Spectral data and grotrian diagrams for highly ionized titanium, Ti V–Ti XXII

Spectral data and grotrian diagrams for highly ionized titanium, Ti V–Ti XXII

ATOMIC DATA AND NUCLEAR DATA TABLES 34,79-l SPECTRAL DATA AND GROTRIAN TITANIUM, KAZUO MORI,**t 84 ( 1986) DIAGRAMS FOR HIGHLY TI V-TI XXII WO...

4MB Sizes 0 Downloads 16 Views

ATOMIC

DATA AND NUCLEAR

DATA TABLES

34,79-l

SPECTRAL DATA AND GROTRIAN TITANIUM, KAZUO

MORI,**t

84 ( 1986)

DIAGRAMS FOR HIGHLY TI V-TI XXII

WOLFGANG L. WIESE$$ TOSHIZO SHIRAI,” KUNIO OZAWA,l’ and TAKAKO KATO#

YOHTA

IONIZED

NAKAI,”

t Institute of Physical and Chemical Research, Wako, Saitama, Japan; 5 National Bureau of Standards, Gaithersburg, Maryland 20899; I’ Japan Atomic Energy Research Institute, Tokai, Ibaraki, Japan; and # Institute of Plasma Physics, Nagoya University, Chigusa, Nagoya, Japan

Wavelengths, energy levels, level configurations, oscillator strengths, and radiative transition probabilities for the titanium ions Ti V to Ti XXII are critically reviewed and tabulated. Grotrian diagrams are also presented to provide a graphical overview. Copyright 0 1986 Academic Press, Inc.

* Present address: Japan Information Center of Science and Technology, Nagatacho, Tokyo, Japan $ Part of this work was done by W. L. Wiese during a tenure as visiting senior scientist at the Institute of Physical and Chemical Research

0092-640X/86 $3.00 Copyright 0 1986 by Academic Press, Inc. All rights of reproduction in any form reserved.

79

Atomic Data and Nuclear

Data Tabks.

Vol. 34. No. 1. January

1966

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

CONTENTS

INTRODUCTION

.

. . ..

EXPLANATION

OF TABLES

EXPLANATION

OF GROTRIAN

BRIEF COMMENTS TABLES.

.

80 ..

..

DIAGRAMS

ON EACH TITANIUM

FOR TABLES DIAGRAMS.

.

ION

..

..

84 85

..

AND COMMENTS

Ti V-Ti XXII

82

.

.

Spectroscopic Data for Ti V-Ti XXII

REFERENCES GROTRIAN

.

91 ..

.

.

128

.

132

INTRODUCTION Tables of spectroscopic data and Grotrian diagrams have been prepared for the ions Ti V to Ti XXII. These data have been compiled mainly because of the importance of titanium in plasma research, where it is used as a component of the coating material TiC on the first wall of tokamak machines and also as a getter material for light ion impurities such as oxygen, carbon, and nitrogen. Two of us published a similar data compilation for the iron ions Fe VIII-Fe XXVI in 1979.’ Iron is of particular interest because it is a principal component of the vacuum wall materials of many tokamaks. Since the completion of that compilation, further requests from the diagnostic teams have centered on titanium and nickel. Therefore, we have carried out the present compilation of spectroscopic data for titanium ions. For this compilation of atomic structure data of the highly stripped titanium ions, we were able to draw from several major sources: the energy-level tables of Ti I-Ti XXII by Corliss and Sugar ( 1979),2 the wavelength table by Kelly and Palumbo ( 1973),3 the book of Grotrian diagrams by Bashkin and Stoner ( 1975),4 and the transition probability tables by Wiese and Fuhr ( 1975).5 The present tables were prepared as follows: First, the available spectral data for the titanium spectra above Ti V were collected from published articles. If several sources were available, the data were critically reviewed and the most reliable value in our judgment was selected from the collected data. References for the wavelength data are listed in the last column of the tables; the values for energy levels have been, in the main, taken from the critical compilation by Corliss and Sugar ( 1979).2 The present material has been updated with new experimental data published since Ref. 2 and is supported by consistency considerations among the energy levels according to the Ritz combination principle. The principal new papers are

the following: Kastner, Swartz, Bhatia, and Lapides ( 1978)6 for 3p-4d, 3d-4d transitions of Ti XI; Boiko, Faenov, and Pikuz (1978)’ for n = l-2 and 2-3 transitions of Ti XIX, XX, XXI; Fawcett, Bromage, and Hayes ( 1979)8 for n = 3-4 and 3-5 transitions of Ti XIII; Hinnov ( 1979)9 for the resonance transitions of Ti XIX and XX; Lawson, Peacock, and Stamp (198 1)” for n = 2-2 transitions of various ions of iron group elements; Kaufman, Sugar, and Cooper (1982) “,l* for n = 2-2 transitions, including intersystem transitions, of Ti XIV, XV, and XVII; and Stamp and Peacock ( 1982)13 for n = 2-2 transitions of Ti XIV through Ti XX. The main sources of oscillator strengths and radiative transition probability data have been the tabulations by Wiese and Fuhr ( 1975)’ and by Martin and Wiese ( 1976)14; as well as the comprehensive papers of Fawcett (1 978)15 and Cheng, Kim, and Desclaux ( 1979).16 We also present Grotrian Diagrams, i.e., diagrams showing energy levels and the principal transitions. Typical examples of such diagrams are found in the book published by Bashkin and Stoner (1 975).4 In the usual diagram display such as that by Bashkin and Stoner, the density of transitions is often too high to allow each transition to be drawn separately. Here in our modified diagrams, the transitions are also represented by lines connecting the upper and lower energy levels, but the lower energy levels are extended and repeated for successive configurations as needed. As a consequence, dense packing is avoided and all lines in a multiplet can be accommodated. The diagrams thus allow a quick survey of the principal features of the levels and transitions in the various ions. Earlier works on the atomic spectra of titanium have been described by Corliss and Sugar ( 1979)2 in the introduction to their tables. In addition to titanium, energy 80

Atomic

Data and Nuclear

Data Tables.

Vol. 34, No. 1, Jammty

1 Q86

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

3. R. L. Kelly and L. J. Palumbo, “Atomic and Ionic Emission Lines below 2000 Angstroms: Hydrogen through Krypton,” NRL Report 7599 (1973)

levels of other iron group elements have also been extensively compiled at the NBS Atomic Energy Level Data Center, and an updated revised compilation comprising all elements of the iron group is planned for publication in 1985.” The present tables were largely completed by mid1982; however, some revisions became necessary, especially for several higher Ti spectra for which more recent and improved data became available. These revisions were carried out in the fall of 1984, based mainly on the newly evaluated data from the revised tables of Sugar and Corliss. I7

4. S. Bashkin and J. 0. Stoner, Jr., Atomic Energy Levels and Grotrian Diagrams, Vol. II, Sulfur I-Titanium XXII (North-Holland, Amsterdam, 1975) 5. W. L. Wiese and J. R. Fuhr, J. Phys. Chem. Ref. Data 4, 263 (1975) 6. S. 0. Kastner, M. Swartz, A. K. Bhatia, and J. Lapides, J. Opt. Sot. Am. 68, 1558 (1978) 7. V. A. Boiko, A. Ya. Faenov, and S. A. Pikuz, J. Quant. Spectrosc. Radiat. Transfer 19, 11 (1978) 8. B. C. Fawcett, G. E. Bromage, and R. W. Hayes, Mon. Not. R. Astron. Sot. 186, 113 (1979)

Acknowledgments The present research was organized and inspired by Dr. K. Harada of the Japan Atomic Energy Research Institute, to whom the authors owe special thanks. They gratefully acknowledge the very valuable assistance of Dr. J. Sugar of the National Bureau of Standards in providing them with a copy of his revised energy-level tables in advance of publication. They also acknowledge the useful comments by Dr. G. A. Martin of the National Bureau of Standards on oscillator strength data for several highly stripped Ti ions. The authors owe thanks to Professor Y. Itikawa of the Institute of Space and Astronautical Science and Professor M. Otsuka of Nagoya University for their kind comments.

9. E. Hinnov,

Astrophys. J. 230, L 197 ( 1979)

10. K. D. Lawson, H. J. Peacock, and M. F. Stamp, J. Phys. B 14, 1929 (198 1) 11. J. Sugar, V. Kaufman, 26, 189 (1982)

and D. Cooper, Phys. Scripta

12. V. Kaufman, J. Sugar, and D. Cooper, Phys. Scripta 25,623 (1982) 13. M. F. Stamp and N. J. Peacock, J. Phys. B 15, L703 (1982) 14. G. A. Martin and W. L. Wiese, J. Phys. Chem. Ref. Data 5, 537 (1976) 15. B. C. Fawcett, ATOMIC DATA AND NUCLEAR TABLES 22,473 (1978)

References for Introduction

DATA

1. K. Mori, M. Otsuka, and T. Kato, ATOMIC DATA AND NUCLEAR DATA TABLES 23, 195 (1979)

16. K. T. Cheng, Y.-K. Kim, and J. P. Desclaux, ATOMIC DATA AND NUCLEAR DATA TABLES 24, 111 ( 1979)

2. C. Corliss and J. Sugar, J. Phys. Chem. Ref. Data 8, 1 (1979)

17. J. Sugar and C. Corliss, J. Phys. Chem. Ref. Data Suppl. 2 14 (to be published)

81

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

EXPLANATION TABLES.

OF TABLES

Spectroscopic Data for Ti V-Ti XXII

Ti VII, Ti XXI, etc.

H-Sequence, C-Sequence, etc.

IP x C, P, T

Ti6+ 9 Tizof, etc. According to spectroscopic convention, Ti I indicates the first spectrum, i.e., the spectrum of the neutral atom; Ti II denotes the second spectrum, belonging to the singly ionized ion; and so on. Indicates that the respective Ti ion has the same electronic configurations as neutral hydrogen, neutral carbon, etc. Ionization potential of the tabulated ions in cm-’ (eV) Wavelength of listed spectral lines in Angstrom units (lo-* cm) Superscripts to the right of the wavelength values having the following meanings: C

P T Configurations

Energy Levels

Int

wavelength calculated from energy-level data using the Ritz combination principle wavelength predicted by extrapolation along an isoelectronic sequence wavelength obtained from a theoretical. calculation

Customary spectroscopic designation for lower (first) and upper levels of spectral lines; electronic configuration followed by the term in U-coupling notation. The superscript o on the term indicates odd parity. Terms enclosed in parentheses refer to the parent state. Energy levels (in cm-i) for lower (first) and upper levels of spectral lines. An “X” after an entry means that a correction constant of unknown magnitude must be added (or subtracted) since no observational connection to the ground state has been established. Approximate intensity of the spectral line, generally estimated from the blackness (or density) of the line on photographic plates. The intensity value is cited from the paper identified with a superscript A on the reference number in the last column.

82

Atomic

Data and Nwlew

Data Tables.

Vol. 34, No. 1, January

1986

K. MORI et al.

EXPLANATION

Grotrian Diagrams for Ti V-Ti XXII

OF TABLES

continued

f/Type

Absorption oscillator strength for electric dipole transitions. 3.63-l means 3.63 X 10-l. The listed value is cited from the paper whose reference number is identified with a superscript *. Forbidden transitions are indicated by Ml (magnetic dipole) and E2 (electric quadrupole) in place of a number.

A

Radiative transition probability + 11 means 1.26 X 10”.

in s-‘. 1.26

Accuracy estimate for the oscillator strength and transition probability data, taken from the NBS reference tables on atomic transition probabilities.5 The accuracy is indicated by the following letter symbols, which are identical with the notation used in the NBS reference book: A B C D E

for for for for for

uncertainties uncertainties uncertainties uncertainties uncertainties

within within within within greater

3% 10% 25% 50% than 50%

The word accurucy is used here to mean “extent of possible error” or “possible deviation from the true value.” For a full discussion of the evaluation of data accuracies, the appropriate NBS publications (see, e.g., Ref. 5) should be consulted. References

Reference sources for the data. The numbers are keyed to the bibliographic listing following the Tables. Superscripts on the numbers have the following meanings: 0

*

A

83

reference from which the adopted wavelength value is taken reference containing the adopted oscillator strength and/or the transition probability paper from which the intensity value is cited

Atomic

Data and N&ear

Data Tables. Vol. 34. No. I, Jammy

1666

K. MORI et al.

EXPLANATION GROTRIAN

DIAGRAMS.

Grotrian Diagrams for Ti V-Ti XXII

OF GROTRIAN

DIAGRAMS

Ti V-Ti XXII

Notations on the Diagrams generally have the same meanings as for the Tables (see Explanation of Tables). Abscissa Vertical lines

Horizontal

Limit

lines

Energy of the levels in cm-‘. The levels are indicated as vertical lines. Energy levels. The electronic configuration (with the parentage in parentheses) and the level energy in cm-’ are given to the right of the line, and at the top is the J value. Energy levels with the same LS label for the upper term are grouped together. The term designation is given at the right of the diagram; the ordering is by increasing multiplicity and orbital angular momentum. For the lower level, the term is adjacent to the configuration. Transitions between levels. The number below each line gives the transition wavelength in Angstroms (IO-* cm). Heavier lines indicate resonance transitions with absorption oscillator strengthfa 0.0 1. The choice of f> 0.01 is rather arbitrary, but provides a good indication of the stronger spectral lines. The ionization limit in cm-’ (eV).

84

Atomic

Data and N&ear

Data T&its.

Vol. 34, No. 1, January

1966

K. MORI et al.

BRIEF

COMMENTS

Grotrian Diagrams for Ti V-Ti XXII

ON EACH TITANIUM

ION

Ti V (Ar Sequence)

The 3s23p6-3p53dtransitions were identified by Gabriel, Fawcett, and Jordan (1966),‘* Svensson (197 l),‘=’ and Svensson ( 1976).‘29 For the present compilation, the data of Svensson ( 1976)129 are adopted. The 3s23p6-3p54s, 5s, 6s transitions were also taken from Svensson (1976).129 The 3s23p63s3p64p,5p,. . . ) 1 lp ‘PO, 3P0 transitions were observed by Kastner, Crooker, Behring, and Cohen ( 1977)90 as absorption lines from the ground state. The transitions between higher levels were analyzed in detail by Svensson ( 1976);129 several of those are quoted in the present table and diagram.

Ti VI (Cl Sequence)

The 3s23ps‘PO-3s3p6 ‘S transitions were first observed by Weissberg and Kruger (1936). 13’ They were remeasured by Svensson (197 l),‘=’ whose data are adopted in this table. The 3s23p5-3s23p43dtransitions were observed by Fawcett and Gabriel (1 966),52 Svensson (197 l),‘=’ and Fawcett, Cowan, and Hayes (1 972).59 For the present compilation, the data from the compilation by Fawcett (197 1)57are adopted. The 3s23ps-3s23p44s,4d, 5s, 5d transitions are from Svensson and Ekberg ( 1468)125 and Fawcett, Peacock, and Cowan ( 1968).55 The observed intercombination lines 3s23p5‘PO-3s23p43d 4P, 4s 4P, 4d 4F, 5s 4P, and 5d 4F connect the doublet and quartet systems.

Ti VIZ (S Sequence)

The 3s23p4-3s3p5transitions were observed by Kruger and Pattin (1937)?* Fawcett and Peacock ( 1967),54 and Svensson (197 l).‘=’ The tabulated wavelengths are from Svensson (1971). “’ The 3s23p4-3s23p33dtransitions were first identified by Fawcett and Gabriel (1 966)52 and Gabriel, Fawcett, and Jordan (1966),‘* and new measurements were done by Svensson and Ekberg ( 1968),125 which are adopted here. The 3s23p4-3s23p34stransitions were originally identified by Edlen ( 1937),38 then remeasured by Svensson and Ekberg ( 1968);125 the latter results are quoted in the present diagram. The 3s23p4-3s23p34dtransitions were analyzed by Svensson and Ekberg ( 1968).125 The intersystem transitions of 3s23p4-3s23p33d(1D-3Po, 1D-3Do, 3P‘PO, ‘P-‘DO), 3s23p4-3s23p34s (1D-3Po, 3P-1Do), and 3s23p4‘D-3s23p34d 3Do were observed by Svensson and Ekberg ( 1968).125 Thus the position of 3s23p4 ‘D2 could be established, and the locations of the 3s23p4‘So and ‘Pp levels were determined through singlet transitions.

Ti VZZZ(P Sequence)

The 3s23p3-3s3p4transitions were observed by Fawcett and Peacock ( 1967),54 Fawcett ( 1970),56 and Smitt, Svensson, and Outred ( 1976).“’ The present wavelengths are from Smitt et al. (1976).“’ The 3p3-3$3d, 3d24s transitions were extensively observed by Ekberg and Svensson (1 970).46 No intercombination lines have been observed; thus all doublet levels have a systematic uncertainty X, 85

Atomic

Data and Nuclear

Data Tables.

Vol. 34. No. 1, January

1666

K. MORI et al.

BRIEF

COMMENTS

Grotrian Diagrams for Ti V-Ti XXII

ON EACH TITANIUM

ION continued

Ti IX (Si Sequence) The 3s23y2_3s3p3 transitions were first identified by Fawcett and Peacock ( 1967)% and Fawcett ( 1970).56 For the present diagram the more accurate data of Smitt, Svensson, and Outred (1976)“’ have been chosen. The 3s23$3s23p3d transitions were analyzed by Fawcett, Gabriel, and Saunders ( 1967),53 Fawcett (1971),” and Ekberg and Svensson ( 1970).46 The tabulated wavelengths are from Ekberg and Svensson (1 970).46 The 3s23pz-3s23p4s transitions are also from Ekberg and Svensson (1970),& and the 3s23p2-3s23p4d and 3p3d-3p4f transitions were observed by Fawcett, Cowan, and Hayes ( 1972).s9 The intercombination lines 3s23pz ‘D2-3s3p3 3Sp, ‘& and 3s23pz 3P23s3p3 ‘D!j were reported by Smitt et al. (1976).“’ Ti X (Al Sequence) The 3s23p-3s3$ transitions were frrst identified by Fawcett and Peacock ( 1967)54 and later measured by Fawcett ( 1970).s6 The compiled values are from the recent observation by Smitt, Svensson, and Outred ( 1976).“’ Fawcett (1 970)56 also reported measurements of the 3s3$ 4P-3d 4So and the 3s23p 2Po-3s23d ‘0 transitions. The 3~39 4P-3s3p3d 4D”, 3s3p4s 4Po transitions were observed by Ekberg and Svensson (1970).& However, the positions of the 3s3$ 4Plevels could not be determined. We therefore adopted approximate values for these levels, which are predicted from extrapolations along the isoelectronic sequence by Ekberg and Svensson (1 970).46 The 3p-ns, 3d-np, and 3d-nf transitions were also measured by Ekberg and Svensson (1 970).46 The transition probabilities are from the compilation of Wiese and Fuhr (1 975).‘34 Ti Xl (Mg Sequence) The spectrum of Ti XI was first observed by Edltn ( 1936).37 The resonance lines 3s2-3snp (n = 3, . . . ,7) were later analyzed by Ekberg ( 197 1):’ Fawcett (1 970)56 identified the 3s3p ‘Py-3$ ‘So, ‘4 lines. The 3s3p-3$, 3s3d, 3s4s, 3p4p, 3s4d, 3s5s, 3s5d, 3s6f transitions were observed by Ekberg (197 l).47 The 3$-3p3d and 3s3d-3p3d, 3s4f transitions were measured by Svensson and Ekberg ( 1969)‘26 and by Fawcett ( 1970),56 and the 3p3d-3p4f transitions are from Fawcett ( 1976).63 The 3$-3&s, 3sSJ; and 3s3d-3s5f transitions are also from Ekberg’s work (197 l).47 Kastner, Swartz, Bhatia, and Lapides ( 1978)9’ recently identified the 3s3d ‘D2-3p4d ‘Fg, 3$-3p4d transitions. The singlet and triplet transitions have been connected by the observation of the 3s’ ‘&-3s3p ‘PP intercombination line by Finkenthal, Bell, and Moos ( 1982).76 An improved wavelength value of 568.98 * 0.4 A, measured by Peacock and Stamp in 1983, has been used by Sugar and Corliss ( 1985)‘24 to determine the energy-level value of 3s3p 3P?. The transition probabilities are from the compilation by Wiese and Fuhr ( 1975).134 Ti XII (Na Sequence) The spectrum of Ti XII was first observed by EdlCn ( 1936).35 Ekberg and Svensson (1 975)48 and Cohen and Behring (1 976)22 extended the analysis of the series of transitions 3s-np, 3p-ns, 3p-nd, and 3d-nf up to 1 lp, 7s, 1Od, 86

Atomic

Data and Nucbar

data Tables.

Vol. 34, NO. 1, Jawmy

1986

K. MORI et al.

BRIEF

COMMENTS

Grotrian Diagrams for Ti V-Ti XXII

ON EACH TITANIUM

ION continued

and 81: The wavelengths are mostly taken from Ekberg and Svensson ( 1975).48 The autoionization resonance lines 3s ‘S-2p53s2 2P0 are from Feldman and Cohen ( 1967).” The transition probabilities are quoted from the compilation by Wiese and Fuhr ( 1975).134 Ti XIII

(Ne Sequence)

The resonance transitions 2s22p6-2s22$3sand 2s22$3d were identified by Edlin and Tyren ( 1936).36 Other resonance transitions 2s22p6-2s22p54s, . . . ) 4d,. . . , 5d, and 2s2p63pwere observed by Fawcett (1965)” and by Feldman and Cohen (1967).” The listed wavelengths are taken from the latter work. The 3p4d transitions were first observed by Kastner, Behring, and Cohen (1975).** These and the 3s-4p, 3p-4s, 3p-4s, 3d-4f; 3d-5ftransitions have recently been extensively measured by Fawcett, Bromage, and Hayes (1979).65 The transition probabilities are from the compilation by Wiese and Fuhr ( 1975).‘34 Ti XIV (F Sequence)

The 2s22p5-2s22p43s, 3d transitions were observed by Fawcett ( 1965),5’ Cohen, Feldman, and Kastner ( 1968),20 and Feldman, Doschek, Cowan, and Cohen ( 1973).72 The wavelengths of these transitions are taken from Feldman et al. ( 1973).72 The 2s2p6 2S1,2-2s2p53s2Py,2,3,2 transitions were also derived from Feldman et al. ( 1973).72 The 2s22p52P”-2s2p6 2S resonance transitions at 129.440 and 12 1.986 A were observed by Fawcett ( 197 1),57 calculated by Edlen (198 1)45 from a semiempirical isoelectronic sequence analysis, and measured by Kaufman, Sugar, and Cooper (1982).94 The listed data were taken from Kaufman et al. ( 1982).95 The 2P9j2-2P$ splitting within the 2s22psground-state configuration was observed by Lawson, Peacock, and Stamp ( 198 1)“I on the DITE tokamak. All transition probabilities are from the multiconfiguration Dirac-Fock calculations by Cheng, Kim, and Desclaux (1979).‘* Ti XV (0 Sequence)

The 2s22p4-2s2p5transitions were observed by Fawcett (197 1),58 Doschek, Feldman, Cowan, and Cohen (1 974),29 Kasyanov, Kononov, Korobkin, Koshelev, Ryabtsev, Serov, and Skokan ( 1974)T2 and Kaufman, Sugar, and Cooper ( 1982).94 The tabulated wavelengths are adopted from Kaufman et al. ( 1982).94 The 2s2p5 ‘PP-2p6 ‘SO transition was observed by Kaufman et al. ( 1982),94 Kasyanov et al. ( 1974),92 Fawcett, Galanti, and Peacock ( 1974),60 and Doschek, Feldman, Davis, and Cowan ( 1975).3’ The data by Kaufman et al. ( 1982)94 are used here. The 2s22p4-2s22p33stransitions are from Goldsmith, Feldman, and Cohen (197 1)y9 and Doschek, Feldman, and Cohen (1973)?* The wavelengths are taken from the latter. The 2s22p4-2s22p33dtransitions are from Goldsmith, Feldman, and Cohen (1971),79 Fawcett and Hayes ( 1975),62 and Bromage and Fawcett ( 1977).12 Most of the wavelengths are adopted from Fawcett and Hayes (1975).62 87

Atomic

Data and Nudear

Data Tables.

