ATOMIC
DATA AND NUCLEAR
DATA TABLES
34,79-l
SPECTRAL DATA AND GROTRIAN TITANIUM, KAZUO
MORI,**t
84 ( 1986)
DIAGRAMS FOR HIGHLY TI V-TI XXII
WOLFGANG L. WIESE$$ TOSHIZO SHIRAI,” KUNIO OZAWA,l’ and TAKAKO KATO#
YOHTA
IONIZED
NAKAI,”
t Institute of Physical and Chemical Research, Wako, Saitama, Japan; 5 National Bureau of Standards, Gaithersburg, Maryland 20899; I’ Japan Atomic Energy Research Institute, Tokai, Ibaraki, Japan; and # Institute of Plasma Physics, Nagoya University, Chigusa, Nagoya, Japan
Wavelengths, energy levels, level configurations, oscillator strengths, and radiative transition probabilities for the titanium ions Ti V to Ti XXII are critically reviewed and tabulated. Grotrian diagrams are also presented to provide a graphical overview. Copyright 0 1986 Academic Press, Inc.
* Present address: Japan Information Center of Science and Technology, Nagatacho, Tokyo, Japan $ Part of this work was done by W. L. Wiese during a tenure as visiting senior scientist at the Institute of Physical and Chemical Research
0092-640X/86 $3.00 Copyright 0 1986 by Academic Press, Inc. All rights of reproduction in any form reserved.
79
Atomic Data and Nuclear
Data Tabks.
Vol. 34. No. 1. January
1966
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
CONTENTS
INTRODUCTION
.
. . ..
EXPLANATION
OF TABLES
EXPLANATION
OF GROTRIAN
BRIEF COMMENTS TABLES.
.
80 ..
..
DIAGRAMS
ON EACH TITANIUM
FOR TABLES DIAGRAMS.
.
ION
..
..
84 85
..
AND COMMENTS
Ti V-Ti XXII
82
.
.
Spectroscopic Data for Ti V-Ti XXII
REFERENCES GROTRIAN
.
91 ..
.
.
128
.
132
INTRODUCTION Tables of spectroscopic data and Grotrian diagrams have been prepared for the ions Ti V to Ti XXII. These data have been compiled mainly because of the importance of titanium in plasma research, where it is used as a component of the coating material TiC on the first wall of tokamak machines and also as a getter material for light ion impurities such as oxygen, carbon, and nitrogen. Two of us published a similar data compilation for the iron ions Fe VIII-Fe XXVI in 1979.’ Iron is of particular interest because it is a principal component of the vacuum wall materials of many tokamaks. Since the completion of that compilation, further requests from the diagnostic teams have centered on titanium and nickel. Therefore, we have carried out the present compilation of spectroscopic data for titanium ions. For this compilation of atomic structure data of the highly stripped titanium ions, we were able to draw from several major sources: the energy-level tables of Ti I-Ti XXII by Corliss and Sugar ( 1979),2 the wavelength table by Kelly and Palumbo ( 1973),3 the book of Grotrian diagrams by Bashkin and Stoner ( 1975),4 and the transition probability tables by Wiese and Fuhr ( 1975).5 The present tables were prepared as follows: First, the available spectral data for the titanium spectra above Ti V were collected from published articles. If several sources were available, the data were critically reviewed and the most reliable value in our judgment was selected from the collected data. References for the wavelength data are listed in the last column of the tables; the values for energy levels have been, in the main, taken from the critical compilation by Corliss and Sugar ( 1979).2 The present material has been updated with new experimental data published since Ref. 2 and is supported by consistency considerations among the energy levels according to the Ritz combination principle. The principal new papers are
the following: Kastner, Swartz, Bhatia, and Lapides ( 1978)6 for 3p-4d, 3d-4d transitions of Ti XI; Boiko, Faenov, and Pikuz (1978)’ for n = l-2 and 2-3 transitions of Ti XIX, XX, XXI; Fawcett, Bromage, and Hayes ( 1979)8 for n = 3-4 and 3-5 transitions of Ti XIII; Hinnov ( 1979)9 for the resonance transitions of Ti XIX and XX; Lawson, Peacock, and Stamp (198 1)” for n = 2-2 transitions of various ions of iron group elements; Kaufman, Sugar, and Cooper (1982) “,l* for n = 2-2 transitions, including intersystem transitions, of Ti XIV, XV, and XVII; and Stamp and Peacock ( 1982)13 for n = 2-2 transitions of Ti XIV through Ti XX. The main sources of oscillator strengths and radiative transition probability data have been the tabulations by Wiese and Fuhr ( 1975)’ and by Martin and Wiese ( 1976)14; as well as the comprehensive papers of Fawcett (1 978)15 and Cheng, Kim, and Desclaux ( 1979).16 We also present Grotrian Diagrams, i.e., diagrams showing energy levels and the principal transitions. Typical examples of such diagrams are found in the book published by Bashkin and Stoner (1 975).4 In the usual diagram display such as that by Bashkin and Stoner, the density of transitions is often too high to allow each transition to be drawn separately. Here in our modified diagrams, the transitions are also represented by lines connecting the upper and lower energy levels, but the lower energy levels are extended and repeated for successive configurations as needed. As a consequence, dense packing is avoided and all lines in a multiplet can be accommodated. The diagrams thus allow a quick survey of the principal features of the levels and transitions in the various ions. Earlier works on the atomic spectra of titanium have been described by Corliss and Sugar ( 1979)2 in the introduction to their tables. In addition to titanium, energy 80
Atomic
Data and Nuclear
Data Tables.
