ray beam path relative to the crystal.