Vol. 34. No. 1. January

1986

K. MORI et al.

BRIEF COMMENTS

Grotrian Diagrams for Ti V-Ti XXII

ON EACH TITANIUM

ION continued

The following intercombination lines of Ti XV have been recently observed by Kaufman et al. ( 1982):94 2s22p4‘P2,~-2s2p5‘Pp, and 2s22p4‘D22s2p5‘p;.

The forbidden transitions within the 2s22p4ground configurations were reported by Kastner, Bhatia, and Cohen ( 1977).89 Among them, the 3P2-3Pl transition at 2545.08 A was observed in the DITE tokamak by Lawson, Peacock, and Stamp (198 l).“’ According to Sugar and Corliss ( 1985),‘24 Peacock and Stamp in 1983 measured the transition 3P2-‘D2 at 919.73 A, which is utilized to determine the position of the ‘4 level. Most transition probabilities are from the multiconfiguration DiracFock calculations by Cheng, Kim, and Desclaux (1979).‘” Ti XVI (N Sequence)

Lines of the transition arrays 2s22p3-2s2p4and 2s2p4-2$ were measured by Fawcett ( 197 1)58and Kasyanov, Kononov, Korobkin, Koshelev, Ryabtsev, Serov, and Skokan (1 974),92 and were most recently observed by Kaufman, Sugar, and Cooper ( 1982),93 from whose work the tabulated data are taken. The position of the doublet system relative to the ground state is also based on the intersystem line observations by Kaufman et al. (1 982).93 The 2s22p3-2s22p23dtransitions are taken from Fawcett and Hayes (1975).62 The transition probability data are from the multiconfiguration DiracFock calculations of Cheng, Kim, and Desclaux (1979).” Ti XVII (C Sequence)

The 2~~28-2~2~~ transitions were classified by Fawcett, Galanti, and Peacock (1 974)60 and by Kasyanov, Kononov, Korobkin, Koshelev, Ryabtsev, Serov, and Skokan (1 974).92 Additional measurements and some revised classifications were carried out by Fawcett and Hayes ( 1975)62 and by Fawcett (1975):’ and recently, accurate measurements were reported by Sugar, Kaufman, and Cooper ( 1982).‘22 The latter are used in these tables. The 2s2p32p4transitions were partially observed by Fawcett ( 1975),6’ and more recently by Sugar et al. (1982). I22 These data, complemented by some theoretical ones from the work of Cheng, Kim, and Desclaux (1979),” are tabulated here. Lines of the 2s22p?--2~~2~3sand 2s2p3-2s2p23dtransition arrays are from the work of Goldsmith, Feldman, Crooker, and Cohen (1 972).8’ The transitions from 2s22p3dterms are taken from observations by Bromage and Fawcett (1 977).13 Denne and Hinnov ( 1984)26 observed a faint line in a tokamak plasma that they identified as the 2s22pr 3P2-2s2p3‘S2 intercombination line. Goldsmith, Feldman, Crooker, and Cohen ( 1972)8’ identified two quintet transitions, but they are not connected to the known triplet levels. The forbidden transitions 3Po-3P’ and 3P,-3P2 within the ground-state configuration 2s22p2 were observed in the DITE tokamak by Lawson et al. (1981).“’ Most transition probabilities are taken from the multiconfiguration Dirac-Fock calculation by Cheng, Kim, and Desclaux (1979).” Ti XVIII

(B Sequence)

The transition array 2s22p-2~2~ was analyzed by Kasyanov, Kononov, Korobkin, Koshelev, Ryabtsev, Serov, and Skokan ( 1974),92 Fawcett and 88

Atomic

Data and Nuclear

Data Tables.

Vol. 34. NO. 1, JMuery

lS@

K. MORI et al.

BRIEF

COMMENTS

Grotrian Diagrams for Ti V-Ti XXII

ON EACH TITANIUM

ION continued

Hayes ( 1975),62 and Sugar, Kaufman, and Cooper ( 1982).‘23 The tabulated data are taken from the last paper. The 2~28-2~~ transition data are partially from observations of Sugar et al. (1982),123 and observations of Fawcett, Ridgeley, and Hatter (1 980),66 and are also partially derived from theoretical wavelengths by Chen, Kim, and Desclaux (1979).18 The 2s22p-2s2p3p and 2s2$-2s2p3d transitions are taken from Fawcett and Hayes (1975).‘j* The *PO ground-term splitting was obtained from a magnetic dipole line observed by Suckewer, Fonck, and Hinnov (1980).‘*’ The 2s22p 2P1,22~2~~4P1,2and 2s22p2P3/2 -2s2p2 4P3,2intercombination lines have been tentatively identified by Denne and Hinnov ( 1984)26 and are used to determine the position of the quartet system. The transition probabilities for transitions within the n = 2 shell are taken from the multiconfiguration Dirac-Fock calculations by Cheng, Kim, and Desclaux ( 1979).18 Ti XIX (Be Sequence)

The resonance transition 2s’ ‘So-2s2p ‘Py was initially identified by Goldsmith, Oren, Crooker, and Cohen ( 1973)82 and was recently observed in tokamak86*“8 and in laser plasmas. lo1 The 2s2p-2p2 transitions in singlet and triplet systems are quoted from Lawson, Peacock, and Stamp (198 l),“’ whose data were derived from the semiempirical analysis by EdlCn (198 l).45 The intersystem resonance line, 2s’ ‘SO-2s2p 3PY, has been observed by Denne and Hinnov ( 1984)*‘j and has been utilized to determine the intersystem interval. The transitions between n = 2 and n = 3 were observed by Fawcett and Hayes ( 1975)62 and Boiko, Faenov, and Pikuz (1978).” The compiled data are adopted from Boiko et al. (1978).” The magnetic dipole transition 2s2p(3PY-3P4)was observed in the DITE tokamak by Lawson et al. (198 l).“’ The transition probabilities for transitions within the n = 2 shell are from the multiconfiguration Dirac-Fock calculations by Cheng, Rim, and Desclaux ( 1979).18 Ti XX (Li Sequence)

The ls22s *SI,2-ls22p 2P1/2,3/2 resonance transitions were first found in solar flare observations by Sandlin, Brueckner, Scherrer, and Tousey ( 1976),‘15 and were recently observed by Hinnov ( 1979)86 in the PLT tokamak at 309.25 * 0.05 and 259.30 ~fi 0.1 A, and by Stamp and Peacock ( 1982),‘18 also in a tokamak plasma, at 309.072 + 0.010 and 259.272 f 0.004 A. The 2s-3p, 2p-3s, and 2p-3d transitions were first reported by Goldsmith, Feldman, Oren, and Cohen ( 1972).80 Boiko, Faenov, and Pikuz (1978)” made detailed measurements on 2s-np and 2p-nd transitions up to n = 9. The transitions to doubly excited levels are from Aglitskii, Boiko, Zakharov, Pikuz, and Faenov (1974),’ Feldman, Doschek, Nagel, Cowan, and Whitelock (1 974),73 and Boiko, Faenov, and Pikuz (1978).” The transition probabilities are mainly from Biemont (1977)’ and the critical tables of Martin and Wiese ( 1976).‘06 Ti XXI (He Sequence)

The theoretical energy-level values for the singlet and triplet systems calculated by Ermolaev and Jones ( 1974)50 and Safronova ( 1981)‘14 (for n 89

Atomic

Data and Nudear

Data Tat&s.

Vol. 34. NO. I. January

1966

90

K. MORI et aI.

BRIEF

COMMENTS

Grotrian Diagrams for Ti V-Ti XXII

ON EACH TITANIUM

ION continued

= 2 levels) are tabulated in this compilation. The ls*- 1~2~ transitions have been recently observed by Boiko, Faenov, and Pikuz ( 1978).” The Is*- ls3p transition is from Cohen, Feldman, and Underwood (1968).*’ The 1~2~1~2~ transitions are calculated by the Ritz combination principle. The transition probabilities are taken from Lin, Johnson, and Dalgarno (1977)“’ and the critical tables of Wiese and Fuhr ( 1975).lM Ti XXII

(H Sequence)

The 1s 2S112-2p *P52,3,2 transitions were measured by Lie and Elton ( 197 l).‘03 We give the theoretical values calculated by Erickson ( 1977),49 and Mohr ( 1983)‘09 for the energy levels of this hydrogen-like ion, which are much more accurate than any observed values. The oscillator strengths, orfvalues, for lines of hydrogen-like spectra are the same as for neutral hydrogen (thus, f= 0.416 for 1s *S-2p *P“), and the transition probabilities are Z4 times those of hydrogen. (2 is the nuclear charge; in this case Z = 22.)

Alo”&

Oata md Nudea

Oata T&k%

Vol. 34, NO. 1. Jammy

1986

TABLES. Spectroscopic Data for Ti V-Ti XXII Seepage 82 for Explanation of Tables Ti Conli~ur~iions

1 (A) 252.956

V (Ar-Sequence)

3.23P’

Iso

Energy

3~’

(*P*)

34

‘P;

1P=800900cm~~ levels

0

91

(cm-‘)

395321

(99.300eV)

Int

f/Type

A (I-‘)

ACC

900

3.63-l

1.26+11

C

ReferellCeS

24.

5'7.

‘78.

24.

51.

95’.

57'.

95'.

121.

1 2a”

363.145

3r*3P’

Iso

3~'

(*P*)

36

‘P;

0

275312

323.365

3023P”

‘so

3~’

(*P*)

34

“D;

0

308252

3P5

t2P4)

4s

‘P@1

0

443153

225.341

65

1 .a-3

4.0+7

E

24.

95’.

400

3.3-l

1.4+10

E

95A.

12a”

250

a. l-2

4.1+9

E

95A.

12a”

226.909

3rP3p‘

‘so

3P5

(‘PV

4s

‘Pi

0

436650

162.964

3rZ3p’

‘so

3P5

(‘P*)

58

‘P;

0

613556

20

95’.

a 5. 12 a0

164.446

3a’3p”

‘so

3P’

(‘P’)

5s

SP;

0

608101

35

a 5A.

95.

146.891

3s’3p”

‘so

3~'

(‘P’)

6s

‘P;

0

660746

95”.

128O

145.79

3rZ3p6

‘so

3~'

(‘P’)

6s

‘P;

0

685940

8 5A.

12 a0

‘P;

0

691797

6

90.

0

687960

6

SO”.

144.551

3*3p64p

145.354

3rt3pa

‘so

120.624

3tZ3p’

‘so

313P”SP

‘P;

0

627650

121.138

3r23p”

‘so

3%3P‘SP

SP;

0

625500

112.495

3.‘3P’

Iso

383~~6~

‘P;

0

866930

10

112.696

3rP3p”

‘so

3=3~‘6~

‘P;

0

685110

0

106,443

3S23P’

‘so

3‘3P’lP

‘P;

0

108.611

31*3P”

IS@

313PblP

‘P;

106.154

3.‘3P’

‘so

3‘3P”rJP

106.308

3rZ3p”

‘so

104~111

3“3P’

104.732

12

9sA.

124

so4

80”.

124

90”.

I24

SO=.

124

922140

904.

124

0

920120

SO”.

124

‘Pi

0

942030

90”.

124

3%3P66P

‘P;

0

940660

90".

124

‘so

3r3P68P

‘Pi

0

955010

0.8

90”.

124

3.23P”

‘so

313P6SP

SP;

0

954620

0.5

SO'=.

124

103.733

3.‘3P6

‘so

3*3P’lOP

‘P;

0

964010

0.8

SO”.

124

103.154

3S’3P”

‘so

3.3P”lOP

‘P;

0

963820

0.8

80”.

124

103.059

3**3P”

‘so

3.3P‘llP

‘P;

0

870320

SO-.

124

557.115

3d

‘Do t

3,3p’3d

‘D,

0

309433

488829

556.562

1

309252

466929

0

1 2aA

549~083

*

309433

481559

6

1 2gA

309252

491559

1 2aa

309433

492567

1 2aA

307429

491558

548.533

I

546.062

*

643.103

3

* *

00

1

12aA

12gA

129’

12a”

129’

129

92

TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti Configurations

1 (A) 504.665

V (Ar-Sequence)

3d

'D,

(cm-‘)

*“t

f/TYPO

A (*-I)

Reference.

488929 431.559

129

493.183

289050

491559

I 2sA

491.358

289050

492567

1 2sA

287277

492567

129”

275372

488929

277311

491559

274440

488929

277311

492567

5

1 2sA

275312

491559

3

1 2sA

311434

506225

8

129*

*

487.115

4

36

‘P’ 1

3

3s3pe3d

‘D,

466.149

z

466.224 464.562

2

3

462.565

513.314

3d

'Fe a

501.631

3d

‘D* *

3r3pb3d

‘D?

306875

506225

507.683

3d

‘Do L

3s3p63d

‘D2

309252

506225

301429

506225

503.031

464.143

36

‘F’ 2

3s3P’3d

‘D2

290779

506225

901.692

3d

‘PO I

3s3Ps3d

‘DI

395321

506225

934.530

3d

‘Pa 1

4P

'P,

395321

496891

838.315

3d

‘PO I

4P

Iso

395321

514609

534.297

3d

‘F” 2

4P

'rJ*

306875

494036

12

ACC

290779

468.257

3s3pb3d

ICVAlS

(9’9.300eV)

290779

438.050

‘F’ 2

Energy

IP=800900cm-’

12sA

3

1 2gA 129* 129’

129* 6

12sA 12sA

00

12 gA

1 2sA

0

129” 1 2sA

0

129"

AtomicDataand

Nuclear

DataTabIas.Vol.34.No.

1,January

1986

93

TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti ConfIgurations

1 (A)

524.113

3s*3ps

349.514 346.128 342.595

341.109

3S3P'

*s,,*

Z/2 3r23p5

5829 0

L/X 3P’

1nt

f/Type

A (s-l)

Act

References

196628

900

51.

35'.

121°

196628

000

51.

95A.

127O

5829

288412

6

5P.

95A

1/Z

X/Z

5829

231890

6

5P.

95a

S/Z

I/*

0

288412

1

SP.

95A

Z/2

3/Z

0

291890

35

51°.

95&

29assl

20

SP.

95'

Z/2

3,’

0

29assl

20

51°.

95A

330.703

Z/2

S/t

0

302386

60

SP.

95A

373814

200

52.

57O.

95"

0

379874

250

52.

51°.

95A

3s*3p5

3~’

3~’

*p;,*

263.246

(*P)

36

(cm-')

*P 1/Z

*p;,*

(*P)

levels

(119.53eV)

334.451

267.343

3**3p5

*p;,*

IP=964100cme1

(Cl-Sequence) Energy

*p;,*

508.575

353.877

VI

('0)

3d

3d

3/*

5829

I/X *P S/Z

5829

391583

250

52.

51'.

95"

1/Z

1/*

5829

393644

250

52.

51°.

95A

255.315

3,’

S/Z

0

391583

300

52.

51’.

18.

254.06

*/*

I/X

0

393644

200

52.

51'.

95'

251.071

3rZ3p5

*p;,*

'S 1/*

5829

257.855

259.232

3 S23PS

*D S/2

3p'

*p;,*

3~’

(ID)

(ID)

3d

3d

*D*,*

127

404123

100

52.

51'.

18.

95".

121

250.482

S/Z

S/X

0

399231

000

52.

51’.

18.

9SA.

127

241.450

Z/2

X/2

0

404123

250

52.

51°.

95A

0

331221

20

95A.

12 5O

95"

301.913

3S23P5

*pi,*

286.355

3SZ3PS

*p;,*

3~’

('D)

3d

*F 5/*

3~’

C'S)

3d

*D */*

5829

95”.

352625

60

51°.

283.586

X/2

Z/2

0

352625

20

51°.

9gA

282.215

J/2

S/2

0

354340

5P.

95A

0

301411

95".

1 2s"

331.767

3S13P5

*p;,*

201.311

3523P5

*p;,*

3~’

f*P)

3d

‘P I/Z

3P’

(*P)

4s

*P Z/2

199.759

L/2

l/2

196.977

Z/2

3/*

191.460

X/2

I/?

194~300

90

3s”.

95”

0

502511

400

3s”.

95&

0

506432

200

3s”.

954

200

39.

95".

125O

518797

250

39.

95A.

125O

192~110

S/2

J/X

0

518914

20

39.

95”.

125’

548995

35

39O.

95&

0

548335

so

3s”.

s5A

125O

3P’

(‘3

4s

J/2

5829

1/Z

497389

3

95”.

*/*

5/*

0

492126

6

95A.

125O

201.865

*/*

*/*

0

495380

3s”.

95A

3SZ3PS

*p;,*

*s 1/Z

5829

203.200

153.255

3s*3ps

*D X/Z

95A

200

518314

*p;,*

4s

3s”,

506432

0

182.151

('D)

502511

5829

512

203.434

3~’

5829

X/2

3sZ3p"

*p;,*

6

192.1s4

184.106

3S23P5

5829

*p;,*

151.897

154.168

3P'

3~’

fSP)

('P)

4s

4d

3/* 3SP3PS

*p;,*

'P 1/Z

'P S/I

5829

5829 0

S/1 3~'

fsP)

4d

*II X/2

5829

658339

3

3s”.

35A

658339

1

95".

125'

6

55O.

35"

55O.

95A

5P.

95A

55O.

95A

651960

153.550

J/Z

5/*

0

651255

153.384

S/Z

S/1

0

651960

0

656437

152.338

3s*3ps

*p;,*

3~’

('PI

4d

*F 5/*

125

35 3

10

94

TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti A IA)

149.560

VI

ConfiPurations

3.'3$.5

‘Pi,,

150*315

(Cl-Sequence) Enoray

3~'

(ID)

Id

‘S I/I

3~’

(‘D)

4d

levela

0

IP=964100cm-’ (cm-‘)

668630

1nt

f/Type

IO

(119.53eV) A (I-‘)

ACC

References

s5O.

95A

95’

*P I/*

5829

671096

3

5s”.

ISO*

IA

5829

611549

3

9 5A.

12 5O

149.010

3,)

95’

149.392

3~’

675207

10

55O.

95’

674297

20

55°.

95A

148.104

3/t

0

675207

5s”.

95’

9gA.

125O

5s".

9sA

9 5A.

12 so

55O.

9s”

55O.

95”

5P.

95A

5P.

9?

5s".

9sA

f’s)

4d

154.161

5629

3SZ3P5

‘P;,,

3~’

(‘P)

4d

3/t 38’3P5

*p;,*

‘Q 3/I

5829

S/l 3P’

?P)

5s

*P 1/2

704263

653166

5829

3/3

0

712034

139.911

3/I

I/I

0

114742

3p’

‘P;,*

(‘D)

5s

‘D S/3

5829

3/P

S/3

0

131455

136.67

3,)

3/2

0

731453

0

708652

31’3P5

lP;,*

3P’

?P)

5%

‘P 3/l

130.113

3.f3P5

1P;,a

3~’

f3P)

Sd

‘D 3/*

20 3

131453

136.714

141.113

10

114142

s/2

3r’3pS

3

654503 0

140.443

131.813

3

104270 0

s/1

152.960

141.061

‘D 3/*

5829

5P.

0

141.988

‘D 3/I

20

s/3

3p’

4d

671096

146.303

143.176

(‘D)

0

10

5 5O. 9 5d 39O.

9sA

5s".

9c

95A

774306

3

55O.

129.249

3/Z

S/3

0

773702

6

55O.

9sA

129.148

3/P

3/2

0

774306

5s".

95’

126.566

31’3P’

*p;,z

125.669

126.330

(‘D)

5d

3SZ3PS

zp;,*

3~’

(‘D)

54

‘P;,r

‘D S/3 S/I

3/I

3r’3p5

*P 3/t

5829

S/3

3/3

125.456

128,450

3~’

5829

6

3~’

(“P)

5d

‘Q S/1

795615

1

95’.

126’

0

795615

6

9 P.

12 5O

0

797092

0

779513

5829

797406

3 10

1

95’.

125O

9fsA.

125'

55O.

9sA

TABLES. Spectroscopic Data for Ti V-Ti XXII Seepage 82 for Explanation of Tables Ti A (A)

VII

Configurations

(S-Sequence) Energy

521.561

3S3P'

“Pi

levels

95

1P=1136000cm~’ (cm-‘)

lnt

f/Type

(140.8eV) A (1-l)

ACC

ReferellCeS

4534

196266

250

54.

57.

95’.

127’

515.008

5888

200059

125

54.

57.

95'.

l27O

511.442

4534

509.511 505.899

125

54.

57.

95’.

127’

196266

550

54.

57.

95A.

127’

202202

100

54.

57.

95’.

127O

0

200059

125

54.

51.

95”.

127’

4534

499.853

509.127

3r23p'

's4

3S3P5

440.361

3s23p'

'D2

313P

270.148

3*13p'

4P.

3~'

269.759

L

266.502

I

268.106

200059 0

3r*3p4

3P.

(*Do)

s

3d

'P' I

54801

251214

60

95'.

'P;

24130

251214

125

34.

54.

5888

375235

10

51.

95'.

4534

375235

90

57.

95*.

125’

57.

95A.

125’

'So 1

0

3~'

(*Do)

36

375235

200

127'

'PO L

5888

318812

57.

95A.

I

4534

377614

200

52.

57.

4534

378872

60

57.

95A.

35

268.035

I

267.136

I

265.059

L

57,

95'.

264.823

2

0

377614

250

52.

57.

263.944

*

0

378872

35

57.

95'.

255.076

3r'3p'

SP,

0

3~~

254.687

0

254.022

2

253.811

I

252.162

2

250.913

2

(*P')

36

"D;

4534

381608

90

57.

95a.

125'

125' 95*.

125'

125’ 125O 95A.

125'

125'

4534

396572

250

57.

78.

95A.

125’

5888

398527

200

57.

78.

95A.

125’

78.

0

393667

800

57,

77.

398527

200

57.

95*.

125'

0

396572

200

57.

95".

125'

0

398527

3

51.

95'.

125'

4534 2

95'.

305.730

3r23p'

's,

3~'

('Do)

34

'PO I

54801

381894

1

57.

95A.

125’

332.081

3~~3~'

'DI

3~~

(*De)

36

'0;

24130

325261

6

57.

95'.

125'

296.056

3~~3~'

'D2

~P'('D-)

3d

'Fe 3

24130

361904

57.

95".

125'

279.516

3s*3p4

ID*

3p'('D*)

3d

'PO I

24130

381894

200

57.

95*.

125O

260.704

3r*3p4

'D*

~P'(~P*)

3d

'D;

24130

407703

250

52.

57.

252.571

3S23P'

'so

3~'

(*PO)

3d

'P' 1

54801

450729

57.

95”.

252.275

3~~3~'

ID1

3~'

('PO)

3d

'F;

24130

420522

57.

78.

282.898

3r23p'

ID*

3~'

(*De)

3d

'P;

24130

377614

24130

378872

24130

396572

281.898

I

268.493

3s'3~'

'DI

265.951

3aZ3p'

SP4

264.997

I

261.851

*

246.037

38'3P'

JP,

179.107

3.*3P'

SPo

178.673

~P'('P*)

36

'D' I

3~'

36

'P;

(*P')

3d

‘D;

60

800

I 200

I

95A.

125'

95A.

125'

95’.

125’

5888

381894

60

95*.

125’

4534

381894

35

95".

125'

381894

60

95A.

125'

95'.

125'

0

3~4

1

(*Do)

35

3

l27O

95*.

125’

125’

95A.

4534

407703

5888

564217

10

38.

95'.

125’

4534

564217

20

38.

95'.

125'

125'

125'

TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti

VII

Configurations

A (A)

117.238

!sncrty

*

172.353

(S-Sequence) level*

0

I 3~'

(*Do)

4s

'D;

IP=11361100cm~1 (cm-?

564211

1nt

f/Type

60

(140.8eV) A (s-1)

ACC

Rcferenccr

38.

95A.

125O

5888

586092

6

36.

95’.

125’

111~952

4534

586092

6

38.

95”.

125O

Ill.888

4534

586308

20

38.

95’.

125O

20

38.

95’.

125’

38.

95’.

125’

110~559

0

586308

110~358

0

586998

3pa

166.087

?P4)

4%

SP;

125

5888

601982

38.

95'.

125'

165.836

4534

601538

38.

95”.

125’

165.116

4534

601982

38.

95’.

125’

165.403

4534

609116

6

38.

95'.

125'

0

601982

3

36.

95’.

125’

0

609116

10

38.

95'.

