Mathematical and Computer Modelling 49 (2009) 868–879
Contents lists available at ScienceDirect
Mathematical and Computer Modelling journal homepage: www.elsevier.com/locate/mcm
Properties of certain subclasses of meromorphic functions with positive coefficients M.K. Aouf, R.M. El-Ashwah ∗ Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
article
a b s t r a c t
info
Article history: Received 15 May 2007 Received in revised form 15 March 2008 Accepted 25 April 2008 Keywords: Linear operator Meromorphic functions Neighborhoods Hadamard product
In this paper, we obtain coefficient estimates, distortion theorem, radii of starlikeness ∗ and convexity for the class Σm (a, c , A, B, α) of meromorphic functions with positive ∗ coefficients. Some properties of neighborhoods of functions in the class Σm (a, c , A, B, α) are investigated. Also we derive many results for the Hadamard products of functions ∗ belonging to the class Σm (a, c , A, B, α). © 2008 Elsevier Ltd. All rights reserved.
1. Introduction Let Σp denote the class of meromorphic functions of the form: f (z ) =
1 z
+
∞ X
an z n
(p ∈ N ∗ = {2i − 1 : i ∈ N = 1, 2, . . .}),
(1.1)
n =p
which are analytic in the punctured disc U ∗ = {z : 0 < |z | < 1} = U \ {0} with a simple pole at the origin with residue one there. A function f ∈ Σp is said to be meromorphically starlike of order α if it satisfies
( Re −
0
zf (z ) f (z )
) >α
(1.2)
for some α (0 ≤ α < 1) and for all z ∈ U ∗ . Further, a function f ∈ Σp is said to be meromorphically convex of order α if it satisfies
( Re − 1 +
00
zf (z ) f (z ) 0
!) >α
(1.3)
for some α(0 ≤ α < 1) and for all z ∈ U ∗ . Some subclasses of Σp when p = 1 were introduced and studied by Pommerenke [1], Miller [2], Mogra et al. [3], Cho [4], Cho et al. [5] and Aouf [6,7].
∗
Corresponding author. E-mail addresses:
[email protected] (M.K. Aouf),
[email protected] (R.M. El-Ashwah).
0895-7177/$ – see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.mcm.2008.04.013
M.K. Aouf, R.M. El-Ashwah / Mathematical and Computer Modelling 49 (2009) 868–879
869
For functions f ∈ Σp given by (1.1) and g ∈ Σp given by g (z ) =
1
+
z
∞ X
bn z n
(p ∈ N ∗ ),
(1.4)
n =p
we define the Hadamard product (or convolution) of f and g by
(f ∗ g )(z ) =
1 z
+
∞ X
an bn z n .
(1.5)
n =p
In terms of the Pochhammer symbol (λ)n given by
Γ (λ + n) 1 (λ)n = = λ(λ + 1) · · · (λ + n − 1) Γ (λ) we now define the function ϕ(a, c ; z ) by ϕ(a, c ; z ) =
1 z
+
∞ X (a)n n=1
(c )n
(n = 0) (n ∈ N = {1, 2, 3, . . .}),
(1.6)
(z ∈ U ∗ ; a ∈ R; c ∈ R \ Z0− ; Z0− = {0, −1, −2, . . .}).
z n−1
(1.7)
Corresponding to the function ϕ(a, c ; z ), we define the linear operator L(a, c ) (see Liu [8] and Liu and Srivastava [9]), which is defined by means of the following Hadamard product (or convolution): L(a, c )f (z ) = ϕ(a, c ; z ) ∗ f (z )
(f ∈ Σp ).
(1.8)
Just as in [8] and [9], it is easily verified from the definitions (1.7) and (1.8) that 0
z (L(a, c )f (z )) = aL(a + 1, c )f (z ) − (a + 1)L(a, c )f (z ).
(1.9)
Moreover, we observe that, for f ∈ Σp , 0
L(a, a)f (z ) = f (z ) and L(2, 1)f (z ) = 2f (z ) + zf (z ). Let Σp∗ be the subclass of Σp consisting of functions of the form: f (z ) =
1 z
+
∞ X
|an | z n (p ∈ N ∗ ).
(1.10)
n=p
Making use of the operator L(a, c ), we now introduce a subclass of Σp∗ as defined below. For fixed parameters A, B and α(−1 ≤ A < B ≤ 1; 0 < B ≤ 1; 0 ≤ α < m!; m ∈ N ∗ ; m ≤ p) we say that a function ∗ f ∈ Σp∗ is in the class Σm (a, c , A, B, α) if it also satisfies the following inequality:
z m+1 (L(a, c )f (z ))(m) + m! Bz m+1 (L(a, c )f (z ))(m) + [m!B + (A − B)(m! − α)] < 1 (z ∈ U ).
