Applied Mathematics and Computation 204 (2008) 824–832
Contents lists available at ScienceDirect
Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc
Some properties of certain subclasses of meromorphically multivalent functions R.M. El-Ashwah Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
a r t i c l e
i n f o
a b s t r a c t In this paper, the author investigates interesting properties of certain subclasses of meromorphically multivalent functions which are defined here by means of certain linear operator. Ó 2008 Elsevier Inc. All rights reserved.
Keywords: Analytic functions Meromorphic functions Linear operator
1. Introduction Let
P
p
be the class of functions of the form:
f ðzÞ ¼ zp þ
1 X
akp zkp
ðp 2 N ¼ f1; 2; . . . :gÞ;
ð1:1Þ
k¼1
which are analytic and p-valent in the punctured unit disc U ¼ fz : z 2 C and 0 < jzj < 1g ¼ U n f0g. For functions f ðzÞ 2 P given by (1.1) and gðzÞ 2 p given by
gðzÞ ¼ zp þ
1 X
bkp zkp
ðp 2 NÞ;
P
p
ð1:2Þ
k¼1
then the Hadamard product (or convolution) of f ðzÞ and gðzÞ is given by
ðf gÞðzÞ ¼ zp þ
1 X
akp bkp zkp ¼ ðg f ÞðzÞ:
ð1:3Þ
k¼1
For complex numbers
a1 ; . . . ; aq and b1 ; . . . ; bs ðbj R Z 0 ¼ f0; 1; 2; . . .g; j ¼ 1; 2; . . . ; sÞ; we now define the generalized hypergeometric function q F s ða1 ; . . . ; aq ; b1 ; . . . ; bs ; zÞ by (see, for example [11, p. 19])
a
qFsð 1; . . . ;
aq ; b1 ; . . . ; bs ; zÞ ¼
1 X ða1 Þk . . . ðaq Þk zk : ðb1 Þk . . . ðbs Þk k! k¼1
ðq 6 s þ 1; q; s 2 N0 ¼ N [ f0g; z 2 UÞ;
ð1:4Þ
where ðhÞm is the Pochhammer symbol defined, in terms of the Gamma function C, by
ðhÞm ¼
Cðh þ mÞ ¼ CðhÞ
1
ðm ¼ 0; h 2 C n f0gÞ
hðh þ 1Þ . . . ðh þ m 1Þ ðm 2 N; h 2 CÞ:
E-mail address:
[email protected] 0096-3003/$ - see front matter Ó 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2008.07.032
ð1:5Þ
825
R.M. El-Ashwah / Applied Mathematics and Computation 204 (2008) 824–832
Corresponding to the function hp ða1 ; . . . ; aq ; b1 ; . . . ; bs ; zÞ, defined by
hp ða1 ; . . . ; aq ; b1 ; . . . ; bs ; zÞ ¼ zp q F s ða1 ; . . . ; aq ; b1 ; . . . ; bs ; zÞ;
ð1:6Þ
we consider a linear operator
Hp ða1 ; . . . ; aq ; b1 ; . . . ; bs Þ :
X p
!
