Middle Cretaceous dinosaur assemblages from northern Brazil and northern Africa and their implications for northern Gondwanan composition

Middle Cretaceous dinosaur assemblages from northern Brazil and northern Africa and their implications for northern Gondwanan composition

Accepted Manuscript Middle Cretaceous dinosaur assemblages from northern Brazil and northern Africa and their implications for northern Gondwanan comp...

2MB Sizes 62 Downloads 182 Views

Accepted Manuscript Middle Cretaceous dinosaur assemblages from northern Brazil and northern Africa and their implications for northern Gondwanan composition Carlos Roberto A. Candeiro PII:

S0895-9811(14)00142-4

DOI:

10.1016/j.jsames.2014.10.005

Reference:

SAMES 1337

To appear in:

Journal of South American Earth Sciences

Received Date: 4 May 2014 Revised Date:

6 October 2014

Accepted Date: 19 October 2014

Please cite this article as: Candeiro, C.R.A., Middle Cretaceous dinosaur assemblages from northern Brazil and northern Africa and their implications for northern Gondwanan composition, Journal of South American Earth Sciences (2014), doi: 10.1016/j.jsames.2014.10.005. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1

ACCEPTED MANUSCRIPT Middle Cretaceous dinosaur assemblages from northern Brazil and northern Africa and their implications for northern Gondwanan composition

RI PT

Carlos Roberto A. Candeiro Laboratório de Geologia, Curso de Geografia, Campus Pontal, Universidade Federal de

SC

Uberlândia, Rua 20, n. 1.600, Bairro Tupã, Ituiutaba, Minas Gerais State, Brazil

Abstract

M AN U

Dinosaurs are one of the most dominant groups in Cretaceous reptilian faunas. A summary of their record in northern Brazil and northern Africa during the middle of the Cretaceous Period (Aptian-Cenomanian) is presented here. Dinosaurs are represented by 32 species (three ornithischians, six sauropods and 23 theropods) from Brazil, Egypt, Lybia, Morocco, Niger, Sudan and Tunisia. These dinosaur assemblages provide

TE D

fundamental data about distribution and composition of sauropods and theropods in northern Gondwana during the middle of the Cretaceous Period and confirm these

EP

assemblages to be among the most important dinosaur faunas in the north Gondwana areas.

AC C

Key-words: Gondwana, dinosaur faunas, Africa, Brazil, Cretaceous.

Introduction

The three major clades of dinosaurs (Ornithischia, Sauropoda and Theropoda)

were widespread and diverse during the middle of the Cretaceous Period in Gondwana. Cretaceous dinosaur assemblages have long been known from southern continents where appropriate rocks are exposed. This northern Gondwana dinosaur fauna has considerable potential for new discoveries (e.g., Brazil: Hauterivian Corda Formation

2

ACCEPTED MANUSCRIPT

in north Tocantins State; Albian Santana Formation in eastern Piauí State; Lybia: Aptian-Albian Chicla Formation; Sudan: Cenomanian Wadi Milk Formation). Gondwanan dinosaur records from these southern continents could foster an increased

RI PT

understanding of the global composition of the fauna during the middle Cretaceous Period.

This analysis is based on the dinosaur taxa in northern Brazil and northern

SC

Africa, which provide a significant amount of information on dinosaur faunas and allow an understanding of the composition of these assemblages from the Aptian to the

M AN U

Cenomanian on northern Gondwanan continents.

Gondwana paleobiogeography during the Cretaceous Period has been studied and analyzed by many geoscientists (e.g., Krause et al., 1997; Hay et al., 1999; Novas et al., 2005, Yoder and Nowak, 2006; Upchurch, 2008; Novas, 2009; Candeiro, 2010; Candeiro et al., 2011; Jacobs et al., 2011; Fanti, 2012; Fanti et al., 2012, 2013, 2014),

TE D

and northern Brazil and northern Africa are prominent topics of these studies due to the close similarities between their close geological and dinosaur faunal content. In this

EP

paper I review the northern Brazilian and African Cretaceous dinosaur fauna

AC C

distribution during the middle of the Cretaceous Period.

Methods

Extensive records were collected from the literature for three major dinosaur groups: ornithischians, sauropods and non-avian theropods. These clades represent the major dinosaur groups using a logical diversity and distribution of comparison. Geological and chronological data were obtained from Itapecuru Group (Rossetti and Truckenbrodt, 1997), Santana (Martill, 1993), Elrhaz and Echkar (Taquet, 1976), Wadi Milk (Werner, 1994), Bahariya (Catuneanu et al., 2006), Chicla (Barale et al., 1997; Barale and Ouaja,

3

ACCEPTED MANUSCRIPT

2002), Douiret and Ain El Guettar formations (Bouaziz et al., 1988; Bondin et al., 2010), and Kem Kem beds (Cavin et al., 2010).

RI PT

Cretaceous dinosaurs record from North Brazil and North Africa The dinosaur record (Fig. 1) analyzed here is restricted to continental middle Cretaceous rocks from Brazil, Egypt, Lybia, Morocco, Niger, Sudan and Tunisia. Most

SC

information on the middle Cretaceous dinosaur faunas of north Brazil and north Africa come from Albian and Cenomanian stages and, above all, from collection made of

M AN U

Albian-Early Cenomanian Itapecuru Group and Albian Santana in North Brazil; AptianAlbian Ain El Guettar Formation, Aptian-Albian Elrhaz Formation, Aptian-Albian Chicla Formation, Aptian Douret Formation, Early Cenomanian Bahariya, Cenomanian Wadi Milk Formation and Cenomanian Kem Kem beds in North Africa. On the tectonic divisions, North Brazil and North Africa belong to the same ancient Gondwana plate,

TE D

and this is also supported by Cretaceous dinosaur content.

AC C

EP

------------------------------------- Figure 1 near here

North Brazil

Santana Formation (Arapipe Basin, sensu Martill, 1993) The Albian Santana Formation has produced only theropod records with two

described spinosaurid species and some additional postcranial remains (Kellner 1996; Kellner and Campos 1996; Martill et al., 1996; Sues et al., 2002; Bittencourt and Kellner 2004; Machado and Kellner, 2005). Irritator challengeri Martill, Cruickshank, Frey, Small and Clarke, 1996 was first described based on a partial skull from the

4

ACCEPTED MANUSCRIPT

Santana Formation. Later, I. challengeri was considered a senior synonym of Angaturama limai by Charig and Milner (1997), and Sereno et al. (1998) confirmed it as a spinosaurid species (Sues et al., 2002). Frey and Martill (1995) described a sacrum

RI PT

and assigned it to Oviraptorosauria indet., but it has been later suggested that this theropod needs to be revised (Makovicky and Sues 1998; Kellner 1996; Agnolin and Martinelli, 2007). The small-bodied Santanaraptor placidus Kellner, 1999 was

SC

atributed by Holtz (2004) and Porfiri et al. (2014) to Tyrannosauroidea. Mirischia asymmetrica Naish, Martill and Frey, 2004 was described as the first Brazilian

M AN U

Compsognathidae from the Santana Formation, based on incomplete skeletal remains.