Vol. 34, No. 1, Jammty
1 Q86
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
3. R. L. Kelly and L. J. Palumbo, “Atomic and Ionic Emission Lines below 2000 Angstroms: Hydrogen through Krypton,” NRL Report 7599 (1973)
levels of other iron group elements have also been extensively compiled at the NBS Atomic Energy Level Data Center, and an updated revised compilation comprising all elements of the iron group is planned for publication in 1985.” The present tables were largely completed by mid1982; however, some revisions became necessary, especially for several higher Ti spectra for which more recent and improved data became available. These revisions were carried out in the fall of 1984, based mainly on the newly evaluated data from the revised tables of Sugar and Corliss. I7
4. S. Bashkin and J. 0. Stoner, Jr., Atomic Energy Levels and Grotrian Diagrams, Vol. II, Sulfur I-Titanium XXII (North-Holland, Amsterdam, 1975) 5. W. L. Wiese and J. R. Fuhr, J. Phys. Chem. Ref. Data 4, 263 (1975) 6. S. 0. Kastner, M. Swartz, A. K. Bhatia, and J. Lapides, J. Opt. Sot. Am. 68, 1558 (1978) 7. V. A. Boiko, A. Ya. Faenov, and S. A. Pikuz, J. Quant. Spectrosc. Radiat. Transfer 19, 11 (1978) 8. B. C. Fawcett, G. E. Bromage, and R. W. Hayes, Mon. Not. R. Astron. Sot. 186, 113 (1979)
Acknowledgments The present research was organized and inspired by Dr. K. Harada of the Japan Atomic Energy Research Institute, to whom the authors owe special thanks. They gratefully acknowledge the very valuable assistance of Dr. J. Sugar of the National Bureau of Standards in providing them with a copy of his revised energy-level tables in advance of publication. They also acknowledge the useful comments by Dr. G. A. Martin of the National Bureau of Standards on oscillator strength data for several highly stripped Ti ions. The authors owe thanks to Professor Y. Itikawa of the Institute of Space and Astronautical Science and Professor M. Otsuka of Nagoya University for their kind comments.
9. E. Hinnov,
Astrophys. J. 230, L 197 ( 1979)
10. K. D. Lawson, H. J. Peacock, and M. F. Stamp, J. Phys. B 14, 1929 (198 1) 11. J. Sugar, V. Kaufman, 26, 189 (1982)
and D. Cooper, Phys. Scripta
12. V. Kaufman, J. Sugar, and D. Cooper, Phys. Scripta 25,623 (1982) 13. M. F. Stamp and N. J. Peacock, J. Phys. B 15, L703 (1982) 14. G. A. Martin and W. L. Wiese, J. Phys. Chem. Ref. Data 5, 537 (1976) 15. B. C. Fawcett, ATOMIC DATA AND NUCLEAR TABLES 22,473 (1978)
References for Introduction
DATA
1. K. Mori, M. Otsuka, and T. Kato, ATOMIC DATA AND NUCLEAR DATA TABLES 23, 195 (1979)
16. K. T. Cheng, Y.-K. Kim, and J. P. Desclaux, ATOMIC DATA AND NUCLEAR DATA TABLES 24, 111 ( 1979)
2. C. Corliss and J. Sugar, J. Phys. Chem. Ref. Data 8, 1 (1979)
17. J. Sugar and C. Corliss, J. Phys. Chem. Ref. Data Suppl. 2 14 (to be published)
81
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
EXPLANATION TABLES.