X ; p
which is defined by the following Hadamard product (or convolution):
Hp ða1 ; . . . ; aq ; b1 ; . . . ; bs Þf ðzÞ ¼ hp ða1 ; . . . ; aq ; b1 ; . . . ; bs ; zÞ f ðzÞ:
ð1:7Þ
We observe that, for a function f ðzÞ of the form (1.1), we have
Hp ða1 ; . . . ; aq ; b1 ; . . . ; bs Þf ðzÞ ¼ zp þ
1 X ða1 Þk . . . ðaq Þk akp kp : z : ðb1 Þk . . . ðbs Þk k! k¼1
ð1:8Þ
If, for convenience, we write
Hp;q;s ða1 Þ ¼ Hp ða1 ; . . . ; aq ; b1 ; . . . ; bs Þ;
ð1:9Þ
then one can easily verify from the definition (1.8) that
zðHp;q;s ða1 Þf ðzÞÞ0 ¼ a1 Hp;q;s ða1 þ 1Þf ðzÞ ða1 þ pÞHp;q;s ða1 Þf ðzÞ:
ð1:10Þ
The linear operator Hp;q;s ða1 Þ was investigated recently by Liu and Srivastava [7] and Aouf [1]. In particular, for q ¼ 2; s ¼ 1 and a2 ¼ 1, we obtain the linear operator
Hp;2;1 ða1 ; 1; b1 Þf ðzÞ ¼ ‘p ða1 ; b1 Þf ðzÞ
f ðzÞ 2
! X
;
p
which was introduced and studied by Liu and Srivastava [8]. Also we note that, for any integer n > p and f ðzÞ 2
Hp;2;1 ðn þ p; 1; 1Þf ðzÞ ¼ Dnþp1 f ðzÞ ¼
P
p,
we have
1 f ðzÞ; zp ð1 zÞnþp
where Dnþp1 f ðzÞ is the differential operator studied by Uralegaddi and Somanatha [12]. Some interesting subclasses of analytic functions associated with the generalized hypergeometric function, were considered recently by (for example) Dziok and Srivastava [2,3], Gangadharan et al. [4] and Liu [6]. P P1 ða; d; l; kÞ the class of all functions f ðzÞ 2 p such that We denote by ap;q;s
(
Hp;q;s ða1 Þf ðzÞ Re ð1 kÞ Hp;q;s ða1 ÞgðzÞ where gðzÞ 2
P
p
l
l1 ) Hp;q;s ða1 þ 1Þf ðzÞ Hp;q;s ða1 Þf ðzÞ > a; þk Hp;q;s ða1 þ 1ÞgðzÞ Hp;q;s ða1 ÞgðzÞ
ð1:11Þ
satisfies the following condition:
Hp;q;s ða1 ÞgðzÞ > d ð0 6 d < 1; z 2 UÞ; Re Hp;q;s ða1 þ 1ÞgðzÞ
ð1:12Þ
where a and l are real numbers such that 0 6 a < 1; l > 0 and k 2 C with Refkg > 0. We note that: (i) For q ¼ 2; s ¼ 1; a1 ¼ a > 0; b1 ¼ c > 0 and a2 ¼ 1, we have the following condition:
(
Lp ða; cÞf ðzÞ Re ð1 kÞ Lp ða; cÞgðzÞ where gðzÞ 2
Re
P
p
l
P
a;c;p ð
a; d; l; kÞ, is the class of functions f ðzÞ 2
l1 ) Lp ða þ 1; cÞf ðzÞ Lp ða; cÞf ðzÞ > a; þk Lp ða þ 1; cÞgðzÞ Lp ða; cÞgðzÞ
P
p
satisfying
ð1:13Þ
satisfies the following condition:
Lp ða; cÞgðzÞ Lp ða þ 1; cÞgðzÞ
> d ð0 6 d < 1; z 2 UÞ;
ð1:14Þ
where 0 6 a < 1; l > 0, and k 2 C, with Refkg > 0. P (ii) For q ¼ 2; s ¼ 1; a1 ¼ n þ pðn > p; p 2 NÞ; b1 ¼ 1, and a2 ¼ 1;, we have n;p ða; d; l; kÞ, is the class of functions P f ðzÞ 2 p satisfying the following condition:
8 !l !l1 9 < = Dnþp1 f ðzÞ Dnþp f ðzÞ Dnþp1 f ðzÞ > a; Re ð1 kÞ nþp1 þ k nþp nþp1 : ; D gðzÞ D gðzÞ gðzÞ D
ð1:15Þ
826
R.M. El-Ashwah / Applied Mathematics and Computation 204 (2008) 824–832
where gðzÞ 2
P
p
satisfies the following condition:
( ) Dnþp1 gðzÞ Re > d ð0 6 d < 1; z 2 UÞ; Dnþp gðzÞ where 0 6 d < 1; l > 0, and k 2 C, with Refkg > 0. The class
ð1:16Þ P
n;p ð
a; d; l; kÞ was studied by Kwon et al. [5].
To establish our main results we need the following lemmas. Lemma 1. [9] Let X be a set in the complex plane C and let the function W : C 2 ! C satisfy the condition Wðir 2 ; s1 Þ R X for all real 1þr 2 r2 ; s1 6 2 2 . If qðzÞ is analytic in U with qð0Þ ¼ 1 and WðqðzÞ; zq0 ðzÞÞ 2 X; z 2 U, then RefqðzÞg > 0ðz 2 UÞ. Lemma 2. [10] If qðzÞ is analytic in U with qð0Þ ¼ 1, and if k 2 C n f0g with Refkg P 0, then RefqðzÞ þ kzq0 ðzÞg > a ð0 6 a < 1Þ implies RefqðzÞg > a þ ð1 aÞð2c 1Þ, where c is given by
c ¼ cðRekÞ ¼
Z
1
ð1 þ tRefkg Þ1 dt;
0
which is increasing function of Refkg and
1 2
6 c < 1. The estimate is sharp in the sense that the bound cannot be improved.
