On New Generalizations of Hilbert's Inequality and Their Applications

On New Generalizations of Hilbert's Inequality and Their Applications

Journal of Mathematical Analysis and Applications 245, 248᎐265 Ž2000. doi:10.1006rjmaa.2000.6766, available online at http:rrwww.idealibrary.com on O...

121KB Sizes 0 Downloads 10 Views

Journal of Mathematical Analysis and Applications 245, 248᎐265 Ž2000. doi:10.1006rjmaa.2000.6766, available online at http:rrwww.idealibrary.com on

On New Generalizations of Hilbert’s Inequality and Their Applications Kuang Jichang Department of Mathematics, Hunan Normal Uni¨ ersity, Changsha, Hunan 410081 People’s Republic of China

and Lokenath Debnath Department of Mathematics, Uni¨ ersity of Central Florida, Orlando, Florida 32816 Communicated by William F. Ames Received January 4, 2000

This paper deals with new generalizations of Hilbert’s inequality and their applications. It is shown that results of this paper are significant extensions and improvements of many known results. 䊚 2000 Academic Press Key Words: Hilbert’s inequality; Euler᎐Maclaurin summation formula; beta function.

1. INTRODUCTION If a n , bn ) 0, p ) 1, 1p q 1q s 1, and 0 - Ý n a np - ⬁, 0 - Ý n bnq - ⬁, then the famous Hilbert’s inequality Žsee Hardy et al. w1x. is given by ⬁



Ý Ý ms1 ns1

a m bn mqn

-

␲ sin Ž ␲rp . 248

0022-247Xr00 $35.00 Copyright 䊚 2000 by Academic Press All rights of reproduction in any form reserved.

1rp



1rq



žÝ / žÝ / a np

ns1

bnq

ns1

.

Ž 1.1.

GENERALIZATIONS OF HILBERT’S INEQUALITY

249

This is a slightly sharper form of the inequality ⬁



a m bn

Ý Ý

mqnq1

ms0 ns0

-



1rp



1rq



žÝ / žÝ / a np

sin Ž ␲rp .

bnq

ns0

,

Ž 1.2.

ns0

where the constant factor ␲rsinŽ␲rp . is the best possible. Inequalities Ž1.1. and Ž1.2. have been proved in many different ways and they have varied applications Žsee Hardy et al. w1x and Kuang w2x and references cited in w1, 2x.. Recently, Hsu w3, 4x first introduced the weight function in the form Ž p s q s 2.

␻ Ž r , n. s

␲ sin ␲ p

y ␾ Ž r , n. ,

␾ Ž r , n. ) 0

Ž 1.3.

and replaced the right hand side of Ž1.1. by

½Ý n





1rp

y ␾ Ž q, n .

sin ␲rp

a np

5 ½Ý

1rq

sin ␲rp

n

y ␾ Ž p, n .

bnq

5

. Ž 1.4.

Gao w5, 7x gave some improvements of Ž1.3.. Later Gao and Yang w8, 9x found the best possible value of ␾ Ž r, n.,

␾ Ž r , n. s

1yc n1y 1r r

,

where c is the Euler constant. Yang and Debnath w10x prove that

␾ Ž p, n . s

1 1r q

2n

q ny1r p

.

The similar estimate of ␾ Ž r, n. in Ž1.3. corresponding to Ž1.2. can be found in Gao w11x and Yang w12x. Yang and Debnath w13x proved that ⬁



Ý Ý ms0 ns0

a m bn

Ž m q n q 1.



py2q␭ qy2q␭ -B , p q

ž

=



1

nq

2

/½ Ý ž ns0

nq

1 2

1rp

1y ␭

/

a np

5

1rq

1y ␭

½Ýž / 5 ns0



bnq

,

Ž 1.5.

250

JICHANG AND DEBNATH

where B Ž u, ¨ . is the beta function, a n , bn G 0, p ) 1, 1p q 1q s 1, 2 y min p, q4 - ␭ F 2, and 0 - Ý⬁ns 0 Ž n q 1r2.1y ␭a np - ⬁, 0 - Ý⬁ns0 Ž n q 1r2.1y ␭ bnq - ⬁. Ingham w14x has proved that if a n G 0, 0 - Ý⬁ns0 a2n - ⬁, ␭ ) 0, then ⬁



Ý Ý ms0 ns0

am an mqnq␭



F M Ž ␭.

Ý a2n ,

Ž 1.6.

ns0

where M Ž ␭. s

½

␲rsin ␭␲ , M Ž 1r2 . s ␲ ,

0 - ␭ F 1r2 . ␭ ) 1r2

5

Ž 1.7.

