Finding of two new radiolarian associations calibrated with ammonoids in the Vaca Muerta Formation (Late Jurassic–Early Cretaceous), Neuquén Basin, Argentina

Finding of two new radiolarian associations calibrated with ammonoids in the Vaca Muerta Formation (Late Jurassic–Early Cretaceous), Neuquén Basin, Argentina

Accepted Manuscript Finding of two new radiolarian associations calibrated with ammonoids in the Vaca Muerta Formation (Late Jurassic–Early Cretaceous...

5MB Sizes 47 Downloads 93 Views

Accepted Manuscript Finding of two new radiolarian associations calibrated with ammonoids in the Vaca Muerta Formation (Late Jurassic–Early Cretaceous), Neuquén Basin, Argentina Verónica V. Vennari, Ignacio Pujana PII:

S0895-9811(17)30018-4

DOI:

10.1016/j.jsames.2017.01.003

Reference:

SAMES 1644

To appear in:

Journal of South American Earth Sciences

Received Date: 31 May 2016 Revised Date:

20 December 2016

Accepted Date: 9 January 2017

Please cite this article as: Vennari, V.V., Pujana, I., Finding of two new radiolarian associations calibrated with ammonoids in the Vaca Muerta Formation (Late Jurassic–Early Cretaceous), Neuquén Basin, Argentina, Journal of South American Earth Sciences (2017), doi: 10.1016/j.jsames.2017.01.003. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT 1

FINDING OF TWO NEW RADIOLARIAN ASSOCIATIONS CALIBRATED WITH

2

AMMONOIDS IN THE VACA MUERTA FORMATION (LATE JURASSIC–EARLY

3

CRETACEOUS), NEUQUÉN BASIN, ARGENTINA

5

Verónica V. Vennaria*, Ignacio Pujanab

6

RI PT

4

7

a

8

Ambientales (IANIGLA), Consejo Nacional de Investigaciones Científicas y Técnicas

9

(CONICET), San Rafael, Mendoza, Argentina.

SC

Grupo vinculado al Instituto Argentino de Nivología, Glaciología y Ciencias

Museo de Historia Natural de San Rafael, Parque Mariano Moreno s/ n, 5600, San

11

Rafael, Mendoza, Argentina.

12

*Corresponding author.

13

b

14

Road, ROC 21, Richardson, Texas 75080-3021, USA.

Department of Geosciences, The University of Texas at Dallas, 800 W. Campbell

TE D

15

M AN U

10

E-mail addresses: [email protected] (V.V. Vennari);

17

[email protected] (I. Pujana)

AC C

18

EP

16

1

ACCEPTED MANUSCRIPT ABSTRACT: An association of ammonoids and radiolarians retrieved from a

20

sedimentary section of the Vaca Muerta Formation at Vega de Escalone, Neuquén

21

Basin, Argentina, was analized under a strict stratigraphic control. Nine ammonoid

22

assemblage biozones were identified, indicating an age span from Early Tithonian to

23

Late Berriasian/ earlymost Valanginian for the Vaca Muerta Formation at the studied

24

section. In connection to the ammonoid record, two radiolarian faunas were identified

25

and named J3A1 and J3B1. Fauna J3A1, corresponding to the Virgatosphinctes

26

andesensis Biozone, is dominated by nasellarian genera and represents the first Lower

27

Tithonian radiolarian fauna described from the Neuquén Basin. Fauna J3B1, linked to

28

the interval assigned to the Substeueroceras koeneni Biozone (Late Tithonian–Early

29

Berriasian), yields abundant representatives of the Pantanellid Family. The presence of

30

Complexapora kozuri (Kiessling and Zeiss) and Loopus primitivus (Matsuoka and Yao),

31

two important radiolarian primary markers of the Late Jurassic in North America,

32

supports a Late Tithonian age for at least part of the S. koeneni Biozone in the studied

33

area. Nor certain Berriasian radiolarian faunas nor elements of the Vallupinae Family

34

were identified so far at the Vega de Escalone section.

SC

M AN U

TE D

EP

35

RI PT

19

KEYWORDS: Upper Jurassic–Lower Cretaceous; Radiolaria; Ammonoids;

37

Biostratigraphy; Vaca Muerta Formation; Neuquén Basin.

38 39

AC C

36

2

ACCEPTED MANUSCRIPT 40 41

1. INTRODUCTION The Jurassic–Cretaceous transition is recorded in Argentina in the marine rocks of the Vaca Muerta Formation, whose deposition was related to a sudden and

43

widespread marine transgression that started in the late Lower Tithonian in the Neuquén

44

Basin (Legarreta and Uliana, 1991). This basin (Fig. 1) is widely known for its nearly

45

uninterrupted sedimentary infill from Late Triassic to Cenozoic times, its large extended

46

outcrops and by the fine quality of its fossil record. All these features have made the

47

Neuquén Basin the source of a great variety of both geological and paleontological

48

studies in former times. Nevertheless, much remains to be described and interpreted to

49

improve our knowledge of this western Gondwana basin.

SC

M AN U

50

RI PT

42

The radiolaria have proven to be one of the most abundant zooplankton groups in Late Jurassic–Early Cretaceous rocks (Pessagno 1976, 1977a, b; Pessagno et al.,

52

1984, 1987, 1993; Baumgartner et al., 1995) with important biostratigraphic and

53

taxonomic implications. Representatives of this time interval are well known worldwide

54

but in the Neuquén Basin they were only studied by one of us in a number of articles

55

(Pujana, 1988, 1989, 1991, 1995, 1996a, 1996b, 2000). In this contribution, we present

56

two new radiolarian faunas, one of Early Tithonian (Fauna J3A1), and the other of Late

57

Tithonian to Early Berriasian age (Fauna J3B1). Both are recorded in northern Neuquén

58

province, Argentina and in connection with an accurate ammonoid based

59

biostratigraphic control.

60

Figured ammonoid specimens are stored at the Paleontological Collection of the

61

University of Buenos Aires, Argentina under numbers CPBA 21240.5, 21560-21563;

62

21566-21571, and fertile radiolarian slides containing the illustrated specimens are held

63

at the Micropaleontological Collection of the University of Buenos Aires, Argentina

64

under numbers LM-FCEN Nº 3670-3671.

AC C

EP

TE D

51

3

ACCEPTED MANUSCRIPT 65

[Fig. 1 around here]

66

2. GEOLOGICAL SETTING

67

2.1. Regional setting The Neuquén Basin (Fig. 1) is a retroarc basin formed on a convergent

68

continental margin (Legarreta and Uliana, 1996) at the foothill of the Andes. It extends

70

over Chile and west-central Argentina between 33 and 39° southern latitude. During

71

Mesozoic times the basin was limited eastward by the Sierra Pintada System,

72

southeastward by the Patagonian Massif and to the west by a discontinuous active

73

volcanic arc which allowed its communication with the Pacific Ocean (Howell et al.,

74

2005).

SC

M AN U

75

RI PT

69

The Lower Tithonian–Upper Berriasian marine rocks of the Vaca Muerta Formation (Weaver, 1931; emend. Leanza, H., 1972) are the result of a sudden marine

77

transgression that, in the studied area (Fig. 2A, B), flooded the earlier continental

78

siliciclastic sediments of the Tordillo Formation. Both lithostratigraphic units integrate

79

the base of the Mendoza Group in the study area (Groeber, 1946; emend. Stipanicic et

80

al., 1968).

81

[Fig. 2 around here]

EP

82

TE D

76

The Vaca Muerta Formation is characterized by the rhythmic alternation of bituminous dark shales, marls and calcareous beds deposited over an homoclinal

84

carbonate-siliciclastic ramp system dominated by external ramp facies during the

85

Tithonian (Spalletti et al., 2000; Scasso et al., 2002; Kietzmann et al., 2008; Kietzmann

86

and Palma, 2009), which leaded to a more inclined or a distally steepened ramp during

87

the Berriasian (Mitchum and Uliana, 1985; Kietzmann et al., 2008). The prevailing

88

oxygen deficient bottom conditions allowed the excellent preservation of both micro

89

and macrofauna among which ammonoid shells are the most abundantly represented.

AC C

83

4

ACCEPTED MANUSCRIPT 90

These environmental conditions also promoted the formation of extended organic-rich

91

facies that turned the Vaca Muerta Formation as the most important hydrocarbon source

92

of the Neuquén Basin (Mitchum and Uliana, 1985; Vergani et al., 2011).

93

2.2. Fossil locality The Vega de Escalone section (37º 11' S; 69º 48' W) is easily accessible. It is

RI PT

94

located in the Pampa Tril area (Fig. 2A), 72 km north of Chos Malal City. It can be

96

reached through the intersection of the national road n° 40 with a narrow gravel road

97

situated some kilometers north of the Chihuido del Tril (a Cenozoic basaltic neck). The

98

gravel pathway heads to a small farm inside a marsh (vega in Spanish), situated over the

99

eastward boundary of the Yesera del Tromen evaporites. The contact of the Vaca

100

Muerta Formation with the Tordillo Formation can be reached after a 1.5 km walk

101

either through the gravel road or through an old seismic line parallel to it. The analyzed

102

section lies over the eastern flank of the most conspicuous structure in the region, the

103

Yesera del Tromen Anticline (Herrero-Ducloux, 1946). Nearby Vaca Muerta Formation

104

outcrops and faunal content have been also studied by Leanza and Hugo (1977),

105

Gulisano and Gutiérrez-Pleimling (1994), Spalletti et al. (1999) and Parent et al. (2015).

106

2.3. Description of the section

M AN U

TE D

EP

107

SC

95

In Vega de Escalone the Vaca Muerta Formation is 482 m thick (Fig. 3). The unit starts with thinly laminated microbialite layers and continues upwards with an

109

abundant intercalation of mudstones, wackestones and marls forming massive,

110

laminated and nodular beds. Calcareous nodules up to 1.5 m in diameter are common in

111

the first part of the section, a feature which has also been observed in other areas of the

112

basin (Damborenea and Leanza, H., 2016). Some tuff layers, siltstones and calcareous

113

sandstones had also been recorded scattered over the column, as well as ferruginous

114

surfaces and thin fibrous calcite layers. The later usually occur parallel to the

AC C

108

5

ACCEPTED MANUSCRIPT stratification and are more frequent near the top of the section. These fibrous calcite

116

layers have been formerly observed in many others localities (e.g. Leanza, H., 1973,

117

Leanza, H., et al. 2001), and frequently yield ammonoid and bivalve imprints (e.g.

118

Damborenea and Leanza, H., 2016). Their formation has been recently associated with

119

fluid overpressure episodes during hydrocarbon generation (Rodrigues et al., 2009). The

120

top of the Vaca Muerta Formation in this locality is transitional with the coarser and

121

shallower deposits of the Valanginian Mulichinco Formation.

Ammonoid shells are by far the most abundant fossil invertebrates through all

SC

122

RI PT

115

the section, recorded both as three-dimensional internal molds holding neomorfic shell

124

remains, or as detailed imprints. Small gastropods (e.g. Protohemichenopus), oysters,

125

epibisated and shallow burrower bivalves are also found (e.g. Liostrea, Huncalotis, and

126

"Lucina"). Vertebrates are usually represented by small disarticulated fish scales and

127

bones; however a Late Tithonian to Early Berriasian crocodile skull from this locality

128

has been recently described (Herrera, 2012; Herrera and Vennari, 2014).