Itapecuru Group (Rossetti and Truckenbrodt, 1997)

The Itapecuru Group (Albian age “Undifferentiated Unit” and Early Cenomanian Alcântara; Rossetti and Truckenbrodt, 1997) dinosaur fauna is composed

TE D

of sauropods and theropods and a possible ornithischian record (Avilla et al., 2003; Candeiro et al., 2011). The sauropod dinosaur fauna recorded from the Albian

EP

“Undifferentiated Unit” includes the diplodocoid Amazonsaurus maranhensis Carvalho, Avilla and Salgado, 2003 and Titanosauria indet. (Castro et al. 2007; Lindoso et al.,

AC C

2013). From the Early Cenomanian Alcântara Formation, large-bodied theropods are represented by the spinosaurid Oxalaia quilombesis Kellner, Azevedo, Machado, Carvalho and Henriques, 2011, Carcharodontosaurus sp., Spinosaurus sp. (Medeiros et al., 2014), and Baryonychinae indet. (Furtado and Candeiro, 2009a, 2009b). An isolated vertebra atributted to Sigilmassasaurus brevicollis Russel, 1996 was briefly described by Medeiros and Schultz (2002), but this Brazilian record needs to be revised and will probably be assigned to Spinosauridae indet. (Bradley Mcfeeters pers. comm.). Small theropod dinosaurs are represented by Dromaeosauridae indet. that have been recently

5

ACCEPTED MANUSCRIPT

confirmed by Medeiros et al. (2014) as cf. Masiakasaurus (Lindoso et al., 2012). The sauropod dinosaur fauna recorded from this unit includes the rebbachisaurid cf. Limaysaurus (Medeiros and Schultz, 2004; Medeiros et al., 2014) and Diplodocoidea

North Africa Egypt Bahariya Formation (Catuneanu et al., 2006)

SC

RI PT

indet. (Medeiros and Shultz, 2004).

M AN U

The dinosaur fauna of the Egypt comes from Early Cenomanian Bahariya Formation (Catuneanu et al., 2006; Le Loeuff et al., 2012) and includes titanosaurs, ceratosaurs, and tetanuran theropods; titanosaurians are represented by Aegyptosaurus baharijensis Stromer, 1932 and Paralititan stromeri Smith, Lamanna, Lacovara, Dodson, Smith, Poole, Giegengack and Attia, 2001. Large-bodied theropods have also

TE D

been reported from Bahariya Formation: ceratosaurian Bahariasaurus ingens Stromer, 1934, the carcharodontosaurid Carcharodontosaurus saharicus Stromer, 1931, and the

EP

spinosaurid Spinosaurus aegyptiacus Stromer, 1915.

AC C

Lybia

Chicla Formation (Barale et al., 1997; Barale and Ouaja, 2002) The Aptian-Albian Chicla Formation (Barale et al., 1997; Barale and Ouaja,

2002) dinosaur record is poorly known. However, Smith and Dalla Vechia (2006) described abelisaurid teeth that resemble Indosuchus, and confirmed the fossiliferous character of this unit.

Morroco

6

ACCEPTED MANUSCRIPT Kem Kem beds (Cavin et al., 2010)

The Cenomanian Kem Kem beds (Cavin et al., 2010) have a remarkable dinosaur record, especially with respect to theropods. Among sauropods, the taxa present include

RI PT

the diplodocoid Rebbachisaurus garasbae Lavocat, 1954, Somphosponyli indet. (Mannion and Barrett, 2013; Lamanna and Hasegawa, 2014), Rebbachsauridae indet. (Mannion and Barrett, 2013), and Lithostrotia indet. (Cavin et al., 2010). From these

SC

beds, the giant theropods are represented by the Deltadromeus agilis Sereno et al. 1996 (ceratosaur sensu Carrano and Sampson, 2002, 2008; Wilson et al., 2003; Sereno et al., abelisaurid

cf.

Majungasaurus

(Russell,

1996),

carcharodontosaurids

M AN U

2004),

Carcharodontosaurus saharicus Stromer, 1931 (Sereno et al., 1996; Brusatte and Sereno, 2007) and Sauroniops pachytholus Cau, Dalla Vecchia and Fabbri, 2013, spinosaurid Spinosaurus cf. aegyptiacus described by Dal Sasso et al. (2005), spinosaurid Sigilmassasaurus brevicollis Russell, 1996 (Evers et al., 2012) and

TE D

indeterminate teeth of Abelisauridae, Carcharodontosauridae (Richter et al., 2013) and Dromaeosauridae indet. (Amiot et al., 2004; Richter et al., 2013). Spinosaurus

EP

maroccanus was described by Russel (1996), but Sereno et al. (1998) and Dal Sasso et al. (2005) considered it a nomen dubium. Recently, Evans et al. (2014) described a

AC C

small-bodied Averostra indet. and Noasauridae indet. from Morrocan Kem Kem beds, and McFeeters (2013) reported Noasauridae indet. and na Saurischia incertae sedis. Several ornithischian, sauropod and theropod tracks have been found in this fossiliferous unit (Ibrahim et al., 2014).

Niger Elrhaz Formation (Taquet, 1976)

7

ACCEPTED MANUSCRIPT

The Nigerian Aptian-Albian Elrhaz Formation (Taquet, 1976) is an representative geological unit from the middle Creteaceous of northern Gondwana, with ornithischians and saurischians in the dinosaur fauna. The herbivorous dinosaurs

RI PT

include the dryosaurid Valdosaurus nigeriensis Galton and Taquet, 1982 (according Galton, 2009), ornithopod Lurdusaurus arenatus Taquet and Russell, 1999 (McDonald et al., 20012), Ouranosaurus nigeriensis Taquet, 1976, and the rebbachisaurid

SC

Nigersaurus taqueti Sereno, Beck, Dutheil, Larsson, Lyon, Moussa, Sadleir, Sidor, Varricchio, Wilson and Wilson, 1999. The most common theropods from the Elrhaz

Brusatte,

2008,

Rugops

primus

M AN U

Formation are large-bodied theropods: the abelisaurid Kryptops palaios Sereno and Sereno,

Wilson

and

Conrad,

2004,

the

carcharodontosaurid Eocarcharia dinops Sereno and Brussate, 2008, and the spinosaurid Suchomimus tenerensis Sereno, Beck, Dutheil, Gado, Larsson, Lyon, Marcot, Rauhut, Sadleir, Sidro, Varricchio, Wilson and Wilson, 1998. However, S.

