Scripta
METALLURGICA
Vol. 14, pp. 3 2 5 - 3 2 9 , 1980 P r i n t e d in the U.S.A.
P[EASUREMENT COPPER
OF D I S L O C A T I O N
SINGLE
CRYSTALS
P. A m b r o s i ,
DENSITY
WITH
HIGH
W. H o m e i e r
IN
P e r g a m o n P r e s s Ltd. All r i g h t s r e s e r v e d .
[100]- A N D
RELATIVE
and
Ch.
JIll)-
ACCURACY
Schwink
I n s t i t u t A f~r P n y s i k , T e c n n i s c h e O n i v e r s i t ~ t , D - 3 3 0 0 B r a u n s c h w e i g , Fed. Rep. G e r m a n y ( R e c e i v e d D e c e m b e r 12, 1979) ( R e v i s e d J a n u a r y 17, 1980) Introduction In any t h e o r y of p l a s t i c d e f o r m a t i o n the d i s l o c a t i o n d e n s i t y p is one of the b a s i c p a r a m e t e r s w i t h r e s p e c t b o t h to the a b s o l u t e v a l u e and to the s t r e s s d e p e n d e n c e . F o r m e r r e s u l t s on c o p p e r s i n g l e c r y s t a l s are s h o w n in t a b l e i as f u n c t i o n of T, all c o n v e r t e d to v o l u m e d e n s i t i e s . Table
1
F o r m e r m e a s u r e m e n t s of d i s l o c a t i o n on c o r n e r o r i e n t e d c o p p e r s i n g l e (p in m / m 3 , T in MPa, as t h r o u g h o u t
p(T)
Author
p = 2.1.1010
m2
Livingston
(1)
p = 3.5.1010
T2
van
and
Saimoto
p = 7.3.1010
T2
Ambrosi
et
al.
(3)
p = 8.1.1010
m2
G~ttler
(4)
Drunen
densities crystals this p a p e r ) Axis
(2)
]~iethod
[111]
etch
pit
[100]
etch
pit
[111]
TEM
[lOO]
TEH
2 All a u t h o r s m e a s u r e d an i n c r e a s e of p p r o p o r t i o n a l to z , but the a b s o l u t e v a l u e s are q u i t e u n c e r t a i n . B e c a u s e of the d i f f e r e n c e s of b o t h m e t h o d s if a p p l i e d to the s a m e c r y s t a l o r i e n t a t i o n and b e c a u s e of the fact that u n t i l now p has not b e e n m e a s u r e d for the two o r i e n t a t i o n s b y o n e i n v e s t i g a t o r u s i n g the same m e t h o d it is not c e r t a i n w h e t h e r the d i s l o c a t i o n d e n s i t y at a f i x e d T is g r e a t e r in the [ l O 0 ] - c r y s t a l t h a n in the [ l l l ] - c r y s t a l , as i n d i c a t e d in t a D l e 1 T h i s q u e s t i o n is i m p o r t a n t for the u n d e r s t a n d i n g of the d i f f e r e n t i n i t i a l w o r k h a r d e n i n g r a t e s of b o t h t y p e s of c r y t a l s (5), of the d e v e l o p m e n t of t~e cell s t r u c t u r e and the d e n s i t y of the cell w a l l s , and of such p h e n o m e n a as the s t o r e d e n e r g y (6). T h e r e f o r e we h a v e m e a s u r e d the d i s l o c a t i o n d e n s i t y ~ a g a i n a p p l y i n g i d e n t i c a l m e t h o d s (as far as p o s s i b l e ) to b o t h o r i e n t a t i o n s . T h e c e l l s t r u c t u r e in c o p p e r s i n g l e c r y s t a l s w i t h c o r n e r o r i e n t a t i o n was systematically i n v e s t i g a t e d b y A m b r o s i et al. (3) for the [ l l l ] - c r y s t a l and by G ~ t t l e r (4) for the [ l O O ] - c r y s t a l . We are i n t e r e s t e d in p - v a l u e s at s t r e s s e s w h e r e this c e l l s t r u c t u r e is f u l l y d e v e l o p e d , i.e. a b o v e a b o u t T = 15 M P a (3,4) up to the b r e a k i n g s t r e s s ( 7 0 M P a to 1 0 0 M P a ) . The d i s l o c a t i o n d e n s i t y in this r a n g e is too h i g h for the e t c h pit t e c h n i q u e . So we use transmission electron microscopy (TEM).