129

[Fig. 3 around here]

130

3. MATERIAL AND METHODS

TE D

Ammonoid specimens were collected bed by bed in Vega de Escalone section.

EP

131

M AN U

123

Shells were prepared at the laboratory with the assistance of pneumatic tools and a

133

diluted solution of hydrochloric acid (HCL) before their taxonomic identification.

134

AC C

132

To separate and study the radiolarian skeletons, several disaggregation

135

techniques were applied according to the nature of the matrix and the replacement of the

136

original opal. A summary of these techniques, including the use of dilute and

137

concentrated acids, is described in Pessagno (1977a). Particularly useful for our material

138

was the use of diluted hydrofluoric acid technique as described in Pessagno and

139

Newport (1972). 6

ACCEPTED MANUSCRIPT 140

4. RESULTS AND DISCUSSION

141

4.1. Ammonoid biostratigraphy A twofold division of the Tithonian is adopted here, making it easier the

142

comparision between Standard ammonoid and radiolarian biozonation schemes and

144

following Riccardi (2015) suggestions.

RI PT

143

Nine ammonoid assemblage biozones have been identified in Vega de Escalone

145

section (Figs. 4–5, 8) from a total of thirty-two ammonoid fertile beds (Fig. 3). Those

147

biozones are consistent with the traditional Andean biostratigraphic scheme of Leanza,

148

H. (1980, 1981a, b) and Riccardi (1984, 1988), and its recent modifications introduced

149

by both authors, mainly involving the late Early and Late Tithonian interval (Zeiss and

150

Leanza, H., 2008, 2010; Riccardi et al., 2011; Riccardi, 2015). Lowermost Tithonian

151

biozonation follows the proposal of Vennari (2016), where the new name

152

Virgatosphinctes andesensis Assemblage Biozone is recommended to be used instead of

153

V. mendozanus Assemblage Biozone, since the former is the valid name of the index

154

species by priority of publication. Also, the V. andesensis Biozone was tentatively

155

subdivided into two interval subzones, of which the uppermost, the Indansites

156

malarguensis Interval Subzone is well represented at the studied section.

EP

TE D

M AN U

SC

146

Lower Cretaceous ammonoid biozones and their correlation with the Tethys

157

region were based on those presented by Aguirre-Urreta et al. (2007) and Reboulet et al.

159

(2014).

160

[Figure 8 around here]

161

AC C

158

The faunal composition of each ammonoid biozone and their correlation with the

162

current Mediterranean Standard biozonation (Hardenbol et al., 1998; Reboulet et al.,

163

2014) is presented below:

7

ACCEPTED MANUSCRIPT 164

Ammonoid beds VE 1–VE 3: Virgatosphinctes andesensis Assemblage Biozone (Vennari, 2016). Lower Tithonian, Upper Darwini to Lower Semiforme Zones. It

166

includes abundant and well preserved specimens of Indansites malarguensis (Spath,

167

1931) (Fig. 4.1), less numerous representatives of Virgatosphinctes andesensis

168

(Douvillé, 1910) and Choicensisphinctes choicensis (Burckhardt, 1903), and only one

169

specimen assigned to Pseudovolanoceras cf. P. aesinense kranzense (Cantú-Chapa,

170

1990). This species, a simoceratid usually ascribed to the younger Pseudolissoceras

171

zitelli Biozone, is poorly represented in the Neuquén Basin and can be correlated with

172

the Semiforme standard Zone (Villaseñor et al., 2011). Two morphotypes temporally

173

ascribed to the tethyan genera "Subplanitoides sp." and "Torquatisphinctes sp." have

174

also been recognized. Dominance of representatives of Subfamilies Virgatosphinctinae

175

and Lithacoceratinae at this association is in agreement with previous records of this

176

stratigaphic interval in other areas of the basin (Leanza, H., 1980; Vennari and Aguirre-

177

Urreta, 2014; Vennari, 2016) and enables recognizing an Indansites malarguensis

178

Interval Subzone (Vennari, 2016) in this section.

SC

M AN U

TE D

179

RI PT

165

Ammonoid bed VE 4: Pseudolissoceras zitteli Assemblage Biozone. Lower Tithonian, Upper Semiforme to Lower Fallauxi Zones. Mainly represented by abundant

181

and well preserved specimens of Pseudolissoceras zitteli (Burckhardt, 1903) (Fig. 4.2),

182

Cieneguiticeras perlaevis (Steuer, 1897) and some Lamellaptychus remains usually

183

related to haploceratid ammonoids (Trauth, 1938; Engeser and Keupp, 2002).

AC C

184

EP

180

Ammonoid beds VE 5–VE 6: Aulacosphinctes proximus Assemblage Biozone.

185

Lower Tithonian, Upper Fallauxi to Ponti Zones. Represented by poorly preserved

186

Aulacosphinctes proximus? (Steuer, 1897) remains.

187 188

Ammonoid beds VE 7–VE 8': Windhauseniceras internispinosum Assemblage Biozone. Upper Tithonian, Lower Microcanthum Zone. Yields representatives of 8

ACCEPTED MANUSCRIPT 189

Windhauseniceras internispinosum? (Krantz, 1926), Aspidoceras euomphalum Steuer,

190

1897, "Subdichotomoceras" araucanense Leanza, H., 1980 (Fig. 4.4), Corongoceras

191

lotenoense Spath, 1925 and some aptychi of Lamellaptychus and Laevaptychus type; the

192

later usually ascribed to aspidoceratids (Trauth, 1931; Cloos, 1961). Ammonoid beds VE 9–VE 12: Corongoceras alternans Assemblage Biozone.

RI PT

193

Upper Tithonian, Upper Microcanthum to Lower "Durangites" Zone. Includes

195

representatives of Micracanthoceras lamberti Leanza, A., 1945 (Fig. 4.3),

196

Aulacosphinctes mangaensis? (Steuer, 1897), Corongoceras sp. cf. C. mendozanum

197

(Behrendsen, 1922) (Fig. 4.6) and some specimens of "Berriasella" australis Leanza,

198

A., 1945. A single specimen assigned to Parodontoceras calistoides (Behrendsen,

199

1922) was recorded on the topmost fossiliferous bed of this association along with

200

representatives of M. lamberti and A. mangaensis?.

M AN U

201

SC

194

Ammonoid beds VE 13–VE 23: Substeueroceras koeneni Assemblage Biozone. Uppermost Tithonian to Lower Berriasian, "Durangites" to Jacobi Zones. Includes

203

abundant representatives of P.calistoides (Fig. 4.5). In addition were identified some

204

specimens of Aulacosphinctes? azulensis Leanza, A., 1945 (Fig. 5.1), Corongoceras?

205

sp., C.? steinmanni Krantz, 1926, Micracanthoceras? spinulosum Gerth, 1925,

206

Micracanthoceras? aff. M.? spinulosum, M.? sp. cf. M. koellikeri (Steuer 1897 non

207

Oppel), M. vetustum (Steuer, 1897), Aspidoceras rogoznicense (Zeuschner, 1846),

208

Chigaroceras sp. (Fig. 5.3), Substeueroceras koeneni? (Steuer, 1897), S. extans Leanza,

209

A., 1945, S. striolatissimum (Steuer, 1897), and a single litoceratid fragment, a group

210

traditionally interpreted as offshore dwellers (Kennedy and Cobban, 1976). Upper age

211

limit indicated for this biozone is in accordance to the recently proved co-occurrence of

212

representatives of this biozone with Nannoconus kamptneri minor, as a marker for the

213

base of the Berriasian, in Las Loicas section, Mendoza (see Vennari et al., 2014).

AC C

EP

TE D

202

9

ACCEPTED MANUSCRIPT 214

Ammonoid bed VE 24: Argentiniceras noduliferum Assemblage Biozone.

215

Lower Berrisian, Jacobi to Occitanica Zones. Represented by few specimens of

216

Argentiniceras sp. (Fig. 5.2). Ammonoid beds VE 25?, VE 26–VE 32: Spiticeras damesi to Neocomites

218

wichmanni Assemblage Biozone. Upper Berriasian to lowermost Valanginian. Boissieri

219

to Pertransiens Zone. It only includes shell imprints on fibrous calcite layers or on

220

calcareous siltstones. Nonetheless, some specimens of Cuyaniceras transgrediens

221

(Steuer, 1897) (Fig. 5.5), Cuyaniceras sp., "Thurmanniceras" discoidale (Gerth, 1925)

222

(Fig. 5.4) and indeterminate neocomitids were identified to the top of the interval. Lack

223

of identification of index species of the Neocomites wichmanni Biozone prevented

224

separating this biozone from the previous one.

225

[Fig. 4–5 around here]

226

4.2. Radiolarian taxonomy and biostratigraphy

SC

M AN U

The micropaleontologic analysis is based on a total of thirty-two samples taken

TE D

227

RI PT

217

consecutively along the section. Of these, the most abundant and well preserved

229

material recovered from two main intervals with ammonoids is described below. The

230

poor preservation of the fauna impedes conducting a statistical analysis of abundance

231

and to assess the relative taxonomic composition of the fauna. However, many forms

232

are described for first time in the Neuquén Basin as also is the radiolarian association

233

from the V. andesensis Biozone.

AC C

234

EP

228

A total of seven fertile samples (Fig. 3) allow discriminating two faunas of

235

radiolarians (Figs. 6–8). The first one, Fauna J3A1 (Fig. 6), is recognized from three

236

samples obtained from beds VE 1, VE 2 and VE 3, included in the V. andesensis

237

Biozone (Lower Tithonian). Fauna J3A1 is dominated by nasellarians, among which

238

Parvicingula, Archaeodyctiomitra and Xitus are the most abundant forms. Among the 10

ACCEPTED MANUSCRIPT members of the Pantanellidae Family, only Pantanellium aff. P. ranchitoensis is

240

abundant. This J3A1 Fauna constitutes the first fauna of radiolarians thoroughly

241

described from levels of the Virgatosphinctes andesensis Biozone in the Neuquén

242

Basin. It corresponds to the lower part of J3A radiolarian association from late Early

243

Tithonian to middle Late Tithonian age identified in the basin by Pujana (2000, in

244

Ballent et al., 2011). In particular, the sample from bed VE 2 can be as old as Zone 4,

245

base of Subzone 4β2 of Pessagno et al. (2009) due to the presence of Complexapora

246

kozuri (Fig. 6.10, 8–9).

SC

247

RI PT

239

The second fauna of radiolarians, named J3B1 (Fig. 7), is determined from four fertile samples recovered from beds VE 17, 18, 19 and 20, corresponding to levels

249

assigned to the Substeueroceras koeneni Biozone (uppermost Tithonian to Lower

250

Berriasian). In particular, the sample obtained from bed VE 19 allows to assign a Late

251

Tithonian age to the fauna, based on the presence of C. kozuri (Fig. 7.15) and Loopus

252

primitivus (Fig. 7.6) primary markers for Zone 4 Subzone 4α2 of Pessagno et al. (2009).

253

Fauna J3B1, which is assigned to the lowest part of J3B radiolarian association from

254

Late Tithonian to Early Valanginian age (Pujana, 2000), has a strong representation of

255

the Pantanellidae Family with genera Gorgansium and Pantanellium. Also recognized

256

are Napora, Podobursa, Acanthocircus, Pseudocyrtis, Neoparonaella and Xitus. It is

257

remarkable the absence on these levels of members of Parvicingula as well as any

258

species of the Vallupinae Subfamily.