TE D

tenerensis was redefined as Baryonyx tenerensis by Hutt and Newbery (2004). Cristatusaurus lapparenti Taquet and Russell, 1998 is known from fragmentary

AC C

dubium.

EP

material, but Sereno et al. (1998) and Sues et al. (2002) consider this species a nomen

Echkar Formation (Taquet, 1976) The Echkar Formation, from the Tegama Series unit, is a geological formation

of Cenomanian age (Taquet, 1976) that have records of sauropods and theropods. The sauropod record is represented by Rebbachisauridae indet. and Titanosauriformes indet. (Sereno et al., 2004). The large abelisaurid Rugops primus Sereno, Wilson and Conrad, 2004, and the tetantuans Carcharodontosaurus iguidensis Brusatte and Sereno 2007,

8

ACCEPTED MANUSCRIPT

Sigilmassasaurus cf. brevicollis (McFeeters et al. 2013), and Spinosaurus sp. (Sereno et al., 2004) were also reported in the Echkar Formation.

Wadi Milk Formation (Werner, 1994)

RI PT

Sudan

Most dinosaur specimens collected from the Cenomanian Wadi Milk Formation

SC

(Werner, 1994) in Sudan are fragmentary materials which were described as cf. Ouranosaurus, Dicraeosauridae indet., Lithostrotia indet., Bahariasaurus sp.,

M AN U

Carcharodontosaurus sp., and Dromaeosauridae indet. (Weishampel et al., 1990, 2004; Rauhut and Werner, 1995; Rauhut, 1999).

Tunisia

Douiret and Ain El Guettar formations (Bouaziz et al., 1988; Bodin et al., 2010)

TE D

The fossiliferous potential of the Tunisia Early Cretaceous units is highly significant. The dinosaur record comes from Aptian Douiret and Aptian-Albian Ain El

EP

Guettar formations of the Tataouine Basin. Dinosaur records from the Early Aptian Douiret Formation (Bouaziz et al., 1988) are represented by Ornithischia indet. (Benton

AC C

et al., 2000) and Carcharodontosaurus sp. (Srarfi et al., 2004). Two members from the Ain El Guettar Formation can be distinguished (Bodin et al., 2010), the lower one, the Aptian Chenini Member, and the upper one, the Early Albian Oum ed Diab (Fanti et al., 2012). The Chenini Member dinosaur records are represented by Carcharodontosaurus sp. (Srarfi et al., 2004), Spinosaurus sp., Abelisauridae indet., Rebbachisauridae indet., and Iguanodontidae indet. described by Fanti et al. (2012). The Early Albian Oum Ed Diab Member dinosaur fauna consists of the Ornithopoda indet., Rebbachisauidae indet., the rebbachisaurid Tataouinea hannibalis Fanti, Cau, Hassine and Contessi,

9

ACCEPTED MANUSCRIPT

2012, and the large-bodied theropods Carcharodontosaurus saharicus (Sereno and Brusatte, 2008), Spinosaurus sp. (Russell, 1998; Buffetaut and Ouaja, 2002), and Abelisauridae indet. (Fanti et al., 2012). Fanti et al. (2014) recently described a diverse

RI PT

theropod assemblage from Ain El Guettar beds represented by specimens of Carcharodontosaurus sp., Spinosaurus sp., Baryonichiane indet., Abelisauridae indet.,

SC

and Theropoda indet.

M AN U

Discussion

The dinosaur diversity presented here occurs in twelve lithostratigraphic units distributed over two large continents (Africa and South America) (see Fig. 1 and Box. 1).

The middle Cretaceous North Gondwanan assemblage is commonly found in

TE D

northern African and Brazilian strata. The age of these dinosaur-bearing units ranges from Aptian to Cenomanian. This assemblage is characterized by the co-occurrence of

EP

Pangean (diplodocoid, compsognathid and tyrannosauroid) and Gondwanan (abelisaurid and carcharodontosaurid) dinosaur taxa. This implies that elements of clades dispersed

AC C

from Laurasia during the Early Cretaceous (e.g., the rebbachisaurid Amazonzaurus maranhensis – according Gallina et al., 2014 the compsognathid Myrischia asymmetrica). Nevertheless, taxa such as Rebbachisauridae and Carcharodontosaurinae do not have records outside Gondwana, which suggests a low Gondwanan endemism during the middle Cretaceous. These latter endemic clades include rebbachisaurid (Rebbachisaurus garasbae, cf. Limaysaurus) sauropods; basal titanosauriforms (Aegyptosaurus baharijensis); and basal abelisaurids (Rugops primus). Most of the North Gondwanan dinosaur fauna has been used to suggest certain similarities with the

10

ACCEPTED MANUSCRIPT

middle Cretaceous Patagonian fauna (Coria and Salgado, 2005; Ibiricu et al., 2012). However, although records of titanosaurians were also found in the Itapecuru Group and Bahariya Fomation, this taxon is not a good indicator to distinguish the assemblages

RI PT

from these deposits from Patagonia and northern Gondwana assemblages. The presence in northern Brazilian and northern African geological units of latest basal Titanosauria (A. baharijensis and P. stromeri; Stromer, 1932; Smith et al.,

SC

2001), carcharodontosaurids (Carcharodontosaurus saharicus, Eoacarcharia dinops, Carcharodontosaurus sp.; Stromer, 1931; Sereno et al., 1998; Rauhut, 1999; Srarfi et

M AN U

al., 2004; Sereno and Brussate, 2008) and spinosaurids (Irritator challengeri, Baryonyx tenerensis, Spinosaurus aegyptiacus, Spinosaurus cf. aegyptiacus, Oxalaia quilombesis and Spinosaurus sp.; Stromer, 1915; Martill et al., 1996; Sereno et al., 1998; Buffetaut and Oueja, 2002; Dal Sasso et al. 2005; Medeiros, 2006; Kellner et al., 2011; Medeiros et al., 2014) greatly indicates that some of these taxa were part of the Laurasian fauna.