(1.11)
We note that (i) Σp∗ (a, a, −β, β, 0) = Tp (β) (p ∈ N ∗ and 0 < β ≤ 1) (Kim et al. [10]);
(ii) Σ1∗ (a, a, −β, (2γ − 1)β, α) = Σ1 (α, β, γ ) (0 ≤ α < 1; 0 < β ≤ 1 and 21 ≤ γ ≤ 1) (Cho et al. [5]); (iii) Σ1∗ (a, a, −A, −B, 0)P = Σp (A, B) (−1 ≤ B < A ≤ 1 and −1 ≤ B < 0) (Cho [4]); (α, 1, A, B, 1) (0 ≤ α < 1; −1 ≤ A < B ≤ 1 and 0 < B ≤ 1) (Aouf [7]). (iv) Σ1∗ (a, a, A, B, α) = Also we observe that: (i)
Σp∗ (a, a, −β, β, α) = Σp∗ (α, β) ∗ = f ∈ Σp :
z p+1 f (p) (z ) + p!
< β (z ∈ U ; 0 ≤ α < p!; p ∈ N ∗ ; 0 < β ≤ 1) ; z p+1 f (p) (z ) − p! + 2α (1.12)
(ii)
Σp∗ (a, a, −β, (2γ − 1)β, α) = Σp∗ (α, β, γ ) z p+1 f (p) (z ) + p! < β, = f ∈ Σp∗ : p + 1 ( p ) (2γ − 1)z f (z ) + (2γ α − p!)
(z ∈ U ; 0 ≤ α < p!; p ∈ N ; ∗
1 2
≤ γ ≤ 1; 0 < β ≤ 1) .
(1.13)
870
M.K. Aouf, R.M. El-Ashwah / Mathematical and Computer Modelling 49 (2009) 868–879
(iii)
Σ1∗ (a, c , A, B, α) = Σ ∗ (a, c , A, B, α) 1 + [B + (A − B)(1 − α)]z 0 = f ∈ Σp∗ : z 2 (L(a, c )f (z )) ≺ − −, 1 + Bz (z ∈ U ; −1 ≤ A < B ≤ 1; 0 < B ≤ 1; 0 ≤ α < 1) .
(1.14)
2. Coefficient estimates ∗ Theorem 1. Let f ∈ Σp∗ be given by (1.10). Then f ∈ Σm (a, c , A, B, α) if and only if ∞ X
(a)n+1 n |an | ≤ (B − A)(m! − α), (1 + B) m (c )n+1
(2.1)
n! . (n − m)!m!
(2.2)
m!
n=p
where
n m
=
∗ Proof. Let f ∈ Σm (a, c , A, B, α) is given by (1.10). Then, from (1.10) and (1.11), we have
∞ P (a)n+1 n! n +1 | | a z n (n−m)! (c )n+1 m+1 (m) z (L(a, c )f (z )) + m! n=p = ∞ Bz m+1 (L(a, c )f (z ))(m) + [m!B + (A − B)(m! − α)] (B − A)(m! − α) − B P n! (a)n+1 |a | z n+1 n (n−m)! (c )n+1 n =p
< 1 (z ∈ U ).
(2.3)
Since |Re(z )| ≤ |z | for any z, choosing z to be real and letting z → 1 through real values, (2.3) yields −
∞ X n=p
∞ X (a)n+1 n! (a)n+1 |an | ≤ (B − A)(m! − α) − B |an | , (n − m)! (c )n+1 ( n − m )! (c )n+1 n =p
n!
(2.4)
which leads us at once to (2.1). In order to prove the converse, we assume that the inequality (2.1) holds true. Then, if we let z ∈ ∂ U, we find from (1.10) and (2.1) that
z m+1 (L(a, c )f (z ))(m) + m! Bz m+1 (L(a, c )f (z ))(m) + [m!B + (A − B)(m! − α)] ≤
∞ P n =p
(a)n+1 n! (n−m)! (c )n+1
(B − A)(m! − α) − B
∞ P n =p
< 1 (z ∈ ∂ U ). ∗ Hence, by the maximum modulus theorem, we have f ∈ Σm (a, c , A, B, α).
|an |
(a)n+1 n! (n−m)! (c )n+1
| an | (2.5)
∗ Corollary 1. Let f ∈ Σp∗ be given by (1.10). If f ∈ Σm (a, c , A, B, α), then
|an | ≤
(B − A)(m! − α)(c )n+1 n m! (1 + B)(a)n+1
(n ≥ p ≥ m; p, m ∈ N ∗ ).
