Argument estimates of certain meromorphically multivalent functions associated with generalized hypergeometric function

Argument estimates of certain meromorphically multivalent functions associated with generalized hypergeometric function

Applied Mathematics and Computation 206 (2008) 772–780 Contents lists available at ScienceDirect Applied Mathematics and Computation journal homepag...

206KB Sizes 0 Downloads 47 Views

Applied Mathematics and Computation 206 (2008) 772–780

Contents lists available at ScienceDirect

Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc

Argument estimates of certain meromorphically multivalent functions associated with generalized hypergeometric function M.K. Aouf Faculty of Science, Mansoura University, Mansoura 35516, Egypt

a r t i c l e

i n f o

a b s t r a c t The object of this paper is to obtain some argument properties of meromorphically multivalent functions associated with generalized hypergeometric function. We also derive the integral preserving properties in a sector. Ó 2008 Elsevier Inc. All rights reserved.

Keywords: Meromorphic Starlike Argument estimates Hypergeometric function

1. Introduction Let Rp denote the class of functions of the form

f ðzÞ ¼ zp þ

1 X

akp zkp

ðp 2 N ¼ f1; 2; . . .gÞ;

ð1:1Þ

k¼1

which are analytic and p-valent in the punctured disc U  ¼ fz : z 2 C and 0 < jzj < 1g ¼ U n f0g. For functions f ðzÞ 2 Rp given by (1.1), and gðzÞ 2 Rp given by

gðzÞ ¼ zp þ

1 X

bkp zkp

ðp 2 NÞ;

ð1:2Þ

k¼1

we define the Hadamard product (or convolution) of f ðzÞ and gðzÞ by

ðf  gÞðzÞ ¼ zp þ

1 X

akp bkp zkp :

ð1:3Þ

k¼1

For complex parameters a1 ; . . . ; aq and b1 ; . . . ; bs ðbj R Z  0 ¼ f0; 1; 2; . . .g; j ¼ 1; . . . ; sÞ, we now define the generalized hypergeometric function qFs(a1, . . . , aq; b1, . . . , bs; z) by

a

qFsð 1; . . . ;

aq ; b1 ; . . . ; bs ; zÞ ¼

1 X ða1 Þk . . . ðaq Þk zk : ðb1 Þk . . . ðbs Þk k! k¼0

ðq 6 s þ 1; q; s 2 N0 ¼ N [ f0g; z 2 UÞ;

ð1:4Þ

where ðhÞm is the Pochhammer symbol defined, in terms the Gamma function C, by

ðhÞm ¼

Cðh þ mÞ ¼ CðhÞ



1;

ðm ¼ 0; h 2 C n f0gÞ;

hðh þ 1Þ    ðh þ m  1Þ; ðm 2 N; h 2 CÞ:

E-mail address: [email protected] 0096-3003/$ - see front matter Ó 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2008.09.046

ð1:5Þ

M.K. Aouf / Applied Mathematics and Computation 206 (2008) 772–780

773

Corresponding to a function hp ða1 ; . . . ; aq ; b1 ; . . . ; bs ; zÞ defined by

hp ða1 ; . . . ; aq ; b1 ; . . . ; bs ; zÞ ¼ zp q F s ða1 ; . . . ; aq ; b1 ; . . . ; bs ; zÞ; Liu and Srivastava [13] (see, for details, [6,7]) introduced a linear operator

Hp ða1 ; . . . ; aq ; b1 ; . . . ; bs Þ : Rp ! Rp ; which is defined by the following Hadamard product (or convolution)

Hp ða1 ; . . . ; aq ; b1 ; . . . ; bs Þf ðzÞ ¼ hp ða1 ; . . . ; aq ; b1 ; . . . ; bs ; zÞ  f ðzÞ:

ð1:6Þ

We observe that, for a function f ðzÞ of the form (1.1), we have

Hp ða1 ; . . . ; aq ; b1 ; . . . ; bs Þf ðzÞ ¼

1 X ða1 Þk    ðaq Þk akp kp : z : ðb1 Þk    ðbs Þk k! k¼0

ð1:7Þ

If, for convenience, we write

Hp;q;s ða1 Þ ¼ Hp ða1 ; . . . ; aq ; b1 ; . . . ; bs Þ;

