Some properties of certain subclasses of meromorphically multivalent functions

Some properties of certain subclasses of meromorphically multivalent functions

Applied Mathematics and Computation 204 (2008) 824–832 Contents lists available at ScienceDirect Applied Mathematics and Computation journal homepag...

202KB Sizes 0 Downloads 93 Views

Applied Mathematics and Computation 204 (2008) 824–832

Contents lists available at ScienceDirect

Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc

Some properties of certain subclasses of meromorphically multivalent functions R.M. El-Ashwah Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

a r t i c l e

i n f o

a b s t r a c t In this paper, the author investigates interesting properties of certain subclasses of meromorphically multivalent functions which are defined here by means of certain linear operator. Ó 2008 Elsevier Inc. All rights reserved.

Keywords: Analytic functions Meromorphic functions Linear operator

1. Introduction Let

P

p

be the class of functions of the form:

f ðzÞ ¼ zp þ

1 X

akp zkp

ðp 2 N ¼ f1; 2; . . . :gÞ;

ð1:1Þ

k¼1

which are analytic and p-valent in the punctured unit disc U  ¼ fz : z 2 C and 0 < jzj < 1g ¼ U n f0g. For functions f ðzÞ 2 P given by (1.1) and gðzÞ 2 p given by

gðzÞ ¼ zp þ

1 X

bkp zkp

ðp 2 NÞ;

P

p

ð1:2Þ

k¼1

then the Hadamard product (or convolution) of f ðzÞ and gðzÞ is given by

ðf  gÞðzÞ ¼ zp þ

1 X

akp bkp zkp ¼ ðg  f ÞðzÞ:

ð1:3Þ

k¼1

For complex numbers

a1 ; . . . ; aq and b1 ; . . . ; bs ðbj R Z 0 ¼ f0; 1; 2; . . .g; j ¼ 1; 2; . . . ; sÞ; we now define the generalized hypergeometric function q F s ða1 ; . . . ; aq ; b1 ; . . . ; bs ; zÞ by (see, for example [11, p. 19])

a

qFsð 1; . . . ;

aq ; b1 ; . . . ; bs ; zÞ ¼

1 X ða1 Þk . . . ðaq Þk zk : ðb1 Þk . . . ðbs Þk k! k¼1

ðq 6 s þ 1; q; s 2 N0 ¼ N [ f0g; z 2 UÞ;

ð1:4Þ

where ðhÞm is the Pochhammer symbol defined, in terms of the Gamma function C, by

ðhÞm ¼

Cðh þ mÞ ¼ CðhÞ



1

ðm ¼ 0; h 2 C n f0gÞ

hðh þ 1Þ . . . ðh þ m  1Þ ðm 2 N; h 2 CÞ:

E-mail address: [email protected] 0096-3003/$ - see front matter Ó 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2008.07.032

ð1:5Þ

825

R.M. El-Ashwah / Applied Mathematics and Computation 204 (2008) 824–832

Corresponding to the function hp ða1 ; . . . ; aq ; b1 ; . . . ; bs ; zÞ, defined by

hp ða1 ; . . . ; aq ; b1 ; . . . ; bs ; zÞ ¼ zp q F s ða1 ; . . . ; aq ; b1 ; . . . ; bs ; zÞ;

ð1:6Þ

we consider a linear operator

Hp ða1 ; . . . ; aq ; b1 ; . . . ; bs Þ :

X p

!

X ; p

which is defined by the following Hadamard product (or convolution):

Hp ða1 ; . . . ; aq ; b1 ; . . . ; bs Þf ðzÞ ¼ hp ða1 ; . . . ; aq ; b1 ; . . . ; bs ; zÞ  f ðzÞ:

ð1:7Þ

We observe that, for a function f ðzÞ of the form (1.1), we have

Hp ða1 ; . . . ; aq ; b1 ; . . . ; bs Þf ðzÞ ¼ zp þ

1 X ða1 Þk . . . ðaq Þk akp kp : z : ðb1 Þk . . . ðbs Þk k! k¼1

ð1:8Þ

If, for convenience, we write

Hp;q;s ða1 Þ ¼ Hp ða1 ; . . . ; aq ; b1 ; . . . ; bs Þ;

ð1:9Þ

then one can easily verify from the definition (1.8) that

zðHp;q;s ða1 Þf ðzÞÞ0 ¼ a1 Hp;q;s ða1 þ 1Þf ðzÞ  ða1 þ pÞHp;q;s ða1 Þf ðzÞ:

ð1:10Þ

The linear operator Hp;q;s ða1 Þ was investigated recently by Liu and Srivastava [7] and Aouf [1]. In particular, for q ¼ 2; s ¼ 1 and a2 ¼ 1, we obtain the linear operator

Hp;2;1 ða1 ; 1; b1 Þf ðzÞ ¼ ‘p ða1 ; b1 Þf ðzÞ

f ðzÞ 2

! X

;

p

which was introduced and studied by Liu and Srivastava [8]. Also we note that, for any integer n > p and f ðzÞ 2

Hp;2;1 ðn þ p; 1; 1Þf ðzÞ ¼ Dnþp1 f ðzÞ ¼

P

p,

we have

1  f ðzÞ; zp ð1  zÞnþp

where Dnþp1 f ðzÞ is the differential operator studied by Uralegaddi and Somanatha [12]. Some interesting subclasses of analytic functions associated with the generalized hypergeometric function, were considered recently by (for example) Dziok and Srivastava [2,3], Gangadharan et al. [4] and Liu [6]. P P1 ða; d; l; kÞ the class of all functions f ðzÞ 2 p such that We denote by ap;q;s

(



Hp;q;s ða1 Þf ðzÞ Re ð1  kÞ Hp;q;s ða1 ÞgðzÞ where gðzÞ 2

P

p

l

 l1 ) Hp;q;s ða1 þ 1Þf ðzÞ Hp;q;s ða1 Þf ðzÞ > a; þk Hp;q;s ða1 þ 1ÞgðzÞ Hp;q;s ða1 ÞgðzÞ

ð1:11Þ

satisfies the following condition:

  Hp;q;s ða1 ÞgðzÞ > d ð0 6 d < 1; z 2 UÞ; Re Hp;q;s ða1 þ 1ÞgðzÞ

ð1:12Þ

where a and l are real numbers such that 0 6 a < 1; l > 0 and k 2 C with Refkg > 0. We note that: (i) For q ¼ 2; s ¼ 1; a1 ¼ a > 0; b1 ¼ c > 0 and a2 ¼ 1, we have the following condition:

(



Lp ða; cÞf ðzÞ Re ð1  kÞ Lp ða; cÞgðzÞ where gðzÞ 2

Re



P

p

l

P

a;c;p ð

a; d; l; kÞ, is the class of functions f ðzÞ 2

 l1 ) Lp ða þ 1; cÞf ðzÞ Lp ða; cÞf ðzÞ > a; þk Lp ða þ 1; cÞgðzÞ Lp ða; cÞgðzÞ

P

p

satisfying

ð1:13Þ

satisfies the following condition:

Lp ða; cÞgðzÞ Lp ða þ 1; cÞgðzÞ



> d ð0 6 d < 1; z 2 UÞ;

ð1:14Þ

where 0 6 a < 1; l > 0, and k 2 C, with Refkg > 0. P (ii) For q ¼ 2; s ¼ 1; a1 ¼ n þ pðn > p; p 2 NÞ; b1 ¼ 1, and a2 ¼ 1;, we have n;p ða; d; l; kÞ, is the class of functions P f ðzÞ 2 p satisfying the following condition:

8 !l !l1 9 < = Dnþp1 f ðzÞ Dnþp f ðzÞ Dnþp1 f ðzÞ > a; Re ð1  kÞ nþp1 þ k nþp nþp1 : ; D gðzÞ D gðzÞ gðzÞ D

ð1:15Þ

826

R.M. El-Ashwah / Applied Mathematics and Computation 204 (2008) 824–832

where gðzÞ 2

P

p

satisfies the following condition:

( ) Dnþp1 gðzÞ Re > d ð0 6 d < 1; z 2 UÞ; Dnþp gðzÞ where 0 6 d < 1; l > 0, and k 2 C, with Refkg > 0. The class

ð1:16Þ P

n;p ð

a; d; l; kÞ was studied by Kwon et al. [5].