(2.6)
m
The result is sharp for the function f given by f (z ) =
1 z
+
(B − A)(m! − α)(c )n+1 n z (n ≥ p ≥ m; p, m ∈ N ∗ ). n m! (1 + B)(a)n+1 m
(2.7)
M.K. Aouf, R.M. El-Ashwah / Mathematical and Computer Modelling 49 (2009) 868–879
871
3. Distortion theorem ∗ Theorem 2. If a function f defined by (1.10) is in the class Σm (a, c , A, B, α), then
(c )p+1 (B − A)(m! − α)(p − m)! p+1 −(j+1) (j) r r ≤ f (z ) (a)p+1 (1 + B)(p − j)! (c )p+1 (B − A)(m! − α)(p − m)! p+1 −(j+1) ≤ j! + r r 0 < |z | = r < 1; a > c > 0; (a)p+1 (1 + B)(p − j)! (a)p+1 (1 + B)j!(p − j)! m! − ≤ α < m!; p, m ∈ N ∗ ; j ∈ N0 = {0, 1, 2, . . .}; 0 ≤ j ≤ m ≤ p . (c )p+1 (B − A)(p − m)!
j! −
(3.1)
The result is sharp for the functions f given by f (z ) =
1 z
+
(B − A)(m! − α)(c )p+1 p z (p, m ∈ N ∗ , p ≥ m). p m! (1 + B)(a)p+1
(3.2)
m
Proof. In view of Theorem 1, we have ∞ ∞ X (p − j)!(1 + B)(a)p+1 X n! (a)n+1 n! |an | ≤ | an | (1 + B) (p − m)!(c )p+1 ( n − j )! ( n − m )! (c )n+1 n=p n =p
≤ (B − A)(m! − α), which yields ∞ X n =p
n! (c )p+1 (B − A)(m! − α)(p − m)! |an | ≤ (p, m ∈ N ∗ ; 0 ≤ j ≤ m ≤ p). (n − j)! (a)p+1 (1 + B)(p − j)!
(3.3)
Now, by differentiating both sides of (1.10) j times with respect to z, we have f (j) (z ) =
(−1)(j) j! z j +1
+
∞ X
n!
n =p
(n − j)!
|an | z n−j (j ∈ N0 ; p, m ∈ N ∗ ; 0 ≤ j ≤ m ≤ p),
and Theorem 2 follows easily from (3.3) and (3.4). Finally, it is easy to see that the bounds in (3.1) are attained for the function f given by (3.2).
(3.4)
Putting j = 0 in Theorem 2, we have ∗ Corollary 2. If a function f defined by (1.10) is in the class Σm (a, c , A, B, α), then
1
(c )p+1 (B − A)(m! − α)(p − m)! p 1 (c )p+1 (B − A)(m! − α)(p − m)! p r ≤ |f (z )| ≤ + r (a)p+1 (1 + B)p! r (a)p+1 (1 + B)p! (a)p+1 (1 + B)p! ∗ 0 < |z | = r < 1; a > c > 0; m! − ≤ α < m!; p, m ∈ N ; p ≥ m . (c )p+1 (B − A)(p − m)!
− r
(3.5)
Equalities in (3.5) are attained for the function f given by (3.2). Putting j = 1 in Theorem 2, we have ∗ Corollary 3. If a function f defined by (1.10) is in the class Σm (a, c , A, B, α), then
1
(c )p+1 (B − A)(m! − α)(p − m)! p−1 0 1 (c )p+1 (B − A)(m! − α)(p − m)! p−1 r ≤ f (z ) ≤ 2 + r (a)p+1 (1 + B)(p − 1)! r (a)p+1 (1 + B)(p − 1)! (a)p+1 (1 + B)(p − 1)! 0 < |z | = r < 1; a > c > 0; m! − ≤ α < m!; p, m ∈ N ∗ ; p ≥ m . (c )p+1 (B − A)(p − m)!
− r2
Equalities in (3.6) are attained for the function f given by (3.2).
(3.6)
872
M.K. Aouf, R.M. El-Ashwah / Mathematical and Computer Modelling 49 (2009) 868–879
4. Radii of starlikeness and convexity ∗ Theorem 3. Let the function f defined by (1.10) be in the class Σm (a, c , A, B, α). Then we have (i) f is meromorphically starlike of order δ (0 ≤ δ < 1) in the disc |z | < r1 , that is,
(
0
Re −
zf (z )
) > δ (|z | < r1 ; 0 ≤ δ < 1),
f (z )
(4.1)
where
r1 = inf
n ≥p
n+1 1
n m! (1 + B)(a)n+1 (1 − δ) m
(B − A)(m! − α)(c )n+1 (n + 2 − δ)
.