ð1:8Þ

then one can easily verify from the definition (1.6) that

zðHp;q;s ða1 Þf ðzÞÞ0 ¼ a1 Hp;q;s ða1 þ 1Þf ðzÞ  ða1  pÞHp;q;s ða1 Þf ðzÞ:

ð1:9Þ

Some interesting subclasses of analytic functions, associated with the generalized hypergeometric function, were considered recently by (for example) Gangadharan et al. [9], Liu [11] and Aouf [2]. Let f ðzÞ and gðzÞ be analytic in U. Then we say that the function gðzÞ is subordinate to f ðzÞ if there exists an analytic function wðzÞ in U such that jwðzÞj < 1ðz 2 UÞ and gðzÞ ¼ f ðwðzÞÞ. For this subordination, the symbol gðzÞ  f ðzÞ is used. In case f ðzÞ is univalent in U, the subordination gðzÞ  f ðzÞ is equivalent to gð0Þ ¼ f ð0Þ and gðUÞ  f ðUÞ. For a function f ðzÞ 2 Rp and m > 0 the integral operator F m;p ðf ÞðzÞ : Rp ! Rp is defined by

F m;p ðf ÞðzÞ ¼

m zmþp

Z

z

t mþp1 f ðtÞdt ¼

zp þ

0

1  X k¼1

m

mþk

!  zpk  f ðzÞ ¼ zp 2 F 1 ðm; 1; m þ 1; zÞ  f ðzÞ ðm > 0; z 2 UÞ:

ð1:10Þ

It follows from (1.10) that

zðHp;q;s ðHp;q;s ða1 ÞF m;p ðf ÞðzÞÞÞ0 ¼ mHp;q;s ða1 Þf ðzÞ  ðm þ pÞHp;q;s ða1 ÞF m;p ðf ÞðzÞ:

ð1:11Þ

The operator F m;p ðf ÞðzÞ was investigated by many authors (see for example [1,17,18]). We note that: (i) For q ¼ 2; s ¼ 1 and a2 ¼ 1, we obtain the linear operator

Hp;2;1 ða1 ; 1; b1 Þf ðzÞ ¼ ‘p ða1 ; b1 Þf ðzÞ ðf 2 Rp Þ; which was introduced and studied by Liu and Srivastava [12]. (ii) For any integer n > p and f ðzÞ 2 Rp , we have

Hp;2;1 ðn þ p; 1; 1Þf ðzÞ ¼ Dnþp1 f ðzÞ ¼

1  f ðzÞ; zp ð1  zÞnþp

where Dnþp1 f ðzÞ is the differential operator studied by Uralegaddi and Somanatha [17] and Aouf [1]. (iii) Hp;2;1 ðm; 1; m þ 1Þf ðzÞ ¼ F m;p ðf ÞðzÞðm > 0Þ. Let



Rp ½a1 ; A; B ¼ f 2 Rp : 

 zðHp;q;s ða1 Þf ðzÞÞ0 1 þ Az ; 1 6 B < A 6 1; z 2 U : p 1 þ Bz Hp;q;s ða1 Þf ðzÞ

ð1:12Þ

We note that: (i) For q ¼ 2; s ¼ 1; a1 ¼ b1 ¼ p; a2 ¼ 1; A ¼ 1 and B ¼ 1, we note that Rp ½p; 1; p; 1; 1 ¼ Rp is the well-known class of meromorphically starlike functions. h i (ii) q ¼ 2; s ¼ 1; a1 ¼ b1 ¼ p; a2 ¼ 1; A ¼ 1  2pa ; 0 6 a < p, and B ¼ 1, we note that Rp p; 1; p; 1  2pa ; 1 ¼ Rp ½a is the well-known class of meromorphically starlike functions of order a (see [3]). From (1.12) and by using the result of Silverman and Silvia [16], we observe that a function f ðzÞ is in Rp ½a1 ; A; B if and only if

  zðHp;q;s ða1 Þf ðzÞÞ0 pð1  ABÞ pðA  BÞ  < þ  Hp;q;s ða1 Þf ðzÞ  1 þ B2 1  B2

ð1 < B < A 6 1; z 2 UÞ:

ð1:13Þ

774

M.K. Aouf / Applied Mathematics and Computation 206 (2008) 772–780

The object of the present paper is to give some argument properties of meromorphically functions belonging to Rp and the integral preserving properties in connection with the operator Hp;q;s ða1 Þ defined by (1.7). 2. Main result In order to show our main results, we need the following lemmas. Lemma 1 [8]. Let h be convex univalent in U with hð0Þ ¼ 1 and ReðbhðzÞ þ cÞ > 0ðb; c 2 CÞ. If q is analytic in U with qð0Þ ¼ 1, then

qðzÞ þ

zq0 ðzÞ  hðzÞ ðz 2 UÞ bqðzÞ þ c

implies

qðzÞ  hðzÞ ðz 2 UÞ: Lemma 2 [14]. Let h be convex univalent in U and kðzÞ be analytic in U Re kðzÞ P 0. If q is analytic in U and qð0Þ ¼ hð0Þ, then

qðzÞ þ kðzÞzq0 ðzÞ  hðzÞ ðz 2 UÞ implies

qðzÞ  hðzÞ ðz 2 UÞ: Lemma 3 [15]. Let q be analytic in U with qð0Þ ¼ 1 and qðzÞ–0 in U. Suppose that there exists a point z0 in U such that

j arg qðzÞj <

p 2

a for jzj < jz0 j

ð2:1Þ

and

j arg qðz0 Þj ¼

p 2

a ð0 < a 6 1Þ:

ð2:2Þ

Then we have

z0 q0 ðz0 Þ ¼ ika; qðz0 Þ

ð2:3Þ

where

  1 1 p aþ when arg qðz0 Þ ¼ a; 2 a 2   1 1 p kP a aþ when arg qðz0 Þ ¼ 2 a 2 kP

ð2:4Þ ð2:5Þ

and 1

qðz0 Þa ¼ ia ða > 0Þ:

ð2:6Þ

At first, with the help of Lemma 1, we obtain the following theorem. Theorem 1. Let h be convex univalent in U with hð0Þ ¼ 1 and Re h be bounded in U. If f ðzÞ 2 Rp satisfies the condition



zðHp;q;s ða1 þ 1Þf ðzÞÞ0  hðzÞ ðz 2 UÞ; pHp;q;s ða1 þ 1Þf ðzÞ



zðHp;q;s ða1 Þf ðzÞÞ0  hðzÞ ðz 2 UÞ pHp;q;s ða1 Þf ðzÞ

then

for maxz2U Re hðzÞ < Re



a1 þp p



(provided Hp;q;s ða1 Þf ðzÞ–0 in U).

Proof. Let

qðzÞ ¼ 

zðHp;q;s ða1 Þf ðzÞÞ0 Hp;q;s ða1 Þf ðzÞ

ðz 2 UÞ:

M.K. Aouf / Applied Mathematics and Computation 206 (2008) 772–780

775

By using (1.9), we have





a1 þ p

qðzÞ 

¼

p

a1 Hp;q;s ða1 þ 1Þf ðzÞ : pHp;q;s ða1 Þf ðzÞ

ð2:7Þ

Taking logarithmic derivatives in both sides of (2.7) and multiplying by z, we get

zq0 ðzÞ zðHp;q;s ða1 þ 1Þf ðzÞÞ0 þ qðzÞ ¼   hðzÞ ðz 2 UÞ: pqðzÞ þ ða1 þ pÞ pHp;q;s ða1 þ 1Þf ðzÞ

n  o From Lemma 1, it follows that qðzÞ  hðzÞ for Re hðzÞ þ a1pþp > 0ðz 2 UÞ, which means



zðHp;q;s ða1 Þf ðzÞÞ0  hðzÞ ðz 2 UÞ pHp;q;s ða1 Þf ðzÞ

  for maxz2U Re hðzÞ < Re a1pþp . h

Taking q ¼ 2; s ¼ 1; a1 ¼ n þ pðn > pÞ; a2 ¼ b1 ¼ 1 and hðzÞ ¼ 1þz in Theorem 1, we obtain the result obtained by Aouf [1, 1z Theorem 1]. Using Lemmas 1 and 2 and Theorem 1, we now derive Theorem 2. Let f ðzÞ 2 Rp . Choose a1 2 R such that

a1 P

pðA  BÞ ; 1þB

where 1 < B < A 6 1 and p 2 N. If

   0   arg  zðHp;q;s ða1 þ 1Þf ðzÞÞ  c  < p d ð0 6 c < p; 0 < d 6 1Þ  2  Hp;q;s ða1 þ 1ÞgðzÞ for some g 2 Rp ða1 þ 1; A; BÞ, then