TE D

Oviraptorosaurs have not been found in northern Africa, but there are records in Brazil. However, Maniraptora are present in Aptian-Cenomanian rocks from Niger,

EP

Sudan, and Morocco (Rauhut and Werner, 1995; Amiot et al., 2004; Richter et al., 2013). The main middle Cretaceous North Gondwana theropod records are giant

AC C

abelisaurids, carcharodontosaurids, and spinosaurids. Northern Gondwanan dinosaur distribution and diversity have basic similarities

among middle Cretaceous dinosaur-bearing deposits from northern Brazil and northern Africa (Amiot et al., 2004; Cavin et al., 2010; Candeiro et al., 2011; Fanti et al., 2012; Medeiros et al., 2014). The presense of the large theropod carcharodontosaurds Carcharodontosaurus

saharicus

and

Carcharodontosaurus

sp.,

spinosaurid

Spinosaurus aegyptiacus and Spinosaurus sp., and distinctive caudal vertebrae possibly belonging to the tetanuran Sigilmassasaurus brevicollis in the diferent areas of northern

11

ACCEPTED MANUSCRIPT

Gondwana reinforces this faunal similarity (Box 1). The most significant aspect of this assemblage of middle Cretaceous large-bodied theropods is the endemism of the large dinosaur fauna during this time. The more primitive, endemic taxa of the Early

RI PT

Cretaceous did not persist into the early Late Cretaceous (e.g., Dicraeosauridae, Carcharodontosauridae, and Spinosauridae). Similarly, there is limited evidence that carcharodontosaurids and spinosaurids, the dominant large theropods of the Aptian-

SC

Cenomanian of North Gondwana (Fig. 2), developed large body sizes and were the top dinosaur predators during the earlier Aptian (Ain El Guettar Formation). The large-

M AN U

bodied theropods of the middle Cretaceous recorded in southern South America (e.g., Neuquén and San Jorge basins, Lamanna et al., 2002, Leanza et al., 2004, Novas et al., 2013; Bauru Group, Candeiro et al., 2006, Bittencourt and Langer, 2011) belonged to the same theropod dinosaur clades that dominated as predators during this late Early and Late Cretaceous. This is not surprising in North Gondwana because it was physically

TE D

linked to other southern continents during the Early Cretaceous (Canudo et al., 2009; Fanti, 2012). Gondwanan sauropods (Rebbachisaurus, Limaysaurus) and abelisaurids

EP

(cf. Masikiasaurus, Indosuchus sp., cf. Majungasaurus; Russell, 1996; Smith and Dalla Vecchia, 2006; Lindoso et al., 2012) represent members of probable edemic taxa during

AC C

the mid-Late Cretaceous that have been recorded in the Late Cretaceous (Maastrichtian Masiakasaurus and Majungasaurus in Madagascar, and Indosuchus in India).

---------------------------------------------Box 1 near here

-----------------------------------------Figure 2 near here

12

ACCEPTED MANUSCRIPT Conclusions

The middle Cretaceous dinosaur fauna from northern Gondwana represent important records to studies of paleogeography and paleodiversity of the Gondwanan

RI PT

fauna. Although northern Brazil and northern Africa dinosaurs from middle Cretaceous show close similarities, these faunas remain poorly understood.

The affinities of the middle Cretaceous taxa that occur in nine dinosaur-bearing

SC

geological units from northern Africa and northern Brazil suggest that a basically homogenous faunal assemblage was present on northern Gondwana during the Aptian

M AN U

to the Cenomanian. These dinosaur deposits do not present a complete faunal isolation of Laurasia and Gondwana (e.g., such as Europe and southern America). Therefore, it is possible that by the early Cretaceous there was little paleobiogeograhic barriers for dinosaurs to substantially speciate into a wide variety of taxa.

According to the current information on the distribution and diversity of the

TE D

dinosaur record, the faunal composition of the northern Gondwana fauna seems to be correlated with the evolution of the diplodocoid, abelisaurid, carcharodontosaurid, and

EP

spinosaurid dinosaurs. However, there are still unknown aspects of the middle Cretaceous dinosaur fauna, and there is a seemingly low effort to conduct prospecting

AC C

and collection of more fossil materials. Thus, in order to advance in the knowledge of dinosaur faunas from North Gondwana it is crucial to conduct more studies with integrated paleontological work on this field.

Acknowledgements The author would like to especially thank Michael D´Emic (State University of Stony Book, New Yor, USA) for his friendship and contributions on this article. I also acknowledge two anonymous for all suggested improvements to this paper, and to

13

ACCEPTED MANUSCRIPT

Bradley McFeeters (Carleton University/Canada) and Camila Bernardes (Universidade Federal do Estado do Rio de Janeiro) by comments and grammar improved. This contribution was partially supported by the Conselho Nacional de Ciência e Tecnologia

RI PT

Candeiro by Produtividade Pesquisa CNPq fellow.

SC

References

Agnolín, F.L., Martinelli, A.G., 2007. Did oviraptorosaurs (Dinosauria: Theropoda)

M AN U

inhabit Argentina?. Cretaceous Research 28, 785–790.

Amiot, R., Buffetaut, E., Tong, H., Boudad, L., Kabiri, L., 2004. Isolated theropod teeth from the Cenomanian of Morocco and their palaebiogeographical significance. Revue Paleobiologie 9, 143–149.

Avilla, LS., Candeiro, C.R.A., Abrantes, E.A.L., 2003. Ornithischian remains from the

TE D

Lower Cretaceous of Brazil and its paleobiogeographic implications. In: III Simpósio Brasileiro de Paleontologia de Vertebrados. Rio de Janeiro, Brasil. p. 14.

EP

Barale, G., Ouaja, M., 2002. La biodiversite vegetale des gisements d’age jurassique superieur-cretace inferieur de Merbah el Asfer (Sud-Tunisien). Cretaceous

AC C

Research 23, 707–737.

Barale, G., Philippe, M., Tayech-Mannai, B., Zarbout, M., 1997. Decouverte d’une flore a Pteridophytes et Gymnospermes dans Le Cretace inferieur de la region de Tataouine (Sud tunisien). Comptes Rendus de l'Académie des Sciences II. 325, 221–224. Benton M., Bouaziz S., Buffetaut E., Martill D., Ouaja M., Soussi M., Trueman C., 2000. Dinosaurs and other fossil vertebrates from fluvial deposits in the Lower

14

ACCEPTED MANUSCRIPT Cretaceous

of

southern

Tunisia.

Palaeogeography,

Palaeoclimatology,

Palaeoecology 157, 227–246. Bittencourt, J.S., Kellner, A.W.A., 2004. On a sequence of sacrocaudal theropod

Brazil. Arquivos do Museu Nacional 62, 309–320.

RI PT

dinosaur vertebrae from the Lower Cretaceous Santana Formation, northeastern

Bittencourt, J.S., Langer, M.C., 2011. Mesozoic dinosaurs from Brazil and their

SC

biogeographic implications. Anais da Academia Brasileira de Ciências 83, 23-60. Bodin, S., Petitpierre, L., Wood, J., Elkanouni, I., Redfern, J., 2010. Timing of early to

M AN U

mid Cetaceous tectonic phases along North Africa: New insights from the Jeffara escarpment (Libya–Tunisia). Journal African Earth Science 58, 489-506. Bouaziz, S., Buffetaut, E., Ghanmi, M., Jaeger, J.J., Martin, M., Mazin, J.M., Tong, H., 1988. Nouvelles découvertes de vertébrés fossiles dans l’Albien du Sud Tunisien. Bulletin de la Societe Geologique de France 4, 335–339.