OF TABLES
Spectroscopic Data for Ti V-Ti XXII
Ti VII, Ti XXI, etc.
H-Sequence, C-Sequence, etc.
IP x C, P, T
Ti6+ 9 Tizof, etc. According to spectroscopic convention, Ti I indicates the first spectrum, i.e., the spectrum of the neutral atom; Ti II denotes the second spectrum, belonging to the singly ionized ion; and so on. Indicates that the respective Ti ion has the same electronic configurations as neutral hydrogen, neutral carbon, etc. Ionization potential of the tabulated ions in cm-’ (eV) Wavelength of listed spectral lines in Angstrom units (lo-* cm) Superscripts to the right of the wavelength values having the following meanings: C
P T Configurations
Energy Levels
Int
wavelength calculated from energy-level data using the Ritz combination principle wavelength predicted by extrapolation along an isoelectronic sequence wavelength obtained from a theoretical. calculation
Customary spectroscopic designation for lower (first) and upper levels of spectral lines; electronic configuration followed by the term in U-coupling notation. The superscript o on the term indicates odd parity. Terms enclosed in parentheses refer to the parent state. Energy levels (in cm-i) for lower (first) and upper levels of spectral lines. An “X” after an entry means that a correction constant of unknown magnitude must be added (or subtracted) since no observational connection to the ground state has been established. Approximate intensity of the spectral line, generally estimated from the blackness (or density) of the line on photographic plates. The intensity value is cited from the paper identified with a superscript A on the reference number in the last column.
82
Atomic
Data and Nwlew
Data Tables.
Vol. 34, No. 1, January
1986
K. MORI et al.
EXPLANATION
Grotrian Diagrams for Ti V-Ti XXII
OF TABLES
continued
f/Type
Absorption oscillator strength for electric dipole transitions. 3.63-l means 3.63 X 10-l. The listed value is cited from the paper whose reference number is identified with a superscript *. Forbidden transitions are indicated by Ml (magnetic dipole) and E2 (electric quadrupole) in place of a number.
A
Radiative transition probability + 11 means 1.26 X 10”.
in s-‘. 1.26
Accuracy estimate for the oscillator strength and transition probability data, taken from the NBS reference tables on atomic transition probabilities.5 The accuracy is indicated by the following letter symbols, which are identical with the notation used in the NBS reference book: A B C D E
for for for for for
uncertainties uncertainties uncertainties uncertainties uncertainties
within within within within greater
3% 10% 25% 50% than 50%
The word accurucy is used here to mean “extent of possible error” or “possible deviation from the true value.” For a full discussion of the evaluation of data accuracies, the appropriate NBS publications (see, e.g., Ref. 5) should be consulted. References
Reference sources for the data. The numbers are keyed to the bibliographic listing following the Tables. Superscripts on the numbers have the following meanings: 0
*
A
83
reference from which the adopted wavelength value is taken reference containing the adopted oscillator strength and/or the transition probability paper from which the intensity value is cited
Atomic
Data and N&ear
Data Tables. Vol. 34. No. I, Jammy
1666
K. MORI et al.
EXPLANATION GROTRIAN
DIAGRAMS.
Grotrian Diagrams for Ti V-Ti XXII
OF GROTRIAN
DIAGRAMS
Ti V-Ti XXII
Notations on the Diagrams generally have the same meanings as for the Tables (see Explanation of Tables). Abscissa Vertical lines
Horizontal
Limit
lines
Energy of the levels in cm-‘. The levels are indicated as vertical lines. Energy levels. The electronic configuration (with the parentage in parentheses) and the level energy in cm-’ are given to the right of the line, and at the top is the J value. Energy levels with the same LS label for the upper term are grouped together. The term designation is given at the right of the diagram; the ordering is by increasing multiplicity and orbital angular momentum. For the lower level, the term is adjacent to the configuration. Transitions between levels. The number below each line gives the transition wavelength in Angstroms (IO-* cm). Heavier lines indicate resonance transitions with absorption oscillator strengthfa 0.0 1. The choice of f> 0.01 is rather arbitrary, but provides a good indication of the stronger spectral lines. The ionization limit in cm-’ (eV).
84
Atomic
Data and N&ear
Data T&its.