   0   arg  zðHp;q;s ða1 Þf ðzÞÞ  c  < p a;  2  Hp;q;s ða1 ÞgðzÞ

where að0 < a 6 1Þ is the solution of the equation

d¼aþ

2

p

( tan1

when

tðA; BÞ ¼

2

p

)

a sin p2 ð1  tðA; BÞÞ a1 ð1BÞþpðABÞ þ a cos p2 ð1  tðA; BÞÞ 1B

"

pðA  BÞ

1

sin

ð2:8Þ

#

ða1 þ pÞð1  B2 Þ  pð1  ABÞ

:

ð2:9Þ

Proof. Let

qðzÞ ¼ 

  1 zðHp;q;s ða1 Þf ðzÞÞ0 þc ðz 2 UÞ: pc Hp;q;s ða1 ÞgðzÞ

By using the identity (1.9), we have

ðp  cÞzq0 ðzÞHp;q;s ða1 ÞgðzÞ þ ðp  cÞqðzÞzðHp;q;s ða1 Þf ðzÞÞ0 þ czðHp;q;s ða1 ÞgðzÞÞ0 ¼ ða1 þ pÞzðHp;q;s ða1 Þf ðzÞÞ0  a1 zðHp;q;s ða1 þ 1Þf ðzÞÞ0 :

ð2:10Þ

Dividing (2.10) by Hp;q;s ða1 ÞgðzÞ and simplifying, we obtain

qðzÞ þ

  zq0 ðzÞ 1 zðHp;q;s ða1 þ 1Þf ðzÞÞ0 ¼ þc ; rðzÞ þ a1 þ p pc Hp;q;s ða1 þ 1ÞgðzÞ

where

rðzÞ ¼ 

zðHp;q;s ða1 ÞgðzÞÞ0 : Hp;q;s ða1 ÞgðzÞ

Since gðzÞ 2 Rp ða1 þ 1; A; BÞ, from Theorem 1, we have

rðzÞ 

1 þ Az ; 1 þ Bz

ð2:11Þ

776

M.K. Aouf / Applied Mathematics and Computation 206 (2008) 772–780

using (1.13), we have p

rðzÞ þ a1 þ p ¼ qei2u ; where

a1 ð1 þ BÞ  pðA  BÞ 1þB


a1 ð1  BÞ þ pðA  BÞ 1B

;

tðA; BÞ < u < tðA; BÞ;

where tðA; BÞ is given by (2.9).

Let h be a function which maps onto the angular domain w : j arg wj < p2 d with hð0Þ ¼ 1. Applying Lemma 2 for this h with kðzÞ ¼ rðzÞþ1 a1 þp, we see that Re qðzÞ > 0 in U and hence qðzÞ–0 in U. If there exists a point z0 2 U such that the conditions (2.1) and (2.2) are satisfied, then by Lemma 3, we have (2.3) under the restrictions (2.4)–(2.6). 1 At first, suppose that qðz0 Þa ¼ iaða > 0Þ. Then we obtain

arg 

    1 z0 ðHp;q;s ða1 þ 1Þf ðz0 ÞÞ0 z0 q0 ðz0 Þ p p þc ¼ a þ arg 1 þ iakðqei2u Þ1 ¼ arg qðz0 Þ þ pc rðz0 Þ þ a1 þ p Hp;q;s ða1 þ 1Þgðz0 Þ 2   ak sin p2 ð1  uÞ p ¼ a þ tan1 2 q þ ak cos p2 ð1  uÞ ! a sin p2 ð1  tðA; BÞÞ p p 1 P a þ tan ¼ d; a1 ð1BÞþpðABÞ 2 2 þ a cos p ð1  tðA; BÞÞ 1B