325 0036-9748/80/030325-05502.00/0 C o p y r i g h t (c) 1980 P e r g a m o n P r e s s
Ltd.
326
MEASUREMENT
OF D I S L O C A T I O N
Description
DENSITY
of m e a s u r i n q
Vol.
14,
No.
3
methods
We call the u s u a l m e t h o d d e s c r i b e d by S m i t h and G u t t m a n (7) the " l i n e m e t h o d " . Its p r i n c i p l e is that the n u m b e r N of i n t e r s e c t i o n s b e t w e e n a c i r c l e of r a d i u s R d r a w n on the TEM p i c t u r e s (this r e p r e s e n t s a c y l i n d e r in the foil) and the visible dislocations is c o u n t e d . If T is the foil t h i c k n e s s , m e a s u r e d on the pictures with magnification M, it f o l l o w s that N is the n u m b e r of d i s l o c a t i o n s intersecting the s u r f a c e S = 2 7JR T /(M 2) of the c y l i n d e r . C o n s i d e r i n g that the true n u m b e r of d i s l o c a t i o n s is twice the v i s i b l e n u m b e r on a ( 1 1 1 ) - f o i i b e c a u s e of c o n t r a s t c o n d i t i o n s (4), we get for the s u r f a c e d e n s i t y X of d i s l o c a t i o n s intersecting a unit area 2 N N M2 S - ~ R T "
AC o n v e r s i o n of X into r e q u i r e s a f a c t o r of
the v o l u m e 2 (8)
density
p
(dislocation
length
per u n i t
volume)
2 N M2 p
=
2 X
-
~
R
T
"
Uncertainties in this line m e t h o d a r i s e f r o m the d e t e r m i n a t i o n of foil t h i c k ness T, w h i c h can lend to e r r o r s of 50%, e s p e c i a l l y if two d i f f e r e n t p e r s o n s e v a l u a t e the TEM p i c t u r e s . So one of us (W.H.) p e r f o r m e d all the m e a s u r e m e n t s to avoid any s y s t e m a t i c e r r o r s b e c a u s e of p e r s o n a l e f f e c t s . The s e c o n d m e t h o d is c a l l e d the " p o i n t m e t h o d " . H e r e one c o u n t s the n u m b e r P of end p o i n t s of d i s l o c a t i o n s w i t h i n a c i r c u l a r a r e a of r a d i u s R on the TEM p i c t u r e s , a g a i n w i t h m a g n i f i c a t i o n M. B e c a u s e we see a p r o j e c t i o n of the foil we m e a s u r e t w i c e the s u r f a c e d e n s i t y I. A g a i n t a k i n g into a c c o u n t that o n l y one half of all d i s l o c a t i o n s are v i s i b l e ~ we find p M2 R2 " In the c a s e of the [ 1 1 1 ] - c r y s t a l the c o n v e r s i o n of i into p is m o r e c o m p l i c a t e d than it is in the c a s e of the line m e t h o d . In the l a t t e r m e t h o d we m e a s u r e on the s u r f a c e of a c y l i n d e r w h i c h leads a u t o m a t i c a l l y to a m e a n v a l u e of s e v e r a l g l i d e p l a n e s . The p o i n t m e t h o d g i v e s A on a f i x e d p l a n e ( ~ s u a l l y a ( 1 1 1 ) - p l a n e ) and we may not e x p e c t that the d i s l o c a t i o n d e n s i t y p p e r on the (111)-glide-plane perpendicular to the [ 1 1 1 ] ; c r y s t a l - a x i s (the a p p l i e d s t r e s s on this p l a n e is zero) w i l l be the same as pobl that one on the t h r e e o t h e r oblique (111)-glide-planes. We i n t r o d u c e the r a t i o f = Pper / Pobl
'
w h i c h can be d e t e r m i n e d f r o m A o b I and lper, the s u r f a c e d e n s i t y on an o b l i q u e g l i d e p l a n e and the one on the p e r p e n d i c u l a r g l i d e plane, r ~ s p e c t i v e l y . Dislocations on one ( 1 1 1 ) - g l i d e - p l a n e with volume density p c o n t r i b u t e to the s u r f a c e d e n s i t y i by (~/~/~).p~ ( S c h o e c k (8)). So we have:
It f o l l o w s
lobl
= 24
• Pobl
lper
= 3 q~ E Pobi
+ ~~ P pm e r
=
(2 + f ) ~ ~ @obl
that f = ~
= Pobl
3 X o b I - 2 :)'per Zper
Vol.