(4.2)
(ii) f is meromorphically convex of order δ(0 ≤ δ < 1) in the disc |z | < r2 , that is, ( !) 00 zf (z ) Re − 1 + 0 > δ (|z | < r2 ; 0 ≤ δ < 1), f (z )
(4.3)
where
r2 = inf
n ≥p
n m! (1 + B)(a)n+1 (1 − δ) m
n+1 1
(B − A)(m! − α)(c )n+1 n(n + 2 − δ)
.
(4.4)
Each of these results is sharp for the function f given by (2.7). Proof. (i) From the definition (1.10), we easily get
0 zf (z ) + 1 ≤ f (z )
∞ P
(n + 1) |an | |z |n+1
n =p
1−
∞ P
.
(4.5)
|an | |z |n+1
n =p
Thus, we have the desired inequality
0 zf (z ) + 1 ≤ 1 − δ (0 ≤ δ < 1), f (z )
(4.6)
if ∞ X (n + 2 − δ) n=p
(1 − δ)
|an | |z |n+1 ≤ 1.
(4.7)
Hence, by Theorem 1, (4.7) will be true if
n
m! (1 + B)(a)n+1 m (n + 2 − δ) n+1 |z | ≤ (1 − δ) (B − A)(m! − α)(c )n+1
(n ≥ p ≥ m)
(4.8)
or
|z | ≤
m!
n (1 + B)(a)n+1 (1 − δ) m
n+1 1
(B − A)(m! − α)(c )n+1 (n + 2 − δ)
(n ≥ p ≥ m).
(4.9)
M.K. Aouf, R.M. El-Ashwah / Mathematical and Computer Modelling 49 (2009) 868–879
873
Setting |z | = r1 in (4.9), the result follows. (ii) In order to prove the second assertion of Theorem 3, we find from the definition (1.10) that ∞ P
00 zf (z ) + 2 ≤ 0 f (z )
n(n + 1) |an | |z |n+1
n =p
1−
∞ P
.
(4.10)
n |an | |z |n+1
n=p
Thus we have the desired inequality
00 zf (z ) + 2 ≤ 1 − δ (0 ≤ δ < 1), 0 f (z )
(4.11)
if ∞ X n(n + 2 − δ) n =p
(1 − δ)
|an | |z |n+1 ≤ 1.
(4.12)
Hence, by Theorem 1, (4.12) will be true if
n(n + 2 − δ)
(1 − δ)
m! n+1
|z |
≤
n (1 + B)(a)n+1 m
(B − A)(m! − α)(c )n+1
(n ≥ p ≥ m)
or
|z | ≤
n+1 1
n m! (1 + B)(a)n+1 (1 − δ) m
(B − A)(m! − α)(c )n+1 n(n + 2 − δ)
Setting |z | = r2 in (4.13), the result follows.
(n ≥ p ≥ m).
(4.13)
5. Neighborhoods Following the earlier works (based upon the familiar concept of neighborhoods of analytic functions) by Goodman [11] and Ruscheweyh [12], and (more recently) by Altintas et al. [13–15], Liu [8] and Liu and Srivastava [9], we begin by introducing here the δ -neighborhood of a function f ∈ Σp of the form (1.1) by means of the definition given below:
Nδ (f ) =
g : g ∈ Σp , g ( z ) =
1 z
+
∞ X n =p
n
bn z and
∞ X n =p
m!
n (1 + |B|) m
(B − A)(m! − α)
·
(a)n+1 |bn − an | ≤ δ, (c )n+1
∗ (a > 0; c > 0; −1 ≤ A < B ≤ 1; δ > 0; 0 ≤ α < m!; p, m ∈ N ; p ≥ m) .
(5.1)
Making use of the definition (5.1), we now prove Theorem 4 below: Theorem 4. Let the function f defined by (1.1) be in the class Σm (a, c , A, B, α). If f satisfies the following condition: f (z ) + z −1 1+
∈ Σm (a, c , A, B, α) ( ∈ C , || < δ, δ > 0),
(5.2)
then Nδ (f ) ⊂ Σm (a, c , A, B, α).
(5.3)
874
M.K. Aouf, R.M. El-Ashwah / Mathematical and Computer Modelling 49 (2009) 868–879
Proof. It is easily seen from (1.11) that g ∈ Σm (a, c , A, B, α) if and only if for any complex number σ with |σ | = 1, z m+1 (L(a, c )g (z ))(m) + m!