To establish our main results we need the following lemmas. Lemma 1. [9] Let X be a set in the complex plane C and let the function W : C 2 ! C satisfy the condition Wðir 2 ; s1 Þ R X for all real 1þr 2 r2 ; s1 6  2 2 . If qðzÞ is analytic in U with qð0Þ ¼ 1 and WðqðzÞ; zq0 ðzÞÞ 2 X; z 2 U, then RefqðzÞg > 0ðz 2 UÞ. Lemma 2. [10] If qðzÞ is analytic in U with qð0Þ ¼ 1, and if k 2 C n f0g with Refkg P 0, then RefqðzÞ þ kzq0 ðzÞg > a ð0 6 a < 1Þ implies RefqðzÞg > a þ ð1  aÞð2c  1Þ, where c is given by

c ¼ cðRekÞ ¼

Z

1

ð1 þ tRefkg Þ1 dt;

0

which is increasing function of Refkg and

1 2

6 c < 1. The estimate is sharp in the sense that the bound cannot be improved.

For real or complex numbers a; b; cðc R Z  0 Þ, the Gauss hypergeometric function is defined by 2 F 1 ða; b; c; zÞ

¼1þ

ab z aða þ 1Þbðb þ 1Þ z2 þ þ  c 1! cðc þ 1Þ 2!

We note that the above series converges absolutely for z 2 U and hence represents an analytic function in the unit disc U (see, for details [13, Chapter 14]). Each of the identities (asserted by Lemma 3) is fairly well known (cf., e.g. [13, Chapter 14]). Lemma 3. For real or complex parameters a; b; cðc R Z  0 Þ,

Z

1

tb1 ð1  tÞcb1 ð1  tzÞa dt ¼

0

CðbÞCðc  bÞ ðReðcÞ > ReðbÞ > 0Þ; 2 F 1 ða; b; c; zÞ CðcÞ

2 F 1 ða; b; c; zÞ

¼ 2 F 1 ðb; a; c; zÞ;  a 2 F 1 ða; b; c; zÞ ¼ ð1  zÞ 2 F 1 a; c  b; c;

z  ; z1

ð1:17Þ ð1:18Þ ð1:19Þ

and 2F1

  1 1; 1; 2; ¼ 2‘n2: 2

ð1:20Þ

2. Main results Theorem 1. Let f ðzÞ 2

Pa1

a; d; l; kÞ; a1 2 R n f0g and k P 0. Then

p;q;s ð

 l Hp;q;s ða1 Þf ðzÞ 2a1 al þ dk Re > Hp;q;s ða1 ÞgðzÞ 2a1 l þ dk where the function gðzÞ 2

P

p

ð0 6 a < 1; l > 0; z 2 UÞ;

ð2:1Þ

satisfies the condition (1.12).

þdk , and we define the function qðzÞ by Proof. Let c ¼ 22aa11allþdk

qðzÞ ¼

1 ð1  cÞ



Hp;q;s ða1 Þf ðzÞ Hp;q;s ða1 ÞgðzÞ

l

 c :

ð2:2Þ

Then qðzÞ is analytic in U and qð0Þ ¼ 1. If we set

hðzÞ ¼

Hp;q;s ða1 ÞgðzÞ ; Hp;q;s ða1 þ 1ÞgðzÞ

ð2:3Þ

then by the hypothesis, RefhðzÞg > d. Differentiating (2.2) and using the identity (1.10), we have

 ð1  kÞ

Hp;q;s ða1 Þf ðzÞ Hp;q;s ða1 ÞgðzÞ

l þk

 l1 Hp;q;s ða1 þ 1Þf ðzÞ Hp;q;s ða1 Þf ðzÞ kð1  cÞ ¼ ½c þ ð1  cÞqðzÞ þ hðzÞzq0 ðzÞ: Hp;q;s ða1 þ 1ÞgðzÞ Hp;q;s ða1 ÞgðzÞ a1 l

Let us define the function Wðr; sÞ by

ð2:4Þ

827

R.M. El-Ashwah / Applied Mathematics and Computation 204 (2008) 824–832

kð1  cÞ

Wðr; sÞ ¼ c þ ð1  cÞr þ

la1

Using (2.5) and the fact that f ðzÞ 2

hðzÞs:

Pa1

p;q;s ð

ð2:5Þ

a; d; l; kÞ, we obtain

0

fWðqðzÞ; zq ðzÞÞ; z 2 Ug  X ¼ fw 2 C : ReðwÞ > ag: Now for all real r2 ; s1 6 

1þr 22 , 2

RefWðir 2 ; s1 Þg ¼ c þ

we have

kð1  cÞs1

la1

RefhðzÞg 6 c 

kð1  cÞdð1 þ r 22 Þ kð1  cÞd 6c ¼ a: 2la1 2la1

Hence for each z 2 U; Wðir2 ; s1 Þ R XÞ, Thus by Lemma 1, we have RefqðzÞg > 0ðz 2 UÞ and hence