TE D

EP

AC C

259

M AN U

248

Between faunas J3A1 and J3B1 there is a 154 m thick interval barren of any

260

radiolarians. Some local environmental factors may have inhibited radiolarian

261

preservation in the middle portion of Vega de Escalone section. However, this upper

262

Lower to middle Upper Tithonian interval has provided a rich radiolarian fauna in

263

several other Vaca Muerta sections both in Neuquén, (i.e. Mallín Quemado, Portada 11

ACCEPTED MANUSCRIPT Covunco) and Mendoza, (i.e. Bardas Blancas) (Pujana, 1991, 1995, 1996). Those faunas

265

held elements of the Subfamily Vallupinae which allow recognizing two conspicuous

266

evolutive events named “Vallupus hopsoni Event” and “Vallupus japonicus Event”. The

267

older "Vallupus hopsoni" event is characterized by the presence of specimens with

268

multiple cortical collars and indentations. These forms always have a cylindrical to

269

conical cortical collar that expands continuously towards an aperture with irregular

270

borders. The occurrence of that event is on the lower part of the Pseudolissoceras zitelli

271

Biozone to at least the upper part of the Aulacosphinctes proximus Biozone (middle to

272

upper Lower Tithonian). The younger "Vallupus japonicus" event is also defined by an

273

abundance of forms with multiple and indented cortical collars with a distinctive bell-

274

like shape, and also includes some Vallupus hopsoni specimens. This event occurs in

275

coincidence with the upper part of the Windhauseniceras internispinosum Biozone and

276

in the Corongoceras alternans Biozone (lower to middle Upper Tithonian).

M AN U

SC

RI PT

264

Finally, the fauna observed in a single sample obtained from bed VE 24,

278

included in the Argentiniceras noduliferum Biozone (Lower Berriasian), do not present

279

significant differences in its composition with the J3B1 fauna, despite its higher

280

stratigraphic position. However poor preservation as well as relatively less diversity and

281

abundance hinder its significance.

282

[Fig. 6-7 around here]

283

Radiolarian Taxonomy

EP

AC C

284

TE D

277

The classification of De Wever et al. (2001) is followed up to the Order level,

285

Families are alphabetically ordered. Biostratigraphic ranges of genera and species

286

follow the biostratigraphic scheme proposed by Pessagno et al. (2009). (Fig. 9).

287

[Figure 9 around here]

288

Class ACTINOPODA 12

ACCEPTED MANUSCRIPT Subclass RADIOLARIA (Müller, 1858)

290

Superorder POLYCYSTIDA Ehrenberg, 1838, emend. Riedel 1967)

291

Order SPUMELLARIINA Ehrenberg, 1875, emend. De Wever et al., 2001

292

Family PANTANELLIIDAE Pessagno, 1977a

293

Type genus: Pantanellium Pessagno, 1977a; sensu Pessagno and Blome, 1980.

294

Range: Late Triassic (Carnian) to Early Cretaceous (Aptian/ Albian).

295

Occurrence: Worldwide.

RI PT

289

SC

296

Subfamily PANTANELLIINAE Pessagno, 1977a; sensu Pessagno and Blome, 1980

298

Type genus: Pantanellium Pessagno 1977a; sensu Pessagno and Blome 1980.

299

Range and occurrence: Same as for family.

M AN U

297

300

Genus Gorgansium Pessagno and Blome, 1980

302

Type species: Gorgansium silviesense Pessagno and Blome, 1980.

303

Range and occurrence: Late Triassic (Norian) to Early Cretaceous (Berriasian). Same

304

as for the family.

307

EP

306

Gorgansium sp. A (Fig. 7.8)

AC C

305

TE D

301

308

Remarks: This form is characterized by well-developed nodes and slender polar spines

309

similar to the form under Pantanellium sp. A (see Fig. 7.4). The remainder basal spine,

310

wider and longer is deviated from the polar axis by approximately 30 degrees.

311 312

Range and occurrence: Vaca Muerta Formation, Neuquén Basin, Vega de Escalone,

313

Argentina. Sample VE 19; Fauna J3B1; Substeueroceras koeneni Biozone. Rare. 13

ACCEPTED MANUSCRIPT 314 315

Genus Pantanellium Pessagno, 1977a, sensu Pessagno and Blome, 1980

316

Type species: Pantanellium riedeli Pessagno, 1977a.

317

Range and occurrence: Same as for family.

RI PT

318

Pantanellium meraceibaense Pessagno and Macleod, 1987 (Fig. 7.9)

320

1987 Pantanellium meraceibaense Pessagno and Macleod, p. 22, pl. 5, figs. 5–6, 18–19;

321

pl. 7, fig. 4.

322

1991 Pantanellium sp. aff. P. meraceibaense Pessagno and Macleod; Pujana, p. 399, pl.

323

1, figs. 6–7.

324

1993 Pantanellium meraceibaense Pessagno and Macleod; Pessagno et al., p. 130, pl. 4,

325

fig. 17.

326

1993 Pantanellium meraceibaense Pessagno and Macleod; Yang, p. 15, pl. 2, figs. 6,

327

22.

328

2013 Pantanellium meraceibaense Pessagno and Macleod; Pujana in Staerker et al., p.

329

115, pl. 3, fig. b.

M AN U

TE D

EP

330

SC

319

Range and occurrence: Superzone 1, Zone 11 to Zone 4, Subzone 4β; Lower Oxfordian

332

to Lower Berriasian. Taman Formation, East-central Mexico; Argolis Peninsula,

333

Greece; Stanley Mountain, California; strata overlying the Josephine Ophiolite,

334

Klamath Mountains; northwestern California and southwestern Oregon; Mazapil, Sierra

335

de Santa Rosa, Mexico; Haynesville Formation, North Louisiana Salt Province, Gulf of

336

Mexico; Vaca Muerta Formation, Neuquén Basin, Mallín Quemado and Vega de

337

Escalone, Argentina. Sample VE 19; Fauna J3B1; Substeueroceras koeneni Biozone.

AC C

331

338 14

ACCEPTED MANUSCRIPT 339

Pantanellium neuquensis Pujana, 1991 (Fig. 7.2)

340

1991 Pantanellium neuquensis Pujana, p. 399, pl. 1, figs. 3, 6.

341

Range and occurrence: Vaca Muerta Formation, Neuquén Basin, Mallín Quemado

343

(Windhauseniceras internispinosum Biozone) and Vega de Escalone, Argentina. Sample

344

VE 19; Fauna J3B1; Substeueroceras koeneni Biozone.

345

RI PT

342

Pantanellium quintachillaense Pessagno and Macleod, 1987 (Fig. 7.3, 7.7)

347

1987 Pantanellium quintachillaense Pessagno and Macleod in Pessagno et al., p. 23, pl.

348

4, figs. 14, 23.

349

1999 Pantanellium quintachillaense Pessagno and Macleod; Kiesling, p. 22, pl. 4, figs.

350

6, 12.

351

2013 Pantanellium quintachillaense Pessagno and Macleod; Pujana in Staerker et al., p.

352

115, pl. 3, fig. b.

M AN U

TE D

353

SC

346

Range and occurrence: Zone 2, Subzone 2β to Zone 4, Subzone 4α; Oxfordian to Late

355

Tithonian. Taman Formation, east-central Mexico; Ameghino Formation, Antarctic

356

Peninsula; Haynesville Formation, North Louisiana Salt Province, Gulf of Mexico; and

357

herein, Vaca Muerta Formation, Neuquén Basin, Vega de Escalone. Sample VE 19;

358

Fauna J3B1; Substeueroceras koeneni Biozone.

AC C

359

EP

354

360

Pantanellium ranchitoense Pessagno and Macleod, in Pessagno et al., 1987 (Fig. 6.3)

361

1987 Pantanellium ranchitoense Pessagno and Macleod in Pessagno et al., p. 23, pl. 1,

362

figs. 1, 25; pl. 5, figs. 4, 8, 22; pl. 7, fig. 6.

15

ACCEPTED MANUSCRIPT 1991 Pantanellium sp. aff. P. ranchitoense Pessagno and Macleod; Pujana, p. 400, pl. 1,

364

fig. 10.

365

1993 Pantanellium ranchitoense Pessagno and Macleod; Yang, p. 16, pl. 1, fig. 6; pl. 2,

366

fig. 3.

367

1999 Pantanellium ranchitoense Pessagno and Macleod; Kiessling, pl. 4, fig. 10.

368

2013 Pantanellium ranchitoense Pessagno and Macleod; Pujana in Staerker et al., p.

369

115, pl. 3, fig. b.

RI PT

363

SC

370

Range and occurrence: Zone 5; Callovian to Lower Berriasian. Taman Formation, east-

372

central Mexico; Titoniano Bianco, Southern Alps, Italy; Ameghino Formation,

373

Antarctic Peninsula; Haynesville Formation, North Louisiana Salt Province, Gulf of

374

Mexico; Vaca Muerta Formation, Neuquén Basin, Vega de Escalone, Argentina.

375

Sample VE 2, Fauna J3A1; Virgatosphinctes andesensis Biozone.

M AN U

371

TE D

376

Pantanellium sp. aff. P. riedeli Pessagno, 1977b (Fig. 7.5)

378

1977b Pantanellium riedeli Pessagno, p. 78, pl. 6, figs. 5–11.

379

EP

377

Remarks: This specimen differs from Pantanellium riedeli Pessagno by possessing less

381

massive primary spines and a less nodose cortical shell.

382

AC C

380

383

Range and occurrence: Vaca Muerta Formation, Neuquén Basin, Vega de Escalone,

384

Argentina. Sample VE 19; Fauna J3B1; Substeueroceras koeneni Biozone.

385 386

Pantanellium sp. A (Fig. 7.4)

387 16

ACCEPTED MANUSCRIPT 388

Remarks: This species is characterized by large pores on a slightly wider cortical shell

389

and very long and slender polar spines. There is no similarity with to any published

390

Pantanellium species.

391

Range and occurrence: Vaca Muerta Formation, Neuquén Basin, Vega de Escalone,

393

Argentina. Sample VE 19; Fauna J3B1; Substeueroceras koeneni Biozone.

RI PT

392

394

Family PATULIBRACCHIINAE Pessagno, 1971; emend. De Wever et al., 2001

396

Type genus: Patulibracchium Pessagno, 1971

397

Range and occurrence: Late Paleozoic to Late Cretaceous. Worldwide.

M AN U

SC

395

398

Genus Crucella Pessagno, 1971; emend. Baumgartner, 1980

400

Type species: Crucella messinae Pessagno, 1971.

401

Range and occurrence: Late Triassic (Rhaetian) to Late Cretaceous. Worldwide.

402

TE D

399

Crucella sp. cf. C. mexicana Yang, 1993 (Fig. 7.12)

404

1993 Crucella mexicana Yang, pl. 40, figs. 10–11, 14, 16; pl. 5, figs. 10, 21.

405

EP

403

Remarks: This form is related to Crucella mexicana Yang, differing by having the arm

407

ends gradually tapering into a spine.

408

Range and occurrence: Vaca Muerta Formation, Neuquén Basin, Vega de Escalone,

409

Argentina. Sample VE 19; Fauna J3B1; Substeueroceras koeneni Biozone.