(L(a, c )g (z ))(m) + [m!B + (A − B)(m! − α)]
z m+1 B
6= σ (z ∈ U ),
(5.4)
which is equivalent to
(g ∗ h)(z )
6= 0 (z ∈ U ),
z −1
(5.5)
where, for convenience, h(z ) =
=
1 z
∞ X
cn z n
n=p
1 z
+
+
n ∞ m! m (1 − σ B) (a) X
n +1
n=p
(B − A)(m! − α)σ (c ) n+1
zn.
(5.6)
From (5.6), we have
n m ! ( 1 − σ B ) (a) m n + 1 |cn | = (B − A)(m! − α)σ (c )n+1 m!
n (1 + |B|)(a)n+1 m
(n ≥ p ≥ m; p, m ∈ N ∗ ). (B − A)(m! − α) (c )n+1 P∞ Now, if f (z ) = 1z + n=p an z n ∈ Σp satisfies the condition (5.2), then (5.5) yields (f ∗ h)(z ) ≥ δ (z ∈ U ; δ > 0). −1 ≤
(5.7)
(5.8)
z
By Letting g (z ) =
1 z
+
∞ X
bn z n ∈ Nδ (f ),
(5.9)
n=p
so that
∞ X [g (z ) − f (z )] ∗ h(z ) = (bn − an )cn z n+1 n =p z −1 n ∞ m! m (1 + |B|) X (a)n+1 |bn − an | ≤ |z |p+1 ( B − A )( m ! − α) (c )n+1 n =p < δ (z ∈ U ; δ > 0).
(5.10)
Thus we have (5.5), and hence also (5.4) for any σ ∈ C such that |σ | = 1, which implies that g ∈ Σm (a, c , A, B, α). This evidently proves the inclusion (5.3) of Theorem 4. We now define the δ -neighborhood of a function f ∈ Σp∗ of the form (1.10) as follows:
n
∞ m! m (1 + B) X (a)n+1 |bn | z n and ||bn | − |an || ≤ δ, Nδ+ (f ) = g ∈ Σp∗ : g (z ) = + z (B − A)(m! − α) (c )n+1 n=p n =p
1
∞ X
a > 0; c > 0; −1 ≤ A < B ≤ 1; 0 < B ≤ 1; δ > 0; 0 ≤ α < m!; p, m ∈ N ∗ ; p ≥ m
.
(5.11)
M.K. Aouf, R.M. El-Ashwah / Mathematical and Computer Modelling 49 (2009) 868–879
875
∗ Theorem 5. . Let the function f defined by (1.10) be in the class Σm (a + 1, c , A, B, α), −1 ≤ A < B ≤ 1, 0 < B ≤ 1, 0 ≤ α < m!, p, m ∈ N ∗ and p ≥ m. Then
Nδ+ (f )
⊂ Σm (a, c , A, B, α) ∗
δ=
p+1 a+p+1
.
(5.12)
The result is sharp. Proof. Making use of the same method as in the proof Theorem 4, we can show that [cf. Eq. (5.6)] h( z ) =
1 z
+
∞ X
cn z n
n =p
n
=
1 z
+
m! (1 − σ B)(a)n+1 ∞ X m n =p
(B − A)(m! − α)σ (c )n+1
zn.
(5.13)
∗ Thus, under the hypothesis −1 ≤ A < B ≤ 1, 0 < B ≤ 1, 0 ≤ α < m!, p, m ∈ N ∗ and p ≥ m, if f ∈ Σm (a + 1, c , A, B, α) is given by (1.10), we obtain
∞ X (f ∗ h)(z ) n + 1 cn |an | z z −1 = 1 + n=p n ∞ m! m (1 + B) X (a)n+1 | an | ≥ 1− (B − A)(m! − α) (c )n+1 n =p n ∞ m! m (1 + B) X a (a + 1)n+1 | an | . ≥ 1− a + p + 1 n=p (B − A)(m! − α) (c )n+1 Also, from Theorem 1, we obtain
(f ∗ h)(z ) a p+1 z −1 ≥ 1 − a + p + 1 = a + p + 1 = δ. The remaining part of the proof of Theorem 5 is similar to that of Theorem 4, and we skip the details involved. To show the sharpness, we consider the functions f and g given by f (z ) =
1 z
+
(B − A)(m! − α) (c )p+1 p ∗ z ∈ Σm (a + 1, c , A, B, α) (a + 1)p+1 p m! (1 + B)
(5.14)
m
and
g (z ) =
0
(B − A)(m! − α) (c )p+1 (B − A)(m! − α)δ (c )p+1 zp, + . + z (a + 1)p+1 (a)p+1 p p m! (1 + B) m! (1 + B)
1
m
0
(5.15)
m
where δ > δ = a+p+1 . Clearly, the function g belongs to N +0 (f ). On the other hand, we find from Theorem 1 that g is not in δ ∗ the class Σm (a, c , A, B, α). Thus the proof of Theorem 5 is completed. p+1
6. Convolution properties For the functions fj (z ) =
1 z
+
∞ X an,j z n (j = 1, 2; p ∈ N ∗ ) n =p
(6.1)
876
M.K. Aouf, R.M. El-Ashwah / Mathematical and Computer Modelling 49 (2009) 868–879
we denote by (f1 ∗ f2 ) the Hadamard product (or convolution) of the functions f1 and f2 , that is,
(f1 ∗ f2 )(z ) =
1 z
+
∞ X an,1 an,2 z n .