In this work, it is interesting to consider the double series with two parameters, ⬁



Ý Ý ms0 ns0

a m bn

Ž m q n q 2 ␭.

t

,

Ž 1.8.

and find the corresponding beta function B Ž u, ¨ ., which depends on t, ␭, p, q. The major objective of this paper is to formulate a new inequality related to the general series ⬁



Ý Ý K Ž m q ␭ , n q ␭. am bn ,

Ž 1.9.

ms0 ns0

with Ž1.8. as a special case. Our main results can be stated as follows: THEOREM 1.1. Let a n , bn G 0, p ) 1, 1p q 1q s 1, 0 - Ý⬁ns0 Ž n q 1y t p . ␭ a n - ⬁, 0 - Ý⬁ns0 Ž n q ␭.1y t bnq - ⬁ 1r2 F ␭ F 1r2 min p, q4 , and let Ž K x, y . be a nonnegati¨ e and homogeneous function of degree yt Ž t ) 0.. If K Ž1, y . has its first four deri¨ ati¨ es continuous on Ž0, ⬁., and Žy1. n K Ž n. Ž1, y . G 0 for n s 0, 1, 2, 3, 4, K Ž m. Ž1, y . yy2 ␭ r r ª 0, y ª ⬁ for m s 0, 1, I Ž r , ␭. s



y2 ␭ r r

H0 K Ž 1, u . u

du - ⬁,

r s p, q,

Ž 1.10.

GENERALIZATIONS OF HILBERT’S INEQUALITY

251

then ⬁



Ý Ý K Ž m q ␭ , n q ␭. am bn ms0 ns0

-

1rp



½Ý ½Ý

I Ž q, ␭ . y ␾ Ž q, m, t , ␭ . Ž m q ␭ .

1y t

a mp

ms0

1rq



=

5

I Ž p, ␭ . y ␾ Ž p, m, t , ␭ . Ž m q ␭ .

1y t

5

bmq

ms0

, Ž 1.11.

where

␾ Ž r , m, t , ␭ . s

ž

1y 2 ␭ rr

␭ mq␭

½ž

/

K 1, y

␭ mq␭

/

1 1 y 2 ␭rr

1 24␭ Ž m q ␭ .

K ⬘ 1,

ž

1

y

2␭

␭ mq␭

1q

ž /5

1 3r

/

) 0, Ž 1.12.

and r s p, q. Remark 1. When 0 - ␭ - 1r2, Theorem 1.1 fails. But we have the following result: THEOREM 1.2. Suppose that p, q, a n , bn and K Ž x, y . are defined as in Theorem 1.1. If ␭ ) 0, then N

N

Ý Ý K Ž m q ␭ , n q ␭. am bn ms0 ns0 1rp

N

-

½Ý ½Ý

I Ž q, ␭ . y g Ž q, ␭ . Ž m q ␭ .

1y t

a mp

ms0

1rq

N

=

5

I Ž p, ␭ . y g Ž p, ␭ . Ž m q ␭ .

ms0

1y t

bmq

5

, Ž 1.13.

where g Ž r , ␭. s



y2 ␭ r r

HŽ Nq2 ␭.rŽ mq␭.K Ž 1, u . u

du,

r s p, q.

Ž 1.14.

252

JICHANG AND DEBNATH

Remark 2. When N ª ⬁, Ž1.13. reduces to the inequality ⬁



Ý Ý K Ž m q ␭ , n q ␭. am bn ms0 ns0

- I Ž q, ␭ .

1rp

I Ž p, ␭ .

1rq

1rp



½Ý 5

Ž m q ␭.

1yt

a mp

ms0

=



½Ý

5

1rq

Ž m q ␭.

1y t

ms0

bmq

.

Ž 1.15.

Remark 3. If we replace the exponent Ž2 ␭rpq . in Ž3.4. below by Ž2 y t .rpq, where 2 y min p, q4 - t F 2, we can similarly prove that N

N

Ý Ý K Ž m q ␭ , n q ␭. am bn ms0 ns0 1rp

N

-

½Ý ½Ý

I1 Ž q, t . y g 1 Ž q, t . Ž m q ␭ .

1y t

a mp

ms0

1rq

N

=

5

I1 Ž p, t . y g 1 Ž p, t . Ž m q ␭ .

1y t

bmq

1yt

bmq

ms0

5

Ž 1.16.

and ⬁



Ý Ý K Ž m q ␭ , n q ␭. am bn ms0 ns0

- I1 Ž q, t . =



½Ý

1rp

I1 Ž p, t .