AC C

406

410 411

Family TRITRABIDAE Baumgartner, 1980

412

Genus Neoparonaella Yang, 1993 17

ACCEPTED MANUSCRIPT 413

Type species: Neoparonaella delicata Yang, 1993

414

Remarks: Kiessling (1999) noticed that the internal structure of arms is consistent with

415

the Tritrabidae rather than the Hagiastridae.

416

Range: Kimmeridgian to Late Tithonian.

RI PT

417

Neoparonaella delicata Yang, 1993 (Fig. 7.11)

419

1993 Neoparonaella delicata Yang, p. 30, pl. 3, figs. 1, 5–6, 9–10, 17, 22: pl. 7, fig. 12.

420

1996 Neoparonaella delicata Yang; Kiesssling and Scasso, pl. 2, fig. 2.

421

1997 Neoparonaella delicata Yang; Hull p. 43, pl. 15, figs. 2, 18.

SC

418

M AN U

422

Range and occurrence: Late Kimmeridgian to Late Tithonian. Ameghino Formation,

424

Antarctica; Taman Formation, east-central Mexico; volcano-pelagic strata at Stanley

425

Mountain, California, United States; Dachhornstein Formation, Germany; Rosso di

426

Aptici Formation, Italy. Vaca Muerta Formation, Neuquén Basin, Vega de Escalone,

427

Argentina. Sample VE 19; Fauna J3B1; Substeueroceras koeneni Biozone.

TE D

423

428

Order NASSELLARIINA Ehrenberg, 1875

430

Family ARCHAEODICTYOMITRIDAE, Pessagno, 1976; emend. Pessagno, 1977b

431

Type genus: Archaeodictyomitra Pessagno, 1976; emend. Pessagno, 1977b.

432

Range and occurrence: Jurassic to Late Cretaceous (Maastrichtian). Worldwide.

AC C

433

EP

429

434

Genus Archaeodictyomitra Pessagno, 1976; emend. Pessagno, 1977b; Yang, 1993

435

Type species: Archaeodictyomitra squinaboli Pessagno, 1976.

436

Range and occurrence: Middle Jurassic (Bajocian) to Late Cretaceous (Campanian).

437

Worldwide. 18

ACCEPTED MANUSCRIPT 438

Archaeodictyomitra sixi Yang, 1993 (Fig. 6.4)

440

1993 Archaeodictyomitra sixi Yang, p. 112–113, pl. 19, figs. 3, 19; pl. 20, figs. 9–10,

441

19.

442

1997 Archaeodictyomitra sixi Yang; Hull, p. 79, pl. 32, figs. 9, 22–23.

443

1999 Archaeodictyomitra (?) sixi Yang; Kiessling, p. 45, pl. 9, fig. 10.

RI PT

439

444

Remarks: This form was ascribed by Kiessling (1999) to Archaeodictyomitra (?) sixi,

446

because of the presence of primary pores and smooth constrictions on the distal

447

postabdominal chambers, similar to Thanarla Pessagno, 1977a. The definition of Yang

448

(1993) is followed here.

449

M AN U

SC

445

Range and occurrence: Zone 2, Subzone 2α to Zone 4, Subzone 4α; early Late

451

Kimmeridgian to Late Tithonian. Upper and lower members of the Taman Formation,

452

east-central Mexico; Volcanopelagic strata overlying the Coast Range ophiolite, Stanley

453

Mountain California; Japan; Antarctic Peninsula; Vaca Muerta Formation, Neuquén

454

Basin, Vega de Escalone, Argentina. Sample VE 2, Fauna J3A1; Virgatosphinctes

455

andesensis Biozone.

EP

AC C

456

TE D

450

457

Archaeodictyomitra sp. cf. A. vulgaris Pessagno, 1977b (Fig. 6.1–6.2)

458

1977b Archaeodictyomitra vulgaris Pessagno, 1977b; Pessagno, p. 44, pl. 6, fig. 15.

459 460

Remarks: This specimen differs from Archaeodictyomitra vulgaris Pessagno (Pessagno,

461

1977b) by possessing a shorter and broader test with more prominent irregular bladed

462

costae. The outline exhibits smooth constrictions on the postabdominal chambers. 19

ACCEPTED MANUSCRIPT 463 464

Range and occurrence: Vaca Muerta Formation, Neuquén Basin, Vega de Escalone,

465

Argentina. Sample VE 2, Fauna J3A1; Virgatosphinctes andesensis Biozone.

466

Family PARVICINGULIDAE Pessagno, 1977a; emend. Pessagno and Whalen, 1982

468

Type genus: Parvicingula Pessagno, 1977a.

RI PT

467

469

Range and occurrence: Early Jurassic (Toarcian) to Early Cretaceous (Aptian).

471

Worldwide.

SC

470

M AN U

472 473

Genus Praeparvicingula Pessagno et al., 1993

474

Type species: Parvicingula profunda Pessagno and Whalen, 1982.

475

Range and occurrence: Same as for the family.

TE D

476

Praeparvicingula vacaensis Pujana, 1989 (Fig. 6.5, 6.7)

478

1989 Parvicingula vacaensis Pujana, p. 1046–1048, pl. 1, fig. 1.

479

1995 Praeparvicingula vacaensis Pujana, Kiessling, p. 346, pl. 40, fig, 19.

480

EP

477

Range and occurrence: Limanangcong Formation, Philippines (Tithonian); Vaca

482

Muerta Formation, Neuquén Basin, Mallín Quemado (Windhauseniceras

483

internispinosum Biozone) and Vega de Escalone, Argentina. Sample VE 2, Fauna J3A1;

484

Virgatosphinctes andesensis Biozone.

AC C

481

485 486

Praeparvicingula sp. A (Fig. 6.6)

487 20

ACCEPTED MANUSCRIPT 488

Range and occurrence: Vaca Muerta Formation, Neuquén Basin, Vega de Escalone,

489

Argentina. Sample VE 2, Fauna J3A1; Virgatosphinctes andesensis Biozone.

490

Family PSEUDODICTYOMITRIDAE Pessagno, 1977b

492

Type genus: Pseudodictyomitra Pessagno, 1977b.

493

Range and occurrence: Middle Jurassic (Bathonian–Callovian) to Late Cretaceous

494

(Middle Turonian). Worldwide.

SC

495

RI PT

491

Genus Loopus Yang, 1993

497

Type species: Pseudodictyomitra primitiva Matsuoka and Yao, 1985

M AN U

496

498

Loopus primitivus (Matsuoka and Yao, 1985); emend. Yang, 1993 (Fig. 7.6)

500

1985 Pseudodictyomitra primitiva Matsuoka and Yao, p. 131, pl. 1, figs. 1–6; pl. 3, figs.

501

1–4.

502

1993 Loopus primitivus (Matsuoka and Yao); Yang, p. 125, pl. 23, figs. 5–6, 13, 21.

503

1999 Loopus primitivus (Matsuoka and Yao); Kiessling, p. 54, pl. 12, fig. 15.

EP

504

TE D

499

Range and occurrence: Zone 2, Subzone 2α 1 to Zone 4, Subzone 4β; early Late

506

Kimmeridgian to early Late to Late Tithonian. Upper and lower members of the Taman

507

Formation, east-central Mexico; Japan; Stanley Mountain, southern California Coast

508

Range; Greece; Carpathians; Mazapil, Sierra de Santa Rosa, Zacatecas, Mexico;

509

Ameghino Formation, Antarctic Peninsula; and herein,Vaca Muerta Formation,

510

Neuquén Basin. Sample VE 19, Fauna J3B1; Substeueroceras koeneni Biozone.

AC C

505

511 512

Family SYRINGOCAPSIDAE Foreman, 1973; emend. Hull, 1997 21

ACCEPTED MANUSCRIPT 513

Type genus: Syringocapsa Neviani, 1900.

514

Range and occurrence: Triassic to Cretaceous. Worldwide.

516

Genus Podobursa Wisniowski, 1889; emend. Foreman, 1973

517

Type species: Podobursa dunikowski, Wisnioski, 1889.

518

Range and occurrence: Triassic to Cretaceous. Worldwide.

519

Podobursa sp. A (Fig. 7.10)

SC

520

RI PT

515

521

Remarks: This form is characterized by a well-defined conical cephalous covered by

523

micro-granular silica, and a conical thorax with regularly distributed small pores.

524

Spherical post abdominal chamber, formed by a meshwork of medium size hexagonal

525

regularly distributed pores; without circumferential spines. Tubular extension slender

526

and composed of linearly arranged polygonal pore frames.

TE D

527

M AN U

522

Range and occurrence: Vaca Muerta Formation, Neuquén Basin. Sample VE 19; Fauna

529

J3B1; Substeueroceras koeneni Biozone.

530

EP

528

Family SETHOCAPSIDAE Haeckel, 1881

532

Type genus: Sethocapsa Haeckel, 1881.

533

AC C

531

534

Remarks: The proposed restrictions by Dumitrica (1995) of the Sethocapsidae to

535

dicyrtid forms with the last segment inflated are followed herein. See Hull (1997) for a

536

comprehensive discussion of this family.

537

Range and occurrence: Middle Jurassic to Recent. Worldwide. 22

ACCEPTED MANUSCRIPT 538 539

Genus Gongylothorax Foreman, 1968; emend. Dumitrica, 1970

540

Type species: Dicolocapsa verbeeki Tan, 1927.

541

Range and occurrence: Middle Jurassic (Bajocian) to Late Cretaceous (Campanian).

543

Worldwide.

RI PT

542

544

Gongylothorax sp. A (Fig. 7.16)

546

1970 Gongylothorax favosus Dumitrica, p. 56, pl. 1, figs. l a–c, 2.

SC

545

M AN U

547 548

Range and occurrence: Vaca Muerta Formation, Neuquén Basin. Sample VE 19; Fauna

549

J3B1; Substeueroceras koeneni Biozone.

550

Family ULTRANAPORIDAE Pessagno, 1977b

552

Type genus: Napora Pessagno, 1977a= Ultranapora Pessagno, 1977b.

553

Range and occurrence: Middle Triassic to Late Cretaceous. Worldwide.

EP

554

TE D

551

Genus Napora Pessagno, 1977a

556

Type species: Napora bukryi Pessagno, 1977a.

557

Range and occurrence: Early Jurassic (Sinemurian) to Late Cretaceous. Worldwide.

558

AC C

555

559

Napora pacifica Kiessling, 1999 (Fig. 7.17)

560

1997 Napora pacifica Kiessling; Hull, p. 120, pl. 46, figs. 5–6, 17.

561

1999 Napora pacifica Kiessling, p.70, pl. 14, figs. 1, 6.

562 23

ACCEPTED MANUSCRIPT 563

Remarks: Napora pacifica Kiessling is characterized by straight longer feet and a short

564

apical horn.

565

Range and occurrence: Zone 3, Subzone 3α to Zone 4, Subzone 4β; early Late to

567

Late Tithonian. Stanley Mountain, California; Antarctic Peninsula; Vaca Muerta

568

Formation, Neuquén Basin, Vega de Escalone, Argentina. Sample VE 19; Fauna J3B1;

569

Substeueroceras koeneni Biozone.

RI PT

566

SC

570

Family XITIDAE Pessagno, 1977b

572

Type genus: Xitus Pessagno, 1977b.