14,
F,~ow we
No.
can
3
MEASUREMENT
determine
the v o l u m e
~ii~
+
3
: @per
density
~
@obl
(For this s p e c i a l c a s e t h e r e c o n c e r n i n g the r a t i o p / ~).
p for
3 + f
=
3
T h e c a l c u l a t i o n for the [ l O O ] - c r y s t a l are e q u i v a l e n t (i.e. f:1, ~ g l is the ~1OO
OF D I S L O C A T I O N
: 4 ~
and
[111)-crystal:
~per
= 2 + f~
lobl
is s i m p l e ~ b e c a u s e h e r e s u r f a c e d e n s i t y on s u c h
_
g4~ Izg in
527
3 + f ~
~.
~
is an e r r o r
Results
the
DENSITY
all g l i d e p l a n e s a glide plane):
I
the p a p e r
of S c h o e c k
(8)
Discussion
As m e n t i o n e d a b o v e t h e r e e x i s t s a c e l l s t r u c t u r e in o u r c r y s t a l s . T h e r e f o r e , w i t h i n e a c h c r y s t a l two t y p e s of d i s l o c a t i o n v o l u m e d e n s i t i e s c a n be d e f i n e d : @ t o t a v e r a g e d o v e r the t o t a l c r y s t a l v o l u m e and @ w a l l a v e r a g e d o v e r the cell w a l l s a l o n e , w h e r e the d i s l o c a t i o n s a r e a l m o s t c o m p l e t e l y c o n c e n t r a t e d . It w a s a n o t h e r i n t e n t i o n of this w o r k to t e s t w h e t h e r t h e r e e x i s t s a d i f f e r e n c e in the s t r e s s d e p e n d e n c e of t h e s e d i s l o c a t i o n d e n s i t i e s . S u c h a d i f f e r e n c e is s u g g e s t e d by e a r l i e r r e s u l t s on the s t r e s s d e p e n d e n c e of d e n s i t i e s in the c e l l w a l l s (3). A d d i t i o n a l l y , t h e o r e t i c a l w o r k c o n s i d e r i n g the c o n t r i b u t i o n of the d i s l o c a t i o n f o r e s t to the f l o w s t r e s s (9) and to the f o r e s t h a r d e n i n g in fcc m e t a l s (10) led to the c o n c l u s i o n t h a t in this c a s e the d i s l o c a t i o n d e n s i t y ( a s s u m e d as h o m o g e n e o u s t h r o u g h o u t the c r y s t a l ) is not a p u r e q u a d r a t i c f u n c t i o n of the s t r e s s , p ~ T 2, b u t a m o r e s t e e p l y i n c r e a s i n g one, @ ~ T 2 - 2 7 (9) resp. T 2-35 (10), w i t h i n the t y p i c a l r a n g e of s t r e s s e s . Now, in o u r m o d e l for the i n i t i a l w o r k h a r d e n i n g r a t e of [ 1 0 0 ] - and [ 1 1 1 ) - c r y s t a l s (5) the s t r e s s d e t e r m i n i n g p r o c e s s is the c u t t i n g of g l i d e d i s l o c a t i o n s t h r o u g h the c e l l w a l l s , not the a c t i v a t i o n of the l o n g e s t s e g m e n t as in the m e s h l e n g t h t h e o r y (ii) w h i c h o t h e r w i s e is f o r m a l l y r a t h e r s i m i l a r (12) to the f o r e s t h a r d e n i n g m o d e l ( 1 3 - 16). T h e r e f o r e , the d e t e r m i n a t i o n of the e x p o