1rq 1rp

Ž m q ␭.

1y t

ms0

a mp

1rq



5 ½Ý

Ž m q ␭.

ms0

5

. Ž 1.17.

where ⬁

K Ž 1, u .

I1 Ž r , t . s

H0

g 1Ž r , t . s

HŽ Nq2 ␭.rŽ mq␭. u



uŽ2yt .r r

du - ⬁, K Ž 1, u . Ž2yt .r r

Ž 1.18. du.

Ž 1.19.

GENERALIZATIONS OF HILBERT’S INEQUALITY

253

In particular, when K Ž x, y . s Ž x q y .yt , ␭ s 1, 2, inequality Ž1.17. leads to Ž3.1. in Yang and Debnath w13x. In Section 4 we discuss some applications.

2. SOME LEMMAS For the proof of the above theorems, we need two lemmas: LEMMA 2.1. Let f ha¨ e its first four deri¨ ati¨ es continuous on Ž0, ⬁. and Žy1. n f Ž n. Ž x . G 0 Ž n s 0, 1, 2, 3, 4., and f Ž x ., f ⬘Ž x . ª 0 Ž x ª ⬁.; then ⬁



Ý f Ž k . - H f Ž x . dx q 0

ks0

1 2

f Ž 0. y

1 12

f ⬘ Ž 0. .

Ž 2.1.

Proof. By the Euler᎐Maclaurin summation formula Žsee Xu and Wang w15, p. 88x., we have N

N

Ý f Ž k . s H f Ž x . dx q

ks0

0

q

1

N Ž4.

H 24 0

f

1 2

f Ž N . q f Ž 0. q

Ž B4 y B4 Ž x y w x x .

1 12

dx . ,

f ⬘ Ž N . y f ⬘ Ž 0.

Ž 2.2.

where Bk , Bk Ž x . are the Bernoulli numbers and the Bernoulli polynomials, respectively. Since B4 s y1r30 and the sign of B4 y B4 Ž x y w x x. is the same as B4 , hence we obtain N

N

Ý f Ž k . - H f Ž x . dx q

ks0

0

1 2

f Ž N . q f Ž 0. q

1 12

f ⬘ Ž N . y f ⬘ Ž 0. .

Ž 2.3. Let N ª ⬁; Ž2.3. implies Ž2.1.. The lemma is proved. Remark 4. Lemma 2.1 shows that Ž2.1. holds under weaker conditions on f than those in w13x. LEMMA 2.2. Suppose that K Ž x, y . and ␭ are as in Theorem 1.1, r ) 1. Define a weight function ␻ by

␻ Ž r , m, t , ␭ . s Ž m q ␭ .

2 ␭ rr



Ý K Ž m q ␭ , n q ␭. Ž n q ␭. y2 ␭rr ; Ž 2.4. ns0

254

JICHANG AND DEBNATH

then

␻ Ž r , m, t , ␭ . - Ž m q ␭ .

1y t

I Ž r , ␭ . y ␾ Ž r , m, t , ␭ . ,

Ž 2.5.

where I Ž r, ␭. and ␾ Ž r, m, t, ␭. are gi¨ en by Ž1.10. and Ž1.12., respecti¨ ely. Proof. Let f Ž x . s K Ž m q ␭, x q ␭.Ž x q ␭.y2 ␭ r r ; then, by Lemma 2.1, we have ⬁

2 ␭ rr

␻ Ž r , m, t , ␭ . s Ž m q ␭ .

Ý f Ž n. ns0

1y t

- Ž m q ␭.

½



y2 ␭ r r

H0 K Ž 1, u . u

du y ␺ Ž r , m, t , ␭ . ,

5

Ž 2.6. where

H0␭r mq␭ K Ž 1, u . u Ž

␺ Ž r , m, t , ␭ . s

y q

ž

.

y2 ␭ r r

1y 2 ␭ rr

␭ mq␭ 1

12 ␭

2

ž

/

ž

1 2␭

du

q

1

/ ž

K 1,

6 r␭

2y 2 ␭ rr

␭ mq␭

K ⬘ 1,

/

ž

␭ mq␭

Integrating by parts twice gives

H0␭r mq␭ K Ž 1, u . u Ž

.

s

y2 ␭ r r

1 1 y 2 ␭rr

ž

du

K 1,

␭ mq␭



mq␭

H0␭r mq␭ K ⬘ Ž 1, u . u

y

Ž

.

1y 2 ␭ rr



/

1y 2 ␭ r r

du

␭ mq␭

/

.

/ Ž 2.7.