125’

164.418 164.113

2

10

118~572

3*'3p'

'so

3PJ

('PO)

4s

'P;

54801

614194

10

38.

9 5”.

12 5O

115~812

3s'3p'

'DI

3~’

('D')

4s

'D;

24130

592918

90

38.

95".

125'

111~216c

3r'3p'

'Dt

3PS

(*Pv

4s

SPO1

24130

601982

20

38.

95”.

125

*

24130

609116

38.

95'.

125'

10

38.

95A.

125'

110.938

t

168.652

3r'3p'

3Pl

138.814

3123p'

3P.

138.548

1

137.661'

2

132.133

3SZ3P'

SP2

132.522

133.633

3ps('Do)

4s

'D;

3~'

Id

'0' 1

('S.-j

3ps('Da)

4d

3n23p’

SP,

126211

39.

55.

95’.

125’

4534

126303

10

39.

55.

95A.

125’

0

126424

20

39.

55.

95’.

125’

0

153393

10

0

154591

152850

95A.

125O

0

155132

95”.

125’

95A.

125’

'D; I

3p3

+D*)

44

'P;

4534

*

132.982

3sP3P

SP,

129.122

3.=3p4

'P,

3~’

('Do)

3ps('Po)

129.603

I

128.25

2

592918

5888

3

2

132.322

0

3

6

95A.

125'

95'.

125'

Id

'S;

4534

156518

4d

'D;

4534

115416

3

95'.

125'

4534

716122

I

95A.

125O

119699

95'.

125'

125O

0

s

132.351

3n’3p’

'DI

3ps('Po)

Id

'0;

24130

119699

95”.

136.615

3rZ3p’

‘so

3p3

4d

'P" I

54801

185116

39.

132.149

30’3~’

'Dt

~P'(~P'?

4d

'0;

24130

180853

95”.

125’

132.093

38’3~’

ID1

3p'('P')

4d

'P;

24130

181110

95'.

125'

136.261

30’3~’

'D)

3ps(*D")

4d

'D;

24130

757984

135.801

3~~3~’

'D2

3p’(*D’)

4d

'F;

24130

160504

(*P")

6

20

55.

95A.

125O

39.

55.

95’.

125’

39.

55.

95A.

125’

AtomicDataandNudearDataTaMes,Vol.34.No.l.January1986

97

TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti A (A)

VII

Configur.stions

3r*3p3

538.241

1,) 3n’3p*

481.428

(P-Sequence)

Encrsy

*p;,*

535.381

I

*D;,*

313~’

*D*,*

level*

IP=1374000cm~‘(170~4eV) (cm-‘)

4

46.

1114

1

46.

Ill4

33256+X

240972+x

3

46.

1170b

241426+X

11

46.

lllM

10

4 6. 56.

5/Z

J/Z

3/*

32191+x

240972+x

55634+X

278038+X 278038+X

*pa,*

R.S,er.S”CeS

240912+x

5/*

3s3p’

Act

241426+x

478.971

*pi,*

A (1-l)

54189+x

33256+X

3s*3p3

I/TYPC

55634+X

480.316

449.633

1nt

1

56.

5 I.

9 5. 11 7‘=

11706

443.49

1/Z

3/2

54189+x

440.681

1/z

1/2

54189+x

281108+X

2

117”

55634+X

290234+X

6

56.

117”

54189+x

290234+x

3

56.

117m

57.

95.

l17M

426.258

3s*3p*

3n3p’

*pi,*

423.649

Is,,*

L/2

408.528

3s*3~*

L/2

*D;,*

3S3P’

*p*,*

71

33256+X

278038+X

7

56,

406.756

9/*

S/2

32191+x

278038+X

3

1 17A

401.739

J/2

L/2

32191+x

281108+X

6

56.

57.

95.

Illa

12

46.

54.

56.

57.

383P’

514.206

‘P*,*

0

194475

95.

1 I 7504.801

0

198098

8

46.

56.

57.

95.

117”

500.116

0

199954

5

46.

56.

57.

95.

117”

324.207

55634+X

364082+X

I

4 6’.

57,

95n

322.698

3r23p3

*pi,* L/2

3~*

S/Z

54189+X

364082+X

1

4 P.

57.

956

319.463

3/Z

I/Z

55634+X

368663+X

1

4 EP.

57.

95&

317.952

1/Z

1/2

54189+X

368663+X

I

4 6O.

51.

95A

*D 5/2

3p*

263.564

(‘P)

C’S)

3d

36

*P a/*

55634+X

435049+x120

4 6’.

57.

95’

262~718

55634+X

436210+X

10

4 6O.

57.

95’

261.125

54189+X

436210+X

60

4 6O.

57.

95&

60

4 6’.

51.

95’

4 6’.

57.

95”

4 6’.

57.

95A

302

272

*P S/I

33256+X

364082+X

301

291

3.’

3p*

S/1

S/I

32191+x

364082+X

297

197

3/*

1/*

32191+x

368663+X

3s*3p*

*Do S/1

3p*

(*P)

269

533 178

267

401

271

591

210

530

279

940

218

806

0

311012

175

9.6-l

5.9+10

E

46’.

53’.

57.

95”

s/*

J/1

312887

120

6.2-l

5.8+10

E

46O.

53’.

57.

95’

a/*

L/I

0

313911

3.1-l

5.8+10

E

46’.

53’.

51.

95’

1,)

I/*

277

813

a/*

276

101

1/Z

290

971

289

315

273

118

272

843

5/*

272

369

272

073

(‘D)

3d

3S23PS

55634+X

423834+X

3

4 6’.

57.

95A

1/*

54189+X

423834+X

1

46’.

57.

95’

*P 1/Z

55634+X

412856+X

20

4 6’.

57.

95”

54189+X

412858+X

25

4 6O.

51.

95A

3/*

55634+X

415589+X

35

4 6’.

57.

95A

S/2

54189+X

415589+X

10

4 6’.

57.

95A

*D S/2

55634+X

399323+x

35

46’.

51.

95”

S/l

54189+X

399772+x

46’.

57.

95”

*D S/2

33256+X

399323+x

4 6’.

57.

95”

S/I

33256+X

399172+X

4 6’.

57.

95A

3/Z

S/2

32191+x

399323+x

10

4 6’.

51.

9sA

S/2

S/l

32191+x

399172+x

SO

46’.

51.

95d

*pi,*

3~*

‘Pi,*

3p*

(ID)

(‘D)

3d

36

I/* 3~~3~’

60

*S I/Z

l/1 3s23p*

20

0

3~’

3d

6

‘P 5/*

*pi,*

(*P)

36

268

3a*3p*

‘si,*

3~*

*D;,*

3p*

(‘D)

3d

1

90 6

TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti 1 (A) 258.610

VI

Configurations

31*3P'

‘D;,,

162.401

I I

(P-Sequence)

Energy

levels

IP=1374000cm~‘(170~4eV) (cm-‘)

3~'

(‘0)

36

‘P 1/t

33256+X

419939+x700

3P'

?P)

4s

lnt

f/Type

A (*-I)

ACC

Reference8

4 6'.

51.

tP I/*

55634+X

671405+X

1

46'.

95’

182.016

I/*

54189+X

671405+X

1

46'.

95’

161.290

t/t

55634+X

675631+X

6

46'.

95’

160.914

s/t

54189+X

675631+x

1

46'.

95’

tD L/I

55634+X

690446+X

3

46'.

95’

157.472

3p*

3/*

55634+X

690672+X

3

46'.

95’

151.112

S/I

54189+X

690672+X

3

46'.

95’

151.528

156.444

tP i/t

32191+x

671405+X

10

46'.

9 5'

s/t

33256+X

675631+X

20

46'.

95’

155.456

.3/t

32191tx

615631+X

46'.

9 5'

46'.

95'

46'.

95A

46'.

95'

3r'3pS

‘D&t

3~'

?P)

4s

155.675

152.164

3p*

(‘PI

I’P)

4s

*D 5,)

33256+X

690448+X

151.915

3/t

4s

5/*

32191+x

690446+X

151.864

S/P

5/t

32191+x

690672+X

1

20 1 10

149*981

55634+X

722394+x

1

46O.

SSA

149.653

54189+X

122394+x

3

46'.

95A

151.484

‘P I/*

0

660135

10

46'.

95’

150*861

3.'3PB

‘s;,* 3/P

3PZ

($P)

4s

3/2

0

662835

35

46'.

95A

150.039

S/P

S/1

0

666493

60

46'.

95A

18.

95A.

121

99

TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti 1 (A) 518.100

IX

Confiaurationr

3*'3p'

SP*

(Si-Sequence) Energy

393~’

levels

IP=1549000cm-’ (cm-‘)

lnt

f/TYPG

'Do z

7262

200293

0

516.215

*

s

7282

201000

a

507.365

1

I

3119

200209

507.174

I

I

3119

499.419

0

I

447.101

3S3P’

3P;

0

(192.leV) A (.-I)

ACC

RCfcrelICeS

1 llA 56.

57.

95.

117”

95.

Ill=

117

200293

6

56.

57.

200293

2

56.

117”

57.

95.

117"

54.

56.

57.

57.

95.

117"

7282

230645

447.484

t

7282

230754

439.145

0

3119

230524

6

95.

117”

Illa

439.513

1

3119

230645

3

54.

56.

57.

95.

439.302

I

3119

230754

2

56.

57.

95.

117~.

433.567

1

54.

56.

57.

95.

341.691

3P23P’

3r3pa

IPl

3s;

336.895

L

1

333.385

0

L

0

230645

7282

299944

3119

299944 0

56.

57.

95.

117"

56.

57.

95.

lllM

299944

56.

57.

95.

117"

56.

57.

95.

lllM

57.

95.

117"

6

400.041

3rP3pZ

‘so

3S3P

3

Ip’

I

61100

311087

443.512

3s23P2

‘D2

383P

s

LD@ 2

28555

254028

353.942

3r23p”

‘D?

3a3pa

'P;

28555

311087

56.

368.482

3~~3~'

‘D2

3a3pa

3s;

28555

299944

1 I?”

579.896

3S23pp

‘DI

3~3~’

“D;

28555

201000

0

117”

405.272

3*23Fl2

3P2

363~

9 I D20

7282

254028

0

I1 Id

329.159

3SZ3PZ

JP*

3X3P

3

7282

311087

3119

311087

324.712

289.579

'Pi

I

3P3d

95.

117”

7282

352632

90

4 6’.

57.

95A

2

3119

352632

20

4 6O. 57.

95&

285.981

*

I

1282

356962

4 6’.

57.

95

282.613

I

1

3119

356962

46’.

57.

95

281.446

1

*

3119

358427

6

46’.

57.

95”

280.141

0

I

356962

3

46’.

57.

95A

3P2

3P3d

'P;

lllA 0

I

3S23P’

SP2

117”

286.112

280.027

3S'3P'

I

10

"D;

0

7282

364414

20

4 6’.

53.

57.

9sA

279.074

2

2

7282

365611

20

4 6’.

53.

57.

95*

278.713

2

s

7282

366074

225

4 6O. 53.

51.

95A

276.185

1

I

3119

364414

20

4 6’.

53.

57.

95&

275.861

1

2

3119

365611

60

4 6’.

53.

57.

95&

274.411

0

I

364414

10

4 6’.

53.

57.

95&

20

46’.

51.

95A

4 6O.

53.

57.

4 6O.

57.

95h

0

285~128

3s*3p2

‘so

3p3d

'P;

61100

411820

267.941

3a*3p*

‘DI

3P3d

'P;

28555

401771

260.916

3~~3~’

‘DI

3p3d

'P;

28555

411820

308.568

3~~3~'

‘D2

3p3d

'P;

304.498

138.548

2 3.P3P’

SP*

I 3PlS

“P;

28555

352632

28555

356962

7282

729111

I20

35

.I

4 6’.

5 7. 9 5A

46O.

51.

95A

4 6O. 57.

9sA

95&

ill-

100

TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti

IX

(Si-Sequence)

IP=1549000cm~‘(192~leV)

137.991

I

0

3119

727806

3

4P.

51.

95A

131.143

I

t

3119

129111

1

4 P.

57.

95&

137.37'1

1

7.

1262

735208

137.153

0

I

136.595

1

t

0 3119

4 6O.

51.

95A

135208

6

46O.

51.

95&

I

4 6'.

51.

95A

4e.

57.

95A

Iso

3P4S

‘Pi

61100

140648

140.443

38’3~~

‘Dp

3p4a

‘P;

28555

140648

3~44

‘D;

3~44

‘F;

111.345

3~~3~'

‘D2

28555

95'

3

3SZ3P2

1282

4 6O. 51.

729111

147.157

110.283

20

35

914040

59

926660

59

Atomic Data and Nuclear

Data Tables.

Vol. 34, NO. 1, January

lSS0

TABLES.

101

Spectroscopic Data for Ti V-Ti XXII

See page 82 for Explanation of Tables Ti .J (A) 488.911

X (Al-Sequence)

Configurltionr

3S23P

Energy

ZP;,*

481.654

IP=1741500cm~‘(215~92eV)

3~3~'

'Da,*

a/*

5/*

levels(cm-')

InI

f/Type

A (SC')

ACC

ReferenCeS

1543

212055

0

5.0-3

1.4+8

E

Ill".

1543

212606

6

4.5-Z

8.4+8

D

54. 131.

411.574

L/Z

0

S/Z

212055

5

5.2-2

1.1+8

D

54. 131.

389.231

3S23P

'P;,*

3S3P2

*sI,2

1543

264456

54.

134. 56.

35.

111".

95,

111”.

56,

95.

lll".

56.

95.

lll”.

56,

95.

lllm.

56.

95.

lllm.

56.

95.

Ill’==.

56.

95,

111".

134' 56. 134.

131 318.135

1/2

0

L/Z

'264456

54. 131

365.628

3E23P

lP;,*

3S3PZ

fP,/)

1543

281045

54. 131

360.133

S/2

3/*

1543

285218

54. 131

355.815

I/Z

0

I/Z

281045

6

54. 131

350~610

*/2

0

S/2

285218

5

54. 131

'SO Z/2

164164+X

421188+x

5 4. 5 6. 51.

383.93

S/2

5/t

160655+X

421188+X

56.

51.

95'

319.74

l/2

S/2

151850+x

421188+X

56.

51.

95'

389.99

296.04c

3s3p*

'D 3/*

1543

345329

1.4-2

5.1+9

E

134’

S/2

S/2

1543

345851

35

6.1-l

3.4+10

D

56.

51'.

95'.

134'

289.573

l/2

3/2

345329

so

1.9-l

3.1+10

D

56.

51'.

95'.

134'

3a3p2

ZP;,*

'Pg,2

3%'

3a3P

('9

('PO)

36

9 5'

295.584

293.198

3E13P

3PJ

'Ps,*

3d

'D&

0

1

164164+X

505134+x

293.684

5/2

T/2

164164+X

505266+X

10

290.815

S/2

1/*

160655+X

504516+X

230~294

S/1

160655+X

288.462

S/Z

151850+x

41

142.681 142.595

126.651 125.456

3.*3p

4 6'.

51.

95A.

126

4 6'.

51.

95A.

126

I

46'.

51.

95A.

126

505134+x

1

4 6O.

51.

95".

126

504516+X

1

4 6O.

51.

95”.

126

OF01/*

345851

1046634

S/2

345329

1046622

*pi,*

1543 0

1/f

102.106

1543 0

101.353

10 3

46'.

95&.

126

46'.

95A.

126

191113

20

46'.

95".

126

197113

10

46'.

95A.

126

986919

20

46'.

95A.

126

986655

35

46'.

95’+.

126

124.391

164164+X

968680+X

6

46'.

95'.

126

124.143

160655+X

966116+X

3

46'.

95’.

126

123.103

151850+x

966116+X

3

4 6'.

9 5".

12 6

123.657

164164+X

913441+X

6

46'.

95A.

126

123.331

151850+x

968680+X

3

4 6'.

95A.

126

123.036

160655+X

913441+X

6

46'.

95’.

126

119.891 119.822

104.568 104.516

3/*

S/2 5f

zF;,g 5/*

212606

1046694

6

4 6'.

9 5*.

I26

212055

1046622

1

4 6O. 95A.

126

345851

1302170

0

46'.

95".

126

345329

1302120

0

46'.

95’.

126

102

TABLES. Spectroscopic Data for Ti V-Ti XXII Seepage 82 for Explanation of Tables Ti

X (Al-Sequence)

A (A)

85.262

Enersy

zp;,*

3%‘3P

84.711

79.110

3n*3p

*P;,r

91.855

36

‘Ds/z

91 ,806

10.625

5d

‘Pi,*

61

6d L/I

*&./E

levels

7543

(cm-‘)

7543 0

1nt

I/Type

(215.92eV) A (r-‘)

*cc

R.Z,l?r.?“Ce*

4.P.

95’.

126

1180390

8

4P.

95”.

126

1271680

3

46O.

95A.

126

1211465

1

46O.

95A,

126

1180390 0

I/?

S/I

38’3P

2sl/* 1/t

1/*

16.655

TO-265

55

I/2

IP=1741500cm-’

10

tF” I/P

345851

1434560

0

46'.

95&.

126

S/2

345329

1434560

0

46'.

95”.

126

*Ds/I 1/P

1543 0

1423410

1

46'.

95’.

126

1423160

0

46'.

95’.

126

103

Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables

TABLES.

Ti Configurations

A M)

386

XI

3rZ

140

Wg-Sequence) Enarry

's I

3S3P

‘P;

IP=2131400cm-’ I eve

0

I I (cm-‘)

258973

1nt

(265.0eV) A

~/TYPE

3

1.0

(SC’)

l.S+lO

ACC

Refcr.?IlCt?S

D

34.

41°.

54,

9 5A. 126.

568

a7

98

3r*

's 0

3S3P

“Pi

725

302

's 0

384P

'P;

175753

1139920

35

2.9-l

8.4+10

D

68.

76.

37.

41°.

57.

68.

116.

95.

124’

95’.

11 6’.

126

65

3r*

403

's 0

3S5P

'P;

0

1528980

I

9.9-2

5.1+10

D

47'.

95’.

116..

126

57

891

3s'

's 0

3~6~

'P;

0

17213aO

I

47'.

95’.

126

54

322

3s'

's 0

3S?P

'P;

0

1840880

1

41'.

95'.

126

446

69

667

34c

429

60

3s

('S)

3P

3S3P

3s

PS)

3P

'P;

3p*

's 0

258973

482840

1.2-l

l.2+10

D

3'.

'P;

3~'

‘D 2

258973

408820

1.1-I

g-a+8

D

17..

"Pi

3PZ

sP I

la1399

414150

8.2-2

4.9+9

D

I?*. 95.

425

14

0

175753

410640

1.1-l

1.2+10

D

17’. 95.

419

45

175753

414150

3.0+9

8.0-2

D

17’. 95.

411

85

2

181399

420700

8.9+9

2.3-l

D

17.. 95.

415

07

173187

3.5-l

414150

4.8+9

D

17'. 95.

408

175753

28

420700

1.2-l

3.0+9

D

17.. 95.

56'.

56.

41°.

51.

68.

95

68

54.

51.

66.

54.

57.

68.

54.

57.

68.

54.

51.

68.

54.

57.

68,

57.

68.

71.

124 47O. 124 41°. 124 47O. 124 41°. 124 54O. 124

. 321

192

314

03=

313

710

3S3P

31

(*St

3P

‘P;

“P;

3r3d

‘DI

3934

'D,

*

2

258973

564604

181399

499841

181399

500162

8.0-l

4 16

3.0+10

C

47'.

3-3

4.8+8

D

68.

4-2

4.3+9

C

41'.

69.

69.

126.

124.

68.

95A.

56.

134'

134. 124.

134. 313

308

229

s

2

568

161399

115753

i

500651

499841

10

3

35

I

5-l

l-1

l.?+lO

?.6+9

C

C

4T”.

54.

9 59.

124.

57.

47'.

68.

95A.

124.

68.

95'.

124.

68.

95A.

124.

68.

134'

134. 308

250

175753

1

500162

10

3

2-l

1.4+10

C

41'. 134'

306

144

173181

0

499841

14

3-l

1.0+10

c

47'. 134.

374

00

3P2

‘s

349

91

3~'

327

22

322

75

434

94

3s

(‘S)

3~

(*PO)

36

‘P;

482840

750220

5 6'.

57.

95

'D *

3~

(*P*)

3d

'D;

408820

694610

56'.

66.

95

3PZ

sP P

3~

('P")

36

'PO 2

420100

726300

56'.

57.

95A.

3P0

sP *

3~

(*P’)

3d

“D;

420100

730560

5 E".

57.

68.

95.

124

'DQ

3~

('P'l

36

'0;

500651

730560

56'.

51.

68.

95.

124

36

0

3

124

TABLES.

104

Spectroscopic Data for Ti V-Ti XXII

See page 82 for Explanation of Tables Ti Configuration*

1 (A) 3io.aloc

543.23

XI

3p'

3s

(‘9

36

Energy

‘D 2 ‘D,

(Me-Sequence)

3P3d

3~

(*P')

36

IP=2137400cm-’ I eveI

s (cm-‘)

‘D;

408820

730560

'F;

499841

683920

1nt

f/Type 1

(265eOeV) A (a-‘)

Act

References

9e.

124.

126

5 6O.

57.

66.

68.

95.

51.

66.

68.

95.

51.

66.

68.

95.

124 533.55

500162

687580

56'. 124

522.66

500651

691980

56'. 124

538.747’

3s3d

‘D2

3p3d

'P;

564604

150220

1

95A.

126

6ia.440c

3s3d

‘DI

3p3d

'P;

564604

126300

3

95A.

126

123.946

3S3P

'P;

258973

10651ao

47'.

126

115.015

3S3P

3P;

la1399

1050850

20

31.

41°.

95".

124

175153

1050850

LO

31.

47'.

95A.

124

173187

lo50850

6

37.

47'.

95A.

124.

114.272 113.940

0

126

110~019

3s3d

ID2

3p4d

'F;

564604

1473538

91

135.179

3s3d

'D2

3s4f

'F;

564604

1304360

41'.

126.042

3s3d

'Da

3~41

'F;

126

500651

1294040

35

31.

41'.

95".

124

125.919

500162

1293940

20

37.

41°.

9SA.

124

125.940

499841

1293870

6

31.

41°.

95'.

124

3

9 5&.

124.

126

124.

126

131.413c

3s3d

'DI

3s4f

IF;

564604

1293940

84.711

3S3P

SP;

3P4P

ss,

la1399

136llao

41°.

175153

1361780

41.

173187

1345660

84.321

I

1

85.290

3S3P

SP;

3p4p

'DS.LI

85.114

3P4P

SP,

84.876

0

84.835

3

41'.

124

95A.

161399

1356280

41'.

124

175153

1353940

41'.

124

P

181399

1360140

41°.

95.124

84.525

1

173187

1356280

4 IO.

12 4

84.433

2

175753

1360140

41°.

124

41

100.591

94.085

3S3P

‘P;

,3s4d

‘Dz

258973

1253100

3S3P

JP;

3s4d

'D2

la1399

1244260

3

37.

124.

126

47'.

9 5'.

124.

41°.

95A.

124.

41'.

95".

124.

47'.

95'.

124.

41'.

95A.

124.

126 94.053

2

3

181399

1244630

35

31. 126

93.626

115753

1243920

10

31, 126

93.569

175153

1244260

20

37. 126

93.395

113187

1243920

6

37. 126

121.268

3p

('PO)

3d

'Do 2

3~

('Pa)

4f

'D2

730560

1516300

63'.

124

TABLES. Spectroscopic Data for Ti V-Ti XXII Seepage 82 for Explanation of Tables Ti

XI

Energy

Coniipuratianr

A (A) 123.055

3p

(*P"l36

123~070

3~

(*PO)

3d

30;

3~

('P')

41

'F 4

730560

'F' 3

3P (*P")

41

$6‘

122.305

124.138

117.171

5 3~

(‘P’l

3d

3p*

‘D’ 2 3P I

116.310

3~

(*PO)

41

3PlS

'FQ

"Pi 2

2

116.387

0

*

116.028

100.835

(Me-Sequence) levels

105

IP=2137400cm-’ (cm-'1

I",

f/TYPG

(265.0eV) A (a-')

ACC

References

1505420

63O.

124

687580

1500130

63'.

124

631380

1505620

63'.

124

694610

1502030

63'.