(6.2)
n =p
Throughout this section, we assume further that a > c > 0. ∗ Theorem 6. Let the functions fj (j = 1, 2) defined by (6.1) be in the class Σm (a, c , A, B, α). Then (f1 ∗ f2 ) ∈ Σm∗ (a, c , A, B, ζ ), where
ζ = m! −
(B − A)(m! − α)2 (c )p+1 . p m! (1 + B)(a)p+1
(6.3)
m
The result is sharp for the functions fj (j = 1, 2) given by fj (z ) =
1 z
+
(B − A)(m! − α)(c )p+1 p z (j = 1, 2; p, m ∈ N ∗ ; p ≥ m). p m! (1 + B)(a)p+1
(6.4)
m
Proof. Employing the technique used earlier by Schild and Silverman [16], we need to find the largest ζ such that
∞ X n=p
n (1 + B)(a)n+1 m
m!
(B − A)(m! − ζ )(c )n+1
an,1 an,2 ≤ 1
(6.5)
∗ for fj ∈ Σm (a, c , A, B, α) (j = 1, 2). Since fj ∈ Σm∗ (a, c , A, B, α) (j = 1, 2), we readily see that
n
∞ m! m (1 + B)(a)n+1 X an,j ≤ 1 (j = 1, 2). (B − A)(m! − α)(c )n+1 n=p
(6.6)
Therefore, by the Cauchy–Schwarz inequality, we obtain
n ∞ m! m (1 + B)(a)n+1 q X an,1 an,2 ≤ 1. (B − A)(m! − α)(c )n+1 n=p
(6.7)
This implies that we only need to show that 1
(m! − ζ )
an,1 an,2 ≤
1
(m! − α)
q an,1 an,2 (n ≥ p ≥ m)
(6.8)
or, equivalently, that
q an,1 an,2 ≤ (m! − ζ ) (n ≥ p ≥ m). (m! − α)
(6.9)
Hence, by the inequality (6.7), it is sufficient to prove that
(m! − ζ ) (B − A)(m! − α)(c )n+1 ≤ (n ≥ p ≥ m). (m! − α) n m! (1 + B)(a)n+1
(6.10)
m
It follows from (6.10) that
ζ ≤ m! −
(B − A)(m! − α)2 (c )n+1 n m! (1 + B)(a)n+1
(n ≥ p ≥ m).
m
Now, defining the function ϕ(n) by
ϕ(n) = m! −
(B − A)(m! − α)2 (c )n+1 n m! (1 + B)(a)n+1 m
(n ≥ p ≥ m).
(6.11)
M.K. Aouf, R.M. El-Ashwah / Mathematical and Computer Modelling 49 (2009) 868–879
877
But
(B − A)(m! − α)2 (c )n+1 ϕ(n + 1) − ϕ(n) = n m! (1 + B)(a)n+1
(n + 1)(a − c + m) + mc (n + 1)(a + n + 1)
>0
m
for a > c > 0, −1 ≤ A < B ≤ 1, 0 < B ≤ 1, 0 ≤ α < m! and p ≥ m. Then we see that ϕ(n) is an increasing function of n (n ≥ p ≥ m). Therefore, we conclude that
ζ ≤ ϕ(p) = m! −
(B − A)(m! − α)2 (c )p+1 , p m! (1 + B)(a)p+1
(6.12)
m
which evidently completes the proof of Theorem 6.
Putting (i) m = p ∈ N ∗ , a = c , A = −β and B = β (0 < β ≤ 1) (ii) m = p ∈ N ∗ , a = c , A = −β and B = (2γ − 1)β (0 < β ≤ 1 and 0 ≤ γ ≤ 12 ) in Theorem 6, we obtain the following consequences. Corollary 4. Let the functions fj (j = 1, 2) defined by (6.1) be in the class Σp∗ (α, β). Then (f1 ∗ f2 ) ∈ Σp∗ (ζ , β), where
ζ = p! −
2β(p! − α)2 p!(1 + β)
.