GENERALIZATIONS OF HILBERT’S INEQUALITY

s

1

1y 2 ␭ rr



ž

1 y 2 ␭rr m q ␭ y

/



ž

K 1,

1

2y 2 ␭ rr



K ⬘ 1,

/

Ž 1 y 2 ␭rr . Ž 2 y 2 ␭rr . m q ␭

ž

␭rmq ␭

y 1

1y 2 ␭ rr



ž

1 y 2 ␭rr m q ␭ y

/



ž

K 1,

1

Ž 1 y 2 ␭rr . Ž 2 y 2 ␭rr

. ž

␭ mq␭

mq␭

/

2y 2 ␭ rr



K ⬘ 1,

/

mq␭

/

K ⬙ Ž 1, u . u 2y 2 ␭ r r du

H0

)

/

mq␭

ž

255

ž



/

.

mq␭

/

mq␭

From this and equality Ž2.7., we obtain

␺ Ž r , m, t , ␭ . )

1 1 y 2 ␭rr

1

y

2␭

ž

1q

1 3r



1

y

Ž 1 y 2 ␭rr . Ž 2 y 2 ␭rr . =

ž

mq␭

ž

/



ž

K 1,

1 12 ␭2



K ⬘ 1,

/

mq␭

y

2y 2 ␭ rr



1y 2 ␭ rr



/

mq␭

.

Ž 2.8.

Since 1r2 F ␭ - Ž1r2.min p, q4 , that is, 1 F 2 ␭ - r, r s p, q, we have

␭G

1 2

)

1 2

y

2r q 1 2 Ž 3r q 3r q 1 . 2

s

r Ž 3r q 1 . 6r2 q 6r q 2

that is, 1



-

2 r

q

6r 3r q 1

.

This implies that 1



y

2 r

-

ž

1 2

q

1 6r

y1

/

,

,

256

JICHANG AND DEBNATH

so that

ž

1



y

2

1



r

2

1

q

6r

s 1y

/ ž

2␭

1

/ ž 2␭

r

1q

1 3r

- 1.

/

This implies that 1 1 y 2 ␭rr

1

y

2␭

ž

1

1q

3r

) 0.

/

Ž 2.9.

Next note that 0 - 1rr - 1 and 2rr - 1r␭ F 2; these imply that 0-

ž

1



2

y

r



1



y

1

/

r

- 4,

that is, 1

Ž 1 y 2 ␭rr . Ž 2 y 2 ␭rr .

1

)

8 ␭2

.

Thus, 1

Ž 1 y 2 ␭rr . Ž 2 y 2 ␭rr . By hypotheses, K ⬘Ž1, that

␭ mq ␭

y

1 12 ␭

2

)

1 8␭

2

y

1 12 ␭

2

s

1 24␭2

. Ž 2.10.

. F 0. This and inequalities Ž2.8. ᎐ Ž2.10. imply

␺ Ž r , m, t , ␭ . )

ž

␭ mq␭

1y 2 ␭ rr

/

½ž

K 1,

␭ mq␭

/ y

s ␾ Ž r , m, t , ␭ . ) 0.

1 1 y 2 ␭rr

y

1 24␭ Ž m q ␭ .

1 2␭

ž

1q

K ⬘ 1,

ž

1 3r

/

␭ mq␭

/5

Ž 2.11.

From Ž2.6., Ž2.7., and Ž2.11., we obtain inequality Ž2.5.. The lemma is proved.

GENERALIZATIONS OF HILBERT’S INEQUALITY

257

3. PROOFS Proof of Theorem 1.1. By Holder’s inequality, we obtain ¨ ⬁



Ý Ý K Ž m q ␭ , n q ␭. am bn ms0 ns0

s





Ý Ý

1rp

am K Ž m q ␭ , n q ␭.

ms0 ns0

= bn K Ž m q ␭ , n q ␭ . F



½Ý

1rq

␻ Ž q, m, t , ␭ .

ms0

nq␭

nq␭

ž

1rp

a mp

ž

mq␭

mq␭ ⬁

5 ½Ý

2 ␭ rp q

/

2 ␭ rp q

/ 1rq

␻ Ž p, m, t , ␭ .

ms0

bmq

5

, Ž 3.1.

where

␻ Ž r , m, t , ␭ . s Ž m q ␭ .

2 ␭ rr



Ý K Ž m q ␭ , n q ␭. Ž n q ␭. y2 ␭rr , ns0

r s p, q.

Ž 3.2.

