Accepted Manuscript Finding of two new radiolarian associations calibrated with ammonoids in the Vaca Muerta Formation (Late Jurassic–Early Cretaceous), Neuquén Basin, Argentina Verónica V. Vennari, Ignacio Pujana PII:
S0895-9811(17)30018-4
DOI:
10.1016/j.jsames.2017.01.003
Reference:
SAMES 1644
To appear in:
Journal of South American Earth Sciences
Received Date: 31 May 2016 Revised Date:
20 December 2016
Accepted Date: 9 January 2017
Please cite this article as: Vennari, V.V., Pujana, I., Finding of two new radiolarian associations calibrated with ammonoids in the Vaca Muerta Formation (Late Jurassic–Early Cretaceous), Neuquén Basin, Argentina, Journal of South American Earth Sciences (2017), doi: 10.1016/j.jsames.2017.01.003. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
ACCEPTED MANUSCRIPT 1
FINDING OF TWO NEW RADIOLARIAN ASSOCIATIONS CALIBRATED WITH
2
AMMONOIDS IN THE VACA MUERTA FORMATION (LATE JURASSIC–EARLY
3
CRETACEOUS), NEUQUÉN BASIN, ARGENTINA
5
Verónica V. Vennaria*, Ignacio Pujanab
6
RI PT
4
7
a
8
Ambientales (IANIGLA), Consejo Nacional de Investigaciones Científicas y Técnicas
9
(CONICET), San Rafael, Mendoza, Argentina.
SC
Grupo vinculado al Instituto Argentino de Nivología, Glaciología y Ciencias
Museo de Historia Natural de San Rafael, Parque Mariano Moreno s/ n, 5600, San
11
Rafael, Mendoza, Argentina.
12
*Corresponding author.
13
b
14
Road, ROC 21, Richardson, Texas 75080-3021, USA.
Department of Geosciences, The University of Texas at Dallas, 800 W. Campbell
TE D
15
M AN U
10
E-mail addresses:
[email protected] (V.V. Vennari);
17
[email protected] (I. Pujana)
AC C
18
EP
16
1
ACCEPTED MANUSCRIPT ABSTRACT: An association of ammonoids and radiolarians retrieved from a
20
sedimentary section of the Vaca Muerta Formation at Vega de Escalone, Neuquén
21
Basin, Argentina, was analized under a strict stratigraphic control. Nine ammonoid
22
assemblage biozones were identified, indicating an age span from Early Tithonian to
23
Late Berriasian/ earlymost Valanginian for the Vaca Muerta Formation at the studied
24
section. In connection to the ammonoid record, two radiolarian faunas were identified
25
and named J3A1 and J3B1. Fauna J3A1, corresponding to the Virgatosphinctes
26
andesensis Biozone, is dominated by nasellarian genera and represents the first Lower
27
Tithonian radiolarian fauna described from the Neuquén Basin. Fauna J3B1, linked to
28
the interval assigned to the Substeueroceras koeneni Biozone (Late Tithonian–Early
29
Berriasian), yields abundant representatives of the Pantanellid Family. The presence of
30
Complexapora kozuri (Kiessling and Zeiss) and Loopus primitivus (Matsuoka and Yao),
31
two important radiolarian primary markers of the Late Jurassic in North America,
32
supports a Late Tithonian age for at least part of the S. koeneni Biozone in the studied
33
area. Nor certain Berriasian radiolarian faunas nor elements of the Vallupinae Family
34
were identified so far at the Vega de Escalone section.
SC
M AN U
TE D
EP
35
RI PT
19
KEYWORDS: Upper Jurassic–Lower Cretaceous; Radiolaria; Ammonoids;
37
Biostratigraphy; Vaca Muerta Formation; Neuquén Basin.
38 39
AC C
36
2
ACCEPTED MANUSCRIPT 40 41
1. INTRODUCTION The Jurassic–Cretaceous transition is recorded in Argentina in the marine rocks of the Vaca Muerta Formation, whose deposition was related to a sudden and
43
widespread marine transgression that started in the late Lower Tithonian in the Neuquén
44
Basin (Legarreta and Uliana, 1991). This basin (Fig. 1) is widely known for its nearly
45
uninterrupted sedimentary infill from Late Triassic to Cenozoic times, its large extended
46
outcrops and by the fine quality of its fossil record. All these features have made the
47
Neuquén Basin the source of a great variety of both geological and paleontological
48
studies in former times. Nevertheless, much remains to be described and interpreted to
49
improve our knowledge of this western Gondwana basin.
SC
M AN U
50
RI PT
42
The radiolaria have proven to be one of the most abundant zooplankton groups in Late Jurassic–Early Cretaceous rocks (Pessagno 1976, 1977a, b; Pessagno et al.,
52
1984, 1987, 1993; Baumgartner et al., 1995) with important biostratigraphic and
53
taxonomic implications. Representatives of this time interval are well known worldwide
54
but in the Neuquén Basin they were only studied by one of us in a number of articles
55
(Pujana, 1988, 1989, 1991, 1995, 1996a, 1996b, 2000). In this contribution, we present
56
two new radiolarian faunas, one of Early Tithonian (Fauna J3A1), and the other of Late
57
Tithonian to Early Berriasian age (Fauna J3B1). Both are recorded in northern Neuquén
58
province, Argentina and in connection with an accurate ammonoid based
59
biostratigraphic control.
60
Figured ammonoid specimens are stored at the Paleontological Collection of the
61
University of Buenos Aires, Argentina under numbers CPBA 21240.5, 21560-21563;
62
21566-21571, and fertile radiolarian slides containing the illustrated specimens are held
63
at the Micropaleontological Collection of the University of Buenos Aires, Argentina
64
under numbers LM-FCEN Nº 3670-3671.
AC C
EP
TE D
51
3
ACCEPTED MANUSCRIPT 65
[Fig. 1 around here]
66
2. GEOLOGICAL SETTING
67
2.1. Regional setting The Neuquén Basin (Fig. 1) is a retroarc basin formed on a convergent
68
continental margin (Legarreta and Uliana, 1996) at the foothill of the Andes. It extends
70
over Chile and west-central Argentina between 33 and 39° southern latitude. During
71
Mesozoic times the basin was limited eastward by the Sierra Pintada System,
72
southeastward by the Patagonian Massif and to the west by a discontinuous active
73
volcanic arc which allowed its communication with the Pacific Ocean (Howell et al.,
74
2005).
SC
M AN U
75
RI PT
69
The Lower Tithonian–Upper Berriasian marine rocks of the Vaca Muerta Formation (Weaver, 1931; emend. Leanza, H., 1972) are the result of a sudden marine
77
transgression that, in the studied area (Fig. 2A, B), flooded the earlier continental
78
siliciclastic sediments of the Tordillo Formation. Both lithostratigraphic units integrate
79
the base of the Mendoza Group in the study area (Groeber, 1946; emend. Stipanicic et
80
al., 1968).
81
[Fig. 2 around here]
EP
82
TE D
76
The Vaca Muerta Formation is characterized by the rhythmic alternation of bituminous dark shales, marls and calcareous beds deposited over an homoclinal
84
carbonate-siliciclastic ramp system dominated by external ramp facies during the
85
Tithonian (Spalletti et al., 2000; Scasso et al., 2002; Kietzmann et al., 2008; Kietzmann
86
and Palma, 2009), which leaded to a more inclined or a distally steepened ramp during
87
the Berriasian (Mitchum and Uliana, 1985; Kietzmann et al., 2008). The prevailing
88
oxygen deficient bottom conditions allowed the excellent preservation of both micro
89
and macrofauna among which ammonoid shells are the most abundantly represented.
AC C
83
4
ACCEPTED MANUSCRIPT 90
These environmental conditions also promoted the formation of extended organic-rich
91
facies that turned the Vaca Muerta Formation as the most important hydrocarbon source
92
of the Neuquén Basin (Mitchum and Uliana, 1985; Vergani et al., 2011).
93
2.2. Fossil locality The Vega de Escalone section (37º 11' S; 69º 48' W) is easily accessible. It is
RI PT
94
located in the Pampa Tril area (Fig. 2A), 72 km north of Chos Malal City. It can be
96
reached through the intersection of the national road n° 40 with a narrow gravel road
97
situated some kilometers north of the Chihuido del Tril (a Cenozoic basaltic neck). The
98
gravel pathway heads to a small farm inside a marsh (vega in Spanish), situated over the
99
eastward boundary of the Yesera del Tromen evaporites. The contact of the Vaca
100
Muerta Formation with the Tordillo Formation can be reached after a 1.5 km walk
101
either through the gravel road or through an old seismic line parallel to it. The analyzed
102
section lies over the eastern flank of the most conspicuous structure in the region, the
103
Yesera del Tromen Anticline (Herrero-Ducloux, 1946). Nearby Vaca Muerta Formation
104
outcrops and faunal content have been also studied by Leanza and Hugo (1977),
105
Gulisano and Gutiérrez-Pleimling (1994), Spalletti et al. (1999) and Parent et al. (2015).
106
2.3. Description of the section
M AN U
TE D
EP
107
SC
95
In Vega de Escalone the Vaca Muerta Formation is 482 m thick (Fig. 3). The unit starts with thinly laminated microbialite layers and continues upwards with an
109
abundant intercalation of mudstones, wackestones and marls forming massive,
110
laminated and nodular beds. Calcareous nodules up to 1.5 m in diameter are common in
111
the first part of the section, a feature which has also been observed in other areas of the
112
basin (Damborenea and Leanza, H., 2016). Some tuff layers, siltstones and calcareous
113
sandstones had also been recorded scattered over the column, as well as ferruginous
114
surfaces and thin fibrous calcite layers. The later usually occur parallel to the
AC C
108
5
ACCEPTED MANUSCRIPT stratification and are more frequent near the top of the section. These fibrous calcite
116
layers have been formerly observed in many others localities (e.g. Leanza, H., 1973,
117
Leanza, H., et al. 2001), and frequently yield ammonoid and bivalve imprints (e.g.
118
Damborenea and Leanza, H., 2016). Their formation has been recently associated with
119
fluid overpressure episodes during hydrocarbon generation (Rodrigues et al., 2009). The
120
top of the Vaca Muerta Formation in this locality is transitional with the coarser and
121
shallower deposits of the Valanginian Mulichinco Formation.
Ammonoid shells are by far the most abundant fossil invertebrates through all
SC
122
RI PT
115
the section, recorded both as three-dimensional internal molds holding neomorfic shell
124
remains, or as detailed imprints. Small gastropods (e.g. Protohemichenopus), oysters,
125
epibisated and shallow burrower bivalves are also found (e.g. Liostrea, Huncalotis, and
126
"Lucina"). Vertebrates are usually represented by small disarticulated fish scales and
127
bones; however a Late Tithonian to Early Berriasian crocodile skull from this locality
128
has been recently described (Herrera, 2012; Herrera and Vennari, 2014).
129
[Fig. 3 around here]
130
3. MATERIAL AND METHODS
TE D
Ammonoid specimens were collected bed by bed in Vega de Escalone section.
EP
131
M AN U
123
Shells were prepared at the laboratory with the assistance of pneumatic tools and a
133
diluted solution of hydrochloric acid (HCL) before their taxonomic identification.