124

414150

1267600

41°.

124

420100

1276040

41'.

124

410640

1263840

41'.

124

414150

1276040

41'.

124

3P'

's 0

3P4d

'P;

482840

1414559

31

33.303

3~'

'D 2

3p4d

IF;

408820

1473538

31

36.246

3PZ

3P,

3p4d

‘D;

414150

1453120

91’.

124

410640

1453120

31'.

124

41'.

126

35.

47O.

35.323

Ill.664

90.366

3~~

3s3d

ID 2

3~41

'F;

408820

1304360

IDS

3s5f

3F;

500651

1539360

3

35&.

124.

126 30~327 30.308

36.288

2 3s3d

500162

1539340

3

47'.

35'.

124.

126

433841

1539850

1

4 IO.

95'.

124.

126

35A.

126

'D1

3s5f

'F;

564604

1603140

47

‘D 2

3r5f

‘F;

408820

1603140

47

258973

1431140

1

41'.

181393

1484620

1

4

9 5’.

12 4. 12 6

175753

1484620

I

41°.

9 5".

12 4. 126

35".

126

83.732

3~'

81.113

3S3P

'P;

3sss

'so

76.731

3S3P

'Pi

3sss

$s,

76.403

I

7’.

75.415

3S3P

'P;

3s5d

'DI

258373

1584970

1

41'.

71.603

3S3P

3P;

3r5d

'Ds

181393

1577980

6

37.

47'.

35”.

124.

126

*

175753

15'77820

3

41'.

3 5".

12 4. 12 6

L

113187

1577670

1

47'.

35&

124.

126

'F;

500651

1765260

I

47'.

35'.

124.

126

3. *

500162

1763630

1

47'.

35A.

124.

126

71.323 71~202

79.076 73.027

0 3s3d

'DJ 2. I

3s6f

106

TABLES. Spectroscopic Data for Ti V-Ti XXII Seepage 82 for Explanation of Tables Ti

XI

Configurations

1 (A)

I (Na-Sequence) Energy

level*

0

0

351.024

3P

lP=2351080cm“

211042

(cm-‘)

tnt

(291.502eV)

f/Type

208385

1.55-I

217042

3.23-l

501922

3.7-Z

A (1-l)

4

5

2

ACC

49+9

B

OS+9

B

0+9

D

R.3fereIlCeS

22.

34.

42.

51.

95.

134.

46'.

54.

2 2. 34.

4 2. 4 a".

51.

95.

134'

22.

4a".

54.

5 4.

51.

95.

134' 349.929

217042

340.612

208385

140.361

4P

139.884

116.591

502814

41

36

3.3-l

501922

3.1-l

1

I

2+10

c

1+10

c

34.

42.

95.

134'

22.

34.

42.

51.

95.

134'

48'.

54.

4a".

54.

*POl/9.

501922

1214390

1

4.60-Z

3

c

2zA.

46O.

95.

134.

S/1

502814

1211700

3

5.5-Z

z.a1+10

c

22”.

4a”.

95.

134’

'PO I/L

502814

1380470

9.1-I

3.36+11

C

2ZA.

35.

42.

48’.

95.

35.

42.

48’.

95.

35.

48'.

95.

35.

48'.

95.

35.

48'.

95.

35.

48’.

95.

35.

48O.

95.

35.

48'.

95.

35.

4a".

95.

90

11+10

22. 51.

134. 116.491

I/Z

501922

1360310

60

9.1-l

2.99+11

C

22’. 134.

109.107

3P

211042

1133513

8.4-Z

35

9.4+10

D

22'. 134.

108.086

208385

1133573

10

8.4-Z

4.8+10

D

22'. 134.

90.541

3P

211042

1321430

6

2.3-Z

1.8+10

E

22". 134.

90.512

211042

1321810

90

2.1-l

1 * l+l

1

D

2ZA. 134.

89.844

208385

1321430

2.4-l

60

9,8+10

D

22’. 134’

82.344

3=

4P

'Sl/2

*PO1/t

0

1214390

20

5.88-z

5.19+10

c

2zA. 134.

82.121

0

S/1

I/*

1211100

1.18-l

90

5.a4+10

c

2 2*. 134*

81.426

5P

81.364

*p;,2 s/2

51

32.368

*F;,*

501922

1645160

502814

1641440

2

48

502814

1116920

6

1.5-l

l-1+11

D

22'.

48'

2zA.

35.

42.

48'.

95.

35.

42.

4a".

95.

134' 82.301

S/2

S/1

501922

1116840

6

1 .6-l

l.O+li

D

2zA. 134.

11.981

3P

11.545

61.555

3P

61~111

60.762

2P' S/1

217042

1606160

3

1.5-Z

3.8+10

D

2zA.

4a".

95.

l/2

208385

1606160

1

1.5-Z

l-9+10

D

22'.

48'.

95

211042

1697320

35

2 zA.

34.

4a".

95

206385

1691110

10

2zA.

35.

4a".

95

2zA.

35.

4a".

95.

tP;,z l/2

3*

1645160

zsl/*

3

1.8-Z

3.3+10

D

134'

134' 60.101

I/P

s/*

164.1440

10

3.8-z

3.4+10

D

2 zA. 134.

3 5. 4 ao.

9 5.

TABLES. Spectroscopic Data for Ti V-Ti XXII Seepage 82 for Explanation of Tables Ti

I1

031 986

3d

I

(Na-Sequence) Energy

Confi#uratione

4 (A)

IO

XI

6f

*b/1

‘P;,t

S/2

S/1

107

IP=2351080cm-* levels

(cm-‘)

1nt

f/Type

(291.502eV) A (.-‘I

References

ACC

502814

1910680

1

5.1-Z

5.7+10

D

2ZA.

42.

48’.

501922

1910630

6

6.0-Z

5.3+10

D

2ZA.

35.

42.

134’ 40’.

134.

61

286

60

911

59

435

59

133

53

451

53

433

65

511

65

540

3p

6*

*p*,*

3P

l/1

3d

3P

D

22".

48'.

95.

134'

9.4+9

D

2ZA.

48'.

35.

134.

217042

1899540

2zA.

4a0

208385

1899500

6

2zA.

4E0

0

1810660

1

22".

48O.

95

0

1811490

3

22'.

48'.

95

42.

48O

10

3

2zA.

I

2 2O. 42.

zP” X/2

217042

1989000

3

2zB

1/X

208385

1989000

2

2za

2P’ 2/t

211042

2020690

3

2zA.

4a0

I/*

208385

2020620

1

2 Z6.

48'

443 181

49

912

39

*s,/*

62

410

3d

*&.A

62

433

*POI/Z.

IP

Bf

140

52

836

47

906

39

*St/*

51

669

3P

'Pi,,

51

446

5/*

*pi,* 1/* 8P

*POI/P.

9d

3s

*sI/*

3P

*Pa S/I

X/1 SP

IP* 1,x. 106

S/1

22

2103610

1

22'.

48'.

124

501922

2103590

1

22'.

48'.

124

217042

2098880

I

22".

48'

206385

2098880

22'.

4a0

2081400

22

217042

2152300

22

208385

2152300

22

2144000

22

211042

2190500

22

208385

2190500

22

0

0

2,)

*D*,*

1/*

2003500

45.183

3s

*s,/*

10 p *p:/*.

x/2

0

2184200

22

45.167

3s

*s,/*

1 1p

J/Z

0

2214000

22

959.345

4P

*Pa 3/*

4d

*%t

1217100

1321870

48

251.43'

4P

*pi,*

5'

*s,/t

1211700

1606160

51

*FO1/*

1321870

253.142

27

818

21

480

2~~3s'

*p;/*.

*P;,* L/I

48'

502814

x/1

*Ds/z

1/*

0

s/2

*F;,*

X/2

53

448

I.$+10

5.2-3

2027100

55

614

5.3-3

1

2027730

55

50

1

1848640

501922

161

3P

1848640

208385

502814

431

3P

217042

X/X

*Dm

56

50

1/X

*PO S/2

56

46.641

*S,/z

I/9.

1.4-l

2.8+10

9 5O.

126.

IT16320

$5'.

126

0

3594100

11

0

3637900

11

135'

95.

TABLES. Spectroscopic Data for Ti V-Ti XXII Seepage 82 for Explanation of Tables Ti

XI

I I

(Ne-Sequence)

IP=6354300cm-‘(787*84eV)

26.960

2.'2P6

'so

0

3109200

6.3-Z

1.9+11

D

3 6'.

95.

134.

26.641

zs'zp'

'so

0

3753600

I.

2.3+11

D

3 B".

95.

134‘

23.991

2r22p'

'so

2~'

(*P;,,)

3d

'

'P;

0

4168200

36'.

95

23.698

2E12P8

'so

2~'

(LP;,r)

3d 1;) '

'P;

0

4219600

3.3-l

l.3+12

D

3 LP.

95.

134.

23.356

zs*zP'

Is.0

2~'

(*P;,,)

3d

'D;

0

4281600

2.4-l

9.'7+12

D

3tY.

95.

134'

19.943

2r'2p8

'so

0

5014300

50

1.1-Z

6.3+10

D

loo.

95A.

134'

20.135

2S22P'

's,

0

4966500

50

1.7-2

9.3+10

D

loo.

95&.

134.

19.204

2**2p6

'so

2 P5 ?PO ,,*)

4d

ItI

'

'P;

0

5201200

250

4.5-l

2.1+12

D

51.

19.366

2s22ps

'so

2 ps ?P' 3,2)

Id

I;,

'

'0;

0

5163100

200

2.6-1

1.7+12

D

5 1. 7 o".

(I

(1

'

5-2

TOO. se.

9 5&.

134'

17.727

2s22p6

'so

Sd

'PO I

0

5641100

100

11.869

zs'zp'

'so

5d

'De I

0

5596300

21.035

2s22ps

'so

2s2~'3P

'P;

0

4154000

350

51.

21.127

ZS'ZP'

'so

2~2~~3~

"P;

0

4133300

100

TOO. 95"

50

1.6-l

1.1+12

D

IDo.

95'.

134.

1.4-l

9.7+11

D

loo.

95A.

134'

loo.

81.153

3921900

5143100

65.

aao

80.290

3900700

5141100

65.

8S0

3964600

5201000

56.

8P

'

3950200

5163700

88

3

3904000

5111500

65.

4d

81.611

'F;

81.318

4d

tf.

$0;

3, '

(;I

60~602

4d

61.255

'F;

(f,

I,

*

3965800

5197200

88

'0;

tf.

;, '

3912900

5170000

88

. 80.494

4d

3P

'P,

299.61’

3s

'P;

3P

'so

3153600

4087300

4.9-2

l.lO+lO

D

134'

264.4aT

3s

"P;

3P

'so

3709200

4081300

2

a.1+9

E

134'

3s

JPO"

3P

'P,

2

411

.25T

389.71’

3s

'Pi

3s

SP,

366.91T

3~

ID*

3~

'Dt

2

a-2

3745300

3912900

4 ' o-3

2.5+1

E

134.

L

3709200

3912900

1.3-l

3.7+9

D

134.

1

3693300

3912900

6.7-3

3.6+8

E

134.

3753600

3965800

2.3-l

4.219

D

134'

3709200

3965800

4 's-3

l.3,8

E

134*

3693300

3965800

2.0-3

l.O+E

E

134'

*

791.14T

3s

'P;

3P

$s,

3153600

3660000

2.2-3

2.3+1

E

134.

142.3gT

3s

SP;

3P

Jsl

3145300

3660000

6.1-3

2.7+1

E

134'

88'

95A

134'

12 4.

TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti

XI I I (Ne-Sequence)

585.48’

1

I

3709200

3a80000

535.6ZT

2

L

3693300

3880000

.38

‘P;

3p

lP=6354300cm-'(787~84eV)

6

o-2

2

0+8

E

134.

7-2

2

6+9

D

134.

3753600

3921900

l-3

5

8+7

E

134.

I

0

3753600

3947300

5-2

1

1+9

E

134'

I

,

3753600

3964800

o-2

I

a+9

D

134'

3P

470.15T

SP*

109

3109200

3921900

2-1

2

1+9

D

134.

455.5aT

SP2 I

3745300

3964800

2-l

2

4+9

D

134’

431.45'

2

3693300

3921900

o-2

2

8+9

D

134.

419.9gT

0

3709200

3947300

8-2

4

3+9

D

134’

368.3ZT

1

3693300

3964800

5-3

5

3+8

E

134.

3753600

3950200

4-2

1

9+9

D

134'

2-l

1 8+9

D

134.

9-l

1

8+9

D

134'

508.65'

3s

IP0 I

3~

‘D,

522.1gT

3s

3P;

3~

'Dt

8 6

3109200

3900700

488.04'

0

1

3745300

3950200

1

4~72.16~

2

*

3693300

3900700

6

6-2

1

9+9

D

134'

414.61T

2

I

3693300

3904000

2

o-1

4

2+9

D

134*

414.94T

I

1

3?09200

3950200

2-4

2

0+1

E

134.

110

TABLES. Spectroscopic Data for Ti V-Ti XXII Seepage 82 for Explanation of Tables Ti 1 (Al

XIV

Configurations

(F-Sequence) Energy

129.440

282P’

2s,,2

I~velt

47219

IP=6961000cm~’ (cm-‘)

1nt

i/Type

819712

(Bfi3.leV) A (SC’1

6.5-2

2.58+10

ACC

C

ReiercllCCl

18..

45.

95.

101.

58. 118.

61.

94'.

124.

134 121.985

0

l/2

C

18..

29.

45.

94O.

95.

101.

124.

134

41219

4043600

50

12".

1/t

47219

4065500

60

7Pw.124

24.128

,/*

0

4043600

10

20.

51.12".

24.592

1/t

0

4065500

75

72".

124

124

2P’

(‘P)

3s

6.3+10

IP S/I

25.206

?P)

1.0-2

24.891

25.025

2P’

819112

95.124

‘P a/t

47219

4014100

6

12”.

I/I

47219

4035900

4

72”.

25.025

S/1

0

3996000

50

20.

51.

12-

24.907

a/*

0

4014100

IO

20.

51.

12-s

4221000

20

12".

124

4221000

90

72".

124

4113600

15

20.

51.

4112700

60

20.

51.12-.

3s

2s I/I

47219 0

1/* 24.592

2~’

(ID)

3s

24.315

‘D S/1

41219 0

I/O 2~’

72-.

124 95

47219

4494600

15

20.

720°.

124

S/1

41219

4525500

30

20.

72".

124

22.248

1/P

0

4494600

10

20.12'=.

95,

22.099

3/2

0

4525500

20

20.

I24

36

4506400

40

12-e

0

4506400

30

20.12='.

22.066

0

4531900

60

20.72"

0

4512200

30

12A

*D S/I

22.162

2~’

(‘P)

34

‘P S/I

22.518

2~’

(‘P)

3d

‘P 10

47219

72".

22.190

22.426

(‘P)

3d

124

‘P I/Z

2~’

(‘P)

124

22.328

22.486

4488300

20

72-.

22.328

I/I

0

4478700

30

l2A

22.279

3/*

0

4488300

40

72=.

S/l

0

4501500

30

12'

22.215

47219

22.279

2~‘

(‘P)

3d

‘P S/Z

0

4488500

40

lZ6

21.82

2~’

(‘D)

36

*S I/?

0

4583000

60

72'

21.958

2~’

(‘D)

3d

‘P S/2

47219

4601400

50

72’.

21.883

2~’

(‘D)

36

‘D 3/t

47219

21.132 21.657

S/1

12'

a/*

0

4617200

10

12-.

124

124

124

124

4893600

50

20.

72-s

4685800

40

20.

72"

21.304

S/I

0

4693800

212P5

OP)

2111.01

2%‘2P’

3s

*D 3/t

41219

124

0

25.086

36

1206.

10

124

S/1

25.260

(‘Sl

10

4601500

6

12-e

124

124

)P’ S/1

819772

4178600

30

20.

I/?

819712

4806100

20

12-v

124

18O’.

124

yp;,y

0

47219

Ml

1.87+3

C

124

124

21.341

21.522

2~’

4611200 0

61.

118.

124

25.011

2P'C'Sl

3s

58.

51.

72".

124

TABLES.

Spectroscopic Data for Ti V-Ti XXII

111

See page 82 for Explanation of Tables Ti a (A)

148.588

XV

Configurations

2s*2P'

(O-Sequence) Enarryy

'P,

2S2P)

3P;

IP=7597000cm-’ levels

39288

(cm-‘)

112218

(941.9eV)

1nt

f/Type

500

4.52-2

A (*-I)

8.2+9

ACC

C

Rl?IerellCeS

18’. 64. 110.

142.750

42345

0

742877

250

1.08-l

1.18+10

C

18’. 64. 118.

142-130

39288

I

742877

200

2.82-2

9.3+9

C

18.. 64. 118.

140.395

0

*

712278

800

8.3-2

2.81+10

C

18’. 64. 118.

138.351

39288

L

762056

300

3.92-2

4.10+10

C

18.. 64.

134.609

0

I

1a9-62c

2SZ2P'

'S(

2‘2PS

131.146

2**2P'

'so

2S2P

s

742877

‘P;

215528

742877

'P;

215528

978031

400

60

3.11-2

1.91+10

C

4.3-3

2-8+8

D

6

a.4+9

c

5-2

2~~2~'

‘DI

2S2P

s

115.031

2.*2~'

‘Dz

2S2PS

'Pi

108730

712278

'PO 1

108730

918031

350

3

5-3

8.7+8

D

1

37-l

1.15+11

C

2.'2P'

SPg

2S2PS

'PO I

106*5ZC

42345

978031

39288

102-24’7

0

2

6-3

5.1+8

D

29. 92”. 124. 29. 92'. 124. 29. 92'. 124. 29. 92’. 124.

18’.

45.

101.

118.

18’.

224

la*.

29. 92'.

45.

45.

45.

18..

64.

61.

95.

101.

134 45.

58.

94O.

61.

95.

101.

134 45.

58.

94’.

61.

95.

101.

134 92’.

94’.

124.

45. 94O.

124

124.

101.

58.

94O.

94’.

118.

61.

95.

134

18..

29.

101. 134

58.

94’.

134

92A.

61.

95.

124.

124.

LB*.

58.

84’.

110.

64.

106.874

118.

il8.

64.

165.690

29. 92’.

45. 94O.

134

58. 95.

58. 95.

61. 101.

61. 101.

134

94’.

124

978037

3.8-4

2.2+8

E

18’.

64.

95.

124

978031

4.8-3

5.1+9

D

18..

45.

64.

94’.

45.

60.

101.

124

141.436

2s2p5

'PO *

2P"

's 0

918031

1656300

50

1.30-l

1.20+11

C

18.. 64.

31. 92’.

94O.

110.

124

23.193

2Sf2P'

SPp

23.177

1

22.961

*

22.109

2S22P'

‘P)

22.139

2r*2p4

SPg

22.724

1

22.518

*

22.464

*

2PS

('So)

3s

3S0 L

2p'

(‘PO)

38

‘P;

2p'

(*Do)

3s

‘D;

42345

4354100

28'.

124

39288

4354100

200

2 a”.

79.

95&.

124

0

4354100

200

2a”.

19.

95’.

124

0

4523000

100

19O.

95A

28'.

124

2a".

95'

95".

124

95”.

124

42345

4440200

39288

4440400

I

0

4440400

0

4451600

23.034

2S'ZP'

'so

2P3

(*PO)

3s

‘PO I

215528

4551300

22.482

2~~2~'

‘D?

2p"

tPO)

38

‘P’ I

lo8730

4557300

22.936

2~~2~'

‘D1

2ps

(‘DO)

3s

‘Da *

108730

4469100

200

28'.

124

350

2aD.

95A

150

2 a'.

19.

28'.

124

28’.

79.

300

61,

112

TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti Confisurations

A (A) 23.41'

21'2p'

2~~3.

zs'zp'

20.313

0 2s22p'

39288

3d

'PO I

39288

42345

('DO)

3d

'Pa 1

2s22p'

('SO)

3d

'Do *

1

39288

2p3

3d

'Do L

ACC

References

8.6-5

6.3+8

89'

4310000

3.9-4

4 .a+9

89.

4950000

300

4950000

4185000

6Z".

124

19'.

95'.

lz".

124

12'. 450

50 150

79'.

9gd

6 2'.

19.

4984000

58.

39288

4984000

1 z".

20.133

39288

5006000

58.

62'

58,

62'.

0

2~'

20.70

(*DO)

3d

'Do 1

20.611

4987000

4813000

62

4891000

62

4898000

5 8. 62'

12

0

z*tzp'

'so

2p3

('P-1

36

'P;

215528

5046000

20.823

28'2~'

'Dz

2~'

t2Do)

3d

'0;

108730

4911000

20.389

Zs*Zp'

ID2

2pJ

(*PO)

3d

IF;

108730

5014000

20.700

20~2~'

'Dt

2p3

c2D0)

34

'F;

108130

4940000

20.312

2r22p'

SP,

L?p'

('PO)

36

'D;

2**2p4

3Pt

2522P'

SP,

2ntZp'

'Dt

ZS'ZP'

'so

2S22P'

JP,

2s22p'

'Dt

1440.3c 919.13

567.44c

2.121

39268

2s*2p4

SP,

108730

39288 0

K,

2s22P'

'so

12.

200

39288

0

39288

95A

124

19.

79.

62'.

95A

95'

124

6 2'.

19.

12'.

124

89'.

4962000

0

2

62'.

300

124

124

110.

39288

20.701

936.30C

62'.

42345

20.418

2545.08

100

95A.

?P.

42345

20.051

124

124

12.

20.23

20.31

(*P")

A (a-')

4310000

4180000 0

3

f/Type

4965000 0

2p3

SP,

20.891

lnt

4965000

39288

2

(Fin-')

(941*9eV)

4950000 0

*

2p3

SP,

20.422

(*P')

IP=7597000cm-’ levels

0 2ps

$P, I

21.094

'S;

*

20.317

20.538

(O-Sequence) En*r(yy

SP,

23.20'

20.364

XV

95d

Ml

1.27+3

C

18'.

215528

E2

1.4+1

D

la'*.

108130

Ml

2.44+2

C

18'.

89.

101.

124

108130

Ml

2.55+3

C

18..

89.

101.

124'

215528

Ml

2.41+4

C

18..

89'.

36751194

101.

124

124

101.

124

103

AtomiC Data and Nuclear

Data Tables.

Vol. 24. No. 1, January

1986

113

TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti Configurations

i (A) 163.740

XVI

2S22PJ

‘s”s,*

(N-Sequence) Energy

2S2P’

‘P*,*

levels

0

0

0

168.38’

2s*2p3

*pi,*

167.242

2~2~’

*D*,*

S/Z

162.503

S/2

I,’

3/*

IP=8420000cm~’ (cm-‘)

583140

620470

633660

219250

813080

219250

817210

197700

813080

1nt

f/Type

400

6.6-2

250

150

200

60

4.69-Z

2.46-Z

(1044eV) A (SC’1

1.02+10

l.ZO+lO

1.32+10

ACC

c

C

C

References

18..

29.

32&.

33O.

118.

134

18’.

29.

9 2”.

9 3O.

58.

61.

64.

9 5, 10 1.

134 29.

92*.

9 3O. 9 5. 10 1.

118.

134

4.2+8

D

18’.

101.

4.64+9

C

18..

29.

9 2”.

33O.

c

64.

18’.

1.80-3

2.61+3

61.

9 5. 10 I.

118.

2.92-z

2.07-Z

58.

118.

124.

18’.

23.

92&.

9 P.

58.

61.

64.

124 58.

61.

64.

9 5, 10 1. 134 58. 35.

61.

64.

IO 1.

134

146-57

2~~2~~

*D;,*

2~2~’

*D*,*

130720

813080

30

1.30-3

6.1+8

D

18..

64.

92”.

18..

29.

58.

32A.

93O.

101.

134 145.665

143.459

1,’

142.57

138.760

130720

S/2

3,’

3,’ 2r*2p*

*pi,*

5,’

ZSZP’

*s,,*

116030

817210

813080

600

400

116030

817210

100

213250

939320

20

7.4-2

8.5-2

2.33+10

2.75+10

C

C

1.2-4

2.6+7

E

1.21-Z

8.4+9

C

95.

61.

64.

101,

118.

124.

18’.

29.

134

9 zA,

9 3O. 9 5. 10 1.