 Re

l Hp;q;s ða1 Þf ðzÞ > c ðz 2 UÞ: Hp;q;s ða1 ÞgðzÞ

This proves Theorem 1. h Corollary 1. Let the functions f ðzÞ and gðzÞ be in

then

P

p

and let gðzÞ satisfy the condition (1.12). If a1 2 R n f0g; k P 1 and

  Hp;q;s ða1 Þf ðzÞ Hp;q;s ða1 þ 1Þf ðzÞ Re ð1  kÞ þk > a ð0 6 a < 1; z 2 UÞ; Hp;q;s ða1 ÞgðzÞ Hp;q;s ða1 þ 1ÞgðzÞ

ð2:6Þ

  Hp;q;s ða1 þ 1Þf ðzÞ að2a1 þ dÞ þ dðk  1Þ Re >c¼ Hp;q;s ða1 þ 1ÞgðzÞ 2a1 þ kd

ð2:7Þ

ðz 2 UÞ:

Proof. We have

k

 Hp;q;s ða1 þ 1Þf ðzÞ Hp;q;s ða1 Þf ðzÞ Hp;q;s ða1 þ 1Þf ðzÞ Hp;q;s ða1 Þf ðzÞ þ ðk  1Þ ¼ ð1  kÞ þk Hp;q;s ða1 þ 1ÞgðzÞ Hp;q;s ða1 ÞgðzÞ Hp;q;s ða1 þ 1ÞgðzÞ Hp;q;s ða1 ÞgðzÞ

Since k P 1, making use of (2.6) and (2.1) (for

ðz 2 UÞ:

l ¼ 1), we deduce that

  Hp;q;s ða1 þ 1Þf ðzÞ að2a1 þ dÞ þ dðk  1Þ Re >c¼ : Hp;q;s ða1 þ 1ÞgðzÞ 2a1 þ kd



Corollary 2. Let k 2 C n f0g with Refkg P 0 and a1 2 R n f0g. If f ðzÞ 2

P

p

satisfies the following condition:

Refð1  kÞðzp Hp;q;s ða1 Þf ðzÞÞl þ kzp Hp;q;s ða1 þ 1Þf ðzÞ  ðzp Hp;q;s ða1 Þf ðzÞÞl1 g > að0 6 a < 1; l > 0; p 2 N; z 2 UÞ; then

Refzp Hp;q;s ða1 Þf ðzÞgl >

2la1 a þ Refkg 2la1 þ Refkg

Further, if k P 1; a1 2 R n f0g and f ðzÞ 2

P

p

ðz 2 UÞ:

ð2:8Þ

satisfies

Refð1  kÞzp Hp;q;s ða1 Þf ðzÞ þ kzp Hp;q;s ða1 þ 1Þf ðzÞg > a ðz 2 UÞ; then

Refzp Hp;q;s ða1 þ 1Þf ðzÞg >

ð2a1 þ 1Þa þ k  1 2a1 þ k

ð0 6 a < 1; p 2 N; z 2 UÞ:

ð2:9Þ

Proof. The results (2.8) and (2.9) follows by putting gðzÞ ¼ z1p in Theorem 1 and Corollary 1, respectively. h Remark 1. Choosing q; s; a1 ; a2 ; b1 ; l and k appropriately in Corollary 2, we obtain the following results.

(i) For k ¼ 1; q ¼ s þ 1; a1 ¼ b1 ¼ p; aj ¼ 1 ðj ¼ 2; 3; . . . ; s þ 1Þ and bj ¼ 1 ðj ¼ 2; 3; . . . ; sÞ in Corollary 2, we have

Re

   0 zf ðzÞ 2þ ðzp f ðzÞÞl > a ð0 6 a < 1; l > 0; z 2 UÞ pf ðzÞ

implies

Refzp f ðzÞgl >

2lap þ 1 2l p þ 1

ðz 2 UÞ:

ð2:10Þ

828

R.M. El-Ashwah / Applied Mathematics and Computation 204 (2008) 824–832

(ii) For k 2 C n f0g with Refkg P 0; Corollary 2, we have

l ¼ 1; q ¼ s þ 1; a1 ¼ b1 ¼ p; aj ¼ 1 ðj ¼ 2; 3; . . . ; s þ 1Þ and bj ¼ 1 ðj ¼ 2; 3; . . . ; sÞ in

  k Re ð1 þ kÞzp f ðzÞ þ zpþ1 f 0 ðzÞ > a ð0 6 a < 1; l > 0; z 2 UÞ p implies

Refzp f ðzÞg >

2ap þ Refkg 2p þ Refkg

ðz 2 UÞ:

0

(iii) Replacing f(z) by  zf pðzÞ in the result (ii), we have

Re

   k zpþ1 f 0 ðzÞ k pþ2 00 1þkþ þ 2 z f ðzÞ > a ð0 6 a < 1; z 2 UÞ p p p

implies

Re

 pþ1  z 2ap þ Refkg f 0 ðzÞ > 2p þ Refkg p

(iv) For k 2 R with k P 1; 2, we have

ðz 2 UÞ:

l ¼ 1; q ¼ s þ 1; a1 ¼ b1 ¼ p; aj ¼ 1 ðj ¼ 2; 3; . . . ; s þ 1Þ and bj ¼ 1 ðj ¼ 2; 3; . . . ; sÞ in Corollary

  k Re ð1 þ kÞzp f ðzÞ þ zpþ1 f 0 ðzÞ > a ð0 6 a < 1; z 2 UÞ p implies

Refzp f ðzÞg >

að2p þ 1Þ þ k  1 2p þ k

ðz 2 UÞ:

(v) Putting k ¼ 1; q ¼ 2; s ¼ 1; a1 ¼ a > 0; b1 ¼ c > 0 and a2 ¼ 1, in Corollary 2, we have

Refzp Lp ða þ 1; cÞf ðzÞðzp Lp ða; cÞf ðzÞÞl1 g > a ð0 6 a < 1; l > 0; p 2 N; z 2 UÞ implies

Refzp Lp ða; cÞf ðzÞgl >

2laa þ 1 2la þ 1

(vi) For k 2 C n f0g with Refkg P 0;

ðz 2 UÞ:

l ¼ 1; q ¼ 2; s ¼ 1; a1 ¼ a > 0; b1 ¼ c > 0 and a2 ¼ 1 in Corollary 2, we have

Refð1  kÞzp Lp ða; cÞf ðzÞ þ kzp Lp ða þ 1; cÞf ðzÞg > a ð0 6 a < 1; p 2 N; z 2 UÞ implies

Refzp Lp ða; cÞf ðzÞg >

2aa þ Refkg 2a þ Refkg

ðz 2 UÞ:

Theorem 2. Let k 2 C with Refkg > 0 and a1 2 R n f0g. Let f ðzÞ 2

P

p

satisfy the following condition:

l

Refð1  kÞðzp Hp;q;s ða1 Þf ðzÞÞ þ kzp Hp;q;s ða1 þ 1Þf ðzÞ  ðzp Hp;q;s ða1 Þf ðzÞÞl1 g > a

ð2:11Þ

ð0 6 a < 1; l > 0; p 2 N; z 2 UÞ: Then

Refzp Hp;q;s ða1 Þf ðzÞgl > a þ ð1  aÞð2q  1Þ;

ð2:12Þ

where



  1 la1 1 þ 1; : 2 F 1 1; 1; 2 2 Refkg

ð2:13Þ

Proof. Let

qðzÞ ¼ ðzp Hp;q;s ða1 Þf ðzÞÞl :

ð2:14Þ

Then qðzÞ is analytic in U with qð0Þ ¼ 1. Differentiating qðzÞ with respect to z and using the identity (1.10), we obtain

ð1  kÞðzp Hp;q;s ða1 Þf ðzÞÞl þ kzp Hp;q;s ða1 þ 1Þf ðzÞðzp Hp;q;s ða1 Þf ðzÞÞl1 ¼ qðzÞ þ

kzq0 ðzÞ

la1

;

829

R.M. El-Ashwah / Applied Mathematics and Computation 204 (2008) 824–832

so that by the hypothesis (2.11), we have

  kzq0 ðzÞ Re qðzÞ þ > a ðz 2 UÞ:

la1

In view Lemma 2, this implies that

RefqðzÞg > a þ ð1  aÞð2q  1Þ; where

q ¼ qðRefkgÞ ¼

Z

1

 Refkg 1 1 þ t la1 dt:

0

Putting Refkg ¼ k1 > 0, we have



Z 0

1

 1 Z k1 la1 1 lka11 1 1 þ t la1 dt ¼ u ð1 þ uÞ1 du: k1 0

Using (1.17)–(1.20), we obtain



q ¼ 2 F 1 1;

la1 la1 k1

;

k1

   1 la1 1 þ 1; 1 ¼ 2 F 1 1; 1; þ 1; : 2 2 k1

Thus the proof of Theorem 2 is complete. h Corollary 3. Let k 2 R with k P 1. If f ðzÞ 2

P

p

satisfies

Refð1  kÞzp Hp;q;s ða1 Þf ðzÞ þ kzp Hp;q;s ða1 þ 1Þf ðzÞg > a ð0 6 a < 1; a1 2 R n f0g;p 2 N; z 2 UÞ;

ð2:15Þ

then

Refzp Hp;q;s ða1þ1 Þf ðzÞg > a þ ð1  aÞð2q  1Þð1  k1 Þ ðz 2 UÞ; where

q ¼

  1 a1 1 þ 1; : 2 F 1 1; 1; 2 2 k

Proof. The result follows by using the identity

kzp Hp;q;s ða1 þ 1Þf ðzÞ ¼ ð1  kÞzp Hp;q;s ða1 Þf ðzÞ þ kzp Hp;q;s ða1 þ 1Þf ðzÞ þ ðk  1Þzp Hp;q;s ða1 Þf ðzÞ:



ð2:16Þ

Remark 2. (i) We note that if k ¼ l > 0; q ¼ s þ 1; a1 ¼ b1 ¼ p; aj ¼ 1ðj ¼ 2; 3; . . . ; s þ 1Þ, and bj ¼ 1 ðj ¼ 2; 3; . . . ; sÞ in Corollary 2, that is,

  kzpþ1 0 Re ð1 þ kÞðzp f ðzÞÞk þ f ðzÞðzp f ðzÞÞk1 > a ð0 6 a < 1; z 2 UÞ; p

ð2:17Þ

then (2.8) implies that

Refzp f ðzÞgk >

2ap þ 1 2p þ 1

whereas if f ðzÞ 2 p

P

p

ðz 2 UÞ;

satisfies the condition (2.17) then by using Theorem 2, we have

k

Refz f ðzÞg > 2ð1  ‘n2Þa þ ð2‘n2  1Þ ðz 2 UÞ; which is better than (2.18). (ii) Similarly, if q ¼ s þ 1; a1 ¼ 2; aj ¼ 1 ðj ¼ 2; 3; . . . ; s þ 1Þ; bj ¼ 1 ðj ¼ 1; 2; . . . ; sÞ and k ¼ 2, in (2.9) and

Ref2zp Hp;sþ1;s ð3Þf ðzÞ  zp Hp;sþ1;s ð2Þf ðzÞg > a ð0 6 a < 1; z 2 UÞ; then we have

Refzp Hp;sþ1;s ð3Þf ðzÞg >

5a þ 1 6

ðz 2 UÞ;

ð2:18Þ

830

R.M. El-Ashwah / Applied Mathematics and Computation 204 (2008) 824–832

whereas by using (1.20), Corollary 3 implies that

Refzp Hp;sþ1;s ð3Þf ðzÞg >

1 5a þ 1 ½að3  2‘n2Þ þ ð2‘n2  1Þ > 2 6

ðz 2 UÞ:

(iii) We observe that if k 2 R, satisfying k > 0 and

kðzÞ ¼

  Hp;q;s ða1 þ 1Þf ðzÞ 1 Hp;q;s ða1 Þf ðzÞ 1 þ Hp;q;s ða1 þ 1ÞgðzÞ k Hp;q;s ða1 ÞgðzÞ

then from Theorem 1 (for

RefkðzÞg >

ðz 2 UÞ;

l ¼ 1), we have

a k

implies

  Hp;q;s ða1 Þf ðzÞ 2a1 a þ kd > Re Hp;q;s ða1 ÞgðzÞ 2a1 þ kd

ð2:19Þ

whenever

  Hp;q;s ða1 ÞgðzÞ Re > d ð0 6 d < 1; z 2 UÞ: Hp;q;s ða1 þ 1ÞgðzÞ Let k ! þ1, then from (2.19), we have

 RefkðzÞg P 0 ðz 2 UÞ implies Re whenever Re

n

Hp;q;s ða1 ÞgðzÞ Hp;q;s ða1 þ1ÞgðzÞ

o

Hp;q;s ða1 Þf ðzÞ Hp;q;s ða1 ÞgðzÞ

 P 1 ðz 2 UÞ;

> dð0 6 d < 1; z 2 UÞ.