134
AC C
132
To separate and study the radiolarian skeletons, several disaggregation
135
techniques were applied according to the nature of the matrix and the replacement of the
136
original opal. A summary of these techniques, including the use of dilute and
137
concentrated acids, is described in Pessagno (1977a). Particularly useful for our material
138
was the use of diluted hydrofluoric acid technique as described in Pessagno and
139
Newport (1972). 6
ACCEPTED MANUSCRIPT 140
4. RESULTS AND DISCUSSION
141
4.1. Ammonoid biostratigraphy A twofold division of the Tithonian is adopted here, making it easier the
142
comparision between Standard ammonoid and radiolarian biozonation schemes and
144
following Riccardi (2015) suggestions.
RI PT
143
Nine ammonoid assemblage biozones have been identified in Vega de Escalone
145
section (Figs. 4–5, 8) from a total of thirty-two ammonoid fertile beds (Fig. 3). Those
147
biozones are consistent with the traditional Andean biostratigraphic scheme of Leanza,
148
H. (1980, 1981a, b) and Riccardi (1984, 1988), and its recent modifications introduced
149
by both authors, mainly involving the late Early and Late Tithonian interval (Zeiss and
150
Leanza, H., 2008, 2010; Riccardi et al., 2011; Riccardi, 2015). Lowermost Tithonian
151
biozonation follows the proposal of Vennari (2016), where the new name
152
Virgatosphinctes andesensis Assemblage Biozone is recommended to be used instead of
153
V. mendozanus Assemblage Biozone, since the former is the valid name of the index
154
species by priority of publication. Also, the V. andesensis Biozone was tentatively
155
subdivided into two interval subzones, of which the uppermost, the Indansites
156
malarguensis Interval Subzone is well represented at the studied section.
EP
TE D
M AN U
SC
146
Lower Cretaceous ammonoid biozones and their correlation with the Tethys
157
region were based on those presented by Aguirre-Urreta et al. (2007) and Reboulet et al.
159
(2014).
160
[Figure 8 around here]
161
AC C
158
The faunal composition of each ammonoid biozone and their correlation with the
162
current Mediterranean Standard biozonation (Hardenbol et al., 1998; Reboulet et al.,
163
2014) is presented below:
7
ACCEPTED MANUSCRIPT 164
Ammonoid beds VE 1–VE 3: Virgatosphinctes andesensis Assemblage Biozone (Vennari, 2016). Lower Tithonian, Upper Darwini to Lower Semiforme Zones. It
166
includes abundant and well preserved specimens of Indansites malarguensis (Spath,
167
1931) (Fig. 4.1), less numerous representatives of Virgatosphinctes andesensis
168
(Douvillé, 1910) and Choicensisphinctes choicensis (Burckhardt, 1903), and only one
169
specimen assigned to Pseudovolanoceras cf. P. aesinense kranzense (Cantú-Chapa,
170
1990). This species, a simoceratid usually ascribed to the younger Pseudolissoceras
171
zitelli Biozone, is poorly represented in the Neuquén Basin and can be correlated with
172
the Semiforme standard Zone (Villaseñor et al., 2011). Two morphotypes temporally
173
ascribed to the tethyan genera "Subplanitoides sp." and "Torquatisphinctes sp." have
174
also been recognized. Dominance of representatives of Subfamilies Virgatosphinctinae
175
and Lithacoceratinae at this association is in agreement with previous records of this
176
stratigaphic interval in other areas of the basin (Leanza, H., 1980; Vennari and Aguirre-
177
Urreta, 2014; Vennari, 2016) and enables recognizing an Indansites malarguensis
178
Interval Subzone (Vennari, 2016) in this section.
SC
M AN U
TE D
179
RI PT
165
Ammonoid bed VE 4: Pseudolissoceras zitteli Assemblage Biozone. Lower Tithonian, Upper Semiforme to Lower Fallauxi Zones. Mainly represented by abundant
181
and well preserved specimens of Pseudolissoceras zitteli (Burckhardt, 1903) (Fig. 4.2),
182
Cieneguiticeras perlaevis (Steuer, 1897) and some Lamellaptychus remains usually
183
related to haploceratid ammonoids (Trauth, 1938; Engeser and Keupp, 2002).
AC C
184
EP
180
Ammonoid beds VE 5–VE 6: Aulacosphinctes proximus Assemblage Biozone.
185
Lower Tithonian, Upper Fallauxi to Ponti Zones. Represented by poorly preserved
186
Aulacosphinctes proximus? (Steuer, 1897) remains.
187 188
Ammonoid beds VE 7–VE 8': Windhauseniceras internispinosum Assemblage Biozone. Upper Tithonian, Lower Microcanthum Zone. Yields representatives of 8
ACCEPTED MANUSCRIPT 189
Windhauseniceras internispinosum? (Krantz, 1926), Aspidoceras euomphalum Steuer,
190
1897, "Subdichotomoceras" araucanense Leanza, H., 1980 (Fig. 4.4), Corongoceras
191
lotenoense Spath, 1925 and some aptychi of Lamellaptychus and Laevaptychus type; the
192
later usually ascribed to aspidoceratids (Trauth, 1931; Cloos, 1961). Ammonoid beds VE 9–VE 12: Corongoceras alternans Assemblage Biozone.
RI PT
193
Upper Tithonian, Upper Microcanthum to Lower "Durangites" Zone. Includes
195
representatives of Micracanthoceras lamberti Leanza, A., 1945 (Fig. 4.3),
196
Aulacosphinctes mangaensis? (Steuer, 1897), Corongoceras sp. cf. C. mendozanum
197
(Behrendsen, 1922) (Fig. 4.6) and some specimens of "Berriasella" australis Leanza,
198
A., 1945. A single specimen assigned to Parodontoceras calistoides (Behrendsen,
199
1922) was recorded on the topmost fossiliferous bed of this association along with
200
representatives of M. lamberti and A. mangaensis?.
M AN U
201
SC
194
Ammonoid beds VE 13–VE 23: Substeueroceras koeneni Assemblage Biozone. Uppermost Tithonian to Lower Berriasian, "Durangites" to Jacobi Zones. Includes
203
abundant representatives of P.calistoides (Fig. 4.5). In addition were identified some
204
specimens of Aulacosphinctes? azulensis Leanza, A., 1945 (Fig. 5.1), Corongoceras?
205
sp., C.? steinmanni Krantz, 1926, Micracanthoceras? spinulosum Gerth, 1925,
206
Micracanthoceras? aff. M.? spinulosum, M.? sp. cf. M. koellikeri (Steuer 1897 non
207
Oppel), M. vetustum (Steuer, 1897), Aspidoceras rogoznicense (Zeuschner, 1846),
208
Chigaroceras sp. (Fig. 5.3), Substeueroceras koeneni? (Steuer, 1897), S. extans Leanza,
209
A., 1945, S. striolatissimum (Steuer, 1897), and a single litoceratid fragment, a group
210
traditionally interpreted as offshore dwellers (Kennedy and Cobban, 1976). Upper age
211
limit indicated for this biozone is in accordance to the recently proved co-occurrence of
212
representatives of this biozone with Nannoconus kamptneri minor, as a marker for the
213
base of the Berriasian, in Las Loicas section, Mendoza (see Vennari et al., 2014).
AC C
EP
TE D
202
9
ACCEPTED MANUSCRIPT 214
Ammonoid bed VE 24: Argentiniceras noduliferum Assemblage Biozone.
215
Lower Berrisian, Jacobi to Occitanica Zones. Represented by few specimens of
216
Argentiniceras sp. (Fig. 5.2). Ammonoid beds VE 25?, VE 26–VE 32: Spiticeras damesi to Neocomites
218
wichmanni Assemblage Biozone. Upper Berriasian to lowermost Valanginian. Boissieri
219
to Pertransiens Zone. It only includes shell imprints on fibrous calcite layers or on
220
calcareous siltstones. Nonetheless, some specimens of Cuyaniceras transgrediens
221
(Steuer, 1897) (Fig. 5.5), Cuyaniceras sp., "Thurmanniceras" discoidale (Gerth, 1925)
222
(Fig. 5.4) and indeterminate neocomitids were identified to the top of the interval. Lack
223
of identification of index species of the Neocomites wichmanni Biozone prevented
224
separating this biozone from the previous one.
225
[Fig. 4–5 around here]
226
4.2. Radiolarian taxonomy and biostratigraphy
SC
M AN U
The micropaleontologic analysis is based on a total of thirty-two samples taken
TE D
227
RI PT
217
consecutively along the section. Of these, the most abundant and well preserved
229
material recovered from two main intervals with ammonoids is described below. The
230
poor preservation of the fauna impedes conducting a statistical analysis of abundance
231
and to assess the relative taxonomic composition of the fauna. However, many forms
232
are described for first time in the Neuquén Basin as also is the radiolarian association
233
from the V. andesensis Biozone.
AC C
234
EP
228
A total of seven fertile samples (Fig. 3) allow discriminating two faunas of
235
radiolarians (Figs. 6–8). The first one, Fauna J3A1 (Fig. 6), is recognized from three
236
samples obtained from beds VE 1, VE 2 and VE 3, included in the V. andesensis
237
Biozone (Lower Tithonian). Fauna J3A1 is dominated by nasellarians, among which
238
Parvicingula, Archaeodyctiomitra and Xitus are the most abundant forms. Among the 10
ACCEPTED MANUSCRIPT members of the Pantanellidae Family, only Pantanellium aff. P. ranchitoensis is
240
abundant. This J3A1 Fauna constitutes the first fauna of radiolarians thoroughly
241
described from levels of the Virgatosphinctes andesensis Biozone in the Neuquén
242
Basin. It corresponds to the lower part of J3A radiolarian association from late Early
243
Tithonian to middle Late Tithonian age identified in the basin by Pujana (2000, in
244
Ballent et al., 2011). In particular, the sample from bed VE 2 can be as old as Zone 4,
245
base of Subzone 4β2 of Pessagno et al. (2009) due to the presence of Complexapora
246
kozuri (Fig. 6.10, 8–9).
SC
247
RI PT
239
The second fauna of radiolarians, named J3B1 (Fig. 7), is determined from four fertile samples recovered from beds VE 17, 18, 19 and 20, corresponding to levels
249
assigned to the Substeueroceras koeneni Biozone (uppermost Tithonian to Lower
250
Berriasian). In particular, the sample obtained from bed VE 19 allows to assign a Late
251
Tithonian age to the fauna, based on the presence of C. kozuri (Fig. 7.15) and Loopus
252
primitivus (Fig. 7.6) primary markers for Zone 4 Subzone 4α2 of Pessagno et al. (2009).
253
Fauna J3B1, which is assigned to the lowest part of J3B radiolarian association from
254
Late Tithonian to Early Valanginian age (Pujana, 2000), has a strong representation of
255
the Pantanellidae Family with genera Gorgansium and Pantanellium. Also recognized
256
are Napora, Podobursa, Acanthocircus, Pseudocyrtis, Neoparonaella and Xitus. It is
257
remarkable the absence on these levels of members of Parvicingula as well as any
258
species of the Vallupinae Subfamily.