(6.13)
The result is sharp for the functions fj (j = 1, 2) given by fj (z ) =
1 z
+
2β(p! − α) p!(1 + β)
(j = 1, 2; p ∈ N ∗ ).
zp
(6.14)
Corollary 5. Let the functions fj (j = 1, 2) defined by (6.1) be in the class Σp∗ (α, β, γ ). Then (f1 ∗ f2 ) ∈ Σp∗ (ζ , β, γ ), where
ζ = p! −
2βγ (p! − α)2 p!(1 + 2βγ − β)
.
(6.15)
The result is sharp for the functions fj (j = 1, 2) given by fj (z ) =
1 z
+
2βγ (p! − α) p!(1 + 2βγ − β)
zp
(j = 1, 2; p ∈ N ∗ ).
(6.16)
Using arguments similar to those in the proof of Theorem 6, we obtain the following result: ∗ Theorem 7. Let the function f1 defined by (6.1) be in the class Σm (a, c , A, B, α1 ). Suppose also that the function f2 defined by ∗ ∗ (6.1) be in the class Σm (a, c , A, B, α2 ). Then (f1 ∗ f2 ) ∈ Σm (a, c , A, B, τ ), where
τ = m! −
(B − A)(m! − α1 )(m! − α2 )(c )p+1 . p m! (1 + B)(a)p+1
(6.17)
m
The result is sharp for the functions fj (j = 1, 2) given by f1 ( z ) =
1 z
+
(B − A)(m! − α1 )(c )p+1 p z (p, m ∈ N ∗ ; p ≥ m) p m! (1 + B)(a)p+1
(6.18)
(B − A)(m! − α2 )(c )p+1 p z (p, m ∈ N ∗ ; p ≥ m). p (1 + B)(a)p+1 m!
(6.19)
m
and f2 ( z ) =
1 z
+
m
Putting (i) m = p ∈ N ∗ , a = c , A = −β and B = β(0 < β ≤ 1) (ii) m = p ∈ N ∗ , a = c , A = −β and B = (2γ − 1)β(0 < β ≤ 1 and 12 ≤ γ ≤ 1) in Theorem 7, we obtain:
878
M.K. Aouf, R.M. El-Ashwah / Mathematical and Computer Modelling 49 (2009) 868–879
Corollary 6. Let the function f1 defined by (6.1) be in the class Σp∗ (α1 , β). Suppose also that the function f2 defined by (6.1) be in the class Σp∗ (α2 , β). Then (f1 ∗ f2 ) ∈ Σp∗ (τ , β), where 2β(p! − α1 )(p! − α2 )
τ = p! −
p!(1 + β)
.
(6.20)
The result is the best possible for the functions fj (j = 1, 2) given by f1 ( z ) =
1
f2 ( z ) =
1
2β(p! − α1 )
+
z
p!(1 + β)
zp
(p ∈ N ∗ )
(6.21)
zp
(p ∈ N ∗ ).
(6.22)
and 2β(p! − α2 )
+
z
p!(1 + β)
Corollary 7. Let the function f1 defined by (6.1) be in the class Σp∗ (α1 , β, γ ). Suppose also that the function f2 defined by (6.1) be in the class Σp∗ (α2 , β, γ ). Then (f1 ∗ f2 ) ∈ Σp∗ (τ , β, γ ), where 2βγ (p! − α1 )(p! − α2 )
τ = p! −
p!(1 + 2βγ − β)
.
(6.23)
The result is the best possible for the functions fj (j = 1, 2) given by f1 ( z ) =
1
f2 ( z ) =
1
2βγ (p! − α1 )
+
z
p!(1 + 2βγ − β)
zp
(p ∈ N ∗ )
(6.24)
zp
(p ∈ N ∗ ).
(6.25)
and 2βγ (p! − α2 )
+
z
p!(1 + 2βγ − β)
∗ Theorem 8. Let the functions fj (j = 1, 2) defined by (6.1) be in the class Σm (a, c , A, B, α). Then the function h defined by
h(z ) =
1
∞ X an,1 2 + an,2 2 z n
+
z
(6.26)
n =p
∗ belongs to the class Σm (a, c , A, B, ξ ), where
2(B − A)(m! − α)2 (c )p+1
ξ = m! −
p m! (1 + B)(a)p+1 m
.