Thus, by Ž2.5., we have Ž1.11.. Theorem 1.1 is proved. Proof of Theorem 1.2. Define f by f Ž x . s K Ž m q ␭ , x q ␭. Ž x q ␭.

y2 ␭ rr

.

Note that f ⬘ Ž x . s K ⬘ Ž m q ␭ , x q ␭. Ž x q ␭. y Ž 2 ␭rr . Ž x q ␭ .

y2 ␭ rry1

y2 ␭ rr

K Ž m q ␭ , x q ␭. - 0

and f ⬙ Ž x . s K ⬙ Ž m q ␭ , x q ␭. Ž x q ␭. y Ž 4␭rr . Ž x q ␭ .

y2 ␭ rry1

y2 ␭ rr

K ⬘ Ž m q ␭ , x q ␭.

q Ž 2 ␭rr . Ž 2 ␭rr q 1 . Ž x q ␭ .

y2 ␭ rry2

K Ž m q ␭ , x q ␭ . ) 0.

258

JICHANG AND DEBNATH

Hence, f Ž x . is strictly convex. Therefore, N

Ý f Ž m. - H

Nq ␭

y␭

ms0

f Ž x . dx

s Ž m q ␭.

H0 Nq2 ␭ r mq␭ K Ž 1, u . u

1y ty2 ␭ rr

Ž

. Ž

.

y2 ␭ r r

du. Ž 3.3.

In view of Holder’s inequality, we get ¨ N

N

Ý Ý K Ž m q ␭ , n q ␭. am bn ms0 ns0 N

s

N

Ý Ý am K Ž m q ␭ , n q ␭. 1rp ms0 ns0

= bn K Ž m q ␭ , n q ␭ .

1rp

N

F

½Ý

1rq

␻ Ž q, m, t , ␭ .

a mp

ms0

ž

ž

mq␭ nq␭

nq␭ mq␭

2 ␭ rp q

/

2 ␭ rp q

/ 1rq

N

5 ½Ý

␻ Ž p, m, t , ␭ .

bmq

ms0

5

, Ž 3.4.

where

␻ Ž r , m, t , ␭ . s Ž m q ␭ .

2 ␭ rr

N

Ý K Ž m q ␭ , n q ␭. Ž n q ␭. y2 ␭rr . Ž 3.5. ns0

From this and inequality Ž3.3., we have

␻ Ž r , m, t , ␭ . - Ž m q ␭ .

1y t

 I Ž r , ␭. y g Ž r , ␭. 4 ,

Ž 3.6.

where I Ž r, ␭. and g Ž r, ␭. are defined by Ž1.10. and Ž1.14., respectively. Thus, Ž3.4. and Ž3.6. imply that Ž1.13. holds. The proof is complete.

4. SOME APPLICATIONS 4.1. We take K Ž x, y . as K Ž x, y . s Ž x q y .

yt

,

t ) 1 y 2 ␭rr ) 0;

Ž 4.1.

GENERALIZATIONS OF HILBERT’S INEQUALITY

259

then I Ž r , ␭. s

␾ Ž r , m, t , ␭ . s



H0

ž

yt Ž 1 q t . uy2 ␭ r r du s B Ž 1 y 2 ␭rr , t q 2 ␭rr y 1 . , 1y 2 ␭ rr

␭ mq ␭

/

½ž

mq ␭

t

mq2 ␭

/

1 1y2 ␭rr q

)

ž

1y 2 ␭ rr

␭ mq␭

/

1 2

1 1 y 2 ␭rr

t

y

y

1 2␭

1

ž

2␭

1q

1 3r

t Ž m q ␭.

t

24␭ Ž m q 2 ␭ .

ž

1q

1 3r

/

tq1

5

/

s h Ž r , m, t , ␭ . . Thus, by Theorem 1.1, we get the following theorem: THEOREM 4.1. Let a n , bn ) 0, p ) 1, 1r2 F ␭ - Ž1r2.min p, q4 , then ⬁



q 1q s 1, t ) 1 y 2 ␭rr ) 0. If

a m bn

Ý Ý ms0 ns0

-

1 p

Ž m q n q 2 ␭. ⬁

½Ý

t

B Ž 1 y 2 ␭rq, t q 2 ␭rq y 1 . y h Ž q, m, t , ␭ .

ms0 1rp

= Ž m q ␭. =



½Ý

1yt

a mp

5

B Ž 1 y 2 ␭rp, t q 2 ␭rp y 1 .

ms0 1rq

yh Ž p, m, t , ␭ . Ž m q ␭ .