2

where d and tðA; BÞ are given by (2.8) and (2.9), respectively. This is a contradiction to the assumption of our theorem. 1 Next, suppose that pðz0 Þa ¼ iaða > 0Þ. Applying the same method as the above, we have



  1 z0 ðHp;q;s ða1 þ 1Þf ðz0 ÞÞ0 p 6  a  tan1 arg  þc pc Hp;q;s ða1 þ 1Þgðz0 Þ 2

!

a sin p2 ð1  tðA; BÞÞ p ¼ d; a1 ð1BÞþpðABÞ p ð1  tðA; BÞÞ 2 þ a cos 1B 2

where d and tðA; BÞ are given by (2.8) and (2.9), respectively, which contradicts the assumption. Therefore we complete the proof of Theorem 2. h Taking A ¼ 1; B ¼ 0 and d ¼ 1 in Theorem 2, we have the following corollary. Corollary 1. Let f ðzÞ 2 Rp . If

  zðHp;q;s ða1 þ 1Þf ðzÞÞ0 Re > c ð0 6 c < pÞ Hp;q;s ða1 þ 1ÞgðzÞ for some g 2 Rp satisfying the condition

   zðHp;q;s ða1 þ 1ÞgðzÞÞ0  < p;  þ p   H ða þ 1ÞgðzÞ p;q;s 1 then

  zðHp;q;s ða1 Þf ðzÞÞ0 Re > c ð0 6 c < pÞ: Hp;q;s ða1 ÞgðzÞ Remark 1. Taking q ¼ s þ 1; a1 ¼ b1 ¼ p; aj ¼ 1 ðj ¼ 2; 3; . . . ; s þ 1Þ and bj ¼ 1 ðj ¼ 2; . . . ; sÞ in Corollary 1 we obtain the result obtained by Lashin [10, Corollary 2.4]. Taking A ¼ 1; B ¼ 0 and gðzÞ ¼ z1p in Theorem 2, we have the following corollary. Corollary 2. Let f ðzÞ 2 Rp and a1 P p. If

j arg½zpþ1 ðHp;q;s ða1 þ 1Þf ðzÞÞ0  cj <

p 2

d ð0 6 c < p; 0 < c 6 1Þ;

then

j arg½zpþ1 ðHp;q;s ða1 Þf ðzÞÞ0  cj <

p 2

d:

Taking q ¼ s þ 1; a1 ¼ b1 ¼ p; aj ¼ 1 ðj ¼ 2; 3; . . . ; s þ 1Þ; bj ¼ 1 ðj ¼ 2; 3; . . . ; sÞ and d ¼ 1 in Corollary 2, we have the following corollary. Corollary 3. Let f ðzÞ 2 Rp . If 00

Refzpþ1 ½zf ðzÞ þ ð2p þ 1Þf 0 ðzÞg > c ð0 6 c < pÞ;

M.K. Aouf / Applied Mathematics and Computation 206 (2008) 772–780

777

then

Refzpþ1 f 0 ðzÞg > c: Remark 2. Taking q ¼ 2; s ¼ 1; a1 ¼ m; a2 ¼ 1 and b1 ¼ m þ 1; m > 1, in Theorem 2, we obtain the result obtained by Lashin [10, Corollary 2.3]. Remark 3 (i) Putting q ¼ 2; s ¼ 1; a1 ¼ n þ pðn > pÞ; a2 ¼ 1 and b1 ¼ 1 in Theorem 2, we obtain the result obtained by Cho and Owa [5, Theorem 2.1]. (ii) Putting p ¼ 1; q ¼ 2; s ¼ 1; a1 ¼ n þ 1ðn > 1Þ; a2 ¼ 1 and b1 ¼ 1 in Theorem 2, we obtain the result obtained by Cho [4, Theorem 2.1]. (iii) Putting q ¼ 2; s ¼ 1; a1 ¼ a > 0; a2 ¼ 1 and b1 ¼ c > 0 in Theorem 2, we obtain the result obtained by Lashin [10, Theorem 2.2]. By the same techniques as in the proof of Theorem 2, we obtain Theorem 3. Let f ðzÞ 2 Rp . Choose a1 2 R such that

a1 P

pðA  BÞ ; 1þB

where 1 < B < A 6 1 and p 2 N. If

   0   arg zðHp;q;s ða1 þ 1Þf ðzÞÞ þ c  < p d ðc > p; 0 < d 6 1Þ   2 Hp;q;s ða1 þ 1ÞgðzÞ for some g 2 Rp ½a1 þ 1; A; B, then