TE D
EP
AC C
259
M AN U
248
Between faunas J3A1 and J3B1 there is a 154 m thick interval barren of any
260
radiolarians. Some local environmental factors may have inhibited radiolarian
261
preservation in the middle portion of Vega de Escalone section. However, this upper
262
Lower to middle Upper Tithonian interval has provided a rich radiolarian fauna in
263
several other Vaca Muerta sections both in Neuquén, (i.e. Mallín Quemado, Portada 11
ACCEPTED MANUSCRIPT Covunco) and Mendoza, (i.e. Bardas Blancas) (Pujana, 1991, 1995, 1996). Those faunas
265
held elements of the Subfamily Vallupinae which allow recognizing two conspicuous
266
evolutive events named “Vallupus hopsoni Event” and “Vallupus japonicus Event”. The
267
older "Vallupus hopsoni" event is characterized by the presence of specimens with
268
multiple cortical collars and indentations. These forms always have a cylindrical to
269
conical cortical collar that expands continuously towards an aperture with irregular
270
borders. The occurrence of that event is on the lower part of the Pseudolissoceras zitelli
271
Biozone to at least the upper part of the Aulacosphinctes proximus Biozone (middle to
272
upper Lower Tithonian). The younger "Vallupus japonicus" event is also defined by an
273
abundance of forms with multiple and indented cortical collars with a distinctive bell-
274
like shape, and also includes some Vallupus hopsoni specimens. This event occurs in
275
coincidence with the upper part of the Windhauseniceras internispinosum Biozone and
276
in the Corongoceras alternans Biozone (lower to middle Upper Tithonian).
M AN U
SC
RI PT
264
Finally, the fauna observed in a single sample obtained from bed VE 24,
278
included in the Argentiniceras noduliferum Biozone (Lower Berriasian), do not present
279
significant differences in its composition with the J3B1 fauna, despite its higher
280
stratigraphic position. However poor preservation as well as relatively less diversity and
281
abundance hinder its significance.
282
[Fig. 6-7 around here]
283
Radiolarian Taxonomy
EP
AC C
284
TE D
277
The classification of De Wever et al. (2001) is followed up to the Order level,
285
Families are alphabetically ordered. Biostratigraphic ranges of genera and species
286
follow the biostratigraphic scheme proposed by Pessagno et al. (2009). (Fig. 9).
287
[Figure 9 around here]
288
Class ACTINOPODA 12
ACCEPTED MANUSCRIPT Subclass RADIOLARIA (Müller, 1858)
290
Superorder POLYCYSTIDA Ehrenberg, 1838, emend. Riedel 1967)
291
Order SPUMELLARIINA Ehrenberg, 1875, emend. De Wever et al., 2001
292
Family PANTANELLIIDAE Pessagno, 1977a
293
Type genus: Pantanellium Pessagno, 1977a; sensu Pessagno and Blome, 1980.
294
Range: Late Triassic (Carnian) to Early Cretaceous (Aptian/ Albian).
295
Occurrence: Worldwide.
RI PT
289
SC
296
Subfamily PANTANELLIINAE Pessagno, 1977a; sensu Pessagno and Blome, 1980
298
Type genus: Pantanellium Pessagno 1977a; sensu Pessagno and Blome 1980.
299
Range and occurrence: Same as for family.
M AN U
297
300
Genus Gorgansium Pessagno and Blome, 1980
302
Type species: Gorgansium silviesense Pessagno and Blome, 1980.
303
Range and occurrence: Late Triassic (Norian) to Early Cretaceous (Berriasian). Same
304
as for the family.
307
EP
306
Gorgansium sp. A (Fig. 7.8)
AC C
305
TE D
301
308
Remarks: This form is characterized by well-developed nodes and slender polar spines
309
similar to the form under Pantanellium sp. A (see Fig. 7.4). The remainder basal spine,
310
wider and longer is deviated from the polar axis by approximately 30 degrees.
311 312
Range and occurrence: Vaca Muerta Formation, Neuquén Basin, Vega de Escalone,
313
Argentina. Sample VE 19; Fauna J3B1; Substeueroceras koeneni Biozone. Rare. 13
ACCEPTED MANUSCRIPT 314 315
Genus Pantanellium Pessagno, 1977a, sensu Pessagno and Blome, 1980
316
Type species: Pantanellium riedeli Pessagno, 1977a.
317
Range and occurrence: Same as for family.
RI PT
318
Pantanellium meraceibaense Pessagno and Macleod, 1987 (Fig. 7.9)
320
1987 Pantanellium meraceibaense Pessagno and Macleod, p. 22, pl. 5, figs. 5–6, 18–19;
321
pl. 7, fig. 4.
322
1991 Pantanellium sp. aff. P. meraceibaense Pessagno and Macleod; Pujana, p. 399, pl.
323
1, figs. 6–7.
324
1993 Pantanellium meraceibaense Pessagno and Macleod; Pessagno et al., p. 130, pl. 4,
325
fig. 17.
326
1993 Pantanellium meraceibaense Pessagno and Macleod; Yang, p. 15, pl. 2, figs. 6,
327
22.
328
2013 Pantanellium meraceibaense Pessagno and Macleod; Pujana in Staerker et al., p.
329
115, pl. 3, fig. b.
M AN U
TE D
EP
330
SC
319
Range and occurrence: Superzone 1, Zone 11 to Zone 4, Subzone 4β; Lower Oxfordian
332
to Lower Berriasian. Taman Formation, East-central Mexico; Argolis Peninsula,
333
Greece; Stanley Mountain, California; strata overlying the Josephine Ophiolite,
334
Klamath Mountains; northwestern California and southwestern Oregon; Mazapil, Sierra
335
de Santa Rosa, Mexico; Haynesville Formation, North Louisiana Salt Province, Gulf of
336
Mexico; Vaca Muerta Formation, Neuquén Basin, Mallín Quemado and Vega de
337
Escalone, Argentina. Sample VE 19; Fauna J3B1; Substeueroceras koeneni Biozone.
AC C
331
338 14
ACCEPTED MANUSCRIPT 339
Pantanellium neuquensis Pujana, 1991 (Fig. 7.2)
340
1991 Pantanellium neuquensis Pujana, p. 399, pl. 1, figs. 3, 6.
341
Range and occurrence: Vaca Muerta Formation, Neuquén Basin, Mallín Quemado
343
(Windhauseniceras internispinosum Biozone) and Vega de Escalone, Argentina. Sample
344
VE 19; Fauna J3B1; Substeueroceras koeneni Biozone.
345
RI PT
342
Pantanellium quintachillaense Pessagno and Macleod, 1987 (Fig. 7.3, 7.7)
347
1987 Pantanellium quintachillaense Pessagno and Macleod in Pessagno et al., p. 23, pl.
348
4, figs. 14, 23.
349
1999 Pantanellium quintachillaense Pessagno and Macleod; Kiesling, p. 22, pl. 4, figs.
350
6, 12.
351
2013 Pantanellium quintachillaense Pessagno and Macleod; Pujana in Staerker et al., p.
352
115, pl. 3, fig. b.
M AN U
TE D
353
SC
346
Range and occurrence: Zone 2, Subzone 2β to Zone 4, Subzone 4α; Oxfordian to Late
355
Tithonian. Taman Formation, east-central Mexico; Ameghino Formation, Antarctic
356
Peninsula; Haynesville Formation, North Louisiana Salt Province, Gulf of Mexico; and
357
herein, Vaca Muerta Formation, Neuquén Basin, Vega de Escalone. Sample VE 19;
358
Fauna J3B1; Substeueroceras koeneni Biozone.
AC C
359
EP
354
360
Pantanellium ranchitoense Pessagno and Macleod, in Pessagno et al., 1987 (Fig. 6.3)
361
1987 Pantanellium ranchitoense Pessagno and Macleod in Pessagno et al., p. 23, pl. 1,
362
figs. 1, 25; pl. 5, figs. 4, 8, 22; pl. 7, fig. 6.
15
ACCEPTED MANUSCRIPT 1991 Pantanellium sp. aff. P. ranchitoense Pessagno and Macleod; Pujana, p. 400, pl. 1,
364
fig. 10.
365
1993 Pantanellium ranchitoense Pessagno and Macleod; Yang, p. 16, pl. 1, fig. 6; pl. 2,
366
fig. 3.
367
1999 Pantanellium ranchitoense Pessagno and Macleod; Kiessling, pl. 4, fig. 10.
368
2013 Pantanellium ranchitoense Pessagno and Macleod; Pujana in Staerker et al., p.
369
115, pl. 3, fig. b.
RI PT
363
SC
370
Range and occurrence: Zone 5; Callovian to Lower Berriasian. Taman Formation, east-
372
central Mexico; Titoniano Bianco, Southern Alps, Italy; Ameghino Formation,
373
Antarctic Peninsula; Haynesville Formation, North Louisiana Salt Province, Gulf of
374
Mexico; Vaca Muerta Formation, Neuquén Basin, Vega de Escalone, Argentina.
375
Sample VE 2, Fauna J3A1; Virgatosphinctes andesensis Biozone.
M AN U
371
TE D
376
Pantanellium sp. aff. P. riedeli Pessagno, 1977b (Fig. 7.5)
378
1977b Pantanellium riedeli Pessagno, p. 78, pl. 6, figs. 5–11.
379
EP
377
Remarks: This specimen differs from Pantanellium riedeli Pessagno by possessing less
381
massive primary spines and a less nodose cortical shell.
382
AC C
380
383
Range and occurrence: Vaca Muerta Formation, Neuquén Basin, Vega de Escalone,
384
Argentina. Sample VE 19; Fauna J3B1; Substeueroceras koeneni Biozone.
385 386
Pantanellium sp. A (Fig. 7.4)
387 16
ACCEPTED MANUSCRIPT 388
Remarks: This species is characterized by large pores on a slightly wider cortical shell
389
and very long and slender polar spines. There is no similarity with to any published
390
Pantanellium species.
391
Range and occurrence: Vaca Muerta Formation, Neuquén Basin, Vega de Escalone,
393
Argentina. Sample VE 19; Fauna J3B1; Substeueroceras koeneni Biozone.
RI PT
392
394
Family PATULIBRACCHIINAE Pessagno, 1971; emend. De Wever et al., 2001
396
Type genus: Patulibracchium Pessagno, 1971
397
Range and occurrence: Late Paleozoic to Late Cretaceous. Worldwide.
M AN U
SC
395
398
Genus Crucella Pessagno, 1971; emend. Baumgartner, 1980
400
Type species: Crucella messinae Pessagno, 1971.
401
Range and occurrence: Late Triassic (Rhaetian) to Late Cretaceous. Worldwide.
402
TE D
399
Crucella sp. cf. C. mexicana Yang, 1993 (Fig. 7.12)
404
1993 Crucella mexicana Yang, pl. 40, figs. 10–11, 14, 16; pl. 5, figs. 10, 21.
405
EP
403
Remarks: This form is related to Crucella mexicana Yang, differing by having the arm
407
ends gradually tapering into a spine.
408
Range and occurrence: Vaca Muerta Formation, Neuquén Basin, Vega de Escalone,
409
Argentina. Sample VE 19; Fauna J3B1; Substeueroceras koeneni Biozone.
AC C
406
410 411
Family TRITRABIDAE Baumgartner, 1980
412
Genus Neoparonaella Yang, 1993 17
ACCEPTED MANUSCRIPT 413
Type species: Neoparonaella delicata Yang, 1993
414
Remarks: Kiessling (1999) noticed that the internal structure of arms is consistent with
415
the Tritrabidae rather than the Hagiastridae.
416
Range: Kimmeridgian to Late Tithonian.