573

Range and occurrence: Kimmeridgian to Maastrichtian. Worldwide.

574

M AN U

571

Genus Xitus Pessagno, 1977b

576

Type species: Xitus plenus Pessagno, 1977b.

577

Range and occurrence: Same as for family.

578

TE D

575

Xitus antiquus Hull, 1997 (Fig. 7.1)

580

1997 Xitus antiquus Hull, p. 136, pl. 47, figs. 3, 9, 13, 18.

AC C

581

EP

579

582

Remarks: Xitus antiquus Hull, is characterized by an extremely irregular arrangement of

583

tubercles and rays on the outside of the skeleton.

584 585

Range and occurrence: Zone 4, Subzone 4β; early Late to Late Tithonian, insofar as

586

known. Volcanopelagic strata, Stanley Mountain, California; Vaca Muerta

24

ACCEPTED MANUSCRIPT 587

Formation, Neuquén Basin, Vega de Escalone. Sample VE 19; Fauna J3B1;

588

Substeueroceras koeneni Biozone.

589 590

Xitus sp. A (Fig. 6.8)

RI PT

591

Remarks: This form possesses an elongate, slightly spindle-shaped test. Outer layer with

593

numerous well-developed pointed tubercles. However, preservation is not good enough

594

to assign it to species level.

SC

592

595

Range and occurrence: Vaca Muerta Formation, Neuquén Basin, Vega de Escalone,

597

Argentina. Sample VE 2, Fauna J3A1; Virgatosphinctes andesensis Biozone.

598 599

Xitus (?) sp. A (Fig. 6.11)

TE D

600

M AN U

596

Remarks: This form is questionably assigned to Xitus owing to the vanishing of the

602

nodose outer layer on distal segments.

603

EP

601

Range and occurrence: Vaca Muerta Formation, Neuquén Basin, Vega de Escalone,

605

Argentina. Sample VE 2, Fauna J3A1; Virgatosphinctes andesensis Biozone.

606

AC C

604

607

Family WILLIRIEDELLIDAE Dumitrica, 1970

608

Type genus: Williriedellum Dumitrica, 1970

609

Remarks: According to Hull, 1997, it includes cryptothoracic tricyrtid or tetracyrtid

610

Nassellaria; test open or closed, with or without sutural pore. Several forms assigned to

611

this family are only slightly cryptothoracic in nature. 25

ACCEPTED MANUSCRIPT 612

Range and occurrence: Middle Jurassic to Cretaceous. Worldwide.

613

Genus Complexapora Kiessling and Zeiss, 1992

615

Type species: Complexapora tirolica Kiessling and Zeiss, 1992.

616

Remarks: Complexapora Kiessling and Zeiss, 1992 includes cryptothoracic, three-

617

chambered nassellarians which possess an inflated terminal chamber that is closed, and

618

have a well-developed, complex sutural pore at the lumbar stricture.

619

Range and occurrence: Late Jurassic. Worldwide.

SC

620

RI PT

614

Complexapora kozuri Hull, 1997 (Fig. 7.15, 6.10)

622

1997 Complexapora kozuri Hull, p. 124, pl. 37, figs. 11, 14, 17.

M AN U

621

623

Remarks: This form is assigned to Complexapora kozuri Hull, 1997 as was described by

625

Hull (1997). The presence of this radiolarian is an important primary marker in Late

626

Jurassic successions as defined on Pessagno’s zonation (Pessagno et al., 2009).

TE D

624

627

Range and occurrence: Jurassic, insofar as is known. First occurrence defines the base

629

of Zone 4, Subzones 4β2 and final occurrence defines the top of Subzone 4α2. Early to

630

Late Tithonian. Volcanopelagic strata overlying the Coast Range ophiolite, Stanley

631

Mountain, California. Mazapil, Sierra de Santa Rosa, Zacatecas, Mexico. Vaca Muerta

632

Formation, Neuquén Basin, Vega de Escalone, Argentina. Sample VE 2, Fauna J3A1;

633

Virgatosphinctes andesensis Biozone; and Sample VE 19; Fauna J3B1; Substeueroceras

634

koeneni Biozone.

AC C

EP

628

635 636

Complexapora sp. A (Fig. 6.9) 26

ACCEPTED MANUSCRIPT 637

Remarks: Short torax, rare.

638

Range and occurrence: Vaca Muerta Formation, Neuquén Basin, Vega de Escalone,

639

Argentina. Sample VE 2, Fauna J3A1; Virgatosphinctes andesensis Biozone.

640

Complexapora sp. B (Fig. 6.12)

642

Remarks: Abdominal chamber with larger pores and pointy shape towards the end.

643

Range and occurrence: Vaca Muerta Formation, Neuquén Basin, Vega de Escalone,

644

Argentina. Sample VE 2, Fauna J3A1; Virgatosphinctes andesensis Biozone.

645

SC

RI PT

641

FAMILY EUCYRTIDIIDAE Ehrenberg, 1847

647

Type genus: Eucyrtidium Ehrenberg, 1847

648

Range and occurrence: Triassic to Recent. Worldwide.

649

Genus Pseudoeucyrtis (?)(Fig. 7.13–7.14)

M AN U

646

TE D

650

Remarks: This form possesses a relatively broad test without the characteristic spindle-

652

shape and irregular pore structure. Poor preservation hinders most of the pore structure

653

and a more assertive assignation.

654

Range and occurrence: Vaca Muerta Formation, Neuquén Basin, Vega de Escalone.

655

Sample VE 19; Fauna J3B1; Substeueroceras koeneni Biozone.

656

5. CONCLUSIONS

AC C

657

EP

651

The Vega de Escalone section holds 482 meters of exposures of the Vaca Muerta

658

Formation. Bed by bed ammonoid analysis resulted in the identification of nine Late

659

Jurassic to Early Cretaceous ammonoid assemblage biozones, spanning from Early

660

Tithonian to Late Berriasian/ earlymost Valanginian times.

27

ACCEPTED MANUSCRIPT 661

Linked to the ammonoid record, two radiolarian faunas were identified, J3A1 and J3B1 based on seven fertile samples. On one hand, fauna J3A1, recovered from

663

three samples obtained from the base of the section, is dominated by nasellarian genera

664

and represents the first thoroughly described record of radiolarians from the Early

665

Tithonian Virgatosphinctes andesensis Biozone in the Neuquén Basin. While on the

666

other hand, Fauna J3B1, based on four samples coming from the Substeueroceras

667

koeneni Biozone interval, showed a remarkable abundance of representatives of the

668

Pantanellidae Family. Identification at the J3B1 Fauna of Complexapora kozuri and

669

Loopus primitivus, important primary markers of Late Jurassic according to Pessagno et

670

al. (2009), supports a Late Tithonian age for at least part of the S. koeneni Biozone in

671

the studied area, although still no Berriasian radiolarians have been identified on this

672

section to verify its upper age limit. No representatives of the Vallupinae Subfamily

673

were identified on neither of the described radiolarian faunas, and the stratigraphic

674

interval where they have been previously described in other localities of the Neuquén

675

Basin was unfortunately barren of any radiolarians in Vega de Escalone.

SC

M AN U

TE D

676

RI PT

662

Lastly, an additional sample VE 25, obtained from a bed bearing representatives of the Early Berriasian Argentiniceras noduliferum Assemblage Biozone, yielded a

678

poorly preserved radiolarian fauna of relatively low abundance and diversity, which did

679

not exhibit any significant compositional signature with respect to the previously

680

described faunas.

681

AKNOWLEDGMENTS

682

This research was supported by the Agencia Nacional de Promoción Científica y

683

Tecnológica through PICT-1413/2013 under the direction of Dr. Beatriz Aguirre-Urreta,

684

and PICT-2597/2014 awarded to Dr. Verónica Vennari. We are grateful to Celeste De

685

Micco for her support and to Andrea Caramés for inspiring this research. Beatriz

AC C

EP

677

28

ACCEPTED MANUSCRIPT Aguirre-Urreta made valuable suggestions to improve this investigation, and Jonatan

687

Kaluza helped with ammonoid preparation. We appreciate Dr. Leanza, H. and an

688

anonymous reviewer constructive comments which greatly helped to improve a first

689

version of the manuscript.

690

REFERENCES

691

Aguirre-Urreta, M.B., Mourgues, F.A., Rawson, P.F., Bulot, L.G., Jaillard, E., 2007.

RI PT

686

The Lower Cretaceous Chañarcillo and Neuquén Andean basins: ammonoid

693

biostratigraphy and correlations. Geological Journal, 42, 143–173.

SC

692

Baumgartner, P.O., 1980. Late Jurassic Hagiastridae and Patulibracchiidae (Radiolaria)

695

from the Argolis Peninsula (Peloponnesus, Greece). Micropaleontology, 26, 274–

696

322.

697

M AN U

694

Baumgartner, P.O., O'Dogherty, L., Gorican, S., Urquhart, E., Pillevuit, A., Wever, P.D. (Eds.). 1995. Middle Jurassic to Lower Cretaceous radiolaria of Tethys:

699

occurrences, systematics, biochronology. Mémoires de géologie, 23, Lausanne,

700

1172 pp.

701

TE D

698

Ballent, S., Concheyro, A., Náñez., C., Pujana, I.D., 2011. Microfósiles Mesozoicos y Cenozoicos de la provincia del Neuquén. In: Leanza, H.A., Arregui, C., Carbone,

703

O., Danieli, J.C. (Eds.), Geología y Recursos Naturales de la provincia del

704

Neuquén. Asociación Geológica Argentina, Buenos Aires, pp. 489–528.

706 707 708 709

AC C

705

EP

702

Behrendsen, O., 1922. Contribución a la geología de la pendiente oriental de la Cordillera Argentina. Academia Nacional de Ciencias de la República Argentina, Actas 7, 157–227. Burckhardt, C., 1903. Beitrage zur Kenntniss der Jura und Kreide formation der Cordillere. Palaeontographica Abteilung A, 50, 1–44.

29

ACCEPTED MANUSCRIPT 710

Cantú-Chapa, A., 1990. Volanoceras chignahuapense sp. nov., amonita del Titoniano

711

inferior de Puebla, Centro de México. Revista de la Sociedad Mexicana de

712

Paleontología, 3, 41–45.

714 715

Cloos, D., 1961. Los "Aptychi" (Cephalopoda-Ammonoidea) de Argentina. Revista de la Asociación Geológica Argentina, 16, 117–141.

RI PT

713

Damborenea, S.E., Leanza, H., 2016. Huncalotis, an enigmatic new pectinoid genus

(Bivalvia, Late Jurassic) from South America. Paläontologische Zeitschrift: 1–20.

717

DOI 10.1007/s12542-016-0310-z.

718

SC

716

De Wever, P., Dumitrica, P., Caulet, J.P., Nigrini, C., Caridroit, M. (Eds.), 2001, Radiolarians in the Sedimentary Record, Gordon and Breach Science Publishers,

720

The Netherlands, 533 pp.

722 723

Douvillé, R., 1910. Cephalopodes Argentins. Mémoires de la Société Géologique de France, 43, 1– 24.

Dumitrica, P., 1970. Cryptocephalic and cryptothoracic Nassellaria in some Mesozoic

TE D

721

M AN U

719

724

deposits of Romania. Revue Roumaine de Geologie, Geophysique et Geographie.