(6.27)
The result is sharp for the functions fj (j = 1, 2) defined by (6.4). Proof. Noting that
2
n ∞ m! m (1 + B)(a)n+1 X n=p
∞ X
2 (B − A)(m! − α)(c )n+1 an,j ≤
n=p
m!
n (1 + B)(a)n+1 m
(B − A)(m! − α)(c )n+1
2
an,j ≤ 1 (j = 1, 2),
(6.28)
∗ for fj ∈ Σm (a, c , A, B, α) (j = 1, 2), we have
∞ X 1 n=p
m!
n (1 + B)(a)n+1 m
2
2 [(B − A)(m! − α)(c )n+1 ]
2
an,1 2 + an,2 2 ≤ 1.
(6.29)
Therefore, we have to find the largest ξ such that
1
(m! − ξ )
m!
≤
n (1 + B)(a)n+1 m
2(B − A)(m! − α)2 (c )n+1
(n ≥ p ≥ m),
(6.30)
M.K. Aouf, R.M. El-Ashwah / Mathematical and Computer Modelling 49 (2009) 868–879
879
that is, that
ξ ≤ m! −
2(B − A)(m! − α)2 (c )n+1
(n ≥ p ≥ m).
m!
n (1 + B)(a)n+1 m
(6.31)
Now, defining a function Ψ (n) by
Ψ (n) = m! −
2(B − A)(m! − α)2 (c )n+1
n m! (1 + B)(a)n+1 m
(n ≥ p ≥ m).
(6.32)
We observe that Ψ (n) is an increasing function of n (n ≥ p ≥ m). Thus, we conclude that
ξ ≤ Ψ (p) = m! −
2(B − A)(m! − α)2 (c )p+1
p (1 + B)(a)p+1 m
m!
which completes the proof of Theorem 8.
,
(6.33)
Putting (i) m = p ∈ N , a = c , A = −β and B = β (0 < β ≤ 1) (ii) m = p ∈ N ∗ , a = c , A = −β and B = (2γ − 1)β(0 < β ≤ 1 and 12 ≤ γ ≤ 1) in Theorem 8, we obtain: ∗
Corollary 8. Let the functions fj (j = 1, 2) defined by (6.1) be in the class Σp∗ (α, β), then the function h defined by (6.26) belongs to the class Σp∗ (ξ , β), where
ξ = p! −
4β (p! − α)2 p!(1 + β)
.
(6.34)
The result is sharp for the functions fj (j = 1, 2) defined by (6.14). Corollary 9. Let the functions fj (j = 1, 2) defined by (6.1) be in the class Σp∗ (α, β, γ ), then the function h defined by (6.26) belongs to the class Σp∗ (ξ , β, γ ), where
ξ = p! −
4βγ (p! − α)2 p!(1 + 2βγ − β)
.
(6.35)
The result is sharp for the functions fj (j = 1, 2) defined by (6.16). Acknowledgements The authors like to thank the referees for their valuable suggestions. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]
Ch. Pommerenke, On meromorphic starlike functions, Pacific J. Math. 13 (1963) 221–235. J.E. Miller, Convex meromorphic mapping and related functions, Proc. Amer. Math. Soc. 25 (1970) 220–228. M.L. Mogra, T.R. Reddy, O.P. Juneja, Meromorphic univalent functions with positive coefficients, Bull. Austral. Math. Soc. 32 (1985) 161–176. N.E. Cho, On certain class of meromorphic functions with positive coefficients, J. Inst. Math. Comput. Sci. 3 (2) (1990) 119–125. N.E. Cho, S.H. Lee, S. Owa, A class of meromorphic univalent functions with positive coefficients, Kobe J. Math. 4 (1987) 43–50. M.K. Aouf, A certain subclass of meromorphically starlike functions with positive coefficients, Rend. Mat. 9 (1989) 225–235. M.K. Aouf, On a certain class of meromorphically univalent functions with positive coefficients, Rend. Mat. 11 (1991) 209–219. J.-L. Liu, Properties of some families of meromorphic p-valent functions, Math. Japon. 52 (2000) 425–434. J.-L. Liu, H.M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl. 259 (2001) 566–581. Y.G. Kim, S.H. Lee, S. Owa, On certain meromorphic functions with positive coefficients, Internat. J. Math. Math. Sci. 16 (2) (1993) 409–412. A.W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8 (1957) 598–601. St. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981) 521–527. O. Altintas, S. Owa, Neighborhoods of certain analytic functions with negative coefficients, Internat. J. Math. Math. Sci. 19 (1996) 797–800. O. Altintas, O. Ozkan, H.M. Srivastava, Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Lett. 13 (3) (2000) 63–67. O. Altintas, Ozkan O, H.M. Srivastava, Neighborhoods of a certain family of multivalent functions with negative coefficients, Comput. Math. Appl. 47 (2004) 1667–1672. [16] A. Schild, H. Silverman, Convolution of univalent functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska Sect. A 29 (1975) 99–107.