58.

118.

134

la*.

64.

92m.

18*.

30.

58.

szA.

93O.

95.

61,

64.

134

61.

64.

10 I.

134

*/*

134.724

1,’

197700

933920

200

7.1-2

2.6lClO

c

18’.

61.

74.

92”.

33’.

9 5. IO 1. 1 I a. 12 4. 134

132.022

2p*zp*

128.381

*POZ/2

2SZP’

‘P*,*

L/Z

124.793

S/2

3/*

l/2

213250

197700

219250

976650

976650

1020500

150

60

350

2.28-Z

2.69-Z

7.1-Z

a.7+9

c

5.4+9

C

6.1+10

C

16..

29.

9 2O.

9 3O. 9 5. 10 1.

124.

134

18’.

29.

9zA.

93O.

118.

124.

18’.

29.

58.

58. 95.

61.

64.

61.

64.

101.

134 58.

61.

64.

9 2A. 9 3O. 9 5. 10 1. , 121.534

121.382

118,215

116.198

l/2

2s’2p3

2s22p3

*D;,*

*D;,*

9/*

1/P

2S2P’

2S2P’

*s,,*

197750

116030

*p*,*

130720

3/*

116030

1020500

939920

976650

976650

20

150

600

100

1.23-2

2.65-Z

1.04-l

2.34-2

5.6+9

2.40+10

7.4+10

1.45+10

C

C

C

C

118.

124.

18..

29.

93’.

101.

18’.

64.

101.

118.‘124

18’.

29.

9 2A.

93O.

118.

124.

Ia*.

29.

9zA.

93O.

116.

124.

134 61.

64.

124.

74.

58. 95.

92’. 134

3ZA.

61.

93O.

64.

101.

134 58. 95. 134

61. 101.

64.

TABLES.

114

Spectroscopic Data for Ti V-Ti XXII

See page 82 for Explanation of Tables Ti

XVI

Confi;urationr

A (A) 110.561

(N-Sequence) Enoray

l/l

1/t

levels

116030

1P=8420000cm-L (cm-‘)

1020500

(1044eV)

lnt

f/Type

A (*-‘I

ACC

150

3.08-2

3.36+10

C

Rsferences

18’.

29.

92A.

93O.

118.

124.

58. 95.

61.

64.

101.

134

106-39c

2PZ2P’

‘s;,*

282Q’

*St,2

0

939920

3.5-4

4.1+8

E

18’.

64.

124

102.393

2Sf2P3

‘s;,’

2S2P’

‘P*,*

0

976650

1 e 9-3

1.2+9

E

18..

64.

93’.

124

101

124 91.9gc

193.37c

l/l 2S2P’

*p,,*

118.240

0

L/I 2P5

l/I

*POl/2 l/l

1020500 976650

1020500

1.1-4

1.5+8

E

18’.

64.

1537660

2. 55-2

2

27+9

C

18..

64.

101.

1531660

20-l

2

52+10

C

18’.

58.

61.

92. 176.261

1,’

L/I

1020500

1587830

14-1

2

45+10

C

18’.

93’.

124 62.

64,

124

64.

101.

93’.

64.

101.

93’.

61.

64.

92.

61.

64.

124

58.

61.

124 163.610

l/l

I/*

916650

3. 86-2

1581830

1

83+10

C

18’. 124

167.297

2S2P’

*s,,*

2Qs

*POa/*

939920

1537660

60-2

5

5+9

C

18’.

93’.

124 154.34c

138.600

I/l 2S2Q’

*D*,*

2Qs

1/*

939920

1581830

*I” ,/a

811210

1537660

20

6

8-4

1

8+8

E

l-2

3

48+10

C

18’.

18.. 64.

138.020

1,)

l/l

813080

1531660

129.015

l/l

I/*

813080

1587830

2

51-2

8

8+9

C

4

‘76-2

3

El+10

C

18’.

31. 92’. 31.

93’.

95.

64,

93’.

58.

61.

62. 124 95.

124 10

18.. 64.

31. 92’.

20.101

2.*2Q*

*p;,r

2Q*

(*P)

3d

*P t/t

219250

5194100

62’.

124

19.551

2~~2~’

‘Ds’,*

2p*

(*P)

3d

*F l/l

130720

5245500

62’.

1.24

19.310

2~~2~~

*D;,*

2Q’

(*P)

36

*D 5,’

130720

5293300

58.

19.71

2s*2p*

*pi,*

2Q*

(*P)

36

*D S/l

219250

5293300

62’.

19.112

21*2Q’

‘8;,*

2p*

(*P)

36

‘P 1/*

0

5232300

58.

62O.

l/1

0

5238600

62.

124

130720

5336300

58.

62’.

116030

5348100

62’.

124

19.089

19.210

l/l 2s*2~*

*D;,*

19.110

210.4’

2Q*

(ID)

l/l 2s*2p*

*p;,*

3d

*I’ l/l S/1

62’.

219250

589140

2

8-4

1.1+1

E

18..

124

*/*

l/1

219250

620470

5

9-4

6.3+1

E

18’.

103.

241.3’

l/l

L/t

219250

633660

6-1

3.1+4

E

18’.

124

236.5’

I,’

*/*

191700

620410

9

S-6

5.9+5

E

18’

229.1C

1,’

L/I

191700

633660

3

2-4

4.1+7

E

18,

‘F’s,*

130720

589140

2-4

1,3+7

E

18’.

103

211.4’

S/l

5/I

116030

589140

6-4

9.6+7

E

18..

103

204.2’

S/1

l/l

130120

620470

o-5

1.2+6

E

18.

198.2’

l/l

l/1

116030

820410

6-5

9*5+6

E

18’

193.zc

l/l

1/*

116030

633660

2-4

4 * 3+7

E

18.

813080

3 * 8-4

1. I+8

E

18..

218.1’

123.0c

2**2p*

!2s*zQ*

*D;,*

‘s;,’

282Q’

282D’

‘Ps,*

*D*,*

0

95

124

124

249.2=

2S2Q’

93’.

103

95,

124

95.

124

124

62.

115

TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti Configurations

1 (A)

122.4’

2~~2~'

(N-Sequence) Energy

s/* 2rZp'

1493.0C

XVI

0

S/I

‘P,,*

Ieva

IP=8420000cm-’ (cm-'1

817210

1nt

(1044eV)

f/Type

1’

l-5

A (*-I)

ACC

RefcrclllCet

3.3+6

E

la*.

124

124

633660

1537660

3.9-4

i.l+a

E

18’.

I/*

620470

1531660

5. a-4

3.3+8

E

18’.

124

S/1

589140

1531660

9.1-4

a.?+8

E

la*.

124

t/1

633660

1587830

4.8-4

2.9+8

E

LB*

S/I

620470

1587830

4.3-5

5.4+7

E

18.

18.

130720

197700

E2

4.0-l

D

1224.4’

'D;,* S/I

2“ZPa

*p;,* I/P

116030

191100

Ml

1.3a+3

c

18..

101

1129.6c

5/2

5/*

130120

219250

MI

1.ao+3

c

i a*.

101.

124

968.8’

a/*

S/i

116030

219250

Ml

4,69+3

C

i a*.

101.

124

0

116030

Ml

2.23+3

C

18’.

101

0

130120

7.1+1

c

18..

101

0

191100

Ml

4.9a+3

c

18..

101

0

219250

Ml

1.6+3

c

1 a*.

101.

a6i.ac 765.0'

505.8c 456.1'

S/I 2rt2P"

's;,,

2‘*2PS

‘P;,*

S/1

1/*

6601.'

2*'2pS

'l&

116030

130120

Ml

2.60+1

C

18’

4640.'

2S22P'

‘P:,*

191100

219250

Ml

7.a+1

c

18-s

2.104

K,

0

36982000

103

124

124

116

TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti Configurations

1 (A)

191.1Eic

XVI

zs*zp*

JPz

I

(C-Sequence)

Energy

2~2~'

"0;

IeVe,*

55130

IP=9120000cm-‘(1131eV) (cm-')

Int

518890

190.11c

2

55130

580110

188.312

2

55730

586760

f/Type

4

250

8-4

A (‘-I)

8.8+7

Act

E

Rafercncel

18'.

61.

124.

134

29658

I

518890

95.

5

o-5

1.5+7

E

18..

64.

95.

124.

3

90-2

5.2+9

C

18..

60.

61.

62.

92b.

95.

101.

1 2 2O. 182.072

64.

5

5-2

6.6+9

C

18'.

124. 60.

101.

134 64.

118. 134

61.

62.

64.

9 5. 10 1. 11 8. 12 2’. 181.61C

29658

1'72.380

580110

0

2S2P

s

3P;

158.469

55130

2

580110

680910

55730

686780

6

150

20

100

3-3

8

6-2

8.5-3

5.1-2

1.3+9

6.4+9

3.1+9

1.35+10

D

C

D

C

124.

134

18..

61.

124.

134

29658

153.554

618450

29658

680910

1.94-2

30

3.00-2

1.63+10

8.5+9

C

C

101.

61.

62.

18*.

60.

9 2".

10 1. 118.

124.

134

18'.

61.

118.

122'.

18'.

60.

14.

9 2A.

122'. 154.133

64.

64.

64. 12 2’.

92".

101.

124. 61.

134

62.

64.

10 1. 11 8.

124

18’.

60.

118.

122’.

64.

18'.

60.

97.

118.

101. 124.

61.

134

64.

122'.

92'. 124.

134 152.114

29658

146.856

686180

0

0

6.0-3

680910

3.68-2

1.0+9

3.80+9

D

C

18’.

60.

118.

122’.

18..

64.

12 2O. 127.782

2S'2P'

SP*

55730

838340

250

6.8-2

4.63+10

C

18..

14.

123.654

29658

838340

100

5

2-2

2.21+10

C

0

0

838340

20

5

1-2

8.0+9

C

2S22P'

'so

2a2pS

'PO I

242180

943500

1.23-l

1.35+10

C

122’.

18'.

60.

74.

92A.

18'.

60. 92b.

122'.

141.948

2r'2pP

‘DI

2~2~'

'Do *

140660

845140

400

1

11-l

3.81+10

C

18'.

134

61.

221.51'

2s22pz

'D2

'Dt

212pJ

2S2P

224.16'

185.1C

2~~2~'

'D2

2s2pa

'PO I

'

'0;

140660

943500

350

1

2-2

5.2+10

C

118.

61.

62.

101.

124.

60. 95.

61,

124.

LB*.

60.

74.

9 26.

118.

122’.

140660

580110

2.9-4

6.2+7

E

101..

124

s

140660

586760

3.4-3

3.2+8

D

lOI*.

124

3P' 1

140660

680910

6.0-4

1.9+8

E

101’.

124

64.

118. 134

101.

60.

64.

134

62.

64.

118. 134

61.

62'.

64.

9 5. 10 1.

I1 a. 12 2O. . 2.'2~*

64.

134

62.

101.

6 9. 9 2'.

124.553

62.

124. 61.

124.

74.

18'.

134 118.

9 2A. 9 5. 10 I.

118.

92.

101.

60.

122O.

142.589

101. 124.

124.

122O. 119.284

64.

61.

12 4. 13 4

62.

64.

9 5. 10 I. 124.

134

117

TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti

183.11C

2

XVI

I

(C-Sequence)

*

140660

1P=9120000cm~‘(1131eV)

686780

5. 6-4

1

l+a

E

lOl*.

124

126.676

2r22p*

JP*

2s2p3

IDo 2

55730

845140

2-3

3

0+9

D

10 1’.

118.

122O.

109.432

2*22;2

3P,

2rzp3

‘PO I

29658

943500

9-3

2

2+9

D

10 1’.

122O.

359.8

2EZ2P2

SP*

2s2p3

5s" 2

55130

333660

6-4

8

I+6

D

18..

124

124

26’.

89.

101.

124

124 328.9’

29658

I

0

333660

6-4

5

a+6

D

1 a*.

89.

101.

838340

1271380

5-2

5

6+9

C

I a’.

61.

64.

124

838340

1313280

5. a-2

a

7+9

c

1 a*.

61.

64.

124

838340

1319740

2. 31-2

1

07+10

c

1 a’.

64.

124

3P 2

686180

1271380

54-2

3

51+9

c

I a*.

61,

64.

124

!69.36c

1

2

680910

1271380

97-2

2

75+9

c

1 a’.

61.

64.

124

159.6ZC

2

1

686180

1313280

36-2

1

03+10

c

18’.

61,

64.

124

680910

1313280

5. 4-4

1

4+a

D

I a’.

61.

64.

124

l?l.06c

2t2p3

“Pi

2P'

158.13’ 151.52'

0

L

678450

1313280

3. 78-2

3

39+9

c

1 a*.

64.

124

156.54c

I

0

680910

1319740

16-2

1

44+10

c

1 a’.

64.

124

3P 2

586160

1271380

2

58+10

C

1 a*.

61.

62.

146.061

2s2ps

‘Do 3

2P'

5. 9-2

64.

122’.

124 144.66'

580110

1271380

1

5+9

D

18..

61.

64.

124

144.405

578890

1271380

2. 95-2

6-3

9

4+9

c

la*.

61.

64.

122’.

136.393

580110

1313280

3. 11-2

1

14+10

c

61.

64.

122’.

61.

62.

64.

122’.

61.

62.

64.

122’.

124 18’. 124 136.160

578890

1313280

3. 26-2

1

95+10

c

1 a*. 124

135.202

580110

1319740

2. 68-2

2

93+10

c

1 a*.

124

163

049

2*2p'

'P' I

2P'

's P

943500

1556810

8.3-Z

6.2+10

C

18..

64.

122’.

228

93=

2S2PS

'PO I

2~'

'D2

943500

1380290

4.49-2

3.43+9

C

18..

64.

124

186

863

2~2~'

‘Do 2

2~'

'D 2

845140

1380290

1.39-l

2.66+10

C

18..

64.

122’.

126

004

2s2p3

‘Da I

2~'

'D 2

586760

1380290

20

183

2S22P2

'so

2~3s

'P;

242180

5200000

20

19

118

2s22p2

'DI

2~3s

'P;

140660

5200000

40

19

651

2S22P2

JP*

2~3s

'P;

55130

5144000

19

459

55730

5193000

19

369

29658

5193000

18

665

2SZ2PZ

'so

2p3d

'P;

242180

5612000

18

651

2s22p*

IDI

2p3d

'D;

140680

5502000

18

269

2~~2~~

'D2

2p3d

IF;

140660

5614000

18

141

2sZ2p'

IP*

2p3d

"P;

55130

5568000

122’.

124

124

124

81’.

95’.

124

81’.

95”.

124.

134.

20

a lo.

95”.

124.

134

60

al’.

95A.

I 24.

i 34

8lo.

95’.

124.

134

180

20

4.2-z

1.2+4

C

13.

13’.

100

40

81’.

95’.

124

124

13.

62’.

81.

95’.

124

13.

62'.

81.

9SA.

124

118

TABLES. Spectroscopic Data for Ti V-Ti XXII !ke page 82 for Explanation of Tables Ti

18.091

18.218

XVI

I

ZS'ZP'

I

'P,

2P3d

'0;

I

(C-Sequence)

IP=9120000cm-1

29658

5568000

(1131eV)

80

81'.

29658

5519000

18.116

P

55130

5557000

18.141

1

29658

5542000

13O.

124

5412000

13'.

124

5502000

13O.

124

18.757

2s'Zpt

'Dt

2p3d

'F;

18.350

ZS'ZP'

JP)

2p3d

'D;

19.501

2S2P

19.415

16.939

'

55130

124 62'.

81.

95'.

31

'D *

518890

5101000

60

81'.

95'.

124

2r.2PS

5s;

212P'('P)

3s

sP 2

333660

5484000

40

81'.

95'.

124

212pt

'D;

202~'('P)

3d

tF 3

578890

5859000

81'.

124

586760

5906000

62'.

124

s 2rZp'

18.154

2S2P

s

zr*zP'

'D;

ZrZpt(*D)

5s;

2s2p2

SP,

3370.6

('P)

2‘22P2

36

'F 4

586160

6025000

60

81'.

95'.

124

3d

'P 3

333660

5842000

60

81'.

95A.

124

'P*

55130

Ml

2.20+2

C

18..

101’.

124

29658

MI

4.47+2

C

18'.

101’.

124

242180

EZ

8.6+0

D

18"'.

124

55130

140660

Ml

2.43+3

C

18'.

lOlo.

29658

140660

MI

1.96+3

C

18’.

101’.

124

29658

242180

Ml

2.53+4

C

81'.

101’.

124

29658 0

0

990.3

21'2~'

1112.p

2S12P

*

'D2

z.*zp*

'so

3 P*

2stZp'

'Dt

898.'

I

2.688

13.

282~*(tD)

18.381

470.2'

40

124

'D;

18.799

3834.6

140660

13O.

95'.

ZS'ZP'

JPl

K.

21*2F.t

'so

140660

0

31230000

103

124

TABLES.

Spectroscopic Data for Ti V-Ti XXII

119

See page 82 for Explanation of Tables Ti a (A)

2oo.18c

XVI

Confipur*tions

2s*2p

*pi,*

I I (B-Sequence) Energy

212~~

*D,,*

level*

56240

IP=9850000cm-‘(1221eV) (cm-')

Int

f/Type

555860

1.2-3

A (s-1)

2.0+6

ACC

D

References

18..

23.

61.

61.

62.

64.

101.

64.

101.

124.134 197.838

S/1

I/'

56240

561700

4.01-Z

4.56+9

C

I a'. 123O.

119~902

161.91c

1,)

2SZ2P

*pi,*

0

*/*

2s2p*

*s,,*

56240

555860

6.11-2

613680

1.21-3

6.43+9

6.29+6

C

D

18'.

61.

101.

123O.

L/I

0

t/*

613680

20

8.37-2

2.60+10

D

I a*. 95.

134 62.

1a*. 23. 101.

148.438

124.

64.

92.

134

61.

124.

64.

96.

134

61.

62.

101.

64.

92'.

123’.

124.

134 141.601

21*2p

*p;,*

144.159

2S2PZ

X/2

*PI,*

I/*

56240

133150

56240

141010

20

30

4.01-2

9.89-2

2.56+10

3.25+10

C

C

18'.

61.

101.

123O.

62.

i a*.

30.

9zA.

101.

64.

92A.

124.

134

62.

64.

61.

123’.

124,

134 136.280

l/2

133750

l/2

1.41-2

5.19+9

c

I a*. 123O.

133.852

I/*

141010

3,’

20

2.11-2

5.32+9

c

61.

62.

64.

124.

I a*.

30.

92&.

101.

101.

134 61.

62.

64.

123O.

124.

134

56240

309980

7.1-5

6.5+6

E

I a*. 64.

S/Z

56240

333110

4.1-5

2.4+6

E

18.. 120.

124

3,'

512

56240

360960

3.5-a

1.4+7

E

I a’.

64.

101’.

322.6

I/I

1,'

0

309980

3.0-4

I.$+1

E

18..

26".

64.

300.1P

I/*

'/I

0

333110

1.2-5

4.4+6

E

4

1

C

394.1P

29*2p

'Pi,*

2r2p*

361.1

X/2

328.2'

166.225

2SZP'

'P*,*

2P*

‘P*,*

'2.' I/'

360960

962100

60

26-2

56+10

2/t

153.23

153.15f

S/L

,/*

124

18’.

64.

101’.

la*.

61.

62.

4

41-2

70-z

1

5

la+10

16+9

C

C

18..

61.

123.

124.

18:

61.

123.

124.

124

64.

62’.

64.

92’.

64.

92.

134 62'. 134

1 2.0 8 a 0 0

3

46-2

2

OO+lO

C

18..

64.

66’.

124

561700

1221100

2

59-2

I

II+10

C

18..

64.

66'.

124

148.83T

X/2

*/*

555860

1221100

1

13-2

3

46+9

C

la'.

64.

66'

*D* 1,'

561700

1078800

1

14-2

3

05+9

C

la’.

64.

66O.

124.

64.

66’.

124.

66.

134 lSl.23p

'/I

‘/I

555860

107aaoo

3

62-2

6

6+9

C

la*. 134

lag.663

S/2

181.55'

I/I

2,'

6/P

561700

555160

ioaasoo

1088900

5

I

20-Z

30-Z

9

1

6+9

64+9

C

C

18..

64.

124.

134

18..

64.

123'.

66'.

124.

134

301.40=

ZSZP'

*p*,*

ZP*

92’.

134

555860

2p'

*PO l/2

4

124 101.

S/2

ID*,*

2p*

962100

10

124.

101.

5/*

2x2~~

*D,,*

309980

962100

124

64.

150.15T

193.36'

ZrZp*

3/*

333170

101’.

120.

123’. 158.94

26'.

*Do 2/t

141010

1018800

1

1-3

a

7+7

D

18..

124

292~47c

*/*

L/t

747070

1088900

5

o-2

2

6+9

C

18’.

64.

124.

134

289.16'

I/f

*/*

733750

ioiaaoo

3

44-2

1

31+9

C

18..

64.

124.

134

TABLES.

Spectroscopic Data for Ti V-Ti XXII

See page 82 for Explanation of Tables Ti A (A)

XVI

Conilgurations

I I

(B-Sequence)

Energy

(cm-‘)

1nt

i/Type

A (SC’)

ACC

Reference*

*Pa ,/*

747070

1208800

8.2-3

2

3+9

D

16..

64.

124

210.51T

l/2

l/P

733750

1206600

6.6-2

9

V+V

C

18’.

64.

66’.

124

208.07T

S/O

s/*

747070

1227700

7

2+10

C

18..

64.

66’.

124

202.46c

I/I

S/I

733750

1227700

4.0-3

3+8

D

18’.

64.

124

fP’ 1/2

673680

1208800

1.77-3

38+8

D

18..

66.

124

S/Z

673680

1227700

3.78-Z

84+9

C

18..

64.

66

*Do I/Z

673680

lo78800

5.12-2

18’.

64.

124

124

216.54’

2r2p*

2S2P2

2P3

levels

IP=9850000cm~‘(1221eV~

*p*,*

2p’

*s,,* */*

246.79’

16.939

2.2P2

*s,,,

2S22P

‘Pi,*

16.90

16.624

2p*

2SZP

(‘PO)

3P

*P 5/*

t/t 2S’2P

*p;,,

16.561

56240

*/* 2~2~

(*P’)

3~

*D*,*

1/Z

3

ll3+9

5960000

62’.

0

5917000

62

6072000

6 2’.

0

6038000

62

56240

5/Z

v-2

95.

17.920

2~2~~

*D*,*

2~2~

(*P”)

36

*D;,*

561700

6142000

6 2’.

17.715

ZS~P*

*D*,*

2~2~

(*PO)

34

*F;,*

555860

6201000

62

561700

6234000

62’.

124

17.630

5/*

1/*

12 4

17.28

2S2P2

‘Ps,*

2~2~

(*P’)

3d

‘Pi,,

360960

6148000

62’.

124

17.30

2S2P2

‘Ps,*

282~

(‘Pa)

3d

‘D;,*

360960

6143000

62’.

124

17.587

2S2P2

*p*,*

252~

(‘PO)

36

*D’ S./Z

747070

6433000

62’.

124

17.150

2s2Pz

*D*,*

2~2~

(‘PO)

3d

*POI/*

561700

6 3 9.3 0 0 0

62’.

124

1a.3ac

28’3s

2S,,2

18.1gc

17.3VC

2r*2p

‘Pi,*

2s*3d

*D*,*

17.36’

S/Z

5/2

17.22’:

l/Z

3/*

13,4sc

2S22P

*pi,,

13.3sc

1777.95

2.667

56240

5497000

2.0-Z

5497000

2. o-2

4

56240

5807000

6

4-2

1.41+12

D

134.

56240

5815000

5

8-l

8.6+12

D

23.

124.

5.307000

6

5-1

7.3+12

D

23.

134*

74913!lo

4.3-3

3

2+11

E

134.

7491300

4.5-3

1

6+11

E

97.

134.

C

16’.

89.

0

l/P

28’4s

tS,,2 1/Z

I/I 2.‘2P

‘Pi,*

29’2P

K.

*pi,*

0

56240 0

0

0

56240

Ml

8+11

D

134.

O+ll

D

134.

1.6+3

37490000

124

134’

119’.

124

103

Atomic

Data and Nuclear

Data Tables.