For real or complex numbers a; b; cðc R Z 0 Þ, the Gauss hypergeometric function is defined by 2 F 1 ða; b; c; zÞ
¼1þ
ab z aða þ 1Þbðb þ 1Þ z2 þ þ c 1! cðc þ 1Þ 2!
We note that the above series converges absolutely for z 2 U and hence represents an analytic function in the unit disc U (see, for details [13, Chapter 14]). Each of the identities (asserted by Lemma 3) is fairly well known (cf., e.g. [13, Chapter 14]). Lemma 3. For real or complex parameters a; b; cðc R Z 0 Þ,
Z
1
tb1 ð1 tÞcb1 ð1 tzÞa dt ¼
0
CðbÞCðc bÞ ðReðcÞ > ReðbÞ > 0Þ; 2 F 1 ða; b; c; zÞ CðcÞ
2 F 1 ða; b; c; zÞ
¼ 2 F 1 ðb; a; c; zÞ; a 2 F 1 ða; b; c; zÞ ¼ ð1 zÞ 2 F 1 a; c b; c;
z ; z1
ð1:17Þ ð1:18Þ ð1:19Þ
and 2F1
1 1; 1; 2; ¼ 2‘n2: 2
ð1:20Þ
2. Main results Theorem 1. Let f ðzÞ 2
Pa1
a; d; l; kÞ; a1 2 R n f0g and k P 0. Then
p;q;s ð
l Hp;q;s ða1 Þf ðzÞ 2a1 al þ dk Re > Hp;q;s ða1 ÞgðzÞ 2a1 l þ dk where the function gðzÞ 2
P
p
ð0 6 a < 1; l > 0; z 2 UÞ;
ð2:1Þ
satisfies the condition (1.12).
þdk , and we define the function qðzÞ by Proof. Let c ¼ 22aa11allþdk
qðzÞ ¼
1 ð1 cÞ
Hp;q;s ða1 Þf ðzÞ Hp;q;s ða1 ÞgðzÞ
l
c :
ð2:2Þ
Then qðzÞ is analytic in U and qð0Þ ¼ 1. If we set
hðzÞ ¼
Hp;q;s ða1 ÞgðzÞ ; Hp;q;s ða1 þ 1ÞgðzÞ
ð2:3Þ
then by the hypothesis, RefhðzÞg > d. Differentiating (2.2) and using the identity (1.10), we have
ð1 kÞ
Hp;q;s ða1 Þf ðzÞ Hp;q;s ða1 ÞgðzÞ
l þk
l1 Hp;q;s ða1 þ 1Þf ðzÞ Hp;q;s ða1 Þf ðzÞ kð1 cÞ ¼ ½c þ ð1 cÞqðzÞ þ hðzÞzq0 ðzÞ: Hp;q;s ða1 þ 1ÞgðzÞ Hp;q;s ða1 ÞgðzÞ a1 l
Let us define the function Wðr; sÞ by
ð2:4Þ
827
R.M. El-Ashwah / Applied Mathematics and Computation 204 (2008) 824–832
kð1 cÞ
Wðr; sÞ ¼ c þ ð1 cÞr þ
la1
Using (2.5) and the fact that f ðzÞ 2
hðzÞs:
Pa1
p;q;s ð
ð2:5Þ
a; d; l; kÞ, we obtain
0
fWðqðzÞ; zq ðzÞÞ; z 2 Ug X ¼ fw 2 C : ReðwÞ > ag: Now for all real r2 ; s1 6