RI PT
417
Neoparonaella delicata Yang, 1993 (Fig. 7.11)
419
1993 Neoparonaella delicata Yang, p. 30, pl. 3, figs. 1, 5–6, 9–10, 17, 22: pl. 7, fig. 12.
420
1996 Neoparonaella delicata Yang; Kiesssling and Scasso, pl. 2, fig. 2.
421
1997 Neoparonaella delicata Yang; Hull p. 43, pl. 15, figs. 2, 18.
SC
418
M AN U
422
Range and occurrence: Late Kimmeridgian to Late Tithonian. Ameghino Formation,
424
Antarctica; Taman Formation, east-central Mexico; volcano-pelagic strata at Stanley
425
Mountain, California, United States; Dachhornstein Formation, Germany; Rosso di
426
Aptici Formation, Italy. Vaca Muerta Formation, Neuquén Basin, Vega de Escalone,
427
Argentina. Sample VE 19; Fauna J3B1; Substeueroceras koeneni Biozone.
TE D
423
428
Order NASSELLARIINA Ehrenberg, 1875
430
Family ARCHAEODICTYOMITRIDAE, Pessagno, 1976; emend. Pessagno, 1977b
431
Type genus: Archaeodictyomitra Pessagno, 1976; emend. Pessagno, 1977b.
432
Range and occurrence: Jurassic to Late Cretaceous (Maastrichtian). Worldwide.
AC C
433
EP
429
434
Genus Archaeodictyomitra Pessagno, 1976; emend. Pessagno, 1977b; Yang, 1993
435
Type species: Archaeodictyomitra squinaboli Pessagno, 1976.
436
Range and occurrence: Middle Jurassic (Bajocian) to Late Cretaceous (Campanian).
437
Worldwide. 18
ACCEPTED MANUSCRIPT 438
Archaeodictyomitra sixi Yang, 1993 (Fig. 6.4)
440
1993 Archaeodictyomitra sixi Yang, p. 112–113, pl. 19, figs. 3, 19; pl. 20, figs. 9–10,
441
19.
442
1997 Archaeodictyomitra sixi Yang; Hull, p. 79, pl. 32, figs. 9, 22–23.
443
1999 Archaeodictyomitra (?) sixi Yang; Kiessling, p. 45, pl. 9, fig. 10.
RI PT
439
444
Remarks: This form was ascribed by Kiessling (1999) to Archaeodictyomitra (?) sixi,
446
because of the presence of primary pores and smooth constrictions on the distal
447
postabdominal chambers, similar to Thanarla Pessagno, 1977a. The definition of Yang
448
(1993) is followed here.
449
M AN U
SC
445
Range and occurrence: Zone 2, Subzone 2α to Zone 4, Subzone 4α; early Late
451
Kimmeridgian to Late Tithonian. Upper and lower members of the Taman Formation,
452
east-central Mexico; Volcanopelagic strata overlying the Coast Range ophiolite, Stanley
453
Mountain California; Japan; Antarctic Peninsula; Vaca Muerta Formation, Neuquén
454
Basin, Vega de Escalone, Argentina. Sample VE 2, Fauna J3A1; Virgatosphinctes
455
andesensis Biozone.
EP
AC C
456
TE D
450
457
Archaeodictyomitra sp. cf. A. vulgaris Pessagno, 1977b (Fig. 6.1–6.2)
458
1977b Archaeodictyomitra vulgaris Pessagno, 1977b; Pessagno, p. 44, pl. 6, fig. 15.
459 460
Remarks: This specimen differs from Archaeodictyomitra vulgaris Pessagno (Pessagno,
461
1977b) by possessing a shorter and broader test with more prominent irregular bladed
462
costae. The outline exhibits smooth constrictions on the postabdominal chambers. 19
ACCEPTED MANUSCRIPT 463 464
Range and occurrence: Vaca Muerta Formation, Neuquén Basin, Vega de Escalone,
465
Argentina. Sample VE 2, Fauna J3A1; Virgatosphinctes andesensis Biozone.
466
Family PARVICINGULIDAE Pessagno, 1977a; emend. Pessagno and Whalen, 1982
468
Type genus: Parvicingula Pessagno, 1977a.
RI PT
467
469
Range and occurrence: Early Jurassic (Toarcian) to Early Cretaceous (Aptian).
471
Worldwide.
SC
470
M AN U
472 473
Genus Praeparvicingula Pessagno et al., 1993
474
Type species: Parvicingula profunda Pessagno and Whalen, 1982.
475
Range and occurrence: Same as for the family.
TE D
476
Praeparvicingula vacaensis Pujana, 1989 (Fig. 6.5, 6.7)
478
1989 Parvicingula vacaensis Pujana, p. 1046–1048, pl. 1, fig. 1.
479
1995 Praeparvicingula vacaensis Pujana, Kiessling, p. 346, pl. 40, fig, 19.
480
EP
477
Range and occurrence: Limanangcong Formation, Philippines (Tithonian); Vaca
482
Muerta Formation, Neuquén Basin, Mallín Quemado (Windhauseniceras
483
internispinosum Biozone) and Vega de Escalone, Argentina. Sample VE 2, Fauna J3A1;
484
Virgatosphinctes andesensis Biozone.
AC C
481
485 486
Praeparvicingula sp. A (Fig. 6.6)
487 20
ACCEPTED MANUSCRIPT 488
Range and occurrence: Vaca Muerta Formation, Neuquén Basin, Vega de Escalone,
489
Argentina. Sample VE 2, Fauna J3A1; Virgatosphinctes andesensis Biozone.
490
Family PSEUDODICTYOMITRIDAE Pessagno, 1977b
492
Type genus: Pseudodictyomitra Pessagno, 1977b.
493
Range and occurrence: Middle Jurassic (Bathonian–Callovian) to Late Cretaceous
494
(Middle Turonian). Worldwide.
SC
495
RI PT
491
Genus Loopus Yang, 1993
497
Type species: Pseudodictyomitra primitiva Matsuoka and Yao, 1985
M AN U
496
498
Loopus primitivus (Matsuoka and Yao, 1985); emend. Yang, 1993 (Fig. 7.6)
500
1985 Pseudodictyomitra primitiva Matsuoka and Yao, p. 131, pl. 1, figs. 1–6; pl. 3, figs.
501
1–4.
502
1993 Loopus primitivus (Matsuoka and Yao); Yang, p. 125, pl. 23, figs. 5–6, 13, 21.
503
1999 Loopus primitivus (Matsuoka and Yao); Kiessling, p. 54, pl. 12, fig. 15.
EP
504
TE D
499
Range and occurrence: Zone 2, Subzone 2α 1 to Zone 4, Subzone 4β; early Late
506
Kimmeridgian to early Late to Late Tithonian. Upper and lower members of the Taman
507
Formation, east-central Mexico; Japan; Stanley Mountain, southern California Coast
508
Range; Greece; Carpathians; Mazapil, Sierra de Santa Rosa, Zacatecas, Mexico;
509
Ameghino Formation, Antarctic Peninsula; and herein,Vaca Muerta Formation,
510
Neuquén Basin. Sample VE 19, Fauna J3B1; Substeueroceras koeneni Biozone.
AC C
505
511 512
Family SYRINGOCAPSIDAE Foreman, 1973; emend. Hull, 1997 21
ACCEPTED MANUSCRIPT 513
Type genus: Syringocapsa Neviani, 1900.
514
Range and occurrence: Triassic to Cretaceous. Worldwide.
516
Genus Podobursa Wisniowski, 1889; emend. Foreman, 1973
517
Type species: Podobursa dunikowski, Wisnioski, 1889.
518
Range and occurrence: Triassic to Cretaceous. Worldwide.
519
Podobursa sp. A (Fig. 7.10)
SC
520
RI PT
515
521
Remarks: This form is characterized by a well-defined conical cephalous covered by
523
micro-granular silica, and a conical thorax with regularly distributed small pores.
524
Spherical post abdominal chamber, formed by a meshwork of medium size hexagonal
525
regularly distributed pores; without circumferential spines. Tubular extension slender
526
and composed of linearly arranged polygonal pore frames.
TE D
527
M AN U
522
Range and occurrence: Vaca Muerta Formation, Neuquén Basin. Sample VE 19; Fauna
529
J3B1; Substeueroceras koeneni Biozone.
530
EP
528
Family SETHOCAPSIDAE Haeckel, 1881
532
Type genus: Sethocapsa Haeckel, 1881.
533
AC C
531
534
Remarks: The proposed restrictions by Dumitrica (1995) of the Sethocapsidae to
535
dicyrtid forms with the last segment inflated are followed herein. See Hull (1997) for a
536
comprehensive discussion of this family.
537
Range and occurrence: Middle Jurassic to Recent. Worldwide. 22
ACCEPTED MANUSCRIPT 538 539
Genus Gongylothorax Foreman, 1968; emend. Dumitrica, 1970
540
Type species: Dicolocapsa verbeeki Tan, 1927.
541
Range and occurrence: Middle Jurassic (Bajocian) to Late Cretaceous (Campanian).
543
Worldwide.
RI PT
542
544
Gongylothorax sp. A (Fig. 7.16)
546
1970 Gongylothorax favosus Dumitrica, p. 56, pl. 1, figs. l a–c, 2.
SC
545
M AN U
547 548
Range and occurrence: Vaca Muerta Formation, Neuquén Basin. Sample VE 19; Fauna
549
J3B1; Substeueroceras koeneni Biozone.
550
Family ULTRANAPORIDAE Pessagno, 1977b
552
Type genus: Napora Pessagno, 1977a= Ultranapora Pessagno, 1977b.
553
Range and occurrence: Middle Triassic to Late Cretaceous. Worldwide.
EP
554
TE D
551
Genus Napora Pessagno, 1977a
556
Type species: Napora bukryi Pessagno, 1977a.
557
Range and occurrence: Early Jurassic (Sinemurian) to Late Cretaceous. Worldwide.
558
AC C
555
559
Napora pacifica Kiessling, 1999 (Fig. 7.17)
560
1997 Napora pacifica Kiessling; Hull, p. 120, pl. 46, figs. 5–6, 17.
561
1999 Napora pacifica Kiessling, p.70, pl. 14, figs. 1, 6.
562 23
ACCEPTED MANUSCRIPT 563
Remarks: Napora pacifica Kiessling is characterized by straight longer feet and a short
564
apical horn.
565
Range and occurrence: Zone 3, Subzone 3α to Zone 4, Subzone 4β; early Late to
567
Late Tithonian. Stanley Mountain, California; Antarctic Peninsula; Vaca Muerta
568
Formation, Neuquén Basin, Vega de Escalone, Argentina. Sample VE 19; Fauna J3B1;
569
Substeueroceras koeneni Biozone.
RI PT
566
SC
570
Family XITIDAE Pessagno, 1977b
572
Type genus: Xitus Pessagno, 1977b.
573
Range and occurrence: Kimmeridgian to Maastrichtian. Worldwide.
574
M AN U
571
Genus Xitus Pessagno, 1977b
576
Type species: Xitus plenus Pessagno, 1977b.
577
Range and occurrence: Same as for family.
578
TE D
575
Xitus antiquus Hull, 1997 (Fig. 7.1)
580
1997 Xitus antiquus Hull, p. 136, pl. 47, figs. 3, 9, 13, 18.
AC C
581
EP
579
582
Remarks: Xitus antiquus Hull, is characterized by an extremely irregular arrangement of
583
tubercles and rays on the outside of the skeleton.