1yt

bmq

5

Ž 4.2.

unless the sequence  a n4 or  bn4 is null, where h Ž r , m, t , ␭ . s

ž

␭ mq␭

1y 2 ␭ rr

/

1 2

t

1 1 y 2 ␭rr

y

1 2␭

ž

1q

1 3r

/

) 0.

Ž 4.3.

260

JICHANG AND DEBNATH

In particular, when ␭ s 1r2, t s 1, we obtain ⬁



a m bn

Ý Ý ms0 ns0 Ž m q n q 1 . -





½Ý ½Ý

sin ␲rp

ms0





=

y

ms0

sin ␲rp

1

y

ž

1rp

2 Ž 2 m q 1.

pq

1 2 Ž 2 m q 1.

1rq

ž

1 3p

qq

4

y 1 3q

3 y

1rp

/ 5 / 5 a mp

4

1rq

bmq

3

.

Ž 4.4. On the other hand, when p s q s 2, Ž4.4. reduces to the form ⬁



a m bn

Ý Ý ms0 ns0 Ž m q n q 1 . -



␲y

žÝž žÝž ms0



=

1r2

5 12 Ž 2 m q 1 .

␲y

ms0

1r2

5 12 Ž 2 m q 1 .

/ / / / a2m

1r2

1r2

bm2

.

Ž 4.5.

This result is an impro¨ ement of Gau and Yang’s results w11, 12x. If 0 - ␭ - 1r2, then, by Theorem 1.2, we have Let a n , bn G 0, p ) 1,

THEOREM 4.2. ) 0; then N

N

1 p

q 1q s 1, ␭ ) 0, t ) 1 y 2 ␭rr

a m bn

Ý Ý ms0 ns0

Ž m q n q 2 ␭.

t

N

-

B Ž 1 y 2 ␭rq, t q 2 ␭rq y 1 .

Ý ms0

y



HŽ Nq2 ␭.rŽ mq␭. Ž 1 q u .

=

½

y

yt

uy2 ␭ r q du Ž m q ␭ .

1yt

a mp 4

1rp

N

Ý

B Ž 1 y 2 ␭rp, t q 2 ␭rp y 1 .

ms0 ⬁

HŽ Nq2 ␭.rŽ mq␭. Ž 1 q u .

1rq yt

y2 ␭ r p

u

du Ž m q ␭ .

1yt

bmq

5

, Ž 4.6.

GENERALIZATIONS OF HILBERT’S INEQUALITY ⬁



261

a m bn

Ý Ý

Ž m q n q 2 ␭.

ms0 ns0

t

- B Ž 1 y 2 ␭rq, t q 2 ␭rq y 1 .

1rp

= B Ž 1 y 2 ␭rp, t q 2 ␭rp y 1 . =



½Ý

1rp

Ž m q ␭.

1y t

a mp

ms0



5 ½Ý

1rq 1rq

Ž m q ␭.

1yt

bmq

ms0

5

. Ž 4.7.

In particular, when ␭ s 1r2, inequality Ž4.7. reduces to the form ⬁



a m bn

Ý Ý ms0 ns0

Ž m q n q 1.

t

-  B Ž 1rp, t y 1rp . 4 =



½Ý

1rp

B Ž 1rq, t y 1rq . 4 1rp

Ž m q ␭.

1y t

a mp

ms0



5 ½Ý

1rq 1rq

Ž m q ␭.

1yt

bmq

ms0

5

. Ž 4.8.

When t s 1, inequality Ž4.8. reduces to Ž1.2.. When ␭ s 1r2, t s 1, Ž4.6. reduces to the form N

N

a m bn

Ý Ý Ž m q n q 1.

- 2 tany1

ms0 ns0

ž

2N q 2 2m q 1 1r2

N

=

1r2

/ 1r2

N

žÝ / žÝ / a2m

ms0

bm2

.

Ž 4.9.

ms0

Since 2 tany1 ŽŽ2 N q 2.rŽ2 m q 1..1r2 - ␲ , Ž4.9. is an impro¨ ement of Cassel’s result w16x. 4.2. We next assume K Ž x, y . in the form K Ž x, y . s 1r Ž x t q y t . . Similar to the proof of Theorems 4.1 and 4.2, we have the following. THEOREM 4.3. Under the same conditions as those of Theorem 4.1, we ha¨ e ⬁



a m bn

Ý Ý ms0 ns0

-

t t Ž m q ␭. q Ž n q ␭.



½Ý

ms0

␲ t sin Ž 1 y 2 ␭rq . ␲rt

1rp

y H Ž q, m, t , ␭ . Ž m q ␭ .