In the following theorem, we shall extend the above results as follows. P Theorem 3. Suppose the functions f ðzÞ and gðzÞ are in p , and suppose gðzÞ, satisfies the condition (1.12). If

  Hp;q;s ða1 þ 1Þf ðzÞ Hp;q;s ða1 Þf ðzÞ ð1  aÞd  > Re Hp;q;s ða1 þ 1ÞgðzÞ Hp;q;s ða1 ÞgðzÞ 2a1

then

ð0 6 a < 1; 0 6 d < 1; a1 2 R n f0g; z 2 UÞ;

  Hp;q;s ða1 Þf ðzÞ Re > a ðz 2 UÞ Hp;q;s ða1 ÞgðzÞ

ð2:20Þ

ð2:21Þ

and

  Hp;q;s ða1 þ 1Þf ðzÞ ð2a1 þ dÞa  d > Re Hp;q;s ða1 þ 1ÞgðzÞ 2a1

ð0 6 a < 1; 0 6 d < 1; a1 2 R n f0g; z 2 UÞ:

ð2:22Þ

Proof. Let

qðzÞ ¼

  1 Hp;q;s ða1 Þf ðzÞ a : ð1  aÞ Hp;q;s ða1 ÞgðzÞ

ð2:23Þ

Then qðzÞ is analytic in U with qð0Þ ¼ 1. Putting

/ðzÞ ¼

Hp;q;s ða1 ÞgðzÞ Hp;q;s ða1 þ 1ÞgðzÞ

ðz 2 UÞ

we observe that by hypothesis, Ref/ðzÞg > dð0 6 d < 1Þ in U. A simple computation shows that

ð1  aÞzq0 ðzÞ/ðzÞ

a1

¼

Hp;q;s ða1 þ 1Þf ðzÞ Hp;q;s ða1 Þf ðzÞ  ¼ WðqðzÞ; zq0 ðzÞÞ; Hp;q;s ða1 þ 1ÞgðzÞ Hp;q;s ða1 ÞgðzÞ

where

Wðr; sÞ ¼

ð1  aÞ/ðzÞs

a1

ða1 2 R n f0gÞ:

Using the hypothesis (2.20), we obtain

fWðqðzÞ; zq0 ðzÞ; z 2 Ug  X ¼

  ð1  aÞd w 2 C : Rew >  : 2a1

ð2:24Þ

R.M. El-Ashwah / Applied Mathematics and Computation 204 (2008) 824–832

Now, for all real r2 ; s1 6 

RefWðir 2 ; s1 Þg ¼

ð1þr 22 Þ , 2

831

we have

s1 ð1  aÞRef/ðzÞg

a1

6

ð1  aÞdð1 þ r 22 Þ ð1  aÞd 6 : 2a1 2a1

This shows that Wðir2 ; s1 Þ R X for each z 2 U. Hence by Lemma 1, we have RefqðzÞg > 0ðz 2 UÞ. This proves (2.21). The proof of (2.22) follows by using (2.21) and (2.22) in the identity:

      Hp;q;s ða1 þ 1Þf ðzÞ Hp;q;s ða1 þ 1Þf ðzÞ Hp;q;s ða1 Þf ðzÞ Hp;q;s ða1 Þf ðzÞ Re ¼ Re  þ Re : Hp;q;s ða1 þ 1ÞgðzÞ Hp;q;s ða1 þ 1ÞgðzÞ Hp;q;s ða1 ÞgðzÞ Hp;q;s ða1 ÞgðzÞ This completes the proof of Theorem 3. h Putting q ¼ 2; s ¼ 1; a1 ¼ a > 0; b1 ¼ c > 0 and a2 ¼ 1 in Theorem 3, we obtain P Corollary 4. Suppose the functions f ðzÞ and gðzÞ are in p and suppose gðzÞ satisfies



Lp ða; cÞgðzÞ Lp ða þ 1; cÞgðzÞ

Re



> d ð0 6 d < 1; z 2 UÞ:

ð2:25Þ

If

Re

  Lp ða þ 1; cÞgðzÞ Lp ða; cÞf ðzÞ ð1  aÞd  > Lp ða þ 1; cÞgðzÞ Lp ða; cÞgðzÞ 2a

ð0 6 a < 1; 0 6 d < 1; z 2 UÞ;

ð2:26Þ

then



Lp ða; cÞf ðzÞ Lp ða; cÞgðzÞ

Re



> a ðz 2 UÞ

ð2:27Þ

and

Re



Lp ða þ 1; cÞf ðzÞ Lp ða þ 1; cÞgðzÞ

 >

ð2a þ dÞa  d 2a

ð0 6 a < 1; 0 6 d < 1; z 2 UÞ:

ð2:28Þ

Remark 3 (i) Putting q ¼ s þ 1; a1 ¼ b1 ¼ p; aj ¼ 1 ðj ¼ 2; 3; . . . ; s þ 1Þ; bj ¼ 1 ðj ¼ 2; 3; . . . ; sÞ and gðzÞ ¼ z1p in Theorem 3, we obtain:

Refzp f ðzÞ þ

zpþ1 0 ð1  aÞd f ðzÞg >  2p p

ðz 2 UÞ

implies

Refzp f ðzÞg > a ðz 2 UÞ and

  zpþ1 0 ð2p þ dÞa  d Re 2zp f ðzÞ þ f ðzÞ > 2p p

ðz 2 UÞ:

(ii) For q ¼ s þ 1; a1 ¼ p þ 1; b1 ¼ p; aj ¼ 1ðj ¼ 2; 3; . . . ; s þ 1Þ; bj ¼ 1 ðj ¼ 2; 3; . . . ; sÞ and gðzÞ ¼ z1p in Theorem 3, we have:

Refzp Hp;sþ1;s ðp þ 2Þf ðzÞ  zp Hp;sþ1;s ðp þ 1Þf ðzÞg > 

ð1  aÞd 2ðp þ 1Þ

ð0 6 a < 1; 0 6 d < 1; z 2 UÞ implies

Refzp Hp;sþ1;s ðp þ 1Þf ðzÞg > a ðz 2 UÞ and

Refzp Hp;sþ1;s ðp þ 2Þf ðzÞg >

ð2ðp þ 1Þ þ dÞa  d 2ðp þ 1Þ

ðz 2 UÞ:

Acknowledgements The author would like to thank the referees of the paper for their valuable suggestions.

832

R.M. El-Ashwah / Applied Mathematics and Computation 204 (2008) 824–832

References [1] M.K. Aouf, Certain subclasses of meromorphically multivalent functions associated with generalized hypergeometric function, Comput. Math. Appl. 55 (3) (2008) 494–509. [2] J. Dziok, H.M. Srivastava, Certain classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999) 1–13. [3] J. Dziok, H.M. Srivastava, Certain classes of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct. 14 (2003) 7–18. [4] A. Gangadharan, T.N. Shanmugan, H.M. Srivastava, Generalized hypergeometric function associated with k-uniformly convex functions, Comput. Math. Appl. 44 (12) (2002) 1515–1526. [5] O.S. Kwon, J.A. Kim, N.E. Cho, S. Owa, Certain subclasses of meromorphically multivalent functions, J. Brihar Math. Soc. 17 (1996) 1–8. [6] J.-L. Liu, Strongly starlike functions associated with the Dziok–Srivastava operator, Tamkang J. Math. 35 (1) (2004) 37–42. [7] J.-L. Liu, H.M. Srivastava, Classes of meromorphically multivalent functions associated with the generalized hypergeometric function, Math. Comput. Model. 39 (2004) 21–34. [8] J.-L. Liu, H.M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl. 259 (2001) 566–581. [9] S.S. Miller, P.T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65 (1978) 289–305. [10] S. Ponnusamy, Differential subordination and Bazilevic functions, Proc. Indian Acad. Sci. (Math. Sci.) 105 (1995) 169–186. [11] H.M. Srivastava, P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press, Ellis Horwood Limited, John Wiley and Sons, Chichester, New York, Chichester, Brisbabe, and Toronto, 1985. [12] B.A. Uarlergaddi, C. Somanatha, Certain classes of meromorphic multivalent functions, Tamkang J. Math. 23 (1992) 223–231. [13] E.T. Whittaker, G.N. Watson, A Course on Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, fourth ed., Cambridge University Press, Cambridge, 1927.