584 585
Range and occurrence: Zone 4, Subzone 4β; early Late to Late Tithonian, insofar as
586
known. Volcanopelagic strata, Stanley Mountain, California; Vaca Muerta
24
ACCEPTED MANUSCRIPT 587
Formation, Neuquén Basin, Vega de Escalone. Sample VE 19; Fauna J3B1;
588
Substeueroceras koeneni Biozone.
589 590
Xitus sp. A (Fig. 6.8)
RI PT
591
Remarks: This form possesses an elongate, slightly spindle-shaped test. Outer layer with
593
numerous well-developed pointed tubercles. However, preservation is not good enough
594
to assign it to species level.
SC
592
595
Range and occurrence: Vaca Muerta Formation, Neuquén Basin, Vega de Escalone,
597
Argentina. Sample VE 2, Fauna J3A1; Virgatosphinctes andesensis Biozone.
598 599
Xitus (?) sp. A (Fig. 6.11)
TE D
600
M AN U
596
Remarks: This form is questionably assigned to Xitus owing to the vanishing of the
602
nodose outer layer on distal segments.
603
EP
601
Range and occurrence: Vaca Muerta Formation, Neuquén Basin, Vega de Escalone,
605
Argentina. Sample VE 2, Fauna J3A1; Virgatosphinctes andesensis Biozone.
606
AC C
604
607
Family WILLIRIEDELLIDAE Dumitrica, 1970
608
Type genus: Williriedellum Dumitrica, 1970
609
Remarks: According to Hull, 1997, it includes cryptothoracic tricyrtid or tetracyrtid
610
Nassellaria; test open or closed, with or without sutural pore. Several forms assigned to
611
this family are only slightly cryptothoracic in nature. 25
ACCEPTED MANUSCRIPT 612
Range and occurrence: Middle Jurassic to Cretaceous. Worldwide.
613
Genus Complexapora Kiessling and Zeiss, 1992
615
Type species: Complexapora tirolica Kiessling and Zeiss, 1992.
616
Remarks: Complexapora Kiessling and Zeiss, 1992 includes cryptothoracic, three-
617
chambered nassellarians which possess an inflated terminal chamber that is closed, and
618
have a well-developed, complex sutural pore at the lumbar stricture.
619
Range and occurrence: Late Jurassic. Worldwide.
SC
620
RI PT
614
Complexapora kozuri Hull, 1997 (Fig. 7.15, 6.10)
622
1997 Complexapora kozuri Hull, p. 124, pl. 37, figs. 11, 14, 17.
M AN U
621
623
Remarks: This form is assigned to Complexapora kozuri Hull, 1997 as was described by
625
Hull (1997). The presence of this radiolarian is an important primary marker in Late
626
Jurassic successions as defined on Pessagno’s zonation (Pessagno et al., 2009).
TE D
624
627
Range and occurrence: Jurassic, insofar as is known. First occurrence defines the base
629
of Zone 4, Subzones 4β2 and final occurrence defines the top of Subzone 4α2. Early to
630
Late Tithonian. Volcanopelagic strata overlying the Coast Range ophiolite, Stanley
631
Mountain, California. Mazapil, Sierra de Santa Rosa, Zacatecas, Mexico. Vaca Muerta
632
Formation, Neuquén Basin, Vega de Escalone, Argentina. Sample VE 2, Fauna J3A1;
633
Virgatosphinctes andesensis Biozone; and Sample VE 19; Fauna J3B1; Substeueroceras
634
koeneni Biozone.
AC C
EP
628
635 636
Complexapora sp. A (Fig. 6.9) 26
ACCEPTED MANUSCRIPT 637
Remarks: Short torax, rare.
638
Range and occurrence: Vaca Muerta Formation, Neuquén Basin, Vega de Escalone,
639
Argentina. Sample VE 2, Fauna J3A1; Virgatosphinctes andesensis Biozone.
640
Complexapora sp. B (Fig. 6.12)
642
Remarks: Abdominal chamber with larger pores and pointy shape towards the end.
643
Range and occurrence: Vaca Muerta Formation, Neuquén Basin, Vega de Escalone,
644
Argentina. Sample VE 2, Fauna J3A1; Virgatosphinctes andesensis Biozone.
645
SC
RI PT
641
FAMILY EUCYRTIDIIDAE Ehrenberg, 1847
647
Type genus: Eucyrtidium Ehrenberg, 1847
648
Range and occurrence: Triassic to Recent. Worldwide.
649
Genus Pseudoeucyrtis (?)(Fig. 7.13–7.14)
M AN U
646
TE D
650
Remarks: This form possesses a relatively broad test without the characteristic spindle-
652
shape and irregular pore structure. Poor preservation hinders most of the pore structure
653
and a more assertive assignation.
654
Range and occurrence: Vaca Muerta Formation, Neuquén Basin, Vega de Escalone.
655
Sample VE 19; Fauna J3B1; Substeueroceras koeneni Biozone.
656
5. CONCLUSIONS
AC C
657
EP
651
The Vega de Escalone section holds 482 meters of exposures of the Vaca Muerta
658
Formation. Bed by bed ammonoid analysis resulted in the identification of nine Late
659
Jurassic to Early Cretaceous ammonoid assemblage biozones, spanning from Early
660
Tithonian to Late Berriasian/ earlymost Valanginian times.
27
ACCEPTED MANUSCRIPT 661
Linked to the ammonoid record, two radiolarian faunas were identified, J3A1 and J3B1 based on seven fertile samples. On one hand, fauna J3A1, recovered from
663
three samples obtained from the base of the section, is dominated by nasellarian genera
664
and represents the first thoroughly described record of radiolarians from the Early
665
Tithonian Virgatosphinctes andesensis Biozone in the Neuquén Basin. While on the
666
other hand, Fauna J3B1, based on four samples coming from the Substeueroceras
667
koeneni Biozone interval, showed a remarkable abundance of representatives of the
668
Pantanellidae Family. Identification at the J3B1 Fauna of Complexapora kozuri and
669
Loopus primitivus, important primary markers of Late Jurassic according to Pessagno et
670
al. (2009), supports a Late Tithonian age for at least part of the S. koeneni Biozone in
671
the studied area, although still no Berriasian radiolarians have been identified on this
672
section to verify its upper age limit. No representatives of the Vallupinae Subfamily
673
were identified on neither of the described radiolarian faunas, and the stratigraphic
674
interval where they have been previously described in other localities of the Neuquén
675
Basin was unfortunately barren of any radiolarians in Vega de Escalone.
SC
M AN U
TE D
676
RI PT
662
Lastly, an additional sample VE 25, obtained from a bed bearing representatives of the Early Berriasian Argentiniceras noduliferum Assemblage Biozone, yielded a
678
poorly preserved radiolarian fauna of relatively low abundance and diversity, which did
679
not exhibit any significant compositional signature with respect to the previously
680
described faunas.
681
AKNOWLEDGMENTS
682
This research was supported by the Agencia Nacional de Promoción Científica y
683
Tecnológica through PICT-1413/2013 under the direction of Dr. Beatriz Aguirre-Urreta,
684
and PICT-2597/2014 awarded to Dr. Verónica Vennari. We are grateful to Celeste De
685
Micco for her support and to Andrea Caramés for inspiring this research. Beatriz
AC C
EP
677
28
ACCEPTED MANUSCRIPT Aguirre-Urreta made valuable suggestions to improve this investigation, and Jonatan
687
Kaluza helped with ammonoid preparation. We appreciate Dr. Leanza, H. and an
688
anonymous reviewer constructive comments which greatly helped to improve a first
689
version of the manuscript.
690
REFERENCES
691
Aguirre-Urreta, M.B., Mourgues, F.A., Rawson, P.F., Bulot, L.G., Jaillard, E., 2007.
RI PT
686
The Lower Cretaceous Chañarcillo and Neuquén Andean basins: ammonoid
693
biostratigraphy and correlations. Geological Journal, 42, 143–173.
SC
692
Baumgartner, P.O., 1980. Late Jurassic Hagiastridae and Patulibracchiidae (Radiolaria)
695
from the Argolis Peninsula (Peloponnesus, Greece). Micropaleontology, 26, 274–
696
322.
697
M AN U
694
Baumgartner, P.O., O'Dogherty, L., Gorican, S., Urquhart, E., Pillevuit, A., Wever, P.D. (Eds.). 1995. Middle Jurassic to Lower Cretaceous radiolaria of Tethys:
699
occurrences, systematics, biochronology. Mémoires de géologie, 23, Lausanne,
700
1172 pp.
701
TE D
698
Ballent, S., Concheyro, A., Náñez., C., Pujana, I.D., 2011. Microfósiles Mesozoicos y Cenozoicos de la provincia del Neuquén. In: Leanza, H.A., Arregui, C., Carbone,
703
O., Danieli, J.C. (Eds.), Geología y Recursos Naturales de la provincia del
704
Neuquén. Asociación Geológica Argentina, Buenos Aires, pp. 489–528.
706 707 708 709
AC C
705
EP
702
Behrendsen, O., 1922. Contribución a la geología de la pendiente oriental de la Cordillera Argentina. Academia Nacional de Ciencias de la República Argentina, Actas 7, 157–227. Burckhardt, C., 1903. Beitrage zur Kenntniss der Jura und Kreide formation der Cordillere. Palaeontographica Abteilung A, 50, 1–44.
29
ACCEPTED MANUSCRIPT 710
Cantú-Chapa, A., 1990. Volanoceras chignahuapense sp. nov., amonita del Titoniano
711
inferior de Puebla, Centro de México. Revista de la Sociedad Mexicana de
712
Paleontología, 3, 41–45.
714 715
Cloos, D., 1961. Los "Aptychi" (Cephalopoda-Ammonoidea) de Argentina. Revista de la Asociación Geológica Argentina, 16, 117–141.
RI PT
713
Damborenea, S.E., Leanza, H., 2016. Huncalotis, an enigmatic new pectinoid genus
(Bivalvia, Late Jurassic) from South America. Paläontologische Zeitschrift: 1–20.
717
DOI 10.1007/s12542-016-0310-z.
718
SC
716
De Wever, P., Dumitrica, P., Caulet, J.P., Nigrini, C., Caridroit, M. (Eds.), 2001, Radiolarians in the Sedimentary Record, Gordon and Breach Science Publishers,
720
The Netherlands, 533 pp.
722 723
Douvillé, R., 1910. Cephalopodes Argentins. Mémoires de la Société Géologique de France, 43, 1– 24.
Dumitrica, P., 1970. Cryptocephalic and cryptothoracic Nassellaria in some Mesozoic
TE D
721
M AN U
719
724
deposits of Romania. Revue Roumaine de Geologie, Geophysique et Geographie.
725
Serie de Geologie, 14, 54–124.
Dumitrica, P. 1995. Systematic framework of Jurassic and Cretaceous Radiolaria. In:
EP
726
Baumgartner, P.O., O'Dogherty, L., Gorican, S., Urquhart, E., Pillevuit, A.,
728
Wever, P.D. (Eds.), Middle Jurassic to Lower Cretaceous Radiolaria of Tethys:
729 730 731
AC C
727
Occurrences, Systematics, Biochronology. Mémoires de Géologie, 23, Lausanne, pp. 19–35.
Ehrenberg, C.G., 1838. Über die Bildung der Kreidefelsen und des Kreidemergels durch
732
unsichtbare Organismen. Königlich Akademie Wissenschaften Berlin,
733
Abhandlung Jahrbuch, 59–147.