725

Serie de Geologie, 14, 54–124.

Dumitrica, P. 1995. Systematic framework of Jurassic and Cretaceous Radiolaria. In:

EP

726

Baumgartner, P.O., O'Dogherty, L., Gorican, S., Urquhart, E., Pillevuit, A.,

728

Wever, P.D. (Eds.), Middle Jurassic to Lower Cretaceous Radiolaria of Tethys:

729 730 731

AC C

727

Occurrences, Systematics, Biochronology. Mémoires de Géologie, 23, Lausanne, pp. 19–35.

Ehrenberg, C.G., 1838. Über die Bildung der Kreidefelsen und des Kreidemergels durch

732

unsichtbare Organismen. Königlich Akademie Wissenschaften Berlin,

733

Abhandlung Jahrbuch, 59–147.

30

ACCEPTED MANUSCRIPT 734

Ehrenberg, C.G., 1847. Über die mikroskopischen kieselschaligen polycystinen als mächtige gebirgsmasse von Barbados und über das verhältniss der aus mehr als

736

300 neuen arten bestehenden ganz eigenthümlichen formengruppe jener felsmasse

737

zu den jetzt lebenden thieren und zur kriedelbildung. Aine neue anregung zur

738

erforschung des erdlebens. Verhandlungen der Königlich Preussischen Akademie

739

der Wissenschaften in Berlin1847, 40–60.

740

RI PT

735

Ehrenberg, C.G., 1875. Fortsetzung, der microgeologische Studien als Gesammt–

Uebersicht Gebirgsarten der Erde, mit specieller Rucksicht auf den Polycustinen–

742

Mergel von Barbados. Königlich Akademie Wissenschaften Berlin, 1–226.

745 746 747

M AN U

744

Engeser, T., Keupp, H., 2002. Phylogeny of the aptychi-possessing Neoammonoidea (Aptychophora nov., Cephalopoda). Lethaia 34, 79–96.

Foreman, H.P., 1968. Upper Maestrichtian Radiolaria of California. Special papers in Palaeontology, 3, 1–82.

Foreman, H.P., 1973. Radiolaria from DSDP leg 20. In: Heezen, B.C., MacGregor, I.D.

TE D

743

SC

741

et al. (Eds.), Initial Reports of the Deep Sea Drilling Project, 20, 249–305.

749

Gerth, E., 1925. Contribuciones a la estratigrafía y la paleontología de los Andes

750

Argentinos II. La Fauna Neocomiana de la Cordillera Argentina en la parte

751

meridional de la provincia de Mendoza. Academia Nacional de Ciencias,

752

Córdoba, Actas 9, 57–132.

754 755

AC C

753

EP

748

Groeber, P., 1946. Observaciones geológicas a lo largo del meridiano 70.1. Hoja Chos Malal. Revista de la Asociación Geológica Argentina, 1, 177–208.

Gulisano, C.A., Gutiérrez Pleimling, A.R., 1994. The Jurassic of the Neuquén Basin.

756

Field guide. a) Neuquén Province. Publication 158, SEGEMAR, Serie E 2,

757

Asociación Geológica Argentina, 110 pp.

31

ACCEPTED MANUSCRIPT 758 759

Haeckel, E., 1881. Entwurf eines Radiolarien-Systems auf Grund von Studien der Challenger-Radiolarien: Jenaische Zeitschrift Naturwissenschaft, 15, 418–472. Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, T., De Graciansky, P.-C., Vail, P.R.,

761

1998. Mesozoic and Cenozoic sequence chronostratigraphic framework of

762

European basins. SEMP Special Publication 60, 3–13; 763–781.

RI PT

760

Herrera, Y., 2012. Análisis morfológico y paleobiológico de Cricosaurus araucanensis

764

(Gasparini y Dellapé, 1976) (Crocodyliformes: Metriorhynchidae). Ph. D. thesis,

765

Universidad Nacional de La Plata, Argentina.

766

SC

763

Herrera, Y., Vennari, V.V., 2014. Neuroanatomical features of a new specimen of Geosaurini (Crocodylomorpha: Metriorhynchidae) from Argentina. Historical

768

Biology, 27, 33–41. http://dx.doi.org/10.1080/08912963.2013.861831.

769

Herrero Ducloux, A., 1946. Contribución al conocimiento geológico del Neuquén

770

M AN U

767

extraandino. Boletín de Informaciones Petroleras, 266, 245–281. Howell, J.A., Schwarz, E., Spalleti, L.A., Veiga, G.D., 2005. The Neuquén Basin: an

772

overview. In: Veiga, G.D., Spalleti, L.A., Howell, J.A. and Schwarz, E. (Eds.),

773

The Neuquén Basin, Argentina: A case study in Sequence Stratigraphy and basin

774

dynamics. The Geological Society of London Special Publications, 252, pp. 1–14.

776 777 778 779

EP

Hull, D.M., 1997. Upper Jurassic Tethyan and southern boreal radiolarians from western North America. Micropaleontology, 43, 1–202.

AC C

775

TE D

771

Kennedy, W.J., Cobban, W.A. 1976. Aspects of ammonite biology, biogeography and biostratigraphy. Special Papers in Palaeontology, 17, 1–94.

Kiessling, W. 1995. Palökologische Verwertbarkeit oberjurassisch-unterkretazischer

780

Radiolarienfaunen mit Beispielen aus Antarktis, Oman und Südalpen.

781

Unpublished Ph.D. Thesis, University of Erlangen, Germany.

32

ACCEPTED MANUSCRIPT 782 783

Kiessling, W., 1999, Late Jurassic radiolarians from the Antarctic Peninsula: Micropaleontology, 45, 1–96. Kiessling, W., Zeiss, A., 1992. New paleontological data from the Hochstegen Marble

785

(Tauem Window, eastern Alps): Geologisch-Paläontologische Mitteilungen

786

Innsbruck, 18, 187–202.

787

RI PT

784

Kiessling, W., Scasso, R., 1996. Ecological perspectives of Late Jurassic radiolarian faunas from the Antarctic Peninsula. In: Riccardi, A.C. (Ed.), Advances in

789

Jurassic Research, GeoResearch Forum, 1–2, Transtec Publications, pp. 317–326.

790

SC

788

Kietzmann, D.A., Palma, R.M., 2009. Tafofacies y biofacies de Formación Vaca Muerta en el sector surmendocino de la Cuenca Neuquina: implicancias paleoecológicas,

792

sedimentológicas y estratigráficas. Ameghiniana, 46, 321–343.

793

M AN U

791

Kietzmann, D.A., Palma, R.M., Bressan, G.S., 2008. Facies y microfacies de la rampa tithoniana-berriasiana de la Cuenca Neuquina (Formación Vaca Muerta) en la

795

sección del Arroyo Loncoche – Malargüe, provincia de Mendoza. Revista de la

796

Asociación Geológica Argentina, 63, 696–713.

797

TE D

794

Krantz, F., 1926. Die Ammoniten des Mittel-und Ober-tithons. In: Jaworski, E., Krantz, F., Gerth, E. (Eds.), Beiträge zur Paläontologie und Stratigraphie des Lias,

799

Dogger, Tithons und der Unterkreide in der Kordillere im Süden der provinz

800

Mendoza (Argentinien). Geologishche Rundschau 17a: 427–462.

802 803

AC C

801

EP

798

Leanza, A.F., 1945. Ammonites del Jurásico Superior y del Cretácico Inferior de la Sierra Azul, en la parte meridional de la provincia de Mendoza. Anales del Museo de La Plata, Nueva Serie, 1, 1–98.

804

Leanza, H.A., 1972. Acantholissonia, nuevo género de ammonites del Valanginiano de

805

Neuquén, Argentina, y su posición estratigráfica. Revista de la Asociación

806

Geológica Argentina, 17, 63–70. 33

ACCEPTED MANUSCRIPT 807

Leanza, H.A., 1973. Estudio sobre los cambios faciales de los estratos limítrofes

808

Jurásico-Cretácicos entre Loncopué y Picun Leufú, Provincia del Neuquén,

809

República Argentina. Revista de la Asociación Geológica Argentina, 28, 97–132.

811 812

Leanza, H.A., 1980. The Lower and Middle Tithonian Ammonite Fauna from Cerro Lotena, Province of Neuquen, Argentina. Zitteliana, 5, 3–49.

RI PT

810

Leanza, H.A., 1981a. Faunas de ammonites del Jurásico y Cretácico inferior de América del Sur, con especial consideración de la Argentina. In: Volkheimer, W.,

814

Musacchio, E. (Eds.), Cuencas Sedimentarias de América del Sur, 2, 559–597.

815

SC

813

Leanza, H.A., 1981b. The Jurassic-Cretaceous boundary beds in West Central Argentina and their ammonite zones. Neues Jahrbuch für Mineralogie, Geologie

817

und Paläontologie, 161, 62–92.

M AN U

816

Leanza, H.A., Hugo, C.A., 1977. Sucesión de ammonites y edad de la Formación Vaca

819

Muerta y sincrónicas entre los paralelos 35º y 40º L.S., Cuenca Neuquina-

820

Mendocina. Revista de la Asociación Geológica Argentina, 32, 248–264.

821

TE D

818

Leanza, H.A., Hugo, C.A., Repol, D., 2001. Hoja Geológica 3969-I, Zapala, Provincia del Neuquén. Instituto de Geología y Recursos Minerales, Servicio Geológico

823

Minero Argentino. Boletín 275, 1–128.

825 826 827 828

Legarreta, L., Uliana, M.A., 1991. Jurassic-Cretaceous marine oscillations and geometry of back arc basin fill, Central Argentine Andes. In: Macdonald, D.I.M.

AC C

824

EP

822

(Ed.), Sedimentation, Tectonics and Eustasy: Sea Level Changes at Active Margins, Blackwell Publishing Ltd., Oxford, pp. 429– 450.

Legarreta, L., Uliana, M.A., 1996. The Jurassic succession in west central Argentina:

829

stratal patterns, sequences, and paleogeographic evolution. Palaeogeography,

830

Palaeoclimatology, Palaeoecology, 120, 303–330.

34

ACCEPTED MANUSCRIPT 831 832 833

Matsuoka, A., Yao, A., 1985. Latest Jurassic radiolarians from the Torinosu Group in southeast Japan: Journal of Geosciences, 28, 125–145. Mitchum, R.M., Uliana, M., 1985. Seismic stratigraphy of carbonate depositional sequences, Upper Jurassic-Lower Cretaceous, Neuquén Basin, Argentina. In:

835

Berg, B.R. and Woolverton, D.G. (Eds.), Seismic Stratigraphy 2. An integrated

836

aproach to hidrocarbon analysis. American Association of Petroleum Geologists,

837

Memoir 39, 255–283.

Müller, J., 1858. Über die Thalassicollen, Polycystinen und Acanthometren des

SC

838

RI PT

834

Mittelmeers. Koningliche Preussische Akademie der Wissenschaften zu Berlin,

840

Abhandlungen, 1858, 1–62.

841 842 843

M AN U

839

Neviani, A., 1900. Supplemento alla fauna a radiolari delle rocce mesozoiche de Bolognese. Società Geologica Italiana, Bollettino 19, 644–671. Parent, H., Garrido, A.C., Scherzinger, A., Schweigert, G., Fözy, I., 2015. The Tithonian-Lower Valanginian stratigraphy and ammonite fauna of the Vaca

845

Muerta Formation in Pampa Tril, Neuquén Basin, Argentina. Boletín del Instituto

846

de Fisiografía y Geología 86, 1–96.