   0   arg zðHp;q;s ða1 Þf ðzÞÞ þ c  < p a;   2 Hp;q;s ða1 ÞgðzÞ

where að0 < a 6 1Þ is the solution of the equation given by (2.8). Theorem 4. Let h be convex univalent in U with hð0Þ ¼ 1 and Re h be bounded in U. Let F m;p ðf ÞðzÞ be the integral operator defined by (1.10). If f 2 Rp satisfies the condition



zðHp;q;s ða1 Þf ðzÞÞ0  hðzÞ ðz 2 UÞ; pHp;q;s ða1 Þf ðzÞ



zðHp;q;s ða1 ÞF m;p ðf ÞðzÞÞ0  hðzÞ ðz 2 UÞ pHp;q;s ða1 ÞF m;p ðf ÞðzÞ

then

for maxz2U Re hðzÞ < mþp (provided Hp;q;s F m;p ðf ÞðzÞ–0 in U). p Proof. Let

pðzÞ ¼ 

zðHp;q;s ða1 ÞF m;p ðf ÞðzÞÞ0 pHp;q;s ða1 ÞF m;p ðf ÞðzÞ

ðz 2 UÞ:

Then, by using (1.11), we have

qðzÞ  ðm þ pÞ ¼ c

Hp;q;s ða1 ÞF m;p ðf ÞðzÞ : Hp;q;s ða1 ÞF m;p ðf ÞðzÞ

Taking logarithmic derivatives in both sides of (2.12) and multiplying by z, we get

zq0 ðzÞ zðHp;q;s ða1 Þf ðzÞÞ0 þ qðzÞ ¼   hðzÞ ðz 2 UÞ: pqðzÞ þ ðm þ pÞ pHp;q;s ða1 Þf ðzÞ Therefore, by using Lemma 1, we have



zðHp;q;s ða1 ÞF m;p ðf ÞðzÞÞ0  hðzÞ ðz 2 UÞ pHp;q;s ða1 ÞF m;p ðf ÞðzÞ

for maxz2U Re hðzÞ < mþp (provided Hp;q;s ða1 ÞF m;p ðf ÞðzÞ–0 in U). h p

ð2:12Þ

778

M.K. Aouf / Applied Mathematics and Computation 206 (2008) 772–780

1þz Remark 4. Taking q ¼ 2; s ¼ 1; a1 ¼ n þ pðn > pÞ; a2 ¼ b1 ¼ 1 and hðzÞ ¼ 1z in Theorem 4, we obtain the result obtained by Aouf [1, Theorem 3].

Theorem 5. Let f ðzÞ 2 Rp and choose a positive number

mP

m such that

1þA  p; 1þB

where 1 < B < A 6 1 and p 2 N. If

   0   arg  zðHp;q;s ða1 Þf ðzÞÞ  c  < p d ð0 6 c < p; 0 < d 6 1Þ  2  Hp;q;s ða1 ÞgðzÞ for some g 2 Rp ½a1 ; A; B, then

   0   arg  zðHp;q;s ða1 ÞF m;p ðf ÞðzÞÞ  c  < p a;  2  Hp;q;s ða1 ÞGm;p ðgÞðzÞ where F m;p ðf ÞðzÞ is the integral operator given by (1.10),

Gm;p ðgÞðzÞ ¼

Z

m zmþp

z

tmþp1 gðtÞdt

ðm > 0Þ

ð2:13Þ

0

and að0 < a 6 1Þ is the solution of the equation

d¼aþ

2

p

(

)

a sin p2 ð1  tðA; B; mÞÞ ; ðmþpÞð1BÞþpðABÞ þ a cos p2 ð1  tðA; B; mÞÞ 1B

1

tan

ð2:14Þ

where

tðA; B; mÞ ¼

2

p

" 1

sin

pðA  BÞ ðm þ pÞð1  B2 Þ  pð1  ABÞ

# ð2:15Þ

:

Proof. Let

qðzÞ ¼ 

  1 zðHp;q;s ða1 ÞF m;p ðf ÞðzÞÞ0 þc ðz 2 UÞ: p  c Hp;q;s ða1 ÞGm;p ðgÞðzÞ

Since g 2 Rp ½a1 ; A; B, from Theorem 4, Gm;p ðgÞðzÞ 2 Rp ½a1 ; A; B. Using (1.11), we have

ðp  cÞqðzÞHp;q;s ða1 ÞGm;p ðgÞðzÞ  ðm þ pÞHp;q;s ða1 ÞF m;p ðf ÞðzÞ ¼ mHp;q;s ða1 Þf ðzÞ  cHp;q;s ða1 ÞGm;p ðgÞðzÞ: Then, by a simple calculation, we have

ðp  cÞfzq0 ðzÞ þ qðzÞ½rðzÞ þ m þ pg þ c½rðzÞ þ m þ p ¼ 

zðHp;q;s ða1 Þf ðzÞÞ0 ; Hp;q;s ða1 ÞGm;p ðgÞðzÞ

where

rðzÞ ¼ 

zðHp;q;s ða1 ÞGm;p ðgÞðzÞÞ0 : Hp;q;s ða1 ÞGm;p ðgÞðzÞ

Hence, we have

qðzÞ þ

  zq0 ðzÞ 1 zðHp;q;s ða1 Þf ðzÞÞ0 ¼ þc : rðzÞ þ m þ p pc Hp;q;s ða1 ÞgðzÞ

The remaining part of the proof is similar to that of Theorem 2 and so we omit it.

h

Putting q ¼ s þ 1; a1 ¼ b1 ¼ p; aj ¼ 1 ðj ¼ 2; 3; . . . ; s þ 1Þ; bj ¼ 1 ðj ¼ 2; 3; . . . ; sÞ; A ¼ 1; B ¼ 0 and d ¼ 1 in Theorem 5, we obtain the following result. Corollary 4. Let

m > 0 and f ðzÞ 2 Rp . If

 0  zf ðzÞ Re > c ð0 6 c < pÞ gðzÞ for some gðzÞ 2 Rp satisfying the condition

M.K. Aouf / Applied Mathematics and Computation 206 (2008) 772–780

779

  0  zg ðzÞ  < p;  þ p   gðzÞ then

Re

( 0 ) zF m;p ðf ÞðzÞ > c ð0 6 c < pÞ; Gm;p ðgÞðzÞ

where F m;p ðf ÞðzÞ and Gm;p ðgÞðzÞ are given by (1.10) and (2.13), respectively. Taking q ¼ s þ 1; a1 ¼ b1 ¼ p; aj ¼ 1 ðj ¼ 2; 3; . . . ; s þ 1Þ; bj ¼ 1 ðj ¼ 2; 3; . . . ; sÞ; B ! A and gðzÞ ¼ z1p in Theorem 5, we obtain the following corollary. Corollary 5. Let

j argðz

m > 0 and f ðzÞ 2 Rp . If

p

pþ1 0

f ðzÞ  cÞj <

2

d ð0 6 c < p; 0 < d 6 1Þ

then

j argðzpþ1 F 0m;p ðf ÞðzÞ  cÞj <

p 2

a;

where F m;p ðf ÞðzÞ is the integral operator given by (1.10) and að0 < a 6 1Þ is the solution of the equation

d¼aþ

2

p

tan1



a



mþp

:

By using the same method as in proving Theorem 5, we have Theorem 6. Let f ðzÞ 2 Rp and choose a positive number

m such that

1þA mP  p; 1þB where 1 < B < A 6 1 and p 2 N. If

   0   arg zðHp;q;s ða1 Þf ðzÞÞ þ c  < p d ðc > p; 0 < d 6 1Þ  2  Hp;q;s ða1 ÞgðzÞ for some g 2 Rp ½a1 ; A; B, then