TE D

Buffetaut, E., Ouaja, M., 2002. A new specimen of Spinosaurus (Dinosauria, Theropoda) from the Lower Cretaceous of Tunisia, with remarks on the

EP

evolutionary history of the spinosauriae. Bulletin de la Societe Geologique de France 173 (5), 415-421.

AC C

Candeiro, C.R.A., 2010. Record of the Late Cretaceous South American genus Aeolosaurus (Sauropoda, Titanosauria): Paleogeographical implications. Estudios Geologicos 66, 243-253.

Candeiro, C.R.A., Fanti, F., Therrien, F., Lamanna, M.C., 2011. Continental fossil vertebrates from the mid-Cretaceous (Albian-Cenomanian) Alcântara Formation, Brazil, and their relationship with contemporaneous faunas from North Africa. Journal African Earth Science 60, 79-92.

15

ACCEPTED MANUSCRIPT

Candeiro, C.R.A., Martinelli, A.G., Avilla, L.S., Rich, T., 2006. Tetrapods from the Upper Cretaceous (Turonian-Maastrichtian) Bauru Group of Brazil: a reappraisal. Cretaceous Research 27, 923–946.

RI PT

Canudo, J.I., Barco, J.L., Pereda-Suberbiola, X., Ruiz-Omeñaca, J.I., Salgado, L., Torcida Fernández-Baldor, F., Gasulla, J.M., 2009. What Iberian dinosaurs reveal about the bridge said to exist between Gondwana and Laurasia in the Early

SC

Cretaceous. Bulletin de la Societe Geologique de France 180, 5-11.

Carrano, M.T., Sampson, S.D., 2002. Ceratosaurs: a global perspective. Journal of

M AN U

Vertebrate Paleontology 22(3, suppl.), 41A.

Carrano, M.T., Sampson, S.D., 2008. The Phylogeny of Ceratosauria (Dinosauria: Theropoda). Journal of Systematic Palaeontology 6(2), 183–236 Carvalho, I.S., Avilla, L.S., Salgado, L., 2003. Amazonsaurus maranhensis gen. et sp. nov. (Sauropoda, Diplodocoidea) from the Lower Cretaceous (Aptian-Albian) of

TE D

Brazil. Cretaceous Research 24, 697–713. Castro, D.F., Bertini, Santucci, R.M., Medeiros, M.A., 2007. Sauropods of the Itapecuru

EP

Group (Lower/Middle Albian), São Luis-Grajaú Basin, Maranhão State, Brazil. Revista Brasileira de Paleontologia 10, 195–200.

AC C

Catuneanu, O., Khalifa, M.A. and Wanas, H.A., 2006. Sequence stratigraphy of the Lower Cenomanian Bahariya Formation, Bahariya Oasis, Western Desert, Egypt. Sedimentary Geology 190, 121-137.

Cavin, L., Tong, H., Boudad, L., Meister, C., Piuz, A., Tabouelle, J., Aarab, M., Amiot, R., Buffetaut, E., Dyke, G., Hua, S., Le Loeuff, J., 2010. Vertebrate assemblages from the early Late Cretaceous of southeastern Morocco: an overview. Journal African Earth Science 57, 391–412.

16

ACCEPTED MANUSCRIPT

Coria, R.A., Salgado, L., 2005. Mid-Cretaceous turnover of saurischian dinosaur communities: evidence from the Neuquén Basin. In: Veiga, G.D., Spalletti, L.A., Howell, J.A., Schwarz, E. (Eds.), The Neuquén Basin, Argentina: A Case Study in

RI PT

Sequence Stratigraphy and Basin Dynamics. Geological Society, London, Special Publication 252, 317-327.

Dal Sasso, C., Maganuco, S., Buffetaut, E., Mendez, M.A., 2005. New information on

SC

the skull of the enigmatic theropod Spinosaurus, with remarks on its sizes and affinities. Journal of Vertebrate Paleontology 25, 4, 888–896.

M AN U

Evers, S.W., Rauhut, O.W., Milner, A.C., 2012. Was Stromer right? The affinities of Sigilmassasaurus brevicollis (Theropoda, Tetanurae). Journal of Vertebrate Paleontology (suppl.) p. 91.

Ezcurra, M.D., Agnolin, F., 2012. A New Global Palaeobiogeographical Model for the Late Mesozoic and Early Tertiary. Systematic Biology 61, 1-14.

TE D

Fanti, F., 2012. Cretaceous continental bridges, insularity, and vicariance in the southern hemisphere: which route did dinosaurs take? In: Talent J. (Ed.), Earth and Life:

EP

Global biodiversity, extinction intervals and biogeographic perturbation trough time. Springer, 883-911.

AC C

Fanti, F., Cau, A., Hassine, M., 2014. Evidence of titanosauriforms and rebbachisaurids (Dinosauria: Sauropoda) from the Early Cretaceous of Tunisia. Journal African Earth Science 90, 1-8.

Fanti, F., Cau, A., Hassine, M., Contessi, M. 2013. A new sauropod dinosaur from the Early Cretaceous of Tunisia with extreme avian-like pneumatisation. Nature Communications 4, 2080.

17

ACCEPTED MANUSCRIPT

Fanti, F., Contessi, M., Franchi, F., 2012: The “Continental Intercalaire” of southern Tunisia: stratigraphy, paleontology, and paleoecology. Journal African Earth Science 73-74, 1-23.

RI PT

Frey, E., Martill, D.M., 1995. A possible oviraptorosaurid theropod from the Santa Formation (Lower Cretaceous, ?Albian) of Brazil. Neues Jahrbuch für Geologie und Paläontologie P. 7, 397–412.

SC

Furtado, M.R., Candeiro, C.R.A., 2009a. The spinosauroid worldwide species and their paleogeographic implications. Ameghiniana 46 (Suppl. 4), 26R.

M AN U

Furtado, M.R., Candeiro, C.R.A., 2009b. First Baryonychinae record in Brazil. Ameghiniana 46 (Suppl. 4), 27R.

Galton, P.M., 2009. Notes on Neocomian (Late Cretaceous) ornithopod dinosaurs from England – Hypsilophodon, Valdosaurus, “Camptosaurus”, “Iguanodon” – and

211–273.

TE D

referred specimens from Romania and elsewhere. Revue de Paléobiologie 28(1),

Gallina P.A., Apesteguía S., Haluza A., Canale J.I., 2014. A Diplodocid Sauropod

EP

Survivor from the Early Cretaceous of South America. PLoS One 9 (5), e97128. Hay, W.W., DeConto, R.M., Wold, C.N., Wilson, K.M., Voigt, S., Schulz, M., Wold,

AC C

A.R., Dullo, W.C., Ronov, A.B., Balukhovsky, A.N., Söding, E., 1999. Alternative global Cretaceous paleogeography. In Evolution of the Cretaceous Ocean Climate System, Barrera, E., Johnson, C.C., (Ed.), Cretaceous ocean/climate systems. Geological Society of American Special Paper, Boulder, CO, pp. 1-47.