1þr 22 , 2
RefWðir 2 ; s1 Þg ¼ c þ
we have
kð1 cÞs1
la1
RefhðzÞg 6 c
kð1 cÞdð1 þ r 22 Þ kð1 cÞd 6c ¼ a: 2la1 2la1
Hence for each z 2 U; Wðir2 ; s1 Þ R XÞ, Thus by Lemma 1, we have RefqðzÞg > 0ðz 2 UÞ and hence
Re
l Hp;q;s ða1 Þf ðzÞ > c ðz 2 UÞ: Hp;q;s ða1 ÞgðzÞ
This proves Theorem 1. h Corollary 1. Let the functions f ðzÞ and gðzÞ be in
then
P
p
and let gðzÞ satisfy the condition (1.12). If a1 2 R n f0g; k P 1 and
Hp;q;s ða1 Þf ðzÞ Hp;q;s ða1 þ 1Þf ðzÞ Re ð1 kÞ þk > a ð0 6 a < 1; z 2 UÞ; Hp;q;s ða1 ÞgðzÞ Hp;q;s ða1 þ 1ÞgðzÞ
ð2:6Þ
Hp;q;s ða1 þ 1Þf ðzÞ að2a1 þ dÞ þ dðk 1Þ Re >c¼ Hp;q;s ða1 þ 1ÞgðzÞ 2a1 þ kd
ð2:7Þ
ðz 2 UÞ:
Proof. We have
k
Hp;q;s ða1 þ 1Þf ðzÞ Hp;q;s ða1 Þf ðzÞ Hp;q;s ða1 þ 1Þf ðzÞ Hp;q;s ða1 Þf ðzÞ þ ðk 1Þ ¼ ð1 kÞ þk Hp;q;s ða1 þ 1ÞgðzÞ Hp;q;s ða1 ÞgðzÞ Hp;q;s ða1 þ 1ÞgðzÞ Hp;q;s ða1 ÞgðzÞ
Since k P 1, making use of (2.6) and (2.1) (for
ðz 2 UÞ:
l ¼ 1), we deduce that
Hp;q;s ða1 þ 1Þf ðzÞ að2a1 þ dÞ þ dðk 1Þ Re >c¼ : Hp;q;s ða1 þ 1ÞgðzÞ 2a1 þ kd
Corollary 2. Let k 2 C n f0g with Refkg P 0 and a1 2 R n f0g. If f ðzÞ 2
P
p
satisfies the following condition:
Refð1 kÞðzp Hp;q;s ða1 Þf ðzÞÞl þ kzp Hp;q;s ða1 þ 1Þf ðzÞ ðzp Hp;q;s ða1 Þf ðzÞÞl1 g > að0 6 a < 1; l > 0; p 2 N; z 2 UÞ; then
Refzp Hp;q;s ða1 Þf ðzÞgl >
2la1 a þ Refkg 2la1 þ Refkg
Further, if k P 1; a1 2 R n f0g and f ðzÞ 2
P
p
ðz 2 UÞ:
ð2:8Þ
satisfies
Refð1 kÞzp Hp;q;s ða1 Þf ðzÞ þ kzp Hp;q;s ða1 þ 1Þf ðzÞg > a ðz 2 UÞ; then
Refzp Hp;q;s ða1 þ 1Þf ðzÞg >
ð2a1 þ 1Þa þ k 1 2a1 þ k
ð0 6 a < 1; p 2 N; z 2 UÞ:
ð2:9Þ
Proof. The results (2.8) and (2.9) follows by putting gðzÞ ¼ z1p in Theorem 1 and Corollary 1, respectively. h Remark 1. Choosing q; s; a1 ; a2 ; b1 ; l and k appropriately in Corollary 2, we obtain the following results.