Vol. 34. No. 1, January

1986

121

TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti

XIX

IP=10860000cm~*

(Be-Sequence)

0

589692

250

1.75-l

(1346eV)

1.42+10

B

18.. 64.

44.

45.

66.

82.

61.

62.

86.

92A.

9 5. 9 6. 10 1. 11 8O. 124.

328.3

2s2

's 0

2r2p

“P;

0

304600

6.6-4

1.4+7

E

18.. 95.

305.01

2s2p

'P;

‘2~~

ID 2

589682

917580

6-78-2

Z-92+9

B

134

26’. 96.

44.

45.

101.

IS’.

44.

45.

66'.

82.

101.

18’.

44.

45.

6 6'.

101.

64.

124

61.

64.

124.

134

194.37

218.50

2S2P

2S2P

‘Pi

3P”?

2p2

2P2

's 0

9P 1

589692

341240

304600

212.22

341240

206.10

304600

199.89

1104170

804890

4.28-2

150

775810

832410

1.55-2

2.16-Z

150

804890

4.42-2

1.69-2

2.27+10

3.61+9

9.60+9

7.03+9

2.82+9

B

B

B

B

18..

44.

45.

66'.

80.

9ZA.

124.

134

18’.

45.

124.

134 61.

64.

44.

45. 9ZA.

134

82.

92.

64.

101.

66'.

82.

45.

61.

64.

18’.

18’.

64. 134

61.

66O. 124.

61.

124.

101.

61.

64.

101.

66’.

124.

134 133.54

288130

189.47

115.33

304600

2S2P

"Pi

2~'

163.1C

17.181

2~’

17.076

2S2P

804890

832410

50

100

8.8-2

3.06-Z

4.24+3

3.41+9

B

B

16..

44.

45.

66O.

82.

3f.

134

18*.

44.

45.

6 6O.

82.

32A.

124.

134

66’.

347240

917580

6. a-3

1.5+9

D

18..

304600

317580

7.7-4

1.2+8

E

18*.124

‘D 2

2p3d

‘D;

917580

6738000

‘P;

2s3d

IDI

589632

6445900

5.3-l

7.2+12

D

64.

101.

124.

‘D 2 *

61.

61.

64.

101.

101.

124

9. 1 o”.

69.

124

9. 1 o”.

62.

63.

112..

124

16.514

2SZP

"Pi

2r3d

'DJ

341240

6402700

6.3-l

].I+13

D

10'.

6 2. 6 3.

L 12'.

124 16.43

2

304600

6389200

5.5-l

8.1+12

D

9. 10.

6 2O. 6 3. 11 2’.

124 16.414

1

288190

6380600

7.5-l

6.2+12

D

9. 1 rJ”.

69.

112*.

16.802

2~'

'D t

2p3d

'F;

317580

6871700

3. 1 o".

62.

63.

16.811

2~~

'D 2

2P3d

'P;

317580

6866000

9. 10'.

69.

124

16.736

2PZ

3P *

2p3d

"0;

832410

6801600

9. 1 o”.

62.

63.

1.1-l

1.2+13

124 16.119

I

332410

6813600

9. 1 o”.

69.

124

16.71

2

804890

6789100

9. loo.

62.

69.124

124

124

112..

122

TABLES. Spectroscopic Data for Ti V-Ti XXII Seepage 82 for Explanation of Tables Ti

XIX

Configurations

A (A)

IP=10860000cm-’

(Be-Septtet~~e) !iner(ly

I eve1

s (cm-‘)

1nt

f/Type

(1346eV) a(*-‘)

11.016

ZSZP

tp;

2s3r

ss,

304600

6160600

16.116

ZSZP

‘P;

2~3~

‘Dt

589692

6110900

2.2-l

3

4+12

15.742

262P

SP;

2~3~

‘Dt

341240

6699700

1.1-l

2

1+12

ACC

References

9. 1 o”.

69.

124

D

9. 1 o”.

69.

112’

D

9. 1 o”.

62.

69.

112’.

124

15.671

2r2p

tp;

2~3~

‘Pt

304600

6695800

9. I o”.

69.

124

15.138

2S2P

tp;

2~3~

$8,

341240

6701300

9. 1 o”.

69.

124

15.666

2rt

‘s 0

2~3~

‘P;

9. 1 o”.

62.

69.

0

6303200

6.4-l

5

7+12

c

124

2344.6

212P

‘Pi

2S2P

tp;

304600

341240

Ml

1

00+3

c

69.

lOlo*.

I24

104’.

TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti Configurations

1 (A)

309.012

11’2s

Is,,*

(Li-Sequence) Ensray

lS'2P

259.272

lol.gc

XX

*pi,*

f/f

levels

(cm-‘)

385695

lnt

f/Type

2.12-2

5.86-2

(1425.9eV) A (s-1)

1.49+9

2.54+9

ACC

B

B

References

18’.

4 3. 15.

115.

118’.

18’.

43.

115.

118O.

*Pa S/I

8148000

9130000

3.1-2

3.00+10

c

I'.

124

10l.BC

I/?

I/Z

6741000

9130000

2.61-2

3.36+10

C

I*.

124

101.8’

2,'

2,'

8141000

9130000

5.2-3

3.4+9

D

I'.

124

4d

4Q

64 .700c

*%/z

'p;,'

56

8732000

9140000

5.82-l

I-97+11

c

106'.

124

'/I

S/P

8732000

9?40000

5. a-2

3.9+10

D

106..

124

S/1

5,’

8732000

9140000

5.24-l

2.37+11

C

106..

124

8132000

10278000

1.41-l

1.12+11

c

106..

124

2,’

2,'

8732000

10278000

1

2.2+10

D

106..

124

64.691C

2,’

S/P

8732000

10278000

1-27-l

1.35+11

c

106*.124

4Q

*p;,*

6d

*Dz/P

75,

64.100C

53.8'

4P

5Q

IP=11501000cm~*

323549

2/t

123

*P' L/1

8132000

10601000

6.13-2

1.1+11

c

106'*.

124

l/2

l/2

8732000

10601000

6.1-3

1.4410

D

106'*.

124

53.2'

1,'

5,)

8132000

10601000

5.51-2

8.8+11

c

106'*.

124

gd

8732000

10812000

3.28-2

4.73+10

c

I'*.

124

48.1'

S/2

l/2

8132000

10812000

3.3-3

9.6+9

D

I'*.

124

41.8T

S/P

5,'

8732000

10812000

2.91-2

5.8+10

C

I’*.

124

41.210'

4Q

*pi,*

'Dw

4-2

53.8'

48.1'

Id

*Da/z

6616000

8132000

1 .24-2

5.6+10

C

I*.

124

41.123'

1,'

I/’

6610000

8732000

1. o-2

6.3+10

C

7’.

124

47.123'

2,'

3/P

6610000

8132000

2.1-3

6.3+9

D

I*.

124

46.030'

3d

3Q

4P

*4/z

*Dm

'P' '/I

6574000

8141000

5.8-2

1.8+11

C

106..

124

45.996'

S/P

*/*

6574000

8148000

5.3-l

l.l+12

B

106‘.

124

45.650'

I/'

2,’

6556000

8747000

6. O-l

9.6+11

B

106*.

124

I/P

6466000

8732000

4. 2-l

4.8+11

C

106..

124

*Pa S/1

44.601'

39

*s,/*

32.124'

3d

*%t

4d

*pi,*

4Q

*p;/*.

‘Dm

6616000

9730000

5-3

2.4+10

D

I*.

124

32.056'

2,)

I/*

6610000

9130000

2. l-3

2.7+10

D

I*.

124

32.056'

S/i

2,'

6610000

9730000

4. o-4

2.6+9

E

7*.

124

9.2+10

D

106’.

124

5.49+11

C

106..

124

1 C

106’.

124

124

31 .591C

5Q

6514000

9140000

4-2

31.586'

2,’

6514000

9140000

1 . 23-l

31.411C

1/*

6556000

9140000

37-l

4.64+1

2,'

6466000

9130000

07-l

2.54+11

C

106'.

3Q

*pi,*

30.868'

3s

*s*/*

21.4T

3d

*Ds/z

5Q

*p;,*.

*P* 2,'

6616000

10214000

9. 2-4

1.20+10

D

I'*.

124

21.3T

*/*

*/*

6610000

10214000

8-4

1.40+10

D

I0 ‘,

124

21.3'

S/l

2/t

6610000

10274000

1. 6-4

1.4+9

E

I'*.

124

6514000

10218000

5. 6-3

5.1+10

D

106..

124

10276000

5. 01-2

3.05+11

C

106..

124 124

21.001'

3Q

6~

*pi,*

6d

*“z/z

27.000c

S/1

S/2

6574000

26.810'

I/I

2/t

6556000

10278000

5. 60-2

2.58+11

C

106'.

z/z

6466000

10214000

4, l-2

1.5+11

C

106O*.

124

6514000

10601000

2. 9-3

3.1+10

D

1060’.

124

26.2T

39

*s,/*

24.9'

3Q

*pi,*

6~

*P;/z.

76 *Dz/z

8 6. 9 5. 124.

134

86.

95.

124.

134

TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables

124

Ti 4 (A)

24.2'

Configurat~onr

XX

(Li-Sequence) Energy

IP=11501000cm“ levels

(cm-‘)

In1

(1425.9eV)

f/Type

A (.C‘)

References

ACC

6556000

10601000

2.9-Z

1

57+11

c

106".

124

6574000

10601000

2.61-Z

1

a9+11

c

106"'.

124

6466000

10600000

2.48-Z

9

4+10

c

106':

124

6574000

10812000

1.7-3

2

O+lO

D

7O'.

124

6556000

10812000

1.7-2

1

lCl1

c

7".

124

6574000

10812000

1.6-2

1

2+11

c

7O'.

124

6466000

10815000

1.54-Z

6

5+10

c

7'*.

124

1.76-Z

8

7+11

c

1. 10.

385695

6466000

124. 16.218

16.067

16.049

323549

6466000

385695

6610000

6616000

385695

1.77-Z

6.8-Z

6.1-l

4

1

1

5+11

8+12

05+13

c

B

B

1. IO.

6610000

6.71-l

8

84+12

B

134.

1 oO.

43.

124.

134

1 o”.

1 o”. 106'.

0

15.253

6556000

1.25-l

3

58+12

B

43.

124.

106’. 323549

4 3, 80’.

1 o”.

95.

134’ ao”.

95.

97-e

43.

80.

124. 43.

106’.

95.

97’.

134 80.

124.

95.

97;.

134

43.

80.

95.

106'.

1 oO. 43.

80.

95.

106'.

95.

106*,

95.

106..

95.

124

124.134 0

15.211

6574000

2.43-l

3

50+12

B

124.134

8748000

385695

1.1-l

3

4+12

B

1 Do. 80. 124.

11.872

385695

8747000

323549

8747000

11.452

0

8732000

1.2-2

2-l

5

6+11

2.8+12

C

B

134

106.

1 o”.

80.

124.

134

1 oO. 80.

9. 9-2

134’

10.690

9140000

385695

4. 05-Z

1.5a+12

c

1 o”.

8 0. 9 5. 10 6’.

124 IO.690

385695

9740000

4. 5-3

2.6+11

D

10.620

323549

9740000

4. 53-2

1.34+12

c

106. 1 o”.

80.

95.

106..

95.

106’.

124

0

10.278

385695

9730000

10278000

4. o-2

98-Z

a.4+11

8.6+11

c

C

1 o”.

80.

124.

134

1 o”.

80.

95.

106..

80.

95.

106..

124 IO.109

385695

10278000

2. 2-3

1.4+11

D

10.046

323549

10278000

2. 21-2

7.3+11

c

106’ 1 o”. 124

10274000

2. 1 l-2

4.95+11

c

10’.

106’.

124.

134

10600000

24-2

3.1+11

c

1 o”.

106..

124.

134

TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti Confipuratlcns

d (A) 9.246

XX

(Li-Sequence) Enerrv

2s zst/2

IP=11501000cm~‘(1425~9eV) levels

0

125

(cm-')

I"t

f/Type

A (P-'1

Act

References

10815000

1.7-3

2.0+11

D

I’.

10’.

124

9.188

385695

10601000

1.13-2

5.26+11

C

lll6’*.

124

9.788

385695

10601000

1’ 2-2

8.6+10

D

lOB"*.

124

9.133

323549

10601000

1.26-Z

4.45+11

c

106'*.

124

9.591

385695

10812000

1.9-4

5.7+10

E

P ‘.

9.591

385635

10812000

7.1-3

3.4+11

D

7..

9.534

323549

10812000

6.0-3

2.9+11

D

7 *, 1 Do.

9.128

2s

*St/*

9p

‘p;/*.

3,2

9.549

2P

*pi,*

9d

'D J/Z.

5/2

2.6355

2P

2.630C 2.6295

2P

124 12 4

10955000

10’.

124

385695

10960000

10’.

124

*PO 3/2

385695

38329000

1.9-l

1.2+14

D

IO.

10,

73.

124,

130'

t/2

323549

38319000

3.1-l

1.5+14

D

lo.

10.

13.

124.

130’

323549

38334000

2.8-l

2.7+14

D

73.

385695

38416000

3.3-l

3.2+14

D

I.

103.

124.

2.6319

*p;,* 3/2

lS2P2

zP,,2 I)/*

0

124 10’.

124. 10.

134.

AtomicDataandNuclearDataTables,Vd.34.No.l.January1986

134' 73’.

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

TABLES. Spectroscopic Data for Ti V-Ti XXII Seepage82 for Explanation of Tables Ti Confisurationn

1 (A) 2.6101

XXI

1s*

‘s 0

(He-Sequence) Energy

lS2P

‘P;

levels

0

IP=50401000cm~‘(6249~00eV) (cm-‘)

38301120

1nt

f/Type

A (3-l)

Act

7.35-l

2.40+14

B

Reference*

1. 10’. 103.

2.6204

I*2

lS2P

“Pi

‘s 0

lS3P

‘P;

lS2S

‘so

lS2P

‘Pi

182%

Ss,

lS2P

“Pi

lS2

51i9.83c

‘s I

14.521’

lS2S

‘so

14.203’

1s2s

Js,

0

0

38131630

38125540

3.46-2

1.12~13

B

I.

32’.

73.

95.

32’.

73.

95.

124

IO’.

103.

124

45018280

1.41-l

6.35+13

C+

21’.

95.

38307120

3.29-2

2.28+8

B

23.

105..

124.

124

37923330

38114090

4.01-3

2.93+8

B

23.

105..

124

1

I

37923330

38125540

1.22-2

3.31+8

B

23.

105..

124

1

I

37923330

38180210

2.69-2

7.07+8

B

23.

105..

124

38131630

45018280

3.73-l

3.93+12

c

23.

124.

23.

124.

134’

1.24-l

4.10+12

C

23.

124.

134.

23.

124.

134’

lS3P

‘P;

lS3P

3P;

37923330

44964290

14.197c

I

I

37923330

44967230

14.164c

I

2

37923330

44983570

126

134.

134.

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

TABLES. SpectroscopicData for Ti V-Ti XXII See page 82 for Explanation Ti

XXI

I

of Tables

(H-Sequence)

IP=53440800cm-’

0

40054190

0

40141335

4.16-l

(6625.81eV)

2 3’.

95.

23.

103’.

40054190

124

40141335

124

40056141

124

2p;/r 1/*

47500810

124

41526101

124

3s

*S 1/P

41501659

124

34

*D J/Z

47526656

124

S/2

47535163

124

50103648

124

50114539

124

4s

50103982

124

4d

50114519

124

50118110

124

50118104

124

50119890

124

127

103’. 124

124

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

REFERENCES FOR TABLES AND COMMENTS

1. E.“.

Aglirskii,

Faenov:

V.A.

lithium-like

V

Zakhharov,

transitions

ions

S.A.

from

contained

Pikuz,

doubly

in a laser

and

excited

plasms”,

A.Ya.

17.

levels

of

JETP Lett.

Ali

18.

and

H.U.

Joy:

4 S-3p2(%,3d Holec.

“Oscillator

strengths

4P transitions Phys.

Atom.

in

2 (1970)

ions

Ar

to Fe XII”,

IV

and

Ayner

E.

probabilities (1977) 4. 8.

in

of

the

first-row

.I. Phys.

(1979)

“Relativistic

effects

MB isoelectronic

P.D.

: “Lifetime

spectroscopy”,

on

sequence”.

5. D.R.

Beck:

Dumont.

Opt.

sot.

transition

in

transition

Phys.

Gsmir.

Ti

Am. 3

"Many-electron

quadrupole

H.P.

measurements J.

Bhatia,

U.

populations

effects

III,

Rev.

A u

N. Grevesse. IV and

(1980)

464-466.

in

operator

and

probabilities”.

z

(1980)

7. E.

Feldman.

of highly

20.

Phys.

and

ionized

Yheoretfcal

isoelectronic

V

L.

Li

R.U.

Datla.

and

B.

beam-foil

using

21.

L.

forms

Rev.

for

electron

&3 (1981)

A

22. L.

159-171.

G.A.

Doschek:

“Atomic

tot-k

plasmas”,

data

and

J.

strengths

(3~2~22)“.

Astron.

in

and

A 16

line

strengths

(1977)

263-272.

Desclsux:

"Electric

probabilities

through

F”,

dipole.

of ions

Atom.

Data

qudrupole,

isoelectronic

Nucl.

Dsta

to

Tables

24

Astrophys.

(1968)

Cohen,

U.

Cohen

Feldman,

and

Griem:

Rev.

“Spectroscopic

12 (1975)

A

S.O.

Kastner:

sequence

from

mses~renents

140&1418.

“Spectra

of

SC XIII

to

ions

in

the

Cu XXI”,

J.

Opt.

331-334. and

by a vacuum

J.H.

spark”,

W.E.

isoelectronic

Phys.

23.

24.

lithium

Suppl.

and

isoelectronic

Am. E

H.R.

Phys.

U. Feldman. I

and

plasmas”,

Sehring:

sequence

Underwood:

J. Opt.

from

“Study

Sot.

Am. s

“Uavelengths

and

K IX

Un XV”,

through

of

the

(1968) levels

of J.

X rays

843-846. the

Opt.

Na I

Sot.

Am. 66

899-904.

level

Appl.

the

spark

Cohen.

produced

Ti for

oscillsror

sequence

and J.P. transition

atoms,

Cilliers,

U.A.

Sot.

1464-1480.

niemont:

mergies Rev.

111-200.

(1976) 6. A.K.

Rim,

dipole

fluorine

Saudinet-Rohinet,

T-K.

on V~CUM

821-832.

niemont

Johnson: "Excitation sequence”, Phys.

1552-1557.

Luc-Koenig: the

Cheng, magnetic

19. 3. H.

K.T. and

and wave-lengths of

K.T. Cheng snd U.R. in the MB isoelectronic

_?f?

g-10.

N.A.

3P’ B:

S.M.

af

T f and

(1974) 2.

Boiko.

“Identification

E

C. Corliss XXII”, J. R.D. 2

(1977)

and Phys.

Cowan: (1968)

J. Sugar: “Energy levels Chem. Ref. Data 8 (1979)

“Theoretical

study

of titeniu.. l-62.

Ti

pq -p m-l I spectra".

of

I through

J. opt.

Ti

SK.

Am.

924-933.

489-504. 25. W. 8. E.

“Theoretical

Bienont:

Astron.

Astrophys.

9. V.A.

Boiko,

Be-like plasmas”,

10.

J.

Boikc,

V.A.

Suppl.

S.A.

ions

Pikuz,

U.I.

nuclear

Phys.

8: Atom.

ions

Transfer

19

Safronova,

and

from

ions

and

Phys.

AeTa.

s

(1977)

J.

26.

of

and

8. Denne

L. Brillet,

“.I.

intrsshell

transitions

27.

spectroscopy

and in

of

Phys.

R.J.

Dewhurst.

soft

X-ray

solid 28.

A.S.

F-like

“Theoretical

Safronova:

ions”,

Opt.

study

Spectrosc.

3

and

snd

B.C.

isoelectronic

Pawcere: ions”,

“The

2p4-2p33d Not.

Non.

R.

transition sstr.

29.

array

Sot.

178

Doschek,

G.A.

Bromage

and

isoelectronic

and B.C Paucett: spectra”,

“The

2p2-2p3d

Ilon.

Not.

transition R. astr.

array Sot.

and

from

highly E

(1976)

lines

of Al

VII,

Al

IX.

and

3442-2443.

G.J.

Pert:

plasmas

Phys.

“Investigations

produced

8: Atom.

U. Feldman. 2p4-2p33s”,

Doschek,

G.A.

30.

G.A. the

G.E.

for

Astrophys.

by

of XW

picosecond

pulses

y

2301-2310.

Molec.

Phys.

(1975)

Cohen:

"0 I isoelectronic

and from

and

L.

J. Opt.

Sot.

Am. 63

(1973)

sequence:

1463-1466.

U.

Feldman,

of

the F I. 0 I (1974) 417-422.

J. E

R.D.

Cowan, and

end

N I

L.

Cohen:

"Transitions

isoelectronic

sequences”,

of Fe

(1977)

591-598. 13.

A 29 (1984)

Khan,

J.

zs22pk-2*2pk+I

Bromsge

XIX

N.A.

targets".

"Intercombination

Rev.

emission

Astrophys. C.E.

approximation Astron.

of

(1980)

231-234.

12.

"Brett-Paul1

up to Fe XXII”,

Spectrosc.

Quant.

11-50.

Safronovs,

Trefftz: ions,

and E. Hinnov:

transitions Il.

E.

boron-like

Al X ions",

laser-produced

1253-1263.

“X-ray

plasmas”,

“Spectra

Paenov:

34 from

Pikur:

S.A.

laser

Dankwort

ionized

(11~2>26,“.

93-98.

Z-22,-----,

Molec.

(1978)

sodium-like

285-290.

charge

Fsenov,

A.Ya.

for

31 (1978)

with

multiply-charged Radiat.

f values

of Fe XXI

Daschek.

31. G.A.

178

(1977)

for

allowed

ls2p

Astrophys.

ions”.

U. Feldman.

B I isoelectronic Doschek,

lines

of

end L.

sequence",

U. Feldman,

highly

J.

ionized

Cohen: J.

Davis,

iron”,

“Transitions

Opt.

Sot.

and R.D.

Phys.

2s22p-282~’

Am. 65 Cowan:

(1975) "Density

A 12 (1975)

Rev.

in

463-464. sensitive

980-966.

605-610. 32. G.W.F. 14.

R.T.

Brow,

and

nd-n’f

transitions

J. 176

(1972)

J.-L.,,. in

Carter: the

“Oscillator

helium

strengths

isoelectronic

sequence”,

P.

Burkhalter.

Schneider: Phys.

16.

B

"Unified relativistic 2 1 So frequencies and

Phys.

Rev.

As

(1979)

theory

for

ls2p rates

transifion

'Pl-1s in

'

'S o and

helium-like

1387-1397.

267-270. 33. P.D.

15.

Drake: lP1-1s

J. “X-ray

(1979)

P.G. Burthalter, satellite spectra

Davis, line

J.

Rauch,

spectra

from

W. Clark,

G.

exploded-wire

Dshlbocka, arrays”.

end J.

and J.

U. Peldman: Opt.

Sot.

Appl.

beam-foil

spectroscopy

34.

"L-series Am. 69

Garnir.

q ensurements

(1981) R.D. Cowan. and Fe XVI”.

H.P.

"Lifetime

705-711.

L. Cohen. in Ti XII

Dumonr,

R.

N.A.

in

1133-1140.

Kbrahim,

plasmas”,

128

Bsudinent-Robinet, IV-VII

between

400

Usi"8 and

and

M.

transitions

BOOA”.

J.

Kapenyak: observed

Opt.

Sac.

in

Am. 2

502-503. M.C.

“Space-resolved

(1979)

Y. Ti

Richardson.

extreme J.

Appl.

Phys.

G.A.

ultraviolet s

(1980)

Alomic Date and Nuclear

Doschek. emission

and from

U.

Feldman:

laser-produced

182-189.

Data Tables.

Vol. 34. No. 1. January

1986

Grotrian Diagrams for Ti V-Ti XXII

K. MORI et al.

REFERENCES FOR TABLES AND COMMENTS

35.

8.

Edldn:

Zeits.

"Ha

f.

I-ehnliche

Fhys.

E

Spektren

(1936)

der

Elemente

Kalilla

his

53.