Holz JR T., 2004. Tyrannosauroidea. In: Weishampel, D.B., Dodson, P., Osmolka, H. H (Eds), The Dinosauria, 2nd ed., Berkeley: University of California, pp. 111–136.

18

ACCEPTED MANUSCRIPT

Hutt, S., and Newberry, P., 2004. A new look at Baryonyx walkeri (Charig and Milner, 1986) based upon a recent fossil find from the Wealden. The Annual Symposium of Vertebrate Palaeontology and Comparative Anatomy, online abstracts.

RI PT

Ibiricu, L.M., Casal, G.C., Lamanna, M.C., Martínez, R.D., Harris, J.D., Lacovara, K., 2012. The southernmost records of Rebbachisauridae (Sauropoda: Diplodocoidea), from early Late Cretaceous deposits in central Patagonia. Cretaceous Research 34,

SC

220–232.

Ibrahim, N., Varricchio, D., Sereno, P.C., Wilson, J.A., Dutheil, D.B., Martill, D.M.,

M AN U

Baidder, L., Zouhri, S., 1024. Dinosaur Footprints and Other Ichnofauna from the Cretaceous Kem Kem Beds of Morocco. PLoS One 9 (3), e90751. Jacobs, L.L., Strganac, C., Scotese, C.R. 2011. Plate motions, Gondwana dinosaurs, Noah's Arks, Beached Viking Funeral Ships, ghost ships, and landspans. Anais da Academia Brasileira de Ciências 83, 3–22.

TE D

Kellner, A.W.A., 1996. Remarks on Brazilian dinosaurs. Memoirs of the Queensland Museum 39, 611–626.

EP

Kellner, A.W.A., Azevedo, S.A.K., Machado, E.B., Carvalho, L.B., Henriques, D.D.R., 2011. A new dinosaur (Theropoda, Spinosauridae) from the Cretaceous

AC C

(Cenomanian) Alcântara Formation, Cajual Island, Brazil. Anais da Academia Brasileira de Ciências 83, 99-108.

Kellner, A.W.A., Campos, D.A., 1996. First Early Cretaceous theropod dinosaur from Brazil with comments on Spinosauridae. Neues Jahrbuch für Geologie und Paläontologie199 (2), 151-166.

Krause, D.W., Prasad G.V.R., von Koenigswald W., Sahni, A., Grine, F.E., 1997. Cosmopolitanism among Gondwanan Late Cretaceous mammals. Nature 390, 504507.

19

ACCEPTED MANUSCRIPT

Lamanna, M.C., Hasegawa, Y., 2014. New titanosauriform sauropod dinosaur material from the Cenomanian of Morocco: implications for paleoecology and sauropod diversity in the Late Cretaceous of North Africa. Bulletin of Gunma Museum of

RI PT

Natural History 18, 1-19. Lamanna, M.C., Martínez, R.D., Smith, J.B., 2002. A definitive abelisaurid theropod dinosaur from the early Late Cretaceous of Patagonia. Journal of Vertebrate

SC

Paleontology 22 (1), 58–69.

Le Loeuff, J., Lang, E., Cavin, L., Buffetaut, E., 2012. Between Tendaguru and

M AN U

Bahariya: on the age of the Early Cretaceous Dinosaurs sites from the Continental Intercalaire and other African formations. Journal of Stratigraphy 36 (1), 1-18. Leanza, H.A., Apesteguia, S., Novas, F.E., de la Fuente, M.S., 2004. Cretaceous terrestrial beds from the Neuquén Basin (Argentina) and their tetrapod assemblages. Cretaceous Research 25 (1), 61-87.

TE D

Lindoso, R.M., Marinho, T.S., Santucci, R.M., Medeiros, M.A., Carvalho, I.S., 2013. A titanosaur (Dinosauria: Sauropoda) osteoderm from the Alcântara Formation

48.

EP

(Cenomanian), São Luís Basin, Northeastern Brazil. Cretaceous Research 45, 43-

AC C

Lindoso, R.M., Medeiros, M.A.A., Carvalho, I.S., Marinho, T.S., 2012. Masiakasauruslike theropod teeth from the Alcântara Formation, São Luís Basin (Cenomanian), northeastern Brazil. Cretaceous Research 36, 119-124.

Machado, E.B., Kellner, A.W.A., 2005. Notas sobre Spinosauridae (Theropoda, Dinosauria). Anuário do Instituto de Geociências 28, 158–173. Makovicky, P.J., Apesteguía, S., Agnolín, F.L. 2005. The earliest dromaeosaurid theropod from South America. Nature 437, 1007–1011.

20

ACCEPTED MANUSCRIPT

Makovicky, P.J., Sues, H.D., 1998. Anatomy and phylogenetic relationships of the theropod dinosaur Microvenator celer from the Lower Cretaceous of Montana. American Museum Novitates3240, 1-27.

Cenomanian

(early

Late

Cretaceous)

Kem

RI PT

Mannion, PD., Barrett, P.M., 2013. Additions to the sauropod dinosaur fauna of the Kem

beds

of

Morocco:

Palaeobiogeographical implications of the mid-Cretaceous African sauropod fossil

SC

record. Cretaceous Research 45, 49-59.

Martill, D., 1993. Fossils of the Santana and Crato Formations, Brazil. Londres: The

M AN U

Palaeontological Association, Field Guide to Fossil 5, pp. 1-159.

Martill, D.M., Cruickshank A.R.I., Frey, E., Small, P.G., Clarke, M., 1996. A new crested maniraptoran dinosaur from the Santana Formation (Lower Cretaceous) of Brazil. Journal of the Geological Society 153, 5–8.

TE D

McDonald, A.T., Espílez, E., Mampel, L., Kirkland, J.I., Alcalá, L., 2012. An unusual new basal iguanodont (Dinosauria: Ornithopoda) from the Lower Cretaceous of Teruel, Spain. Zootaxa (3595): 61–76.

EP

McFeeters, B., 2013. Bone "taxon" B: Reevaluation of a supposed small theropod dinosaur from the mid-Cretaceous of Morocco. Kirtlandia 58, 38-41.

AC C

McFeeters, B., Ryan, M.J., Hinic-Frlog, S., Schröder-Adams, C.J., 2013. A reevaluation of Sigilmassasaurus brevicollis (Dinosauria) from the Cretaceous of Morocco.

Canadian Journal of Earth Sciences 50 (6), 636-649.

Medeiros, M.A., Lindoso, R.M., Mendes, I.D., Carvalho, I.S., 2014. The Cretaceous (Cenomanian) continental record of the Laje do Coringa flagstone, (Alcântara Formation), Northeastern South America. Journal of South American Earth Science 53, 50-58.