(i) For k ¼ 1; q ¼ s þ 1; a1 ¼ b1 ¼ p; aj ¼ 1 ðj ¼ 2; 3; . . . ; s þ 1Þ and bj ¼ 1 ðj ¼ 2; 3; . . . ; sÞ in Corollary 2, we have
Re
0 zf ðzÞ 2þ ðzp f ðzÞÞl > a ð0 6 a < 1; l > 0; z 2 UÞ pf ðzÞ
implies
Refzp f ðzÞgl >
2lap þ 1 2l p þ 1
ðz 2 UÞ:
ð2:10Þ
828
R.M. El-Ashwah / Applied Mathematics and Computation 204 (2008) 824–832
(ii) For k 2 C n f0g with Refkg P 0; Corollary 2, we have
l ¼ 1; q ¼ s þ 1; a1 ¼ b1 ¼ p; aj ¼ 1 ðj ¼ 2; 3; . . . ; s þ 1Þ and bj ¼ 1 ðj ¼ 2; 3; . . . ; sÞ in
k Re ð1 þ kÞzp f ðzÞ þ zpþ1 f 0 ðzÞ > a ð0 6 a < 1; l > 0; z 2 UÞ p implies
Refzp f ðzÞg >
2ap þ Refkg 2p þ Refkg
ðz 2 UÞ:
0
(iii) Replacing f(z) by zf pðzÞ in the result (ii), we have
Re
k zpþ1 f 0 ðzÞ k pþ2 00 1þkþ þ 2 z f ðzÞ > a ð0 6 a < 1; z 2 UÞ p p p
implies
Re
pþ1 z 2ap þ Refkg f 0 ðzÞ > 2p þ Refkg p
(iv) For k 2 R with k P 1; 2, we have
ðz 2 UÞ:
l ¼ 1; q ¼ s þ 1; a1 ¼ b1 ¼ p; aj ¼ 1 ðj ¼ 2; 3; . . . ; s þ 1Þ and bj ¼ 1 ðj ¼ 2; 3; . . . ; sÞ in Corollary
k Re ð1 þ kÞzp f ðzÞ þ zpþ1 f 0 ðzÞ > a ð0 6 a < 1; z 2 UÞ p implies
Refzp f ðzÞg >
að2p þ 1Þ þ k 1 2p þ k
ðz 2 UÞ:
(v) Putting k ¼ 1; q ¼ 2; s ¼ 1; a1 ¼ a > 0; b1 ¼ c > 0 and a2 ¼ 1, in Corollary 2, we have
Refzp Lp ða þ 1; cÞf ðzÞðzp Lp ða; cÞf ðzÞÞl1 g > a ð0 6 a < 1; l > 0; p 2 N; z 2 UÞ implies
Refzp Lp ða; cÞf ðzÞgl >
2laa þ 1 2la þ 1
(vi) For k 2 C n f0g with Refkg P 0;
ðz 2 UÞ:
l ¼ 1; q ¼ 2; s ¼ 1; a1 ¼ a > 0; b1 ¼ c > 0 and a2 ¼ 1 in Corollary 2, we have
Refð1 kÞzp Lp ða; cÞf ðzÞ þ kzp Lp ða þ 1; cÞf ðzÞg > a ð0 6 a < 1; p 2 N; z 2 UÞ implies
Refzp Lp ða; cÞf ðzÞg >
2aa þ Refkg 2a þ Refkg
ðz 2 UÞ:
Theorem 2. Let k 2 C with Refkg > 0 and a1 2 R n f0g. Let f ðzÞ 2
P
p
satisfy the following condition:
l
Refð1 kÞðzp Hp;q;s ða1 Þf ðzÞÞ þ kzp Hp;q;s ða1 þ 1Þf ðzÞ ðzp Hp;q;s ða1 Þf ðzÞÞl1 g > a
ð2:11Þ
ð0 6 a < 1; l > 0; p 2 N; z 2 UÞ: Then
Refzp Hp;q;s ða1 Þf ðzÞgl > a þ ð1 aÞð2q 1Þ;
ð2:12Þ
where
q¼
1 la1 1 þ 1; : 2 F 1 1; 1; 2 2 Refkg
ð2:13Þ
Proof. Let
qðzÞ ¼ ðzp Hp;q;s ða1 Þf ðzÞÞl :
ð2:14Þ
Then qðzÞ is analytic in U with qð0Þ ¼ 1. Differentiating qðzÞ with respect to z and using the identity (1.10), we obtain
ð1 kÞðzp Hp;q;s ða1 Þf ðzÞÞl þ kzp Hp;q;s ða1 þ 1Þf ðzÞðzp Hp;q;s ða1 Þf ðzÞÞl1 ¼ qðzÞ þ
kzq0 ðzÞ
la1
;
829
R.M. El-Ashwah / Applied Mathematics and Computation 204 (2008) 824–832
so that by the hypothesis (2.11), we have