1y t

a mp

5

262

JICHANG AND DEBNATH

=

1rq





½Ý

y H Ž p, m, t , ␭ . Ž m q ␭ .

t sin Ž 1 y 2 ␭rp . ␲rt

ms0

1y t

bmq

5

Ž 4.10. unless the sequence  a n4 or  bn4 is null, where H Ž r , m, t , ␭ . s

1y 2 ␭ rr



ž

mq␭

/

1 2

1

ž

1 y 2 ␭rr

y

1 2␭

ž

1

1q

//

3r

. Ž 4.11.

THEOREM 4.4. Under the same conditions as those of Theorem 4.2, we ha¨ e N

N

a m bn

Ý Ý

t t Ž m q ␭. q Ž n q ␭.

ms0 ns0

-

½

N



Ý

t sin Ž 1 y 2 ␭rq . ␲rt

ms0

y

HŽ Nq2 ␭.rŽ mq␭. 1 q u

=

du Ž m q ␭ .

t



N

½

1rp

uy2 ␭ r q



Ý ms0

y

t sin Ž 1 y 2 ␭rp . ␲rt

1y t

5

a mp

uy2 ␭ r p



HŽ Nq2 ␭.rŽ mq␭. 1 q u

t

du

1rq

= Ž m q ␭.

1yt

bmq

5

Ž 4.12.

and ⬁



a m bn

Ý Ý

t t Ž m q ␭. q Ž n q ␭.

ms0 ns0

-

ž

␲ t sin Ž 1 y 2 ␭rq . ␲rt

=



½Ý



1rp

/ ž 1rp

Ž m q ␭.

1y t

ms0

a mp

1rq

t sin Ž 1 y 2 ␭rp . ␲rt ⬁

5 ½Ý

1rq

Ž m q ␭.

1yt

bmq

ms0

4.3. We take K Ž x, y . in the form K Ž x, y . s

ln Ž yrx . yyx

;

then I Ž r , ␭. s



H0

ln u uy1

uy2 ␭ r r du s

/

␲2 sin Ž 2␲␭rr .

.

5

. Ž 4.13.

GENERALIZATIONS OF HILBERT’S INEQUALITY

263

We next use the mean value theorem; we have ln ␣

s

␣y1

Ž ln 1 y ln ␣ .

s

1y␣

1

for 0 - ␣ - ␪ - 1.

)1

6

It follows that

ž

K 1,

ln

␭ mq␭

/

s

ž



ž

/

mq␭ ) 1. ␭ y1 mq1

/

From this and inequality Ž1.12., we obtain the following result:

␾ Ž r , m, l, ␭ . )

ž

1y 2 ␭ rr

␭ mq␭

/

1

1

2 1 y 2 ␭rr

y

1

ž

2␭

1q

1 3r

/

s H Ž r , m, l, ␭ . ) 0. Thus, we get the following. Let a n , bn G 0, p ) 1,

THEOREM 4.5. ⬁

ln  Ž n q ␭ . r Ž m q ␭ . 4



Ý Ý

nym

ms0 ns0

-



½Ý ½Ý =

ms0

a m bn

y H Ž q, m, 1, ␭ .

a mp

5 1rq

␲2



q 1q s 1, ␭ ) 0; then

1rp

␲2

sin 2␲␭rq

ms0

1 p

sin 2␲␭rp

y H Ž p, m, 1, ␭ .

bmq

5

.

Ž 4.14.

THEOREM 4.6. Under the same conditions as those of Theorem 4.5, we ha¨ e N

ln  Ž n q ␭ . r Ž m q ␭ . 4

N

Ý Ý

nym

ms0 ns0

-

½

␲2

N

Ý

sin 2␲␭rq

ms0

=

½

N

Ý ms0

y

␲2 sin 2␲␭rp

a m bn ln u



1rp y2 ␭ r q

HŽ Nq2 ␭.rŽ mq␭. u y 1 u y



ln u

du

a mp

5

du

bmq

1rq y2 ␭ r p

HŽ Nq2 ␭.rŽ mq␭. u y 1 u

5

,

Ž 4.15.

264 ⬁

JICHANG AND DEBNATH

ln  Ž n q ␭ . r Ž m q ␭ . 4



Ý Ý

nym

ms0 ns0

-

a m bn

␲2

Ž sin 2␲␭rq .

1rp

1rp



Ž sin 2␲␭rp .

1rq

1rq



½Ý 5 ½Ý 5 a mp

bmq

ms0

. Ž 4.16.

ms0

In particular, when ␭ s 1r2, inequality Ž4.14. reduces to ⬁



ln  Ž 2 n q 1 . r Ž 2 m q 1 . 4

Ý Ý

nym

ms0 ns0

-



½Ý ½Ý

␲2

sin Ž ␲rp .

ms0

=

ms0

y

␲2



1

sin Ž ␲rp .