21

ACCEPTED MANUSCRIPT

Medeiros, M.A., Schultz, C.L., 2002. A fauna dinossauriana da "Laje do Coringa", Cretáceo Médio do nordeste do Brasil. Arquivos do Museu Nacional 60 (3), 155162.

RI PT

Medeiros, M.A., Schultz, C.L., 2004. Rayososaurus (Sauropoda, Diplodocoidea) no meso-Cretáceo do norte-nordeste brasileiro. Revista Brasileira de Paleontologia 7 , 275-279.

SC

Medeiros, M.A.A., 2006. Large theropod teeth from the Eocenomanian of northeastern Brazil and the occurence of Spinosauridae. Revista Brasileira de Paleontologia 9,

M AN U

333-338.

Novas, F. E., Agnolín, F. L., Ezcurra, M. D., Porfiri, J., Canale, J.I., 2013. Evolution of the carnivorous dinosaurs during the Cretaceous: the evidence from Patagonia. Cretaceous Research 45, 174–215.

Novas, F.E., 2009. The Age of Dinosaurs in South America. Bloomington: Indiana

TE D

University Press, 452 p.

Novas, F.E., de Valais, S., Vickers-Rich, P., Rich, T., 2005. A large Cretaceous

EP

theropod from Patagonia, Argentina, and the evolution of carcharodontosaurids. Naturwissenschaften 92 (5), 226–230.

AC C

Porfiri, J.D., Novas, F.E., Calvo, J.O., Agnolín, F.L., Ezcurra, M.D., Cerda, I.A., 2014. Juvenile specimen of Megaraptor (Dinosauria, Theropoda) sheds light about

tyrannosauroid radiation. , Cretaceous Research 51, 35-55.

Rauhut, O.W.M., 1999. A dinosaur fauna from the Upper Cretaceous (Cenomanian) of northern Sudan. Palaeontologia Africana 35, 61-84. Rauhut, O.W.M., Werner, C., 1995. First record of the family Dromaeosauridae (Dinosauria: Theropoda) in the Cretaceous of Gondwana (Wadi Milk Formation, northern Sudan). Paläontologische Zeitschrift 69 (3/4), 475-489.

22

ACCEPTED MANUSCRIPT

Richter, U., Mudroch, A.; Buckley, L.G., 2013. Isolated theropod teeth from the Kem Kem Beds (Early Cenomanian) near Taouz, Morocco. Paläontologische Zeitschrift 87 (2), 291–309.

RI PT

Rossetti, D.F., Truckenbrodt, W., 1997. Revisão estratigráfica para os depósitos do Albiano–Terciario Inferior (?) na Bacia de São Luís (MA), norte do Brasil. Boletim do Museu Paraense Emílio Goeldi, Série Ciências da Terra 9, 29–41.

SC

Russell, D.A., 1996. Isolated dinosaur bones from the middle Cretaceous of the Tafilalt, Morocco. Bulletin du Museum National d'Histoire Naturelle 18, 349–402.

M AN U

Russell, D.A., 1998. New data on spinosaurid dinosaurs from the Early Cretaceous of the Sahara. Comptes rendus de l'Académie des Sciences II 327, 347-353. Scotese CR., 2000. PALEOMAP Project: Earth History (paleogeographic maps). Deptament of Geology, University of Texas, Arlington.

TE D

Sereno, J.A., Wilson, J.A., Conrad, J.L., 2004. New dinosaurs link southern landmasses in the Mid-Cretaceous. Proceedings of the Royal Society of London. Biological Sciences 271, 1546, 1325–1330.

EP

Sereno, P. C., Beck, A.L., Dutheil, D.B., Larsson, H.C., Lyon, G.H., Moussa, B., Sadleir, R.W., Sidor, C.A., Varricchio, D.J., Wilson, G.P., Wilson, J.A., 1999.

AC C

Cretaceous sauropods from the Sahara and the uneven rate of skeletal evolution among dinosaurs. Science 286 (5443), 1342–1347.

Sereno, P.C., Beck, A.L., Dutheil, D.B., Gado, B., Larsson, H.C.E., Lyon, G.H., Marcot, J.D., Rauhut, O.W.M., Sadleir, R.W., Sidor, C.A., Varricchio, D.D., Wilson, G.P., Wilson, J.A., 1998. A long-snouted predatory dinosaur from Africa and the evolution of spinosaurids. Science 282 (5392), 1298–1302.

23

ACCEPTED MANUSCRIPT

Sereno, P.C., Brusatte, L., 2008. Basal abelisaurid and carcharodontosaurid theropods from the Lower Cretaceous Elrhaz Formation of Niger. Acta Palaeontologica Polonica 53 (1), 15–46.

RI PT

Sereno, P.C., Dutheil, D.B., Iarochene, M., Larsson, H.C.E., Lyon, G.H., Magwene, P.M., Sidor, C.A., Varricchio, D.J., Wilson, J.A., 1996. Predatory dinosaurs from the Sahara and Late Cretaceous faunal differentiation. Science 272, 986–

SC

991.

Sereno, P.C., Wilson, J.A., Conrad, J.L., 2004. New dinosaurs link southern landmasses

271 (1546), 1325–1330.

M AN U

in the Mid–Cretaceous. Proceedings of the Royal Society of London. Biological Sciences

Sereno, P.C., Wilson, J.A., Larsson, H.C.E., Dutheil, D.B., Sues, H-D., 1994. Early Cretaceous dinosaurs from the Sahara. Science 266, 267-270. Smith, J.B., Dalla Vecchia, F.M., 2006. An abelisaurid (Dinosauria: Theropoda) tooth

TE D

from the Lower Cretaceous Chicla formation of Libya. Journal African Earth Science 46, 3. 240-244.

EP

Smith, J.B., Lamanna, M.C., Lacovara, K.J., Dodson, P., Smith, J.R., Poole, J.C., Giegengack, R., Attia, Y., 2001. A giant sauropod dinosaur from an Upper

AC C

Cretaceous mangrove deposit in Egypt. Science 292, 1704–1706. Srarfi, D., Ouaja, M., Buffetaut, E., Cuny, G., Barale, G., Ferry, S., Fara, E., 2004. Position stratigraphique des niveaux à vertébrés du Mésozoïque du Sud-Est de la Tunisie. Notes Du Service Géologique de Tunisie 72, 5-16.

Stromer, E., 1915. Ergebnisse der Forschungsreisen Prof. E. Stromer in den Wusten Agyptens. II. Wirbeltier-Reste der Baharije-Stufe (unterstes Cenoman). 3. Das Original des Theropoden Spinosaurus aegyptiacus nov. gen., nov. spec.