kzq0 ðzÞ Re qðzÞ þ > a ðz 2 UÞ:
la1
In view Lemma 2, this implies that
RefqðzÞg > a þ ð1 aÞð2q 1Þ; where
q ¼ qðRefkgÞ ¼
Z
1
Refkg 1 1 þ t la1 dt:
0
Putting Refkg ¼ k1 > 0, we have
q¼
Z 0
1
1 Z k1 la1 1 lka11 1 1 þ t la1 dt ¼ u ð1 þ uÞ1 du: k1 0
Using (1.17)–(1.20), we obtain
q ¼ 2 F 1 1;
la1 la1 k1
;
k1
1 la1 1 þ 1; 1 ¼ 2 F 1 1; 1; þ 1; : 2 2 k1
Thus the proof of Theorem 2 is complete. h Corollary 3. Let k 2 R with k P 1. If f ðzÞ 2
P
p
satisfies
Refð1 kÞzp Hp;q;s ða1 Þf ðzÞ þ kzp Hp;q;s ða1 þ 1Þf ðzÞg > a ð0 6 a < 1; a1 2 R n f0g;p 2 N; z 2 UÞ;
ð2:15Þ
then
Refzp Hp;q;s ða1þ1 Þf ðzÞg > a þ ð1 aÞð2q 1Þð1 k1 Þ ðz 2 UÞ; where
q ¼
1 a1 1 þ 1; : 2 F 1 1; 1; 2 2 k
Proof. The result follows by using the identity
kzp Hp;q;s ða1 þ 1Þf ðzÞ ¼ ð1 kÞzp Hp;q;s ða1 Þf ðzÞ þ kzp Hp;q;s ða1 þ 1Þf ðzÞ þ ðk 1Þzp Hp;q;s ða1 Þf ðzÞ:
ð2:16Þ
Remark 2. (i) We note that if k ¼ l > 0; q ¼ s þ 1; a1 ¼ b1 ¼ p; aj ¼ 1ðj ¼ 2; 3; . . . ; s þ 1Þ, and bj ¼ 1 ðj ¼ 2; 3; . . . ; sÞ in Corollary 2, that is,
kzpþ1 0 Re ð1 þ kÞðzp f ðzÞÞk þ f ðzÞðzp f ðzÞÞk1 > a ð0 6 a < 1; z 2 UÞ; p
ð2:17Þ
then (2.8) implies that
Refzp f ðzÞgk >
2ap þ 1 2p þ 1
whereas if f ðzÞ 2 p
P
p
ðz 2 UÞ;
satisfies the condition (2.17) then by using Theorem 2, we have
k
Refz f ðzÞg > 2ð1 ‘n2Þa þ ð2‘n2 1Þ ðz 2 UÞ; which is better than (2.18). (ii) Similarly, if q ¼ s þ 1; a1 ¼ 2; aj ¼ 1 ðj ¼ 2; 3; . . . ; s þ 1Þ; bj ¼ 1 ðj ¼ 1; 2; . . . ; sÞ and k ¼ 2, in (2.9) and
Ref2zp Hp;sþ1;s ð3Þf ðzÞ zp Hp;sþ1;s ð2Þf ðzÞg > a ð0 6 a < 1; z 2 UÞ; then we have
Refzp Hp;sþ1;s ð3Þf ðzÞg >
5a þ 1 6
ðz 2 UÞ;
ð2:18Þ
830
R.M. El-Ashwah / Applied Mathematics and Computation 204 (2008) 824–832
whereas by using (1.20), Corollary 3 implies that
Refzp Hp;sþ1;s ð3Þf ðzÞg >
1 5a þ 1 ½að3 2‘n2Þ þ ð2‘n2 1Þ > 2 6
ðz 2 UÞ:
(iii) We observe that if k 2 R, satisfying k > 0 and
kðzÞ ¼
Hp;q;s ða1 þ 1Þf ðzÞ 1 Hp;q;s ða1 Þf ðzÞ 1 þ Hp;q;s ða1 þ 1ÞgðzÞ k Hp;q;s ða1 ÞgðzÞ
then from Theorem 1 (for
RefkðzÞg >
ðz 2 UÞ;
l ¼ 1), we have
a k
implies
Hp;q;s ða1 Þf ðzÞ 2a1 a þ kd > Re Hp;q;s ða1 ÞgðzÞ 2a1 þ kd
ð2:19Þ
whenever
Hp;q;s ða1 ÞgðzÞ Re > d ð0 6 d < 1; z 2 UÞ: Hp;q;s ða1 þ 1ÞgðzÞ Let k ! þ1, then from (2.19), we have
RefkðzÞg P 0 ðz 2 UÞ implies Re whenever Re
n
Hp;q;s ða1 ÞgðzÞ Hp;q;s ða1 þ1ÞgðzÞ
o
Hp;q;s ða1 Þf ðzÞ Hp;q;s ða1 ÞgðzÞ
P 1 ðz 2 UÞ;
> dð0 6 d < 1; z 2 UÞ.