n e n t of T in the @ w a l l - T r e l a t i o n s h i p e n a b l e s us to e x a m i n e a b a s i c f e a t u r e of o u r m o d e l . T h e p r o p e r m e t h o d to d e t e r m i n e @ t o t is the line m e t h o d , w h e r e a s ~ w a l l c a n be b e t t e r d e t e r m i n e d b y the p o i n t m e t h o d . T h e r e s u l t s are s h o w n in Fig. 1 and Fig. 2. F r o m t h e s e f i g u r e s we d e d u c e an a c c u r a c y of the e x p o n e n t of ± 0. I. In a g r e e m e n t w i t h o u r m o d e l the d i s l o c a t i o n d e n s i t y in the c e l l w a l l s i n c r e a s e s p r o p o r t i o n a l to @ w a l l ocT 2 - 3 ± O - 1 . C o n c e r n i n g the [ 1 1 1 ] - c r y s t a l w e f o u n d for the r a t i o of the d i s l o c a t i o n d e n s i t y on the p e r p e n d i c u l a r ( 1 1 1 ) - p l a n e to the d e n s i t y on a ( 1 1 1 ) - g l i d e - p l a n e f = @ p e r / P o~ b l
= 0.45
in the s t r e s s r a n g e f r o m T = 30 M P a to T = 50 MPa. In p r i n c i p l e it is p o s s i b l e to m e a s u r e @ t o t by the p o i n t m e t h o d , b u t o n e h a s to e v a l u a t e l a r g e a r e a s to o b t a i n the m e a n v a l u e of c e l l w a l l s and d i s l o c a t i o n f r e e c e l l a r e a s . T h i s l e a d s to e x t r e m e l y h i g h n u m b e r s of p o i n t s . We d i d this for o n e c r y s t a l and got a @ t o t v a l u e of o n l y a b o u t 2/3 of the o n e u s i n g the l i n e m e t h o d . We b e l i e v e t h a t this is d u e to the v e r y s h o r t d i s l o c a t i o n s e g m e n t s in the foil w h i c h h a v e the t e n d e n c y to a r r a n g e p e r p e n d i c u l a r to the foil s u r f a c e . In this c a s e it is i m p o s s i b l e to d i s t i n g u i s h t h e m f r o m the p o i n t d e f e c t c l u s t e r s w h i c h are c a u s e d b y the n e u t r o n i r r i d i a t i o n u s e d for d i s l o c a t i o n s t a b i l i s a t i o n (17). T h e e n d p o i n t s of t h e s e d i s l o c a t i o n s are t h e r e f o r e not c o u n t e d and the c a l c u l a t e d d e n s i t y is too low. T h e l i n e m e t h o d is not a f f e c t e d b y t h e s e s h o r t s e g m e n t s and for t h a t r e a s o n w e t h i n k t h a t the a b s o l u t e v a l u e s of the line m e t h o d are m o r e r e l i a b l e , w h e r e a s for r e l a t i v e m e a s u r e m e n t s and for the d e t e r m i n a t i o n of the s t r e s s d e p e n d e n c e b o t h m e t h o d s are u s e f u l .
328
MEASUREMENT
OF D I S L O C A T I O N
DENSITY
1013 ,.10,.~2 // 40 m2 111 30 Ptot:ll.JlU l. //3 .
.
.
130 I
.
100J
111
Pwa[[= 9.1'
101o2.3
7ot
20
°
50" 40-
10
30-
7~
20"
/~82
V
1010"K2
3
lOO
PwQtt= 5.5' 1010
7 2
110
14, No.