30
ACCEPTED MANUSCRIPT 734
Ehrenberg, C.G., 1847. Über die mikroskopischen kieselschaligen polycystinen als mächtige gebirgsmasse von Barbados und über das verhältniss der aus mehr als
736
300 neuen arten bestehenden ganz eigenthümlichen formengruppe jener felsmasse
737
zu den jetzt lebenden thieren und zur kriedelbildung. Aine neue anregung zur
738
erforschung des erdlebens. Verhandlungen der Königlich Preussischen Akademie
739
der Wissenschaften in Berlin1847, 40–60.
740
RI PT
735
Ehrenberg, C.G., 1875. Fortsetzung, der microgeologische Studien als Gesammt–
Uebersicht Gebirgsarten der Erde, mit specieller Rucksicht auf den Polycustinen–
742
Mergel von Barbados. Königlich Akademie Wissenschaften Berlin, 1–226.
745 746 747
M AN U
744
Engeser, T., Keupp, H., 2002. Phylogeny of the aptychi-possessing Neoammonoidea (Aptychophora nov., Cephalopoda). Lethaia 34, 79–96.
Foreman, H.P., 1968. Upper Maestrichtian Radiolaria of California. Special papers in Palaeontology, 3, 1–82.
Foreman, H.P., 1973. Radiolaria from DSDP leg 20. In: Heezen, B.C., MacGregor, I.D.
TE D
743
SC
741
et al. (Eds.), Initial Reports of the Deep Sea Drilling Project, 20, 249–305.
749
Gerth, E., 1925. Contribuciones a la estratigrafía y la paleontología de los Andes
750
Argentinos II. La Fauna Neocomiana de la Cordillera Argentina en la parte
751
meridional de la provincia de Mendoza. Academia Nacional de Ciencias,
752
Córdoba, Actas 9, 57–132.
754 755
AC C
753
EP
748
Groeber, P., 1946. Observaciones geológicas a lo largo del meridiano 70.1. Hoja Chos Malal. Revista de la Asociación Geológica Argentina, 1, 177–208.
Gulisano, C.A., Gutiérrez Pleimling, A.R., 1994. The Jurassic of the Neuquén Basin.
756
Field guide. a) Neuquén Province. Publication 158, SEGEMAR, Serie E 2,
757
Asociación Geológica Argentina, 110 pp.
31
ACCEPTED MANUSCRIPT 758 759
Haeckel, E., 1881. Entwurf eines Radiolarien-Systems auf Grund von Studien der Challenger-Radiolarien: Jenaische Zeitschrift Naturwissenschaft, 15, 418–472. Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, T., De Graciansky, P.-C., Vail, P.R.,
761
1998. Mesozoic and Cenozoic sequence chronostratigraphic framework of
762
European basins. SEMP Special Publication 60, 3–13; 763–781.
RI PT
760
Herrera, Y., 2012. Análisis morfológico y paleobiológico de Cricosaurus araucanensis
764
(Gasparini y Dellapé, 1976) (Crocodyliformes: Metriorhynchidae). Ph. D. thesis,
765
Universidad Nacional de La Plata, Argentina.
766
SC
763
Herrera, Y., Vennari, V.V., 2014. Neuroanatomical features of a new specimen of Geosaurini (Crocodylomorpha: Metriorhynchidae) from Argentina. Historical
768
Biology, 27, 33–41. http://dx.doi.org/10.1080/08912963.2013.861831.
769
Herrero Ducloux, A., 1946. Contribución al conocimiento geológico del Neuquén
770
M AN U
767
extraandino. Boletín de Informaciones Petroleras, 266, 245–281. Howell, J.A., Schwarz, E., Spalleti, L.A., Veiga, G.D., 2005. The Neuquén Basin: an
772
overview. In: Veiga, G.D., Spalleti, L.A., Howell, J.A. and Schwarz, E. (Eds.),
773
The Neuquén Basin, Argentina: A case study in Sequence Stratigraphy and basin
774
dynamics. The Geological Society of London Special Publications, 252, pp. 1–14.
776 777 778 779
EP
Hull, D.M., 1997. Upper Jurassic Tethyan and southern boreal radiolarians from western North America. Micropaleontology, 43, 1–202.
AC C
775
TE D
771
Kennedy, W.J., Cobban, W.A. 1976. Aspects of ammonite biology, biogeography and biostratigraphy. Special Papers in Palaeontology, 17, 1–94.
Kiessling, W. 1995. Palökologische Verwertbarkeit oberjurassisch-unterkretazischer
780
Radiolarienfaunen mit Beispielen aus Antarktis, Oman und Südalpen.
781
Unpublished Ph.D. Thesis, University of Erlangen, Germany.
32
ACCEPTED MANUSCRIPT 782 783
Kiessling, W., 1999, Late Jurassic radiolarians from the Antarctic Peninsula: Micropaleontology, 45, 1–96. Kiessling, W., Zeiss, A., 1992. New paleontological data from the Hochstegen Marble
785
(Tauem Window, eastern Alps): Geologisch-Paläontologische Mitteilungen
786
Innsbruck, 18, 187–202.
787
RI PT
784
Kiessling, W., Scasso, R., 1996. Ecological perspectives of Late Jurassic radiolarian faunas from the Antarctic Peninsula. In: Riccardi, A.C. (Ed.), Advances in
789
Jurassic Research, GeoResearch Forum, 1–2, Transtec Publications, pp. 317–326.
790
SC
788
Kietzmann, D.A., Palma, R.M., 2009. Tafofacies y biofacies de Formación Vaca Muerta en el sector surmendocino de la Cuenca Neuquina: implicancias paleoecológicas,
792
sedimentológicas y estratigráficas. Ameghiniana, 46, 321–343.
793
M AN U
791
Kietzmann, D.A., Palma, R.M., Bressan, G.S., 2008. Facies y microfacies de la rampa tithoniana-berriasiana de la Cuenca Neuquina (Formación Vaca Muerta) en la
795
sección del Arroyo Loncoche – Malargüe, provincia de Mendoza. Revista de la
796
Asociación Geológica Argentina, 63, 696–713.
797
TE D
794
Krantz, F., 1926. Die Ammoniten des Mittel-und Ober-tithons. In: Jaworski, E., Krantz, F., Gerth, E. (Eds.), Beiträge zur Paläontologie und Stratigraphie des Lias,
799
Dogger, Tithons und der Unterkreide in der Kordillere im Süden der provinz
800
Mendoza (Argentinien). Geologishche Rundschau 17a: 427–462.
802 803
AC C
801
EP
798
Leanza, A.F., 1945. Ammonites del Jurásico Superior y del Cretácico Inferior de la Sierra Azul, en la parte meridional de la provincia de Mendoza. Anales del Museo de La Plata, Nueva Serie, 1, 1–98.
804
Leanza, H.A., 1972. Acantholissonia, nuevo género de ammonites del Valanginiano de
805
Neuquén, Argentina, y su posición estratigráfica. Revista de la Asociación
806
Geológica Argentina, 17, 63–70. 33
ACCEPTED MANUSCRIPT 807
Leanza, H.A., 1973. Estudio sobre los cambios faciales de los estratos limítrofes
808
Jurásico-Cretácicos entre Loncopué y Picun Leufú, Provincia del Neuquén,
809
República Argentina. Revista de la Asociación Geológica Argentina, 28, 97–132.
811 812
Leanza, H.A., 1980. The Lower and Middle Tithonian Ammonite Fauna from Cerro Lotena, Province of Neuquen, Argentina. Zitteliana, 5, 3–49.
RI PT
810
Leanza, H.A., 1981a. Faunas de ammonites del Jurásico y Cretácico inferior de América del Sur, con especial consideración de la Argentina. In: Volkheimer, W.,
814
Musacchio, E. (Eds.), Cuencas Sedimentarias de América del Sur, 2, 559–597.
815
SC
813
Leanza, H.A., 1981b. The Jurassic-Cretaceous boundary beds in West Central Argentina and their ammonite zones. Neues Jahrbuch für Mineralogie, Geologie
817
und Paläontologie, 161, 62–92.
M AN U
816
Leanza, H.A., Hugo, C.A., 1977. Sucesión de ammonites y edad de la Formación Vaca
819
Muerta y sincrónicas entre los paralelos 35º y 40º L.S., Cuenca Neuquina-
820
Mendocina. Revista de la Asociación Geológica Argentina, 32, 248–264.
821
TE D
818
Leanza, H.A., Hugo, C.A., Repol, D., 2001. Hoja Geológica 3969-I, Zapala, Provincia del Neuquén. Instituto de Geología y Recursos Minerales, Servicio Geológico
823
Minero Argentino. Boletín 275, 1–128.
825 826 827 828
Legarreta, L., Uliana, M.A., 1991. Jurassic-Cretaceous marine oscillations and geometry of back arc basin fill, Central Argentine Andes. In: Macdonald, D.I.M.
AC C
824
EP
822
(Ed.), Sedimentation, Tectonics and Eustasy: Sea Level Changes at Active Margins, Blackwell Publishing Ltd., Oxford, pp. 429– 450.
Legarreta, L., Uliana, M.A., 1996. The Jurassic succession in west central Argentina:
829
stratal patterns, sequences, and paleogeographic evolution. Palaeogeography,
830
Palaeoclimatology, Palaeoecology, 120, 303–330.
34
ACCEPTED MANUSCRIPT 831 832 833
Matsuoka, A., Yao, A., 1985. Latest Jurassic radiolarians from the Torinosu Group in southeast Japan: Journal of Geosciences, 28, 125–145. Mitchum, R.M., Uliana, M., 1985. Seismic stratigraphy of carbonate depositional sequences, Upper Jurassic-Lower Cretaceous, Neuquén Basin, Argentina. In:
835
Berg, B.R. and Woolverton, D.G. (Eds.), Seismic Stratigraphy 2. An integrated
836
aproach to hidrocarbon analysis. American Association of Petroleum Geologists,
837
Memoir 39, 255–283.
Müller, J., 1858. Über die Thalassicollen, Polycystinen und Acanthometren des
SC
838
RI PT
834
Mittelmeers. Koningliche Preussische Akademie der Wissenschaften zu Berlin,
840
Abhandlungen, 1858, 1–62.
841 842 843
M AN U
839
Neviani, A., 1900. Supplemento alla fauna a radiolari delle rocce mesozoiche de Bolognese. Società Geologica Italiana, Bollettino 19, 644–671. Parent, H., Garrido, A.C., Scherzinger, A., Schweigert, G., Fözy, I., 2015. The Tithonian-Lower Valanginian stratigraphy and ammonite fauna of the Vaca
845
Muerta Formation in Pampa Tril, Neuquén Basin, Argentina. Boletín del Instituto
846
de Fisiografía y Geología 86, 1–96.
TE D
844
Pessagno, E.A., 1971. Jurassic and Cretaceous Hagiastridae from the Blake-Bahama
848
Basin (Site 5A, Joides Leg 1) and the Great Valley Sequence, California Coast
849
Ranges. Bulletin of American Paleontology, 60, 1–83.
851
AC C
850
EP
847
Pessagno, E.A., 1976. Radiolarian zonation and stratigraphy of the Upper Cretaceous portion of the Great Valley Sequence, California Coast Ranges.,
852
Micropaleontology special publication, 2, Micropaleontology Press, New York,
853
95 pp.