In the following theorem, we shall extend the above results as follows. P Theorem 3. Suppose the functions f ðzÞ and gðzÞ are in p , and suppose gðzÞ, satisfies the condition (1.12). If
Hp;q;s ða1 þ 1Þf ðzÞ Hp;q;s ða1 Þf ðzÞ ð1 aÞd > Re Hp;q;s ða1 þ 1ÞgðzÞ Hp;q;s ða1 ÞgðzÞ 2a1
then
ð0 6 a < 1; 0 6 d < 1; a1 2 R n f0g; z 2 UÞ;
Hp;q;s ða1 Þf ðzÞ Re > a ðz 2 UÞ Hp;q;s ða1 ÞgðzÞ
ð2:20Þ
ð2:21Þ
and
Hp;q;s ða1 þ 1Þf ðzÞ ð2a1 þ dÞa d > Re Hp;q;s ða1 þ 1ÞgðzÞ 2a1
ð0 6 a < 1; 0 6 d < 1; a1 2 R n f0g; z 2 UÞ:
ð2:22Þ
Proof. Let
qðzÞ ¼
1 Hp;q;s ða1 Þf ðzÞ a : ð1 aÞ Hp;q;s ða1 ÞgðzÞ
ð2:23Þ
Then qðzÞ is analytic in U with qð0Þ ¼ 1. Putting
/ðzÞ ¼
Hp;q;s ða1 ÞgðzÞ Hp;q;s ða1 þ 1ÞgðzÞ
ðz 2 UÞ
we observe that by hypothesis, Ref/ðzÞg > dð0 6 d < 1Þ in U. A simple computation shows that
ð1 aÞzq0 ðzÞ/ðzÞ
a1
¼
Hp;q;s ða1 þ 1Þf ðzÞ Hp;q;s ða1 Þf ðzÞ ¼ WðqðzÞ; zq0 ðzÞÞ; Hp;q;s ða1 þ 1ÞgðzÞ Hp;q;s ða1 ÞgðzÞ
where
Wðr; sÞ ¼
ð1 aÞ/ðzÞs
a1
ða1 2 R n f0gÞ:
Using the hypothesis (2.20), we obtain
fWðqðzÞ; zq0 ðzÞ; z 2 Ug X ¼
ð1 aÞd w 2 C : Rew > : 2a1
ð2:24Þ
R.M. El-Ashwah / Applied Mathematics and Computation 204 (2008) 824–832
Now, for all real r2 ; s1 6
RefWðir 2 ; s1 Þg ¼
ð1þr 22 Þ , 2
831
we have
s1 ð1 aÞRef/ðzÞg
a1
6
ð1 aÞdð1 þ r 22 Þ ð1 aÞd 6 : 2a1 2a1
This shows that Wðir2 ; s1 Þ R X for each z 2 U. Hence by Lemma 1, we have RefqðzÞg > 0ðz 2 UÞ. This proves (2.21). The proof of (2.22) follows by using (2.21) and (2.22) in the identity:
Hp;q;s ða1 þ 1Þf ðzÞ Hp;q;s ða1 þ 1Þf ðzÞ Hp;q;s ða1 Þf ðzÞ Hp;q;s ða1 Þf ðzÞ Re ¼ Re þ Re : Hp;q;s ða1 þ 1ÞgðzÞ Hp;q;s ða1 þ 1ÞgðzÞ Hp;q;s ða1 ÞgðzÞ Hp;q;s ða1 ÞgðzÞ This completes the proof of Theorem 3. h Putting q ¼ 2; s ¼ 1; a1 ¼ a > 0; b1 ¼ c > 0 and a2 ¼ 1 in Theorem 3, we obtain P Corollary 4. Suppose the functions f ðzÞ and gðzÞ are in p and suppose gðzÞ satisfies
Lp ða; cÞgðzÞ Lp ða þ 1; cÞgðzÞ
Re
> d ð0 6 d < 1; z 2 UÞ:
ð2:25Þ
If
Re
Lp ða þ 1; cÞgðzÞ Lp ða; cÞf ðzÞ ð1 aÞd > Lp ða þ 1; cÞgðzÞ Lp ða; cÞgðzÞ 2a
ð0 6 a < 1; 0 6 d < 1; z 2 UÞ;
ð2:26Þ
then
Lp ða; cÞf ðzÞ Lp ða; cÞgðzÞ
Re
> a ðz 2 UÞ
ð2:27Þ
and
Re
Lp ða þ 1; cÞf ðzÞ Lp ða þ 1; cÞgðzÞ
>
ð2a þ dÞa d 2a
ð0 6 a < 1; 0 6 d < 1; z 2 UÞ:
ð2:28Þ
Remark 3 (i) Putting q ¼ s þ 1; a1 ¼ b1 ¼ p; aj ¼ 1 ðj ¼ 2; 3; . . . ; s þ 1Þ; bj ¼ 1 ðj ¼ 2; 3; . . . ; sÞ and gðzÞ ¼ z1p in Theorem 3, we obtain:
Refzp f ðzÞ þ
zpþ1 0 ð1 aÞd f ðzÞg > 2p p
ðz 2 UÞ
implies
Refzp f ðzÞg > a ðz 2 UÞ and