Kupfer",

B.C.

Favcett.

XII

621-635.

t”

z 36.

B.

Edld"

bis

and

Chrom

Zeits. 37.

Tyrb:

"Die

K X, K XI,

f.

Fhys.

8. Edlln: XI,

F.

Ca XI,

x

(1936)

SC XII.

de?

‘Ii

Ele.e"te

XIII.

” XI”

+I" XIV,

A.“.

Fe XVIII

(1967)

der

Elemente

Titan

Co XVI",

und

his

Zeits.

54.

Cr XV”,

Cobalt.

Ti

Fhys.

-103

f.

and

their

F.A.H.

Saunders:

isoelectronic

“New

sequences”,

spectra

Froc.

of

Fe

Fhys.

Sot.

863-867.

B.C.

Fawcett

elements".

Fe Xv und

Gabriel. and

Kaliua

206-213. Spektren

Cr XIII,

L-Spectre"

Ca XII,

(1936)

“Mg I-ahnliche

" XII,

optische"

continued

55.

B.C. of

N.J.

N.J.

iron

period

"Highly

Sac. 91

(1967)

Peacock,

and

of lines

in

strengths

the

Peacock:

Fhys.

Fawcett,

oscillator

536-541.

and Proc.

elements",

ionized

spectra

of

the

973-975.

R.D. the

Cowan:

far

J.

Fhys.

of

the

"Classification

and

ultra-violet

spectrum

vacwm, 8: Atom.

Ilolec.

Fhys.

I

(1968)

295-306. 38.

8.

Edldn:

"S 1 ahnliche

V VIII,

Cr IX,

Spektre"

der

Mn X und Fe XI”,

Elemente

Zeits.

f.

Titan

Fhys.

bis

m

Eise".

(1937)

Ti VII. 56.

188-193.

B.C.

Fsveett:

ionized 39.

B.

Edlen:

Cs IV, w 40.

"Zur

Kenntnis

Ti VI.

(1937)

der

V VII,

Cl I-ahnliche

Cr VIII,

&h, IX,

Spektren

Cl

I,

Fe X und Co XI”,

A II,

Zeits.

Fhys.

57.

407-416.

8. EdlB":

Solar

B.C.

Favcett:

t”

“Z-dependence

2~~2~4”.

of

Physics

the

26

level

(1972)

intervals

in

2s22p2,

2s22p3

B.

Edld"

and

Ti

III".

Physics

J.W.

AM-R4

and

356-367.

B.

Edldn:

12

“The

spectrum 21-32.

of

doubly

ionized

titani*.

"I%e

transition

38-3~

the Ns I iso-electronic 43.

end

sequence".

3p-3d Physica

B. Edldn:

"Accurete

semi-empirical

formula

Li

spectra”,

Fhysica

19

I-like

Scripta

and the Scripta

for

(1979)

ionization s (1978)

the

energy

energy 565-574.

in

struct"re

B.C.

of

60.

255-266.

B.

Edldn:

"A critfcal

specfrs”,

Physic8

survey Scripte

the

of

2

Iw

(1979)

configuration

in

B.

Edlen:

“A

critical

configurations Fhysica

compilation

2sm2pk(m=2.

Scripta

11

of

61. energy

1. 0) of P I-,

(1981)

levels

0 I-

B.C.

J.O.

Ekberg

and L.A.

in

the

and Be I-like

SC and

Ti

(1970)

283-297.

isoelectronic

of

with

F I.

Si

the XDV Spectra

I end Al

I”,

Fhys.

J.O.

Ekherg:

of

Fhysice

K,

Ca,

Scripts

48.

3.0.

Ekherg

Physics 49.

50.

Fhysica and

Seripta

C.“.

Erickson:

Ref.

Data

A.N. “‘.3p

state

(1974)

(1975)

"Energy

Erm"laev

the

! Q I-like

4 (1971)

Svensson:

L.A.

12

5 (1977)

corrections

of Scripta

spectra

K VIII,

Ca IX.

64.

and

term

system

B.C.

16

Faweett

**cr.

sm.

B.C.

Fsvcett:

one-electran

atcs.8".

J. phys.

65.

Chem.

end

M.

s of

two-electron

"Ionization

p"te"tial8,

carrections ions”,

J.

in Fhys.

the

radiative graund.

B: Atom.

66.

” Is38

MC&C.

and

170

B.C.

Fhys.

1

the E

"wn

I and

(1965)

“Spectra

of

scandium,

fluorine

I

isoelectronic

titanium.

vanadium.

sequences",

and srgo”

Froc.

Fhys.

n-1 M

tra”sitions

in

B.C. of

Fawcett

the

isoelectronic

calcium

Fhys.

Hayes:

4 (1971) "New

iron oxygen

981-985.

classificario"s spectra",

Peacock:

and

nitrogen,

"Scwtral

of

J.

Phys.

B:

classifications

seq~nce”.

J.

Fhys.

B: Atom.

1149-1153. classifications

of

transitions,

emission

2128”.

Atm.

lines

due

Data

Nucl.

135-164.

R.W.

Hayes:

“Classificatio”

(1975)

of spectra

to Fe solar

flare

of K, ca,

lines”,

Hon.

observations

of

SC.

Not.

R.

185-197. of Ca X and J.

Opt.

spectral

Sot.

Am. 66

(1976)

calcium,

632-633.

B.C.

Sot.

oscillator

transitions

and for

N I.

Fawcett, t"

B.C.

‘3 I series,

G.E.

strengths 2s22p”

2~2S”.

Bromage,

4 transitions Sot.

Favcett. the

Fawcett

fram

?lg IX (1981)

in

for

Atom.

Date

“+l

2s22p”-2s2p

“forbidden”

and

R.W.

Hayes:

Fe XVII

and

isoelectronic

c

(1979)

A.

Ridgeley.

and

shell

belonging

second J.

B.C. 3

“Theoretics1

Nucl.

trsnsitions

and Be I.

Data

-22

Tables

Opt.

Sac.

spectra

spectra”,

due Mon.

t” Not.

113-116. A.T.

“otter: t"

of

between

transitions argon

and

1349-1354.

“Analysis

and F XI.

“Spectra

elements

Am. 70 (1980)

and A. RidBeley: to Fe XXIV

"Observed

of n-3

XII”,

J.

to n-4

Fhys.

spectra

8: Atom,

for

Holec.

ions Fhys.

203-208.

1087-1089. 68.

52.

due

473-489.

vanadium”,

199-207. Fawcett:

R.U.

between of carbon,

V and isoelectronic 2143-2151. and N.J.

“Spectrum

C I.

within

67. 51.

period

isaelectronic

and titanid’.

R. astr.

Jones:

singlet-triplet

and

Fawcett: 2s2p n+l-2p”+2

n-3

831-869.

and

and

Calanti.

(1975)

B.C.

(1978)

of

Cowan.

V and Cr and extrapolation

B I,

of Ti XII”,

116-118. levels

lines

trsnsitions”.

SC X

101-109.

“Spectrm.

emission n-3-3

2 63.

"Analyses

and Ti XI",

other

those

Holec.

“Wavelengths and “+I and 2sZp”-2p”+’

Tables

scandium, 47.

8: Atom.

1 (1974)

the

with

to Fe XXIII

Fawcett:

Data 62.

“Analyses

highly 2 (1970)

spectra”,

593-602.

Svensson:

".

Fe XIX

2s22p”-2s2p

Ti. 46.

of Fhys.

Be l-like

129-137.

to 45.

Fhys.

K.D.

Favcett, the

of

and

in

ionized Ni, Co. Cr. “olec. Fhys. 2 (1972)

B.C. in

classifications

isoelectronic J.

Fnwcett,

highly Aton.

and

"Classifications lines

fluorine”,

Molec. 44.

levels

)lolec.

(1971).

Favcett:

and 59.

42.

energy

8: Atom.

3s23p”-3s23p”-13d

(Culham)

5.3. B.C.

(1975)

Svensson: Scripta

lover

J. Fhys.

"Wavelengths

3s23p”-3s3p”+l,

of emission II.

elements".

1732-1741.

K III, f.

"Classification

transition

iron

and A.“. period

Gabriel: elements

sequences”,

Froc.

“Spectra in

the Fhys.

from

3p”-3p

chlorine Sot.

sr(l966)

I

and

sulphur

B.C.

Percett:

within

I

between

262-264.

579-596.

129

the

“Calculated third

shell

S V and

Ni

oscillaror for XVII”.

ions Atom.

strengths in

the Data

m-like Nucl.

for

allowed

isoelec~ro”ic Data

Tables

transitions sequence -28 (1983)

K. MORI et al.

REFERENCES 69.

B.C.

Fawcett:

encrBy XXV”. 70.

U.

“Calculated

levels

for

Atom.

Data.

Peldmsn

wsvelenBths.

allowed

n-2-3

Nucl.

and

L.

Data

Cohen:

in

,o

“Newly

l equences”,

isoelectronic

Tables

FOR TABLES

oscillator

transitions

and

ions

AND COMMENTS 87.

0 \I to Ni

lines

J. 49

E. Hinnov and S. ionized titanium.

in

(1967)

the

Ne

I

88.

265-267.

S.O.

Kastner,

72.

atoms

(1967)

1128-1129.

L.

G.A.

Doscbek.

“Satellite

line

192

(1974)

213-220.

“.

P’eldmsn,

G.A.

(1976)

of

Opt.

B.D.

Cowan,

laser-produced

and

R.R.

plasmas”,

L.

G.A.

Dnschek,

D.K.

laser-produced

Prinr,

plssrus

Am. 11

the

89.

90.

Whitelock:

J.

J.

91.

“Space-resolved Appl.

S.O.

92.

Phys.

61

“B

I-like

Ti

rokamak 77. A.“.

XI,



plasma”,

in

Nature

the

a

XII,

Lett.

B.C.

Fncett.

spectrum

of

(1965)

and

g

the

“Intercombination

Moo‘:

Cr XIII.

Phya.

Gabriel,

lines

and N.V.

lines

Fe XV spectr.

A (1982).

in

and

C. Jordan: and Zeta

obtained

from

configurations

in

six-,

u

S.O.

(1977)

Kastner,

A.M.

Gabriel.

s

93.

the

of

range

167A

iron

“III

to

and

their

Sot.

87

XII

and

lines

isoelectronic (1966)

SC XIV,

in

C. Jordan:

the

solar

seqwnces

“Classification

extreme

from

argon

of

ultra-violet

iron

spcctru

to nickel”.

U. Feldman,

and

L. J.

Cohen: Opt.

Proc.

577-502.

S.O.

Kastner.

(1977)

spectra

U.

Feldman,

of K XVII

through

Astrophys. 61.

S.

J.

174

Goldsmith,

‘peCt=a Sot.

(1972)

Am. 61

U.

Feldman. Ti XVII

(1972)

Oren,

and in

L.

the

Cohen:

trsnsitions

chromium

through

A.

Crwker.

615-618.

“The

snd

L.

the

96.

region”,

Cohen: range

of

S.

Goldrith,

L.

97.

V.

tr.nnitions (1973) 83. Z.B.

J.

98.

Opt.

P.P.

the

spectrs

of Ca XVII

and

and Ti

L.

XIX”,

Cohen:

)(Dlcc.

Phya.

Crurdev:

Spectrosc.

“The

3rd

14

(1981)

nB ConfiBurations

Astrophys.

J.

99.

m

(1969)

Ti

III”,

J.

Phys.

sequence

100. of oxygen

0 I ----Fe

XIXn’.

Opt.

P.P. Gruzdev and N.V. the .tc. and ions of opt.

SpeCtrO‘C.

49

“Radiation lifetimes of the levels Afmaseva: I. I-Ni XVIII isoelectronic series of sodium”.

E. Ninnov: chromiu. (1979)

“Observed iron

L197-L199.

and

eight-

electron

and

Bhatis,

and

HE I and

Si

Opt.

Sot.

Kononov,

and

2pk and

2p k-13;

ions”,

Physics

Cohen:

V.V.

Cr VII.

J.

IQ III snd

Phys.

“Observations for

elements

1558-1564. K.N.

“lnrrashell ions

snd Al

Fe IX”.

Lspides:

I sequence

Korobkin,

tltaniu

“Observstion

neonliks

Am. 68 (1978)

Skokan:

charBed

L.

in

Ti V. V VI,

and E.V.

(1974) J.

Koshelev,

A.N.

transitions

(Ti

XV-T1

in

XIX)“,

the

Opt.

4-6.

Sugar

and

26

D. m-l

of Zs=Zp”-2s far Cl XI,

Scripta

v.

KaufDan,

2p K XIII,

(1962)

“N I Cooper: n+l Intersystem Cs XIV,

isoelectronic

sequence:

trensitions

and

SC XV, Ti XVI,

improved

and V XVII”,

163-167.

J.

SUB*?

and

observations

improved 2

“F I ~lzpll+l

D. Cooper:

of

2sm2p”-2.

meawrements (1982)

K.L.

Kelly

2000

~“B‘tr~‘.

E.Ys.

E.Ya.

for

Cl,

K.

md

0 I isoelectronic

i”tersy‘tem

Ca,

SC, Ti

transitiona

and

V”,

Physica

623-626.

.snd L.J.

“Atomic

Palubo:

Hydrogen

Kononov,

K.N.

charged

through

and

ionic

krypton”,

Koahelov,

and

berylliulike

Kononc.”

snd

emission

NBL 7599

L.I.

ions”.

U.I.

of

with

Z-10-100’*,

P.G.

Kruger

P.C.

lines

(1973)

Podobedova: opt.

Safronova:

outer

Opt. and

L-shell

below

299-321.

“Transitions

Spectro‘c.

“Energy

11

structure

electrons

Spectrosc.

R.S.

‘3

Pattin:

scandiu

VI,

I and

Kruger.

for

(1977)

“The

VII

sulphur

S.C.

C. Laughlin:

and I”,

in

(1974)

l-3.

snd

highly

level

ionized

.t-

l-3.

extreme

other

Phys.

HeissberS.

“Nuclear

‘*%’

trsnsition‘

Atom.

Molec.

Phys.

K.D.

L.,,son.

N.J.

(1980)

n-2-2

of

u1rrsvi01et

l lewnts Rev.

and L.V.

charge in

52

spear.

of

isoelectronic (1937)

with

621-625.

Phillips:

isoclectronie

“The

spectr.

sequence

A I

of SC IV. to Ie

Ix”,

the

l rp.nsion

heliu

& (1973)

vthod

for

isoelectronic

1snL

1.361sn’

sequence”,

J.

I’

Phys.

B:

1942-1952.

Peacock. of

J.

Phys.

the

and

“.F.

l lewnts

B: Ato..

St-:

Ti. )(olec.

“Allowed

Cr.

Fe,

Co and

Phys.

14

(1981)

and

forbidden

RI in

tokauk

1929-1952.

341-344.

resonance nickel

trsnsitions

dischsrges”. 102.

86.

with

297-299. 10,.

85.

“Prediction

B:

615-630.

“Isoelectronic 27

of

Cohen:

I)ehrinB.

Ti V. nn VIII snd Fe IX in the Phys. Rev. 51 (1937) 1090-1091.

Goldschidt:

XIX”,

“2.-2p

1021-1026.

Atom. 04.

in

Croaker.

the J.

multiply

Kaufman.

scandiu A.M.

Ni

“Carbon-like lbZZA”,

260-264. Oren(Kats),

A.K. in

Serov.

j$

and

SC IV.

E.Y.,.

R.V.

L.

associated

U.E.

Swrtr,

Kasyanov,

~ phosphorous 82.

to

Ca XI

lithi-like

extreme-ultrsviolet

in

of subordinate

from

ns2np6-nsnp’.p

zinc”,

clsssification

and V XVIII

“Observation

spectra

(1971)

209-214.

Of SC XVI, Am. 62

L.

Un XXIII

M.

n-3-l-4

multiply SO. S. Goldsmith.

(1980)

Phys.

“Extreme-ultrsviolet

Sot.

Croaker.

A g

Scripts 95.

Ti XV and V XVI”,

A.U.

Rev.

and

825-839.

79. C. Goldsmith, of

XIV

and

highly

BA

259-267.

Ca III,

Yu.S,

and

seven-

IV and srBonlike

physica 94.

Fsvcett.

in Lett.

to ZZOA”,

390-392.

B.C.

Phys.

ions

transitions

transitions

sequences: 78.

trsnsitions

777-780.

autoionizing

observations .easurements

“Classification in

dipole nickel”,

NB

165-168.

sun

neon-like

Bhstia, some

Spectrosc. Bell

A.K. of

spectra R.E.

(1975)

Kastner,

Kyabtsev,

1341-1350.

76. W. Pinkenthal.

and

and L. Cohen:

in

identiflce.tion

of

Asrrophys.

NaBel:

XW”.

BehrinB.

transitions J. E

Scripts

Cohen: “Transitions sequence”. Astrophys.

and D.J.

in

iron

highly

Sot.

Cowan, and L. Cohen: “Fluorine sac. Am. 63 (1973) 1445-1453. Nagal,

from

lines J.

613-616.

U. Feldman, of

re‘o”‘nee sequence”,

Doschek, K.D. Cowan. and the N I and C I isoelectronic

of

(1975)

spectra

D.J.

spectra

2s22pk-2s2pk+l

75.

“Autoioni‘etion

Na I isoelectronic

G.A. Doschek, R.D. sequence”, J. opt.

Feldun.

J. 196

Cohen:

of the

U. Feldman, i‘oelecrronie

73. “.

74.

and

ionized

“MsEnetic

Suckever: chromium,

U.E.

2p54d-2p53p Astrophys.

71. U. Feldman

continued

298-300.

l-26.

identified

Aetrophys.

strengths, Be-like

(1984)

Grotrian Diagrams for Ti V-Ti XXII

in

line‘ tokamak

of highly diacharBes”,

ionized

titani”% Astrophy‘.

J.

30

Y.S.

Lee,

valence neutr.1 Phys.

8.

Sun. H.G.

Sheppard.

hamiltonian description .nd ion valence state‘ 2

(1980)

1472-1474.

and K.P. of of

Freed:

electron tr.nsition

“Ab

initio

correlation metal atou”,

effective for J.

the Che..

K. MORI et al.

REFERENCES 103.

T.N.

Lie

and

R.C.

tr.nsitions

in

“X

Elton:

a highly

radiation

ionized

from

dense

FOR TABLES

optical

plasma”,

Grotrian Diagrams for Ti V-Ti XXII

and

Phys.

AND COMMENTS

inner-shell

Rev.

A2

119. (1971)

C.D.

Phys. Lin

and V.I.

isoelectronic 105.

C.D.

Suckever,

Lin,

states

Johnson:

sequence”. V.R.

Johnson.

of He-like

“Oscillator Phys.

ions”,

Rev.

strensths

for

(1977)

1046-1052.

A 15

and A. Dalgamo:

“Radistive

Phya.

(1977)

Rev.

A g

the

beryllium

120.

of

the

121.

n-2

in

Rev.

S.

106.

G.A. Hertin snd W.L. Wiese: strengths for the lithiu isoelectronic Data

107.

of

2 (1976)

g. &we: 22

evaluated

sequence”.

J.

solar

X-radiation

from

1 to

Phys.

Chem.

122.

Ref.

Yu.A.

Mikhailov,

Fedotov:

109.

S.A.

plasma”,

P.S.

Pikur.

“Observation

laser

Kohr:

of

Opt.

C.V.

Ti

levels

Sklirkov,

XXI-Fe

Spectrosc.

“Energy

electrodynamics”. (1983) 453-466.

60 ;“,

Solar

G.V.

Peregudov.

E.A.

Yukov:

plasmas Phys. 111.

J.R.

A.Y..

XXV spectra

42

(1977)

40,

Faenav.

in X-ray

E.N. the

Ragozine.

XW

(1978)

titanid,

emission

Data

I.Yu. of

spectra

predicted

and Nucl.

Skobelev,

electron

of

T . Andersen, absolute

Nucl.

124

by quantwa

Dsta

Tables

A.V.

Vinogradov.

in

laser-produced

density

oxygen-like

and

ions”.

G. Sorensen:

oscillator

Instr.

Safronova.

dipole

“.I.

matrix

J.

Phys.

for

SSSR. Ot.

6/SB

(1976).

U.I.

Ssfronova

and

measurements

for

Cl XII,

states

of

Atom.

Data

Ilo

Safronova,

for

(1973)

and

126.

of ato,,ic

neutral

and

127.

ionized

Scripts

Sugar.

J.

He.

Fir.

Xhristenko:

“Calculation

strengths

and

Be and Ne isoelectronic Astron.,

and T.G.

Institut

ions

vith

Nucl.

Lisina:

Z-6.

Data

8.

of

Tables

24

“Relativistic

Scripta

23

Sandlin.

in

constants

the

(1979)

and

(1981)

G.E.

“High-temperature Astrophy%. J.

116.

117.

P.

Sharer,

205

C.D.

R. Smitt.

L.A.

!4.F. (1982)

and

D.

Post:

recombination

Large

Torus”.

dipole

2278.

of

highly

PPPL-1636

(1980).

X XIV,

Cs XV,

isoelectronic

sequence:

trsnsitions

SC XVI.

Ti

and

XVII.and

i.proved

V XVIII”,

189-193.

Akad.

Preprint

of

129.

No.

2 (to

L.A.

Stamp

and

W.R.

Physica

in the Scripte

effects

Scherrer, the

(1982)

293-295.

C.H.

Corliss:

“Atmic

through

be published and

Svensson

50 to 425A”.

L.A.

Svensson:

isoelectronic in

Ca XVI,

and

levels

J.

sequence:

SC XVII

SC XVII,

energy

nickel”,

Ekberg:

of

Phys.

“Spectra

Arkiv. J.O.

for

snd

improved

Ti

XVIII”,

the

Chem.

iron

Ref.

period

Date

l4,

for

17 (1968)

“The

titenim

g

(1969)

Fysik

transitions

3 (1971)

of Ti V, Ti VI and Ti VII

Fysik

Ekberg:

Arkiv. “The

Scripta

I

1985).

J.O.

and

from

J.W.

Svensson

and

Ti

S.

IV”.

L.A.

Svensson:

in

65-84. vacuum-spark

spectrum

145-163. k+l

3s23pk-3s3p

of

Ti VI and Ti VII”,

111-112. Edlen:

Physica

L.A.

“The

Scripta

13

Veinstein

“The

spectrum

Scripta

ions”,

spectrum (1976)

and

probabilities

sequence”,

in

and

solar

He-like

Phys.

Rev.

and H. Outred:

“An

ians”.

of

9 (1974)

three

times

ionired

titanilm,

Ti

335-337.

of

Atom.

of

LI.1.

Snfronove:

satellites

Date

four-times-ionized

V”,

235-236.

to

Nucl.

Data

“Wavelengths

re8ona”ce

Tables

g

lines

and of

(1978)

transition

H-

and

Se-like

49-68.

A.V.

Vinogradov.

E.A.

Yukov:

N.J.

Peacock:

“Improved

in

ionised

titenid,

J.

Phys.

(1977)

vsvelengths B: Atom.

132.

density

Perequdov, of the

in

a laser

E.N. spectrum

Regorin,

I.Yu.

Skobelev.

of hydrogen-like

plasma”,

Sov.

J.

and

ions

puentm

on

the

Electron.

8

615-618.

for

study

133.

the

of

of

134.

n-2-2 Phys.

Weissberg

W.L.

and P.G. Phys.

Wiese.

Kruger:

Rev.

U.W.

19

135. y

Vol.

1”.

W.L.

Wiese and

J.

Chem.

S.A. ls2

L703-L707.

with

131

and

scandirrm Phys.

2-2

J.R.

B.U.

Glennon:

neon

(a

Puhr:

“Atomic

(a critical

Ref.

Data

V.G. 3P2 and

to 137”.

terms

in Ti VX. V VII,

Cr VIII

872-873. “Atomic

critics1

data

transition compilation),

(1966).

titanim

Zapryagaev. l So-ls2p

and

through

NSSDS-NBS4

“Deep

(1936)

Smith,

probabilities-hydrogen

isoelectronic

Holec.

S.G.

and Mn IX”,

1109-1116.

experimental end Al I

G.V.

“Dependence

Tousey: 171A-630A”.

strengths

A 16

P I. Si I, 293-307.

sod

R.

spectrum

‘~Oscillstor

Johnson:

Cl I. S I, &3 (1976)

lines

2

Svenssan

electron

sequence”,

“B

K XV,

regionlOO-40OA”.