TE D

844

Pessagno, E.A., 1971. Jurassic and Cretaceous Hagiastridae from the Blake-Bahama

848

Basin (Site 5A, Joides Leg 1) and the Great Valley Sequence, California Coast

849

Ranges. Bulletin of American Paleontology, 60, 1–83.

851

AC C

850

EP

847

Pessagno, E.A., 1976. Radiolarian zonation and stratigraphy of the Upper Cretaceous portion of the Great Valley Sequence, California Coast Ranges.,

852

Micropaleontology special publication, 2, Micropaleontology Press, New York,

853

95 pp.

854 855

Pessagno, E.A., 1977a. Lower Cretaceous radiolarian biostratigraphy of the Great Valley sequence and Franciscan Complex, California Coast Ranges, Washington, 35

ACCEPTED MANUSCRIPT 856

D.C., U.S.A. Cushman Foundation for Foraminiferal Research, Special

857

publication, 15, 1–87.

859 860 861

Pessagno, E.A., 1977b. Upper Jurassic Radiolaria and radiolarian biostratigraphy of the California Coast Ranges. Micropaleontology, 23, 56–113. Pessagno, E.A., Newport, R.L., 1972. A technique for extracting Radiolaria from radiolarian cherts. Micropaleontology, 18, 231–234.

RI PT

858

Pessagno, E.A.Jr., Blome, C.D., 1980. Upper Triassic and Jurassic Pantanelliinae from

863

California, Oregon and British Columbia. Micropaleontology, 26, 225–273.

864

Pessagno, E.A., Whalen, P.A., 1982. Lower and Middle Jurassic Radiolaria (multicyrtid

865

Nassellariina) from California, East-central Oregon and the Queen Charlotte

866

Islands, B.C. Micropaleontology, 28, 111–169.

M AN U

867

SC

862

Pessagno Jr., E.A., MacLeod, N., 1987. Systematic Paleontology. In Pessagno, E.A., Jr. Longoria, J.F., MacLeod, N., and Six, W.M. (Eds.), Studies of North American

869

Jurassic Radiolaria. Upper Jurassic (Kimmeridgian-upper Tithonian)

870

Pantanelliidae from the Taman Formation, east-central Mexico:

871

tectonostratigraphic, chronostratigraphic, and phylogenetic implications. Cushman

872

Foundation for Foraminiferal Research Special Publication, Volume 23, 19–

873

49.Pessagno, E.A., Blome, C.D., Hull, D.M., and Six, W.M., 1993, Jurassic

874

Radiolaria from the Josephine Ophiolite and overlying strata, Smith River

876 877

EP

AC C

875

TE D

868

Subterrane (Klamat Mountains), Northwestern California and Southwestern Oregon. Micropaleontology, 39, 93–166.

Pessagno, E.A., Blome, C.D., Longoria, J.F., 1984. A revised radiolarian zonation for

878

the Upper Jurassic of Western North America. Bulletins of American

879

Paleontology, 87, 51, [56] of plates, 51 folded leaf.

880 36

ACCEPTED MANUSCRIPT 881

Pessagno, E.A. and Macleod, N., 1987. In Pessagno, E.A., Blome, C.D., Carter, E.S., Macleod, N., Whalen, P.A., Yeh, K.Y., 1987. Studies of North American Jurassic

883

Radiolaria; Part I, Upper Jurassic (Kimmeridgian-Upper Tithonian) Pantanellidae

884

from the Taman Formation, East-Central Mexico: Tectonstratigraphc,

885

Chronostratigraphic and Phyligenetic Implications: Cushman Foundation for

886

Foraminiferal Research, Special Publications, 23, 1–51.

887

RI PT

882

Pessagno, E.A., Blome, C.D., Carter, E.S., Macleod, N., Whalen, P.A., Yeh, K.Y., 1987. Studies of North American Jurassic Radiolaria; Part II, Preliminary

889

radiolarian zonation for the Jurassic of North America: Cushman Foundation for

890

Foraminiferal Research, Special Publications, 23, 1–18.

M AN U

891

SC

888

Pessagno, E.A., Blome, C.D., Hull, D., Six, W.M., 1993. Jurassic Radiolaria from Josephine ophiolite and overlying strata, Smith River subterrane (Klamath

893

Mountains), Northwestern California and Southwestern Oregon.

894

Micropaleontology, 39, 93–166.

895

TE D

892

Pessagno, E.A., Cantu-Chapa, A., Mattinson, J.M., Meng, X.Y., Kariminia, S.M., 2009. The Jurassic-Cretaceous boundary: new data from North America and the

897

Caribbean. Stratigraphy, 6, 185–262.

EP

896

Pujana, I., 1988. The Pantanelliidae next to the Jurassic-Cretaceous boundary at the

899

Vaca Muerta Formation in the Province Neuquen, Argentina, 1º international

900 901

AC C

898

conference on Radiolaria EURORAD V, abstracts 22, 202–203.

Pujana, I., 1989. Stratigraphical distribution of the multcyrtids Nassellariina

902

(Radiolaria) at the Jurassic-Cretaceous boundary in the Neuquén Basin,

903

Argentina. In: Miller, H., Rosenfeld, U., Weber-Diefenbach, K. (Eds.),

904

Zentralblatt für Geologie und Paläontologie, I: Allgemeine, Angewandte,

37

ACCEPTED MANUSCRIPT 905

Regionale und Historische Geologie, Stuttgart, E. Schweizerbartsche

906

Verlagsbuchhandlung, pp.1043–1052.

907

Pujana, I., 1991. Pantanelliidae (Radiolaria) from the Tithonian of the Vaca Muerta Formation, Neuquén, Argentina. Neues Jahrbuch fuer Geologie und

909

Palaeontologie, Abhandlungen, 180, 391–408.

910

RI PT

908

Pujana, I., 1995. Two evolutionary events in the subfamily Vallupinae (Radiolaria) in the Tithonian of Mendoza formation, Neuquén Basin, Argentina. 6º Congreso

912

Argentino de Paleontología y Bioestratigrafia, Actas, 213–220.

913

SC

911

Pujana, I., 1996a. Occurrence of Vallupinae (Radiolaria) in the Neuquén Basin; biostratigraphic implications. In: Riccardi, A.C. (Ed.), Advances in Jurassic

915

Research, GeoResearch Forum, 1–2, Transtec Publications, pp. 459–465.

916

Pujana, I., 1996b. A new Lower Jurassic radiolarian fauna from the Neuquén Basin,

917

Central West Argentina, 13º Congreso Geológico Argentino y 3º Congreso de

918

Exploración de Hidrocarburos, Actas 5, 133.

TE D

M AN U

914

Pujana, I., 2000. Radiolarian Assemblages For The Jurassic-Lower Cretaceous Of The

920

Neuquén Basin, West Argentina. Abstract 9º Meeting Interrad 2000 -9º Meeting

921

of the International Asociation of Radiolarian Paleontologist, 1, 57.

EP

919

Reboulet, S., Szives, O., Aguirre-Urreta, B., Barragán, R., Company, M., Idakieva, V.,

923

Ivanov, M., Kakabadze, M.V., Moreno-Bedmar, J.A., Sandoval, J., Baraboshkin,

924 925

AC C

922

E.J., Çaglar, M.K., Fözy, I., González-Arreola, C., Kenjo, S., Lukeneder, A., Raisossadat, S.N., Rawson, P.F., Tavera, J.M., 2014. Report on the 5º

926

International Meeting of the IUGS Lower Cretaceous Ammonite Working Group,

927

the “Kilian Group” (Ankara, Turkey, 31st August 2013). Cretaceous Research, 50,

928

126–137.

38

ACCEPTED MANUSCRIPT

930 931 932 933 934 935

Riccardi, A.C., 1984. Las asociaciones de amonitas del Jurásico y Cretácico de la Argentina, 9° Congreso Geológico Argentino, Actas 4, 559–595. Riccardi, A.C., 1988. The Cretaceous System of southern South America. Geological Society of America, Memoir 168, 1–161. Riccardi, A.C., 2015. Remarks on the Tithonian-Berriasian ammonite biostratigraphy of west central Argentina. Volumina Jurassica 13: 23–52.

RI PT

929

Riccardi, A.C., Damborenea, S.E., Manceñido, M.O., Leanza, H.A., 2011.

Megainvertebrados jurásicos y su importancia geobiológica. In: Leanza, H.A.,

937

Arregui, C., Carbone, O., Danieli, J.C., Vallés, J.M. (Eds.), Geología y Recursos

938

Naturales de la Provincia del Neuquén, Relatorio, pp. 441–464.

940 941

M AN U

939

SC

936

Riedel, W.R., 1967. Subclass Radiolaria. In: Harland, W.R. (Ed.), The fossil record, Geological Society of London, London, pp. 291–298.

Rodrigues, N., Cobbold, P.R., Loseth, H., Ruffet, G., 2009. Widespread beddingparallel veins of fibrous calcite ('beef') in a mature source rock (Vaca Muerta Fm.,

943

Neuquén Basin, Argentina): evidence for overpressure and horizontal

944

compression. Journal of the Geological Society of London, 166, 695–709. Scasso, R.A, Alonso, S.M., Lanés, S., Villar, H.J., Lippai, H., 2002. Petrología y

EP

945

TE D

942

geoquímica de una ritmita marga-caliza del Hemisferio Austral: El Miembro Los

947

Catutos (Formación Vaca Muerta), Tithoniano medio de la Cuenca Neuquina.

948 949

AC C

946

Revista de la Asociación Geológica Argentina, 57, 143–159.

Spalleti, L.A., Gasparini, Z., Veiga, G., Schwarz, E., Fernández, M., Matheos, S., 1999.

950

Facies anóxicas, procesos depositacionales y herpetofauna de la rampa marina

951

titoniano-berriasiana en la Cuenca Neuquina (Yesera del Trómen), Neuquén,

952

Argentina. Revista Geológica de Chile, 26, 109–123.

39

ACCEPTED MANUSCRIPT 953

Spalletti, L.A., Franzese, J.R., Matheos, S.D., Schwarz, E., 2000. Sequence stratigraphy

954

of a tidally dominated carbonate siliciclastic ramp; the Tithonian-early Berriasian

955

of the Southern Neuquén Basin, Argentina. Journal of the Geological Society,

956

157, 433–446. Spath, L.F., 1925. Amonites and Aptychi. In: Wyllie, B.K.W., Smelly W.R. (Eds.), On

RI PT

957 958

the collections of fossils and rocks from Somaliland. Part 7. Monograph

959

Hunterian Museum University, Glasgow 4, pp. 111–164.

Spath, L.F., 1927–1933. Revision of the Jurassic Cephalopod Fauna of Kachchh

SC

960

(Cutch). – Paleontología Índica, N. S. 9: 1– 72. [1927], 73– 161 pp. [1928], 163–

962

278 pp. [1928], 279– 550 pp. [1931], 551– 658 pp. [1931], 659– 945 pp. [1933].