zpþ1 0 ð2p þ dÞa d Re 2zp f ðzÞ þ f ðzÞ > 2p p
ðz 2 UÞ:
(ii) For q ¼ s þ 1; a1 ¼ p þ 1; b1 ¼ p; aj ¼ 1ðj ¼ 2; 3; . . . ; s þ 1Þ; bj ¼ 1 ðj ¼ 2; 3; . . . ; sÞ and gðzÞ ¼ z1p in Theorem 3, we have:
Refzp Hp;sþ1;s ðp þ 2Þf ðzÞ zp Hp;sþ1;s ðp þ 1Þf ðzÞg >
ð1 aÞd 2ðp þ 1Þ
ð0 6 a < 1; 0 6 d < 1; z 2 UÞ implies
Refzp Hp;sþ1;s ðp þ 1Þf ðzÞg > a ðz 2 UÞ and
Refzp Hp;sþ1;s ðp þ 2Þf ðzÞg >
ð2ðp þ 1Þ þ dÞa d 2ðp þ 1Þ
ðz 2 UÞ:
Acknowledgements The author would like to thank the referees of the paper for their valuable suggestions.
832
R.M. El-Ashwah / Applied Mathematics and Computation 204 (2008) 824–832
References [1] M.K. Aouf, Certain subclasses of meromorphically multivalent functions associated with generalized hypergeometric function, Comput. Math. Appl. 55 (3) (2008) 494–509. [2] J. Dziok, H.M. Srivastava, Certain classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999) 1–13. [3] J. Dziok, H.M. Srivastava, Certain classes of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct. 14 (2003) 7–18. [4] A. Gangadharan, T.N. Shanmugan, H.M. Srivastava, Generalized hypergeometric function associated with k-uniformly convex functions, Comput. Math. Appl. 44 (12) (2002) 1515–1526. [5] O.S. Kwon, J.A. Kim, N.E. Cho, S. Owa, Certain subclasses of meromorphically multivalent functions, J. Brihar Math. Soc. 17 (1996) 1–8. [6] J.-L. Liu, Strongly starlike functions associated with the Dziok–Srivastava operator, Tamkang J. Math. 35 (1) (2004) 37–42. [7] J.-L. Liu, H.M. Srivastava, Classes of meromorphically multivalent functions associated with the generalized hypergeometric function, Math. Comput. Model. 39 (2004) 21–34. [8] J.-L. Liu, H.M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl. 259 (2001) 566–581. [9] S.S. Miller, P.T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65 (1978) 289–305. [10] S. Ponnusamy, Differential subordination and Bazilevic functions, Proc. Indian Acad. Sci. (Math. Sci.) 105 (1995) 169–186. [11] H.M. Srivastava, P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press, Ellis Horwood Limited, John Wiley and Sons, Chichester, New York, Chichester, Brisbabe, and Toronto, 1985. [12] B.A. Uarlergaddi, C. Somanatha, Certain classes of meromorphic multivalent functions, Tamkang J. Math. 23 (1992) 223–231. [13] E.T. Whittaker, G.N. Watson, A Course on Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, fourth ed., Cambridge University Press, Cambridge, 1927.