854 855
Pessagno, E.A., 1977a. Lower Cretaceous radiolarian biostratigraphy of the Great Valley sequence and Franciscan Complex, California Coast Ranges, Washington, 35
ACCEPTED MANUSCRIPT 856
D.C., U.S.A. Cushman Foundation for Foraminiferal Research, Special
857
publication, 15, 1–87.
859 860 861
Pessagno, E.A., 1977b. Upper Jurassic Radiolaria and radiolarian biostratigraphy of the California Coast Ranges. Micropaleontology, 23, 56–113. Pessagno, E.A., Newport, R.L., 1972. A technique for extracting Radiolaria from radiolarian cherts. Micropaleontology, 18, 231–234.
RI PT
858
Pessagno, E.A.Jr., Blome, C.D., 1980. Upper Triassic and Jurassic Pantanelliinae from
863
California, Oregon and British Columbia. Micropaleontology, 26, 225–273.
864
Pessagno, E.A., Whalen, P.A., 1982. Lower and Middle Jurassic Radiolaria (multicyrtid
865
Nassellariina) from California, East-central Oregon and the Queen Charlotte
866
Islands, B.C. Micropaleontology, 28, 111–169.
M AN U
867
SC
862
Pessagno Jr., E.A., MacLeod, N., 1987. Systematic Paleontology. In Pessagno, E.A., Jr. Longoria, J.F., MacLeod, N., and Six, W.M. (Eds.), Studies of North American
869
Jurassic Radiolaria. Upper Jurassic (Kimmeridgian-upper Tithonian)
870
Pantanelliidae from the Taman Formation, east-central Mexico:
871
tectonostratigraphic, chronostratigraphic, and phylogenetic implications. Cushman
872
Foundation for Foraminiferal Research Special Publication, Volume 23, 19–
873
49.Pessagno, E.A., Blome, C.D., Hull, D.M., and Six, W.M., 1993, Jurassic
874
Radiolaria from the Josephine Ophiolite and overlying strata, Smith River
876 877
EP
AC C
875
TE D
868
Subterrane (Klamat Mountains), Northwestern California and Southwestern Oregon. Micropaleontology, 39, 93–166.
Pessagno, E.A., Blome, C.D., Longoria, J.F., 1984. A revised radiolarian zonation for
878
the Upper Jurassic of Western North America. Bulletins of American
879
Paleontology, 87, 51, [56] of plates, 51 folded leaf.
880 36
ACCEPTED MANUSCRIPT 881
Pessagno, E.A. and Macleod, N., 1987. In Pessagno, E.A., Blome, C.D., Carter, E.S., Macleod, N., Whalen, P.A., Yeh, K.Y., 1987. Studies of North American Jurassic
883
Radiolaria; Part I, Upper Jurassic (Kimmeridgian-Upper Tithonian) Pantanellidae
884
from the Taman Formation, East-Central Mexico: Tectonstratigraphc,
885
Chronostratigraphic and Phyligenetic Implications: Cushman Foundation for
886
Foraminiferal Research, Special Publications, 23, 1–51.
887
RI PT
882
Pessagno, E.A., Blome, C.D., Carter, E.S., Macleod, N., Whalen, P.A., Yeh, K.Y., 1987. Studies of North American Jurassic Radiolaria; Part II, Preliminary
889
radiolarian zonation for the Jurassic of North America: Cushman Foundation for
890
Foraminiferal Research, Special Publications, 23, 1–18.
M AN U
891
SC
888
Pessagno, E.A., Blome, C.D., Hull, D., Six, W.M., 1993. Jurassic Radiolaria from Josephine ophiolite and overlying strata, Smith River subterrane (Klamath
893
Mountains), Northwestern California and Southwestern Oregon.
894
Micropaleontology, 39, 93–166.
895
TE D
892
Pessagno, E.A., Cantu-Chapa, A., Mattinson, J.M., Meng, X.Y., Kariminia, S.M., 2009. The Jurassic-Cretaceous boundary: new data from North America and the
897
Caribbean. Stratigraphy, 6, 185–262.
EP
896
Pujana, I., 1988. The Pantanelliidae next to the Jurassic-Cretaceous boundary at the
899
Vaca Muerta Formation in the Province Neuquen, Argentina, 1º international
900 901
AC C
898
conference on Radiolaria EURORAD V, abstracts 22, 202–203.
Pujana, I., 1989. Stratigraphical distribution of the multcyrtids Nassellariina
902
(Radiolaria) at the Jurassic-Cretaceous boundary in the Neuquén Basin,
903
Argentina. In: Miller, H., Rosenfeld, U., Weber-Diefenbach, K. (Eds.),
904
Zentralblatt für Geologie und Paläontologie, I: Allgemeine, Angewandte,
37
ACCEPTED MANUSCRIPT 905
Regionale und Historische Geologie, Stuttgart, E. Schweizerbartsche
906
Verlagsbuchhandlung, pp.1043–1052.
907
Pujana, I., 1991. Pantanelliidae (Radiolaria) from the Tithonian of the Vaca Muerta Formation, Neuquén, Argentina. Neues Jahrbuch fuer Geologie und
909
Palaeontologie, Abhandlungen, 180, 391–408.
910
RI PT
908
Pujana, I., 1995. Two evolutionary events in the subfamily Vallupinae (Radiolaria) in the Tithonian of Mendoza formation, Neuquén Basin, Argentina. 6º Congreso
912
Argentino de Paleontología y Bioestratigrafia, Actas, 213–220.
913
SC
911
Pujana, I., 1996a. Occurrence of Vallupinae (Radiolaria) in the Neuquén Basin; biostratigraphic implications. In: Riccardi, A.C. (Ed.), Advances in Jurassic
915
Research, GeoResearch Forum, 1–2, Transtec Publications, pp. 459–465.
916
Pujana, I., 1996b. A new Lower Jurassic radiolarian fauna from the Neuquén Basin,
917
Central West Argentina, 13º Congreso Geológico Argentino y 3º Congreso de
918
Exploración de Hidrocarburos, Actas 5, 133.
TE D
M AN U
914
Pujana, I., 2000. Radiolarian Assemblages For The Jurassic-Lower Cretaceous Of The
920
Neuquén Basin, West Argentina. Abstract 9º Meeting Interrad 2000 -9º Meeting
921
of the International Asociation of Radiolarian Paleontologist, 1, 57.
EP
919
Reboulet, S., Szives, O., Aguirre-Urreta, B., Barragán, R., Company, M., Idakieva, V.,
923
Ivanov, M., Kakabadze, M.V., Moreno-Bedmar, J.A., Sandoval, J., Baraboshkin,
924 925
AC C
922
E.J., Çaglar, M.K., Fözy, I., González-Arreola, C., Kenjo, S., Lukeneder, A., Raisossadat, S.N., Rawson, P.F., Tavera, J.M., 2014. Report on the 5º
926
International Meeting of the IUGS Lower Cretaceous Ammonite Working Group,
927
the “Kilian Group” (Ankara, Turkey, 31st August 2013). Cretaceous Research, 50,
928
126–137.
38
ACCEPTED MANUSCRIPT
930 931 932 933 934 935
Riccardi, A.C., 1984. Las asociaciones de amonitas del Jurásico y Cretácico de la Argentina, 9° Congreso Geológico Argentino, Actas 4, 559–595. Riccardi, A.C., 1988. The Cretaceous System of southern South America. Geological Society of America, Memoir 168, 1–161. Riccardi, A.C., 2015. Remarks on the Tithonian-Berriasian ammonite biostratigraphy of west central Argentina. Volumina Jurassica 13: 23–52.
RI PT
929
Riccardi, A.C., Damborenea, S.E., Manceñido, M.O., Leanza, H.A., 2011.
Megainvertebrados jurásicos y su importancia geobiológica. In: Leanza, H.A.,
937
Arregui, C., Carbone, O., Danieli, J.C., Vallés, J.M. (Eds.), Geología y Recursos
938
Naturales de la Provincia del Neuquén, Relatorio, pp. 441–464.
940 941
M AN U
939
SC
936
Riedel, W.R., 1967. Subclass Radiolaria. In: Harland, W.R. (Ed.), The fossil record, Geological Society of London, London, pp. 291–298.
Rodrigues, N., Cobbold, P.R., Loseth, H., Ruffet, G., 2009. Widespread beddingparallel veins of fibrous calcite ('beef') in a mature source rock (Vaca Muerta Fm.,
943
Neuquén Basin, Argentina): evidence for overpressure and horizontal
944
compression. Journal of the Geological Society of London, 166, 695–709. Scasso, R.A, Alonso, S.M., Lanés, S., Villar, H.J., Lippai, H., 2002. Petrología y
EP
945
TE D
942
geoquímica de una ritmita marga-caliza del Hemisferio Austral: El Miembro Los
947
Catutos (Formación Vaca Muerta), Tithoniano medio de la Cuenca Neuquina.
948 949
AC C
946
Revista de la Asociación Geológica Argentina, 57, 143–159.
Spalleti, L.A., Gasparini, Z., Veiga, G., Schwarz, E., Fernández, M., Matheos, S., 1999.
950
Facies anóxicas, procesos depositacionales y herpetofauna de la rampa marina
951
titoniano-berriasiana en la Cuenca Neuquina (Yesera del Trómen), Neuquén,
952
Argentina. Revista Geológica de Chile, 26, 109–123.
39
ACCEPTED MANUSCRIPT 953
Spalletti, L.A., Franzese, J.R., Matheos, S.D., Schwarz, E., 2000. Sequence stratigraphy
954
of a tidally dominated carbonate siliciclastic ramp; the Tithonian-early Berriasian
955
of the Southern Neuquén Basin, Argentina. Journal of the Geological Society,
956
157, 433–446. Spath, L.F., 1925. Amonites and Aptychi. In: Wyllie, B.K.W., Smelly W.R. (Eds.), On
RI PT
957 958
the collections of fossils and rocks from Somaliland. Part 7. Monograph
959
Hunterian Museum University, Glasgow 4, pp. 111–164.
Spath, L.F., 1927–1933. Revision of the Jurassic Cephalopod Fauna of Kachchh
SC
960
(Cutch). – Paleontología Índica, N. S. 9: 1– 72. [1927], 73– 161 pp. [1928], 163–
962
278 pp. [1928], 279– 550 pp. [1931], 551– 658 pp. [1931], 659– 945 pp. [1933].
963
M AN U
961
Staerker, T.S., Thompson, P.R., Cantú-Chapa, A., Pujana, I., Boesiger, T.M., 2013. Biostratigraphic correlation and biofacies of the Haynesville Shale and Bossier
965
Shale in East Texas and Western Louisiana, Geology of the Haynesville Gas
966
Shale in East Texas and West Louisiana, U.S.A., American Association
967
Petroleum Geologists, Memoir 105, 103–135.
968
TE D
964
Steuer, A., 1897. Argentinische Jura - Ablagerungen: Ein Beitrag zur Kenntniss der Geologie und Paleontologie der argentinischen Anden. Palaeontologische
970
Abhandlungen Jena, N.S. 7, 127–222.
972 973 974
Stipanicic, P.N., Rodrigo, F., Baulíes, O., Martínez, C., 1968. Las formaciones
AC C
971
EP
969
presenonianas en el denominado Macizo Nordpatagónico. Revista de la Asociación Geológica Argentina, 23, 67– 98.