Pwalt
Ptot
5 4
Vol.
%2.3
5 4
2'0
30 FIG.
3
10
50 70 MPo
%
,
v
20 30 FIG.
1
l
l
!
C~-
50 70 MPQ
2
D i s l o c a t i o n d e n s i t y averaged over the cell wall volume alone for the [lO0]-crystal (D) and for the [1ill-crystal (V).
D i s l o c a t i o n d e n s i t y averaged over the total v o l u m e for the [lO0]-crystal (O r i from (4)) and for the [111]-crystal (V).
C a l c u l a t i o n of the initial slope of the work h a r d e n i n g curves (5) gives for both c r y s t a l s with great a c c u r a c y the e x p e r i m e n t a l values if the d i s l o c a t i o n d e n s i t y e v a l u a t e d by the line m e t h o d is used (18). This supports as well the absolu t e values of this method as the T exponent. T h e r e f o r e we think that the absolute value of the line method is correct w i t h i n ~ 2 0 % whereas the accuracy of the point m e t h o d is ~ 5 0 % . Summary 1) At a given stress the d i s l o c a t i o n d e n s i t y of the [%11]-crystal is c l e a r l y h i g h e r than the one of the [100]-crystal~ by 3 8 % for Ptot and by 65 % for pwall- This in c o n t r a r y to the s u g g e s t i o n s of table 1. 2) The d i s l o c a t i o n d e n s i t y ptot which is an average over the total volume found to be p r o p o r t i o n a l to T 2 ± 0 . 1 This is in a g r e e m e n t with all former m e a s u r e m e n t s .
is
3) The d i s l o c a t i o n d e n s i t y ~wall in the cell walls is p r o p o r t i o n a l to T2.3 ± 0.1. This is in a c c o r d a n c e with t h e o r e t i c a l c o n s i d e r a t i o n s by Schoeck and F r y d m a n (9) and a s s u m p t i o n s by Basinski (10) and supports a basic feature of the model for the initial work h a r d e n i n g (5).
3
Vol
14,
No.
3
MEASUREHENT OF DISLOCATION DENSITY
329
References (~ (2
(3 (4 (5 (,~ (7 (S (9 (10 (11 ~12 t3 14
~5 16 17 18
Livingston, J.D. (1962). Acta Met., 10, 229. van Drunen, G. and S. Saimoto (1971). Acta Met., 19, 213. Ambrosi, P., E. Gottler and Ch. Schwink (1974). Scripta Met., ~, 1093~ G~ttler, E. (1973). Phil. Mag., 28, 1057. Schwink, Ch. and E. G~ttler (1976). Acta Met., 24, 173. R~nnpagel, D. and Ch. Schwink (1978). Acta Met., 26, 319.Here further ref. Smith, C.S. and L. Guttmann (1953). Trans. Met. Soc. AIME, 197, 81. Schoeck, G. (1962). J. Appl. Phys., 33, 1745. Schoeck, G. and R. Frydman (1972). phys. star. sol. (b), 53, 661. Basinski, Z.S. (1974). Scripta Met., ~, 1301. Kuhlmann-Wi!sdorf, D. (1962). Trans. Met. Soc. AIHE, 224, 1047. Hirsch, P.B. (1975). The Physics of Metals. Vol. 2, ed. by P.B. Hirsch, Cambridge U n i v e r s i t y Press, 189 ff. Basinski, Z.S. (1959). Phil. Hag., ~, 393. Hirsch, P.B. (1959). Internal stresses and fatigue in metals, ed. by G.M. Rassweiler and W.L.Grube, Elsevier, Amsterdam. 139 ff. Saada, G. (1960). Acta Met., ~, 841. Saada, G. (1961). Acta Met., ~, 166. Essmann, U. (1965). phys. star. sol., 12, 707. Ambrosi, P. (1980). Diss. TU Braunschweig. ~cknowledgement
The authors support.
wish
to thank the Deutsche
Forschungsgemeinschaft
for financial