   0   arg zðHp;q;s ða1 ÞF m;p ðf ÞðzÞÞ þ c  < p a;  2  Hp;q;s ða1 ÞGm;p ðgÞðzÞ

where F m;p ðf ÞðzÞ and Gm;p ðgÞðzÞ are given by (1.10) and (2.13), respectively, and að0 < a 6 1Þ is the solution of the equation given by (2.14). Finally, we derive Theorem 7. Let f ðzÞ 2 Rp . Choose a1 2 R such that

a1 P

pðA  BÞ ; 1þB

where 1 < B < A 6 1 and p 2 N. If

   0   arg  zðHp;q;s ða1 Þf ðzÞÞ  c  < p d ð0 6 c < p; 0 < d 6 1Þ   2 Hp;q;s ða1 ÞgðzÞ for some g 2 Rp ½a1 ; A; B, then

   0   arg  zðHp;q;s ða1 þ 1ÞF m;p ðf ÞðzÞÞ  c  < p d;  2  Hp;q;s ða1 þ 1ÞGm;p ðgÞðzÞ

where F m;p ðf ÞðzÞ and Gm;p ðgÞðzÞ are given by (1.10) and (2.13), respectively, with Proof. From (1.9) and (1.11) with

m ¼ a1 , we have Hp;q;s ða1 Þf ðzÞ ¼ Hp;q;s ða1 þ 1ÞF m;p ðf ÞðzÞ. Therefore

zðHp;q;s ða1 Þf ðzÞÞ0 zðHp;q;s ða1 þ 1ÞF m;p ðf ÞðzÞÞ0 ¼ Hp;q;s ða1 ÞgðzÞ Hp;q;s ða1 þ 1ÞGm;p ðgÞðzÞ and the result follows. h

m ¼ a1 .

780

M.K. Aouf / Applied Mathematics and Computation 206 (2008) 772–780

References [1] M.K. Aouf, New criteria for multivalent meromorphic starlike function of order alpha, Proc. Jpn. Acad. Ser. A 69 (3) (1993) 66–70. [2] M.K. Aouf, Certain subclasses of meromorphically multivalent functions associated with generalized hypergeometric function, Comput. Math. Appl. 55 (3) (2008) 494–509. [3] M.K. Aouf, Certain classes of meromorphic multivalent functions with positive coefficients, Math. Comput. Model. 47 (3-4) (2008) 328–340. [4] N.E. Cho, Argument estimates of certain meromorphic functions, Comm. Korean Math. Soc. 15 (2) (2000) 263–274. [5] N.E. Cho, S. Owa, Argument estimates of meromorphically multivalent functions, J. Inequal. Appl. 5 (2000) 49–432. [6] J. Dziok, H.M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999) 1–13. [7] J. Dziok, H.M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct. 14 (2003) 7–18. [8] P. Enigenburg, S.S. Miller, P.T. Mocanu, M.O. Reade, On a Briot-Bouquet differential subordination, General Inequal. 3 (1983) 339–348. [9] A. Gangadharan, T.N. Shanmugan, H.M. Srivastava, Generalized hypergeometric functions with k-uniformly convex functions, Comput. Math. Appl. 44 (12) (2002) 1515–1526. [10] A.Y. Lashin, Argument estimates of certain meromorphically p-valent functions, Soochow J. Math. 33 (4) (2007) 803–812. [11] J.-L. Liu, Strongly starlike functions associated with the Dziok–Srivastava operator, Tamkang J. Math. 35 (1) (2004) 37–42. [12] J.-L. Liu, H.M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl. 259 (2000) 566–581. [13] J.-L. Liu, H.M. Srivastava, Classes of meromorphically multivalent functions associated with the generalized hypergeometric function, Math. Comput. Model. 39 (2004) 21–34. [14] S.S. Miller, P.T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981) 157–171. [15] M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, Proc. Jpn. Acad. Ser. A – Math. Sci. 69 (1993) 234–237. [16] H. Silverman, E.M. Silvia, Subclasses of starlike functions subordinate to convex functions, Canad. J. Math. 37 (1985) 48–61. [17] B.A. Uralegaddi, C. Somanatha, Certain classes of meromorphic multivalent functions, Tamkang J. Math. 23 (1992) 223–231. [18] D. Yang, On a class of meromorphic starlike multivalent functions, Bull. Inst. Math. Acad. Sinica 24 (1996) 151–157.