L.A.

D. Cooper: intersystem

Cl XIII.

potasslln

Physica

autoionization

Be isoelectronic

radiative

in

for

and

and

2s2p2-2p3

49-93.

V.E.

lines L47-L50.

Svensson,

and 3s3pk+’

transitions

Brueckner.

Lin

isoelectronic

sequence”,

118.

Nulse.

D. Caper: “C I 6-l 2p n+l intersystem

(1982)

Kaufman of

titanium,

241-248.

flare (1976)

magnesium

3s23pk

magnetic

A 22 (1980)

transition

sequences”.

Spektroskopii.

“Atomic

lo-42

V.

Sugar

(1978) G.D.

z

Scripts

Physics

131.

115.

X-VII”,

119-125.

S.V.

oscillator

the Ob.

Safronova:

Physica

J.

the

130.

U.I.

and

2sm2p”-2s

elements:

29

D: Appl.

“Determination

strengths

nethod

elements.

probabilities

114.

R. exchsnse

in Princeton

of

measurements

of a

128.

113.

on the

Rev.

Bitter,

charge

ritsniln

Kaufman

V.

observation

S.I.

2305-2311.

and

Nauk.

Sugar,

Suppl.

Roberts.

A.S.

Phys.

M. of

observations

Physics

stems

Atom.

and

469-471.

of hydrogen-like

10 -’ 7. 2

"Measurements

from x

lifetimes

112.

J.

Physica

Physics

125. 110.

dipole

Ti XV and Ti

459-491. 123.

108.

Hinnov.

snd

magnetic

XIV,

“Cwment

titanirn”,

evidence

iron

“Observed of Ti

oscillator

537-570.

“Cslculsted

0972)

critically

E.

Hinnov: terms

and B. “inno”:

ionized

Suckewer,

E.

stste

924-927.

R. Fonck,

“Experimental

154-161.

and

Bround

(1980)

of highly

ionfled “Tables

the

A2

S. Suckever. lines

dec.ys

R. Ponck,

transitions

865-871. 104,

S.

continued

Opt.

i

(1975)

transitio,, dsta

probabilities

compilation

of allowed

far lines)“,

263-352.

Palchikov. 2 1 so-ls2s

and U.I. Sefronova: “Probability 3 S1 radiative transitions for

Spectrosc.

g

1s

Atomic Data and Nuclear

(1978)

Data Tablet.

of ions

239-242.

Vol. 34. No. 1. Jammy

1986

K. MORI et al.

GROTRIAN

Grotrian Diagrams for Ti V-Ti XXII

DIAGRAMS.

Ti V-Ti XXII

Seepage84 for Explanation of Grotrian Diagrams

‘S

994.533

P 3*239e 1 1 I

i-t-:

‘P

,po(91

‘s

0 I

I

I

I

Ti

1

I

I

I

I

I

1

V(Ar-Sequence)

132

AtaM

Data a-d Nudesr

Data Tablea. Vd. 34, No. 1, Janmy

1996

Grotrian Diagrams for Ti V-Ti XXII

K. MORI et al.

GROTRIAN

DIAGRAMS.

Ti V-Ti XXII

See page 84 for Explanation of Grotrian Diagrams

u

0 t

Iu t

383P'Sd 506225

513.314

N SsSv'Sd 506225

501.631 LI

I4

3s3p63d 506225

464.143

t

A t

534.291

-

494036

SSSP~lOP 963620

103.154

S~SF-~~P 940660 313PfilP 920720

106.611

3~3~~6~ 335170

112.696

3s39~59 325500

121.133

3,

313P64P 667960

145.354

3~'(~P*)61 630746

146.391 3PvP')5. 603101

164.446 SFvP')4. 436650

221.909 3~5(zP'b3d 275372

363.145

r23p’ ‘s 0 I

I

1

I

I

Ti

1

I

t

1

I

1

V(Ar-Sequence) 133

AtonicDataandNudeerDataTables.Vd.34.No.l,January1986

P

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams

‘D

323.335

3D’(ZPr)3d 309252

Ti

V( Ar-Sequence)

134

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams

p’(‘DMd 553630

3v'('D)3d

259.232 251.a55 255 315 254:os

L

Ti

3111644

VI(Cl-Sequence)

135

Alcmic

Data and Fludear

Data TaiSm, Vd. 34. No. 1, January

1986

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams

3P’OP)ld 65643’1

152.336

301.913 I

1

“F

NIL.7 39’C’D)Sd 331221 I

I

I

Ti

I

I

VI(Cl-Sequence)

1

I

1

I

K. MORI et al.

GROTRIAN

Grotrian Diagrams for Ti V-Ti XXII

DIAGRAMS.

Ti V-Ti XXII

Seepage84 for Explanation of Grotrian Diagrams

1 141.113

203.i94 203.200 201.165

‘P

‘F

I

I

I

1

1

I

I

Ti VI(Cl-Sequence)

137

I

I

1

1

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage 84 for Explanation of Grotrian Diagrams 0 iu k

0 ; X

” 1

% I

121.515

171.572 D t

Sv’(ZPo)2d 450722

252.511

0

t

205.720 Sp’(*D’)Sd 381894

272.511

‘P 0 t

SISP

508.127

251214

N t

4.

3839

1

251214

nl

u

t

S,‘(“P’)ld 160252

132.149 u

N

t

2p’(2D*)4d 15lD84

i.sB.257 u

(v

t

SP’(~D’)~S 59291:

115.212 Y

Sp’(*D’)4. 522918

IS&.552 *

3p3(*P*)2d 401102

260.104 Id

b’(‘P*)Sd 40170s

242.021 lu

1

S&‘D*)3d 325261

Ti

VII(S-Sequence)

138

‘D

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII See page 84 for Explanation of Grotrian Diagrams

Y

SP’C2P*)3d 420522 Id

11 t

298.056

1 3~~39

3v3(2D’Md 361904

‘D

24130

3p’(2D*)4d ?56518

119.107

ss

270.141 20.759 268.502

Ti

VII(S-Sequence)

139

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams

r

1

2

I

I

1

Ti

I

VII( S-Sequence)

140

I

I

P4D

K. MORI et al.

GROTRIAN

Grotrian Diagrams for Ti V-Ti XXII

DIAGRAMS.

Ti V-Ti XXII

See page 84 for Explanation of Grotrian Diagrams

r w

N t

132.351 NV w

3p3(zPnMd 119699

129.122 129.603 12a.25

13a.ald 13a.54a 137.661

112.353 171.952 171.aaa 170.559 170.351

m

261.493 "e.J

3p'('P*)3d 396572

I

I

Ti

I

VII(S-Sequence)

141

I

1

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams

-:7,

149.911

#

149.653 N:7bl u

m)ISp*('D)Sd

211.561 210.550

423114

+x

160.614

“Izw II

156.444 155.616 155.456

‘P

I

1

Ti

VIII(

r

P-Sequence)

I

I

I

K. MORI et al.

GROTRIAN

Grotrian Diagrams for Ti V-Ti XXII

DIAGRAMS.

See page 84 for Explanation

Diagrams

WIV NIU

NIW tune

152.164 151.615 151.864

It

NI4

N,” t

Ti V-Ti XXII of Grotian

255.610

.%~*(‘D)34 419939+x

Ti

VIII(

P-Sequence)

143

Atordc

Data arid Nuclear

Data Tables.

Vol. 34, No. 1, January

I!366

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN

DIAGRAMS.

Ti V-Ti XXII

See page 84 for Explanation of Grotrian Diagrams

‘P

I

Ti

t

1

VIII(

P-Sequence)

144

I

I

I

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN

DIAGRAMS.

Ti V-Ti XXII

Seepage84 for Explanation of Grotrian Diagrams

L

w

t

sp(2P*)4f 1505420

12B.055 Y

ru t

SPtZP*)Cr 1502090

124.131

19.016 19.027

90.986 90.927

90.901

126.042

u

N

Sr4f

t

-hJw

137.47SC

1293940

"w c Sp(2P*)sd

543.23 533.55 522.66

123.070 122.905

3p(2Po)3d

‘F’

II L

Ti

XI(Mg-Sequence)

153

Atomic

Data and Nwkar

Data Tables,

Vol. 34. No. I, Jmmry

1986

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams

Atomic

Oats and -

Oata Tat&s.

Vd. 34, No. 1. January

1988

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DiAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams 0 ;o x

0 b x

0 b, x

0 i x

b X

i-3 X

h X

&J X

i X

‘P

Ti

X(Al-Sequence)

147

Atomic Data md Nudear

Data T&&S,

Vol. 34. No. 1. Jarwary

1966

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams 0 i X

0 iu X

0 br X

0 bo X

I I

Fu X

_-4. _---

n

-...II

I

b X

h X

b. X

r t%!St28

b. X

-9 ‘L

U’V

I 142.62? 142.585 I%:%%%%

2P* I -

-xv-

4

I

Ti

X( Al-Sequence)

148

s

I

0

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams

I

I

I

I

l-. 3

0

J385B

t

11.119

-, 1491140

$2 b% ;"o -::

0 t

446.69

3141

123.946

1065710

3 .!.

+-[3p2482340

1 SSSP

I

‘S

'P.

258S15

1 SSlP

54.322

.

1a4oa30 SldP

1

1721380 385P

65.403

1521910

0 t

100.835

31.125 533.14lC

3v4d 147455~ 3a4v 113!3*20

‘F

~-~393;50220

+Yr~SPW~ -3xm-i3’3:5,9,3

u t

t

385d

15.415

100.591

L534SlO lu 1384d 1253100 'II

L-inb-A3s3:84104 667.34'

+-i1p2403320

Ti

XI(Mg-Sequence)

149

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII See page 84 for Explanation of Grotrian Diagrams

::u l-o 4Olb20 Y

m

3151

t

96.233

1803140 0

u I

3151

as.132

1603140 Y

N t

SP44

110.010

1413533 w lSP4d

N t

33.300

l413533 Y I3r4f

N t

135.179

1304350 w

N t

Sal! 111.654

1304360

-n.J #

18.731 13.403

1434820

-w # 0,

4. 4.

1 1

1361150

u

1050150

1

Ti

I

XI(Mg-Sequence)

150

I

1

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams

420.60 425.14 410.45 417.55 415.01 405.21

‘P

1 ?%lbi

1

I

Ti

1

XI(Mg-Sequence)

151

I

1

Grotrian Diagrams for Ti V-Ti XXII

K. MORI et al.

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams

u

N

+

127.281

W’P’MI 1519300

Y i : 3P4P

85.290

1s45060

-lo 0

c srsp

Sp(*P’)Sd

‘P’

1

0, It

‘DO

730560

99.249 95.929

Ti

XI(Mg-Sequence)

152

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN

DIAGRAMS.

Ti V-Ti XXII

Seepage84 for Explanation of Grotrian Diagrams

L

w

t

sp(2P*)4f 1505420

12B.055 Y

ru t

SPtZP*)Cr 1502090

124.131

19.016 19.027

90.986 90.927

90.901

126.042

u

N

Sr4f

t

-hJw

137.47SC

1293940

"w c Sp(2P*)sd

543.23 533.55 522.66

123.070 122.905

3p(2Po)3d

‘F’

II L

Ti

XI(Mg-Sequence)

153

Atomic

Data and Nwkar

Data Tables,

Vol. 34. No. I, Jmmry

1986

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams

“I.%.! It

1. . 4 WI-

VL 108.107 101.086

1808180 1125572

Ti

XII(Na-Sequence)

154

Grotrian Diagrams for Ti V-Ti XXII

K. MORI et al.

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams

1

I

I

I

I

r-.

1

3

45.167

WINIY 1OP

4 .

1 NIYWI.. 295SG

e;’ L.z:N ww bE 00 ::lz z ‘;;

21 616 21:460

I

3637900 3594700 1lP -

I

2214000

2164200 JKJ

47.906

,’

2037400

ai; 4 -

4 . 1

2003500

NIY NIcn 31.426

tl

.

I

62.344 62.121

,”

4

f8%d8

iit::

YL

P

479.661 460.741 217042 206365

502614 501922

Ti

XII(Na-Sequence)

155

Atomic

Data and Nudew

Data Tables.

Vd. 34. No. 1. January

1886

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII See page 84 for Explanation of Grotrian Diagrams

Ti

XII(Na-Sequence)

156

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams a b x

b x

7 Ln x

Ti

cu b x

N ;I x

w b x

w b x

0e X

XII(Na-Sequence)

157

AtwnicOataandNuc*larOataTebles,Vd.34.No.l.Jarmary19ffi

K. MORI

et al.

Grotrian

Diagrams

for Ti V-Ti

XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII See page 84 for Explanation of Grotrian Diagrams b X

w b X

P & X

w 0 X

VI b X

01 b X

4 b X

N-O 596.66T 460.92= 455.97t

3912900

19.204

295('P:,z)4d[p 5207200

20.135

295(2Pj,,)4*(!.~)e 4966500 2129'39 4754000

21.035 23.698

2d29'

‘P

295(ZPj,,)3d[;l* 4219600 ~D~(~P;,~)~s(~ a9753600

26.641

01

22

i)" "I

'S

0

471.25'

369.71T 366.97* 1

i+ K n

‘D

: 3965800

I

Ti

9965600

I

XIII(Ne-Sequence)

158

I

I

I

K. MORI et al.

GROTRIAN

Grotrian Diagrams for Ti V-Ti XXII

DIAGRAMS.

Ti V-Ti XXII

Seepage84 for Explanation of Grotrian Diagrams

u

N

*

61.255

t

a

5191200

‘F ,” 1c;

-

“0

3965600

-

594.16T 516.26’ 413.42.t

0”

% -, 0 “0 410.15* 455.56’ 431.45t 419.991 366.32’

Ti

XIII(Ne-Sequence)

159

Atomic Data and Nuclear

Data Tables,

Vol. 34, NO. 1, Janufny

1986

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams

1 19.943 2SZF4’3P 1733300

21.127

.

26.950

Ti

2~‘(PPj,p)3d~~)o 4168200

1

zPvPj,,n.(~.~) 3709200

XIII(Ne-Sequence)

160

z z

z

no

K. MORI et a!.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams

Ti XIII(Ne-Sequence)

161

Atmic

Data and Nudear

Data Tables.

Vol. 2.4. No. 1, January

1966

K. MORI et al.

Grotrian J&grams for Ti V-Ti XXII

GROTRIAN

DIAGRAMS.

Ti V-Ti XXII

See page 84 for Explanation of Grotrian Diagrams

4221000

25.016

2

Ti

XIV(F-Sequence)

162

P0

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN

DIAGRAMS.

Ti V-Ti XXII

Seepage84 for Explanation of Grotrian Diagrams r 0 x

h),I

N b x

0 b x

sr b X

-2 b X

NIU u1w 21:311 21 522 1.

4 NIU w,w

PaII

m b X

r D x

21.223 1. 21.657

cutI

NJW UIU

22.190 22.426

2p’C’P)Sd

22.068

4591900 4506490

4. 24.315

2p’(‘P)Sd 4512200

22.162

Nl.8 *rx ,,

,c 25 206 25:071 25.025 24.907

29

cu)IY

2P‘t’P)Sd 4418500

22.279

Ti

‘F

XIV(F-Sequence)

163

Alcmic

Data and N&ear

Data T&k..

Vol. 34, No. 1, January

1986

164

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams

2~~29’

‘D

2~29’

1 -

‘P*

971037

3~W0

0 t

23.034

2?‘(ZP*)ss 4557300

22.412

29’(*P*m 4557300

N I

lu1 c 2~~29~

‘S

21.5528 1017.30

aI

21229’

1

108130

L44~.3= 919.73

‘D

Pa

t

. 1 r.J t

20.823

N

I.4 t

29’(‘P’)$d 4962000 L) 293~2D’)S4 4911000

‘D

29’(*D’)S. 4469100 I

I

I

Ti

I

XV(O-Sequence)

I

I

I

I

K. MORI et al.

GROTRIAN

165

Grotrian Diagrams for Ti V-Ti XXII

DIAGRAMS.

Ti V-Ti XXII

Seepage84 for Explanation of Grotrian Diagrams

1

I-. 3

u

7.4

2p”tzP’)3d

t 2.

A,

5014000

9

EG $$

Y

N

2~3~2D’)3d 4940000

I

z=: ; A

12~~2~

ID

1011730

23.193 23.177 22.961

1

1

Ti

1

XV(O-Sequence)

I

1

I

I

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams

LI IL

2t22Q’

‘P

84 2Q32t 5s

2s 41P 2i20’

t I

4310000

I

I

Ti

I

I

I

I

t

XV(O-Sequence)

166

Alcmic

Data and Nudaw

Data Tab&s,

Vol. 34, No. 1, Jomay

1966

K. MORI et al,

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams

WI.4

2P2(3P)Sd 5194100

20.101 VL 132.022 126.381 124.793 121.534 10 0500 91 8 650 Uh

YL

116.215 116.198 110.561 10205 0 97065

8

167

K.

MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII See page 84 for Explanation of Grotrian Diagrams

te c 70 :Y

14sa.oc 1224.4c 1129.6' 966.6'

:1!388

"G.3

PsQ9’

t

505.6' 459.1C WT88

I

I

Ti

I

XVI(N-Sequence)

168

t

I

1

I

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams

NIU NlVl 2aZp’

123.0’ 122.4’ 8f318

,,u NIU 2.‘2P’ 6607 c 130720 ’ b!% 2rZZp’ 661.1C 765.6’ t ff 8 :szoo

WI4

110

f

1.

2Pz(‘P)3d 5245500

1

Ti

XVI(N-Sequence)

169

K. MORl et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams

._.-

63360 88X::

219.lC 211.4c 204.2’ 199.2’ 199.2’

‘P

%

Ti

XVI(N-Sequence)

170

K. MORI et al.

GROTRIAN

Grotrian Diagrams for Ti V-Ti XXII

DIAGRAMS.

Ti V-Ti XXII

Seepage84 for Explanation of Grotrian Diagrams

-

2r22p2 242160 470.2'

2pSd

I .

5612000 2~3% 5200000

122p2 140660

55130 296.56

1172.' 396.'

G.

Ti

XVII(

C-Sequence)

172

K. MORI et al.

Grotrian Diagrams for Ti V-R XXI1

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams

u

I2pSd

1 .

5502000 N

2PSd

11.350

5502000

‘D

I.3

w t

2PSd

18.269

5014000

L)

127.782 123.654 119.214 838340

Ti

XVII(C-Sequence)

‘F

K. MORI et al.

0 L x 04 I

“L

0 L X

04 1

u0

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams 0 0 0 0 Q 0 i L b b, L bD X X x X x x 04 04 04 0-3 04 z4 I I I I I 1

0

146.067 144.66C 144.405 136.563 136.160 95.202 1318 \ 40 MS%%

ZAP2 1

3834.6 3370.6

W%

Ti

XVII(C-Sequence)

173

0 la x D4 I l-

b x z-3 I

K. MORI et al.

GROTRIAN

Grotrian Diagrams for Ti V-Ti XXII

DIAGRAMS.

Ti V-Ti XXII

See page 84 for Explanation of Grotrian Diagrams

11.211 18.176 11.141

-63

"

282Q' =tL

N

227.57' 224.19c

888%

-"

28'2Q'

'D

I ::

c

Y t

2*2Qa(%)Sd 0025000

1 . 0.

"w I . I .

#

N



2Q3d

18.751

SF

5412000

Ti

XVII(C-Sequence) 174

AtomkDataandNudesrDMT~Vd.34.No.l.Jsnuary

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams

w

u

A.2 0-m

2S2Q2(‘P)3d 5242000

t u

N t

y2
2r2~*C’P)3.

19.415

-::

5434000

1ZSZQ”

3

5P

3

.!

=s*

333680 I

I

1

I

Ti

I

t

I

I

I

t

,

XVII(C-Sequence)

175

Atomic

Data and Nudea

Data Tebles.

Vd. 34. NO. 1, January

1986

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams

56240 0

v7ld 2r2P('Pe)sP stn ? 888 I.2

V7Y

141.607 144.759 136.260 133.652 w:x

166.64' 12.0.50~ Fail88 UJY NlVl

-:L 153.15f 150.15T 146.6ST

HWX L2P

1711.95 56240

Ti

XVIII(B-Sequence)

176

K. MORI et aI.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams

VI2r’2p

I1 l-

*PO

i6240

NIL.

u,w t

2s2p('P")3d 6433000

lt.sa7

N&L” t

y;,VL

NIL. 2s2p(‘Pa)3d 6142000

17.920 301.4oc 292.47c 269.76’

!8#B%88

WI4

17.150 h),o NI-2

2r2p('P*)Sd 639.3000

17.715 1 .

I

I

I

I

Ti

I

I

XVIIICB-Sequence)

177

I

I

I

I

178

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII See page 84 for Explanation of Grotrian Diagrams

D

6240 %

NIO I

nJ)Iu 282p(‘P*)Sd 814aooo

1 .

4P

NI4

2rPp(‘P’Md 6143000

11.30

I

I

I

I

Ti

I

1

‘D I

I

I

1

XVIII(B-Sequence)

Atcsrdc Dab

&xl N&ear

Oata Tetks.

Vol. 34, No. 1. Jenuar~

1988

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

179

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams

N

2926

16.611

t

6666000 2rsv 6303200

-41azP;62&s216S.560

'P

N t

2Q3D

16.176

6770900 N

t

213d

11.076

6145900

i+2*38~iOL -vu

u 175.33 163.1' 917560

'l-l

aJ

N

‘D’

t

N

w

t

2~3d

16.802

‘F’

6811100

h( t 2s t

es39

17.016 I

6160800

I

I

Ti

XIX(Be-Sequence)

I

I

t

180

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams

IN

.

t

0,

2Q3P 6685800

1

-N

N 218.50 212.22 206.10 189.8S lSS.54 119.47

Y

N I 0,

15.142 -N Y

N

Ill

16.514 16.43 16.414

6402100

=

I.J

2QSQ (699100

tw88

1.

16.119 16.11

,” u w L

.a

822410 104890

L

Ti

XIX(Be-Sequence)

Grotrian Diagrams for Ti V-Ti XXII

K. MORI et al.

181

GROTRIAN DIAGRAMS. Ti V-Ti XXII See page 84 for Explanation of Grotrian Diagrams

1 we..

“r!ck,

It

0 ”

1 . . I

6466000

“S

,’

9.129

10955000

:I;

h),t

c

22.9'

10315000

:I; OI -

. 4

10315000

2:;

me.. t

--4 24.2T

10600000 ai;

9.434

v

UIW NIU

2:; m = ::I; ,”

10274000

=

WI.t

26.ZT

10274000

9.733

NIW NIU It

10600000

:I;

IOl.SC 101.6' lOl.IC

WI” NIU :I; s a .a,.NIY

10274000

9730000

32.124L 32 056' 32:056'

2P

9730000 El;

urt

,”

30.666'

10.276

NJW NIV) w’ WI.t

9730000

t

DKJ

..,,O: :I; 44.601'

a v

9730000

6132000

II; t

11.452

I

I

Ti

XX(Li-Sequence)

1

6732000

I

I

182

Grotrian Diagrams for Ti V-Ti XXII

K. MORI et al.

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams

15.253 15.211

t.Jlc.8

(D

0.549

t

-

23.5' 23 5= 23:s'

100s0000

10312000

.‘AL

II

10312000 Eli

PITTI

ma2

BIti 24.0T 24 5' 24111

10601000

10601000

%L It

10213000

Ti

XX(Li-Sequence)

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

183

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams

II

31.591c 21 5565 31:411c

10.690 10.60

10.

I,:[

vu," NI.8

-?.7...

It

9740000 XII

v7,

16.061 16.049 1.

Ti

XX(Li-Sequence)

VI e

9740000

K. MORI et al.

Grotrian Diagrams for Ti V-Ti XXII

GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams

9

0 182P

2.SlOl

38307120

0 :

112s

u

l,Y L

's

1

391316SO

0

ls2v

2.6264

38125540

O..524.22' 494.54= 319.29=

sP0

:: : !

38180210 #W

1 192s

's

D

37929330

0 I

I

I

Ti

XXI( He-Sequence)

Ti

XXII(H-Sequence)

I

I

I