24

ACCEPTED MANUSCRIPT

Abhandlungen der Koniglich Bayerischen Akademie der Wissenschaften, Mathematisch-Physikalische, Klasse 28, 1–32. Stromer, E., 1931. Wirbeltiere-Reste der Baharijestufe (unterestes Canoman). Ein

RI PT

Skelett-Rest von Carcharodontosaurus nov. gen. Abhandlungen der Bayerischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Abteilung 9 (Neue Folge), 1–23.

SC

Stromer, E., 1932. Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten Ägyptens. II. Wirbeltierreste der Baharîje-Stufe (unterstes Cenoman). 11.

M AN U

Sauropoda. Abhandlungen der Bayerischen Akademie der Wissenschaften Mathematisch-naturwissenschaftliche Abteilung 10 (Neue Folge), 1-21. Sues, H.D., Frey, E., Martill, D.M., Scott, D.M., 2002. Irritator challengeri, a spinosaurid (Dinosauria : Theropoda) from the Lower Cretaceous of Brazil. Journal of Vertebrate Paleontology 22, 535–547.

TE D

Taquet P., 1976. Géologie et paléontologie du gisement de Gadoufaoua (Aptian Du Niger). Cahier de Paléontologie 1-191.

EP

Taquet, P., Russell, D.A., 1999. A massively-constructed iguanodont from Gadoufaoua, Lower Cretaceous of Niger. Annales De Paleontologie 85 (1), 85-96.

AC C

Upchurch, P., 2008. Gondwanan break-up: legancies of a lost world? Trends in Ecology & Evolution 23 (4), 229-236.

Weishampel, D.B., 1990. Dinosaurian distributions. In: Weishampel, D. B., Dodson, P., Osmólska, H. (Eds.), The Dinosauria. University of California Press, Berkeley. pp. 63-140. Weishampel, D.B., Barrett, P.M., Coria, R.E., Le Loeuff, J., Gomani, E.S., Zhao Z., Xu X., Sahni, A., Noto, C., 2004. Dinosaur distribution. In: Weishampel, D. B.,

25

ACCEPTED MANUSCRIPT

Dodson, P., Osmólska, H. (Eds.), The Dinosauria. 2nd edition. Univesity of California Press, Berkeley. pp. 517-606. Wilson, J.A., Sereno, P.C., Srivastava, S., Bhatt, D.K., Khosla, A., Sahni, A., 2003. A abelisaurid

(Dinosauria,

Theropoda)

from

the

Lameta

Formation

RI PT

new

(Cretaceous,Maastrichtian) of India. Contributions from the Museum of Paleontology, University of Michigan 31, 1–42.

SC

Werner, C., 1994. Die kontinentale Wirbeltierfauna aus der unteren Oberkreide dês Sudan (Wadi Milk Formation). Berliner Geowissenschafliche Abhandlungen Reihe

M AN U

E 13, 221–249.

Yoder, A.D., Nowak, M., 2006. Has vicariance or dispersal been the predominant biogeographic force in Madagascar?: only time will tell. Annual Review of Ecology,

EP

Figure Captions

TE D

Evolution, and Systematics 37, 405-431.

Figure 1. Middle Cretaceous dinosaur-bearing units of northern Gondwana (modified

AC C

from Scotese, 2000).

Figure 2. The deep-time paleodistribution of major dinosaur families during middle Cretaceous from northern Gondwana.

Box 1. Dinosaur fauna from northern Gondwana areas recorded in middle Cretaceous dinosaur-bearing units.

ACCEPTED MANUSCRIPT

Box 1. Brazil

Egypt

Libya

Morocco

Niger

Sudan

Albian age

Early Cenomanian

Cenomanian Bahariya

Aptian-Albian

Cenomanian Kem Kem

Aptian-Albian

Cenomanian

Cenomanian Wadi

Fm.

“Undifferentia

Alcântara Fm.

Fm.

Chicla Fm.

Beds

Elrhaz Fm.

Echkar Fm.

Milk Fm.

RI PT

Albian Santana

ted Unit” Ornithischia Ornithischia indet.

Ouranosaurus

Ouranosaurus sp.

Valdosaurus

M AN U

nigeriensis

Aptian Douiret Fm.

Albian Chenini Mb.

Early Albian Oum ed Diab Mb. (Ain El

(Ain El Guettar Fm.) Guettar Fm.)

Ornithischia indet.

Ornithopoda indet.

Ornithopoda indet.

Rebbachisauridae

Tataouinea hannibalis

SC

nigeriensis

Tunisia

Lurdusaurus arenatus

Sauropoda Rebbachisaurus

baharijensis

garasbae

Diplodocoidea indet. Titanosauria indet.

Paralititan stromeri Titanosauria indet.

Nigersaurus

Rebbachisauridae

taqueti

indet.

TE D

maranhensis

Aegyptosaurus

Titanosauriformes

indet.

indet.

Lithostrotia indet.

Somphosponyli indet. Theropoda

Dicraeosauridae indet.

indet. Lithostrotia indet.

Rebbachisauridae

EP

cf. Limaysaurus

AC C

Amazonsaurus

Rebbachisauridae indet.

ACCEPTED MANUSCRIPT

Irritator

Sigilmassasaurus

challengeri

brevicollis

Bahariasaurus ingens

Indosuchus

Deltadromeus agilis

Kryptops

Sigilmassasaurus

palaios

Carcharodontosaurus

Rugops primus

Bahariasaurus sp.

Sigilmassasaurus

Carcharodontosaurus

cf. brevicollis

sp.

Carcharodontosaurus

Carcharodontosaurus

Carcharodontosaurus

sp.

sp.

sp.

Abelisauridae indet.

Spinosaurus sp.

Spinosaurus sp.

Abelisauridae indet.

Abelisauridae indet.

Carcharodontosaurus sp.

placidus

Spinosaurus sp

Carcharodontosaurus Eoacarcharia

Spinosaurus

Mirischia asymmetrica

Rugops primus

saharicus

saharicus Oxalaia quilombesis

dinops

aegyptiacus Sauroniops

Spinosauridae

cf. Masiakasaurus

pachytholus

indet.

Baryonyx tenerensis

Baryonychinae indet. aegyptiacus

cf. Majungasaurus

Carcharodontosauridae indet

TE D

Abelisauridae indet.

Noasauridae indet.

Dromaeosauridae indet.

EP

Dromaeosauridae indet.

Averostra indet.

AC C

indet.

M AN U

Spinosaurus cf.

Oviraptorosauria

Saurischia incertae sedis

Dromaeosauridae indet.

SC

Santanaraptor

RI PT

brevicollis

Baryonychinae indet.

Theropoda indet.

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

Middle Cretaceous dinosaur composition from northern Gondwana were examined. Mainly theropod species are found regularly co-occurring. A comparison with coeval dinosaur reported from Brazil, Egypt, Libya Morocco, Niger, Sudan and Tunisia, support a connection land active during the Middle Cretaceous.