Tan, S.H., 1927. Over de samenstelling en het onstaan van krijt- enmergelgesteenten
975
van de Molukken: Geologische onderzoekingen in den oostelijken Oost-Indischen
976
Archipel, 55, 5–156.
40
ACCEPTED MANUSCRIPT 977
Trauth, F., 1931. Aptychenstudien VI-VII (VI. Zweiter Nachtrag zu den Aptychen im
978
Allemeinen; VII. Die Aptychen des Malm und der Unterkreide). Annalen des
979
Naturhistorischen Museums in Wien, 45, 17–136.
981 982
Trauth, F., 1938. Die Lamellaptychi des Oberjura und der Unterkreide. Palaeontographica Abteilung A, 88, 118–240.
RI PT
980
Vennari, V.V., 2016. Tithonian ammonoids (Cephalopoda, Ammonoidea) from the Vaca Muerta Formation, Neuquén Basin, West-Central Argentina.
984
Palaeontographica Abteilung A, 306, 85–165.
985
SC
983
Vennari, V.V., Aguirre-Urreta, M.B., 2014. Ammonoids of the basal section of the Vaca Muerta Formation, Neuquén Basin, Argentina. 4º International
987
Palaeontological Congress, Abstract book, 631.
988
M AN U
986
Vennari, V.V., Lescano, M., Naipauer, M., Aguirre-Urreta, B., Concheyro, A., Schaltegger, U., Armstrong, R., Pimentel, M., Ramos, V.A., 2014. New
990
constraints on the Jurassic–Cretaceous boundary in the High Andes using high-
991
precision U–Pb data. Gondwana Research 26, 374–385.
992
http://dx.doi.org/10.1016/j.gr.2013.07.005. Vergani, G., Arregui, C., Carbone, O. 2011. Sistemas petroleros y tipos de
EP
993
TE D
989
entrampamientos en la cuenca Neuquina. In: Leanza, H.A., Arregui, C., Carbone,
995
O., Danieli, J.C., Vallés, J.M. (Eds.), Geología y Recursos Naturales de la
996 997
AC C
994
Provincia del Neuquén, Relatorio, pp. 645–656.
Villaseñor, A.B., Olóriz, F., González-Arreola, C., 2011. Lower Tithonian
998
microconchiate simoceratins from eastern Mexico: Taxonomy, biostratigraphy
999
and palaeobiogeography. Acta Paleontologica Polonica, 56, 133–158.
1000 1001
Weaver, C., 1931. Paleontology of the Jurassic and Cretaceous of west-central Argentina. University of Washington Memoirs, 1, 1–595. 41
ACCEPTED MANUSCRIPT 1002
Wisniowski, T., 1889. Beitrage zur Kenntniss der Mikrofauna aus der Oberjurassischen
1003
Feuersteinknollen der Umgegend von Krakau. Jahrbuch der Kaiserlich-
1004
Königlichen Geologischen Reichsanstalt, 38, 657–702.
1005
Yang, Q., 1993. Taxonomic studies of Upper Jurassic (Tithonian) radiolaria from the Taman Formation, east-central Mexico. Paleoworld, 3, 1–164.
1007
RI PT
1006
Zeiss, A., Leanza, H.A., 2008. Interesting new ammonites from the Upper Jurassic of
Argentina and their correlation potential: New possibilities for global correlations
1009
at the base of the Upper Tithonian by ammonites, calpionellids and other fossil
1010
groups. Newsletters on Stratigraphy, 42, 223–247.
SC
1008
Zeiss, A., Leanza, H.A., 2010. Upper Jurassic (Tithonian) ammonites from the
1012
lithographic limestones of the Zapala region, Neuquén Basin, Argentina.
1013
Beringeria, 41, 25–76.
Zeuschner, L., 1846. Nowe lub niedoklan opisane gatunki skamienialosci Tratowych. Mémoir sur la Tatra, 1º Cahier, 15–32.
1015 1016 1017
FIGURE CAPTIONS
EP
1018
TE D
1014
M AN U
1011
Figure 1. Neuquén Basin geographic situation in Argentina with indication of the study
1020
area.
1021
Figure 2. A. Geological map of the study area (modified from Gulisano and Gutiérrez-
1022
Pleimling, 1994). LM: La Manga Formation (Lower Oxfordian); Aq: Auquilco
1023
Formation (Upper Oxfordian); T: Tordillo Formation (Kimmeridgian); VM: Vaca
1024
Muerta Formation (Tithonian–Lower Valanginian); Q/M: "Quintuco"/ Mulichinco
1025
Formation (Lower Valanginian); Ag: Agrio Formation (Upper Valanginian–
AC C
1019
42
ACCEPTED MANUSCRIPT Hauterivian); Tv: Tertiary volcanics; Cz: Cenozoic cover. B. Lithostratigraphy of the
1027
Mendoza Group in Central-northern Neuquén (modified from Leanza, H. et al., 2001).
1028
Figure 3. Vega de Escalone stratigraphic section (Vaca Muerta Formation) depicting
1029
the ammonoid zonation and stratigraphic position of radiolarian fertile samples.
1030
Figure 4. Ammonoids from Vega de Escalone section: 1, CPBA 21240.5, Indansites
1031
malarguensis (Spath, 1931); 2, CPBA 21560, Pseudolissoceras zitteli (Burckhardt,
1032
1903); 3, CPBA 21562, Micracanthoceras lamberti Leanza, A., 1945; 4, CPBA 21561,
1033
"Subdichotomoceras" araucanense Leanza, H., 1980; 5, CPBA 21568, Parodontoceras
1034
calistoides (Behrendsen, 1922); 6, CPBA 21563, Corongoceras sp. cf. C. mendozanum
1035
(Behrendsen, 1922). All specimens covered with ammonium chloride. All figures 1X
1036
except 1 at 3/4X. Graphic scale= 1 cm.
1037
Figure 5. Ammonoids from Vega de Escalone section: 1, CPBA 21566,
1038
Aulacosphinctes? azulensis Leanza, A., 1945; 2, CPBA 21569, Argentiniceras sp.; 3,
1039
CPBA 21567, Chigaroceras sp.; 4, CPBA 21570, "Thurmanniceras" discoidale (Gerth,
1040
1925); 5, CPBA 21571, Cuyaniceras transgrediens (Steuer, 1897). All specimens
1041
covered with ammonium chloride. All figures 1X except 2 at 2/3X. Graphic scale= 1
1042
cm.
1043
Figure 6. Upper Jurassic Nassellaria and Spumellaria from Vega de Escalone section.
1044
All figures are scanning electron micrographs of radiolarians from Sample VE 2,
1045
Fauna J3A1 (Virgatosphinctes andesensis Biozone): 1–2, Archaeodyctiomitra sp. cf.
1046
A. vulgaris Pessagno, Scale= 50 µm and 40 µm; 3, Pantanellium ranchitoense
1047
Pessagno and Blome, Scale= 46.15 µm; 4, Archaeodyctiomitra sixy Yang; Scale= 40
1048
µm; 5, Praeparvicingula vacaensis Pujana, Scale= 40 µm; 6, Praeparvicingula sp.
1049
A, Scale= 40 µm; 7, Praeparvicingula vacaensis Pujana, Scale= 40 µm; 8, Xitus sp.
1050
A, Scale= 40 µm; 9, Complexapora sp. A, Scale= 40 µm; 10, Complexapora kozuri,
AC C
EP
TE D
M AN U
SC
RI PT
1026
43
ACCEPTED MANUSCRIPT Hull, Scale= 40 µm; 11, Xitus (?) sp. A, Scale= 50 µm; 12, Complexapora sp. B,
1052
Scale= 40 µm. Graphic scale (upper right)= number of microns cited for each figure.
1053
Figure 7. Upper Jurassic Nassellaria and Spumellaria from Vega de Escalone section.
1054
All figures are scanning electron micrographs of radiolarians from Sample VE 19,
1055
Fauna J3B1 (Substeueroceras koeneni Biozone): 1, Xitus antiquus Hull, Scale=
1056
66.66 µm; 2, Pantanellium neuquensis Pujana, Scale= 60 µm; 3, Pantanellium
1057
quintachillaensis Pessagno and MacLeod, Scale= 60 µm; 4, Pantanellium sp. A,
1058
Scale= 60 µm; 5, Pantanellium sp. aff. P. riedeli Pessagno, Scale= 60 µm; 6,
1059
Loopus primitivus Matsuoka and Yao, Scale= 40 µm; 7, Pantanellium
1060
quintachillaensis Pessagno and MacLeod; 8, Gorgansium sp. A, Scale= 60 µm; 9,
1061
Pantanellium meraceibaensis Pessagno and Blome, Scale= 66.66 µm; 10,
1062
Podobursa sp. A, Scale=60 µm; 11, Neoparonaella delicata Yang, Scale= 71.42
1063
µm, 12, Crucella sp. cf. C. mexicana Yang, Scale= 156.25 µm; 13–14,
1064
Pseudoeucyrtis(?) sp., Scale= 40 µm, 66.6 µm; 15, Complexapora kozuri, Scale= 50
1065
µm.; 16, Gongylothorax sp. A, Scale= 40 µm; 17, Napora pacifica, Kiessling,
1066
Scale= 60 µm. Graphic scale (upper right)= number of microns cited for each
1067
figure.
1068
Figure 8. Correlation of Andean, Standard ammonoid biozones and radiolarian faunas
1069
described in this study according to North American Radiolarian Zonation. Ammonoid
1070
zonation modified after Aguirre-Urreta et al. (2007), Vennari et al. (2014), Vennari
1071
(2016) and Reboulet et al. (2014). Radiolarian zonation modified after Pessagno et al.
1072
(2009).
1073
Figure 9. Late Jurassic to Early Cretaceous radiolarian zonation from Pessagno et al.
1074
(2009).
AC C
EP
TE D
M AN U
SC
RI PT
1051
44
AC C
EP
TE D
M AN U
SC
RI PT
ACCEPTED MANUSCRIPT
AC C
EP
TE D
M AN U
SC
RI PT
ACCEPTED MANUSCRIPT
AC C
EP
TE D
M AN U
SC
RI PT
ACCEPTED MANUSCRIPT
AC C
EP
TE D
M AN U
SC
RI PT
ACCEPTED MANUSCRIPT
AC C
EP
TE D
M AN U
SC
RI PT
ACCEPTED MANUSCRIPT
AC C
EP
TE D
M AN U
SC
RI PT
ACCEPTED MANUSCRIPT
AC C
EP
TE D
M AN U
SC
RI PT
ACCEPTED MANUSCRIPT
AC C
EP
TE D
M AN U
SC
RI PT
ACCEPTED MANUSCRIPT
AC C
EP
TE D
M AN U
SC
RI PT
ACCEPTED MANUSCRIPT
ACCEPTED MANUSCRIPT
HIGHLIGHTS * The Vaca Muerta Formation yields one of the most interesting ammonoid and radiolarian associations of Western Gondwana.
RI PT
* The Vega de Escalone section, Neuquén Basin, was sampled for ammonoids and radiolarians.
* Ammonoid taxonomic and biostratigraphic analysis enable recognizing nine Early Tithonian to Late Berriasian/ earlymost Valanginian Biozones.
SC
* Two radiolarian faunas are described in connection with Virgatosphinctes andesensis and Substeueroceras koeneni Ammonoid Biozones.
AC C
EP
TE D
M AN U
* First record of Early Tithonian radiolarians of the Neuquén Basin is thoroughly described.