963

M AN U

961

Staerker, T.S., Thompson, P.R., Cantú-Chapa, A., Pujana, I., Boesiger, T.M., 2013. Biostratigraphic correlation and biofacies of the Haynesville Shale and Bossier

965

Shale in East Texas and Western Louisiana, Geology of the Haynesville Gas

966

Shale in East Texas and West Louisiana, U.S.A., American Association

967

Petroleum Geologists, Memoir 105, 103–135.

968

TE D

964

Steuer, A., 1897. Argentinische Jura - Ablagerungen: Ein Beitrag zur Kenntniss der Geologie und Paleontologie der argentinischen Anden. Palaeontologische

970

Abhandlungen Jena, N.S. 7, 127–222.

972 973 974

Stipanicic, P.N., Rodrigo, F., Baulíes, O., Martínez, C., 1968. Las formaciones

AC C

971

EP

969

presenonianas en el denominado Macizo Nordpatagónico. Revista de la Asociación Geológica Argentina, 23, 67– 98.

Tan, S.H., 1927. Over de samenstelling en het onstaan van krijt- enmergelgesteenten

975

van de Molukken: Geologische onderzoekingen in den oostelijken Oost-Indischen

976

Archipel, 55, 5–156.

40

ACCEPTED MANUSCRIPT 977

Trauth, F., 1931. Aptychenstudien VI-VII (VI. Zweiter Nachtrag zu den Aptychen im

978

Allemeinen; VII. Die Aptychen des Malm und der Unterkreide). Annalen des

979

Naturhistorischen Museums in Wien, 45, 17–136.

981 982

Trauth, F., 1938. Die Lamellaptychi des Oberjura und der Unterkreide. Palaeontographica Abteilung A, 88, 118–240.

RI PT

980

Vennari, V.V., 2016. Tithonian ammonoids (Cephalopoda, Ammonoidea) from the Vaca Muerta Formation, Neuquén Basin, West-Central Argentina.

984

Palaeontographica Abteilung A, 306, 85–165.

985

SC

983

Vennari, V.V., Aguirre-Urreta, M.B., 2014. Ammonoids of the basal section of the Vaca Muerta Formation, Neuquén Basin, Argentina. 4º International

987

Palaeontological Congress, Abstract book, 631.

988

M AN U

986

Vennari, V.V., Lescano, M., Naipauer, M., Aguirre-Urreta, B., Concheyro, A., Schaltegger, U., Armstrong, R., Pimentel, M., Ramos, V.A., 2014. New

990

constraints on the Jurassic–Cretaceous boundary in the High Andes using high-

991

precision U–Pb data. Gondwana Research 26, 374–385.

992

http://dx.doi.org/10.1016/j.gr.2013.07.005. Vergani, G., Arregui, C., Carbone, O. 2011. Sistemas petroleros y tipos de

EP

993

TE D

989

entrampamientos en la cuenca Neuquina. In: Leanza, H.A., Arregui, C., Carbone,

995

O., Danieli, J.C., Vallés, J.M. (Eds.), Geología y Recursos Naturales de la

996 997

AC C

994

Provincia del Neuquén, Relatorio, pp. 645–656.

Villaseñor, A.B., Olóriz, F., González-Arreola, C., 2011. Lower Tithonian

998

microconchiate simoceratins from eastern Mexico: Taxonomy, biostratigraphy

999

and palaeobiogeography. Acta Paleontologica Polonica, 56, 133–158.

1000 1001

Weaver, C., 1931. Paleontology of the Jurassic and Cretaceous of west-central Argentina. University of Washington Memoirs, 1, 1–595. 41

ACCEPTED MANUSCRIPT 1002

Wisniowski, T., 1889. Beitrage zur Kenntniss der Mikrofauna aus der Oberjurassischen

1003

Feuersteinknollen der Umgegend von Krakau. Jahrbuch der Kaiserlich-

1004

Königlichen Geologischen Reichsanstalt, 38, 657–702.

1005

Yang, Q., 1993. Taxonomic studies of Upper Jurassic (Tithonian) radiolaria from the Taman Formation, east-central Mexico. Paleoworld, 3, 1–164.

1007

RI PT

1006

Zeiss, A., Leanza, H.A., 2008. Interesting new ammonites from the Upper Jurassic of

Argentina and their correlation potential: New possibilities for global correlations

1009

at the base of the Upper Tithonian by ammonites, calpionellids and other fossil

1010

groups. Newsletters on Stratigraphy, 42, 223–247.

SC

1008

Zeiss, A., Leanza, H.A., 2010. Upper Jurassic (Tithonian) ammonites from the

1012

lithographic limestones of the Zapala region, Neuquén Basin, Argentina.

1013

Beringeria, 41, 25–76.

Zeuschner, L., 1846. Nowe lub niedoklan opisane gatunki skamienialosci Tratowych. Mémoir sur la Tatra, 1º Cahier, 15–32.

1015 1016 1017

FIGURE CAPTIONS

EP

1018

TE D

1014

M AN U

1011

Figure 1. Neuquén Basin geographic situation in Argentina with indication of the study

1020

area.

1021

Figure 2. A. Geological map of the study area (modified from Gulisano and Gutiérrez-

1022

Pleimling, 1994). LM: La Manga Formation (Lower Oxfordian); Aq: Auquilco

1023

Formation (Upper Oxfordian); T: Tordillo Formation (Kimmeridgian); VM: Vaca

1024

Muerta Formation (Tithonian–Lower Valanginian); Q/M: "Quintuco"/ Mulichinco

1025

Formation (Lower Valanginian); Ag: Agrio Formation (Upper Valanginian–

AC C

1019

42

ACCEPTED MANUSCRIPT Hauterivian); Tv: Tertiary volcanics; Cz: Cenozoic cover. B. Lithostratigraphy of the

1027

Mendoza Group in Central-northern Neuquén (modified from Leanza, H. et al., 2001).

1028

Figure 3. Vega de Escalone stratigraphic section (Vaca Muerta Formation) depicting

1029

the ammonoid zonation and stratigraphic position of radiolarian fertile samples.

1030

Figure 4. Ammonoids from Vega de Escalone section: 1, CPBA 21240.5, Indansites

1031

malarguensis (Spath, 1931); 2, CPBA 21560, Pseudolissoceras zitteli (Burckhardt,

1032

1903); 3, CPBA 21562, Micracanthoceras lamberti Leanza, A., 1945; 4, CPBA 21561,

1033

"Subdichotomoceras" araucanense Leanza, H., 1980; 5, CPBA 21568, Parodontoceras

1034

calistoides (Behrendsen, 1922); 6, CPBA 21563, Corongoceras sp. cf. C. mendozanum

1035

(Behrendsen, 1922). All specimens covered with ammonium chloride. All figures 1X

1036

except 1 at 3/4X. Graphic scale= 1 cm.

1037

Figure 5. Ammonoids from Vega de Escalone section: 1, CPBA 21566,

1038

Aulacosphinctes? azulensis Leanza, A., 1945; 2, CPBA 21569, Argentiniceras sp.; 3,

1039

CPBA 21567, Chigaroceras sp.; 4, CPBA 21570, "Thurmanniceras" discoidale (Gerth,

1040

1925); 5, CPBA 21571, Cuyaniceras transgrediens (Steuer, 1897). All specimens

1041

covered with ammonium chloride. All figures 1X except 2 at 2/3X. Graphic scale= 1

1042

cm.

1043

Figure 6. Upper Jurassic Nassellaria and Spumellaria from Vega de Escalone section.

1044

All figures are scanning electron micrographs of radiolarians from Sample VE 2,

1045

Fauna J3A1 (Virgatosphinctes andesensis Biozone): 1–2, Archaeodyctiomitra sp. cf.

1046

A. vulgaris Pessagno, Scale= 50 µm and 40 µm; 3, Pantanellium ranchitoense

1047

Pessagno and Blome, Scale= 46.15 µm; 4, Archaeodyctiomitra sixy Yang; Scale= 40

1048

µm; 5, Praeparvicingula vacaensis Pujana, Scale= 40 µm; 6, Praeparvicingula sp.

1049

A, Scale= 40 µm; 7, Praeparvicingula vacaensis Pujana, Scale= 40 µm; 8, Xitus sp.

1050

A, Scale= 40 µm; 9, Complexapora sp. A, Scale= 40 µm; 10, Complexapora kozuri,

AC C

EP

TE D

M AN U

SC

RI PT

1026

43

ACCEPTED MANUSCRIPT Hull, Scale= 40 µm; 11, Xitus (?) sp. A, Scale= 50 µm; 12, Complexapora sp. B,

1052

Scale= 40 µm. Graphic scale (upper right)= number of microns cited for each figure.

1053

Figure 7. Upper Jurassic Nassellaria and Spumellaria from Vega de Escalone section.

1054

All figures are scanning electron micrographs of radiolarians from Sample VE 19,

1055

Fauna J3B1 (Substeueroceras koeneni Biozone): 1, Xitus antiquus Hull, Scale=

1056

66.66 µm; 2, Pantanellium neuquensis Pujana, Scale= 60 µm; 3, Pantanellium

1057

quintachillaensis Pessagno and MacLeod, Scale= 60 µm; 4, Pantanellium sp. A,

1058

Scale= 60 µm; 5, Pantanellium sp. aff. P. riedeli Pessagno, Scale= 60 µm; 6,

1059

Loopus primitivus Matsuoka and Yao, Scale= 40 µm; 7, Pantanellium

1060

quintachillaensis Pessagno and MacLeod; 8, Gorgansium sp. A, Scale= 60 µm; 9,

1061

Pantanellium meraceibaensis Pessagno and Blome, Scale= 66.66 µm; 10,

1062

Podobursa sp. A, Scale=60 µm; 11, Neoparonaella delicata Yang, Scale= 71.42

1063

µm, 12, Crucella sp. cf. C. mexicana Yang, Scale= 156.25 µm; 13–14,

1064

Pseudoeucyrtis(?) sp., Scale= 40 µm, 66.6 µm; 15, Complexapora kozuri, Scale= 50

1065

µm.; 16, Gongylothorax sp. A, Scale= 40 µm; 17, Napora pacifica, Kiessling,

1066

Scale= 60 µm. Graphic scale (upper right)= number of microns cited for each

1067

figure.

1068

Figure 8. Correlation of Andean, Standard ammonoid biozones and radiolarian faunas

1069

described in this study according to North American Radiolarian Zonation. Ammonoid

1070

zonation modified after Aguirre-Urreta et al. (2007), Vennari et al. (2014), Vennari

1071

(2016) and Reboulet et al. (2014). Radiolarian zonation modified after Pessagno et al.

1072

(2009).

1073

Figure 9. Late Jurassic to Early Cretaceous radiolarian zonation from Pessagno et al.

1074

(2009).

AC C

EP

TE D

M AN U

SC

RI PT

1051

44

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

HIGHLIGHTS * The Vaca Muerta Formation yields one of the most interesting ammonoid and radiolarian associations of Western Gondwana.

RI PT

* The Vega de Escalone section, Neuquén Basin, was sampled for ammonoids and radiolarians.

* Ammonoid taxonomic and biostratigraphic analysis enable recognizing nine Early Tithonian to Late Berriasian/ earlymost Valanginian Biozones.

SC

* Two radiolarian faunas are described in connection with Virgatosphinctes andesensis and Substeueroceras koeneni Ammonoid Biozones.

AC C

EP

TE D

M AN U

* First record of Early Tithonian radiolarians of the Neuquén Basin is thoroughly described.