4

a m bn 1rp

G Ž p, m .

5 1rq

1

y

a mp

G Ž q, m .

4

bmq

5

,

Ž 4.17.

where rq GŽ r , m. s

1

y

4

3r 3 , 1rr Ž 2 m q 1.

r s p, q.

Ž 4.18.

Thus, inequality Ž4.17. is an impro¨ ement of w1, Theorem 342x. 4.4. Finally, we take K Ž x, y . as 1

K Ž x, y . s

max  x t , y t 4

0 - 1 y 2 ␭rr - t ;

,

then K Ž 1, u . s

1 max  1, u t 4

.

By Ž2.1., we have I Ž r , ␭. s s

1 y2 ␭ r r

H0 u

du q

1 1 y Ž 2 ␭rr .



yty2 ␭ r r

H1 u

y

du

1 1 y t y Ž 2 ␭rr .

.

Ž 4.19.

Thus, integral Ž1.10. in Theorem 1.1 is replaced by Ž4.19.; we get the corresponding results. For example, since for t s 1, ␭ s 1r2, inequality Ž4.19. implies that I Ž p, 1r2 . s q q p s pq,

Ž 4.20.

GENERALIZATIONS OF HILBERT’S INEQUALITY

265

then, by Ž4.20. and Ž1.11., we obtain ⬁



a m bn

Ý Ý ms0 ns0

-

max  m, n4 ⬁

Ý ms0

pq y G Ž p, m .

1rp a mp

4



½Ý

ms0

1rq

pq y G Ž q, m .

bmq

5

,

Ž 4.21. when GŽ r, m. is defined by Ž4.18.. Evidently, inequality Ž4.21. is an improvement of w1, Theorem 3.4x.

REFERENCES 1. G. H. Hardy, J. E. Littlewood, and G. Polya, ‘‘Inequalities,’’ Cambridge Univ. Press, Cambridge, UK, 1952. 2. K. Jichang, ‘‘Applied Inequalities,’’ 2nd ed., Hunan Education Press, Changsha, 1993. 3. L. C. Hsu and Y. J. Wang, A refinement of Hilbert’s double series theorem, J. Math. Res. Exposition 11, No. 1 Ž1991., 143᎐144. 4. L. C. Xu and Y. K. Gau, Note on Hardy᎐Riesz’s extension of Hilbert’s inequality, Chinese Quart. J. Math. 6, No. 1 Ž1991., 75᎐77. 5. M. Gao, A note on Hilbert double series theorem, Hunan Ann. Math. 12, No. 1-2 Ž1992., 142᎐147. 6. M. Gao, An improvement of Hardy᎐Riesz’s extension of the Hilbert inequality, J. Math. Res. Exposition 14, No. 2 Ž1994., 255᎐259. 7. M. Gao, A note on the Hardy᎐Hilbert inequality, J. Math. Anal. Appl. 204 Ž1996., 346᎐351. 8. B. C. Yang and M. Z. Gao, On a best value of Hardy᎐Hilbert’s inequality, Ad¨ . Math. 26, No. 2 Ž1997., 159᎐164. 9. M. Z. Gao and B. C. Yang, On the extended Hilbert’s inequality, Proc. Amer. Math. Soc. 126, No. 3 Ž1998., 751᎐759. 10. B. C. Yang and L. Debnath, On new strengthened Hardy᎐Hilbert’s inequality, Internat. J. Math. Math. Sci. 21, No. 1 Ž1998., 403᎐408. 11. M. Z. Gao, On Hilbert’s inequality and its applications, J. Math. Anal. Appl. 212 Ž1997., 316᎐323. 12. B. C. Yang, On a refinement of Hardy᎐Hilbert’s inequality and its applications, Northeast. Math J., to appear. 13. B. Yang and L. Debnath, On a new generalization of Hardy᎐Hilbert’s inequality, J. Math. Anal. Appl. 233 Ž1999., 484᎐497. 14. A. E. Ingham, A note on Hilbert’s inequality, J. London Math. Soc. 11 Ž1936., 237᎐240. 15. L. Xu and X. Wang, ‘‘Methods of Mathematical Analysis and Selected Examples,’’ revised ed., Higher Education Press, Beijing, 1984 Žin Chinese.. 16. J. W. S. Cassels, An elementary proof of some inequalities, J. London Math. Soc. 23 Ž1948., 285᎐290.