Vol. 34, No. 1, January
1966
K. MORI et al.
BRIEF
COMMENTS
Grotrian Diagrams for Ti V-Ti XXII
ON EACH TITANIUM
ION
Ti V (Ar Sequence)
The 3s23p6-3p53dtransitions were identified by Gabriel, Fawcett, and Jordan (1966),‘* Svensson (197 l),‘=’ and Svensson ( 1976).‘29 For the present compilation, the data of Svensson ( 1976)129 are adopted. The 3s23p6-3p54s, 5s, 6s transitions were also taken from Svensson (1976).129 The 3s23p63s3p64p,5p,. . . ) 1 lp ‘PO, 3P0 transitions were observed by Kastner, Crooker, Behring, and Cohen ( 1977)90 as absorption lines from the ground state. The transitions between higher levels were analyzed in detail by Svensson ( 1976);129 several of those are quoted in the present table and diagram.
Ti VI (Cl Sequence)
The 3s23ps‘PO-3s3p6 ‘S transitions were first observed by Weissberg and Kruger (1936). 13’ They were remeasured by Svensson (197 l),‘=’ whose data are adopted in this table. The 3s23p5-3s23p43dtransitions were observed by Fawcett and Gabriel (1 966),52 Svensson (197 l),‘=’ and Fawcett, Cowan, and Hayes (1 972).59 For the present compilation, the data from the compilation by Fawcett (197 1)57are adopted. The 3s23ps-3s23p44s,4d, 5s, 5d transitions are from Svensson and Ekberg ( 1468)125 and Fawcett, Peacock, and Cowan ( 1968).55 The observed intercombination lines 3s23p5‘PO-3s23p43d 4P, 4s 4P, 4d 4F, 5s 4P, and 5d 4F connect the doublet and quartet systems.
Ti VIZ (S Sequence)
The 3s23p4-3s3p5transitions were observed by Kruger and Pattin (1937)?* Fawcett and Peacock ( 1967),54 and Svensson (197 l).‘=’ The tabulated wavelengths are from Svensson (1971). “’ The 3s23p4-3s23p33dtransitions were first identified by Fawcett and Gabriel (1 966)52 and Gabriel, Fawcett, and Jordan (1966),‘* and new measurements were done by Svensson and Ekberg ( 1968),125 which are adopted here. The 3s23p4-3s23p34stransitions were originally identified by Edlen ( 1937),38 then remeasured by Svensson and Ekberg ( 1968);125 the latter results are quoted in the present diagram. The 3s23p4-3s23p34dtransitions were analyzed by Svensson and Ekberg ( 1968).125 The intersystem transitions of 3s23p4-3s23p33d(1D-3Po, 1D-3Do, 3P‘PO, ‘P-‘DO), 3s23p4-3s23p34s (1D-3Po, 3P-1Do), and 3s23p4‘D-3s23p34d 3Do were observed by Svensson and Ekberg ( 1968).125 Thus the position of 3s23p4 ‘D2 could be established, and the locations of the 3s23p4‘So and ‘Pp levels were determined through singlet transitions.
Ti VZZZ(P Sequence)
The 3s23p3-3s3p4transitions were observed by Fawcett and Peacock ( 1967),54 Fawcett ( 1970),56 and Smitt, Svensson, and Outred ( 1976).“’ The present wavelengths are from Smitt et al. (1976).“’ The 3p3-3$3d, 3d24s transitions were extensively observed by Ekberg and Svensson (1 970).46 No intercombination lines have been observed; thus all doublet levels have a systematic uncertainty X, 85
Atomic
Data and Nuclear
Data Tables.
Vol. 34. No. 1, January
1666
K. MORI et al.
BRIEF
COMMENTS
Grotrian Diagrams for Ti V-Ti XXII
ON EACH TITANIUM
ION continued
Ti IX (Si Sequence) The 3s23y2_3s3p3 transitions were first identified by Fawcett and Peacock ( 1967)% and Fawcett ( 1970).56 For the present diagram the more accurate data of Smitt, Svensson, and Outred (1976)“’ have been chosen. The 3s23$3s23p3d transitions were analyzed by Fawcett, Gabriel, and Saunders ( 1967),53 Fawcett (1971),” and Ekberg and Svensson ( 1970).46 The tabulated wavelengths are from Ekberg and Svensson (1 970).46 The 3s23pz-3s23p4s transitions are also from Ekberg and Svensson (1970),& and the 3s23p2-3s23p4d and 3p3d-3p4f transitions were observed by Fawcett, Cowan, and Hayes ( 1972).s9 The intercombination lines 3s23pz ‘D2-3s3p3 3Sp, ‘& and 3s23pz 3P23s3p3 ‘D!j were reported by Smitt et al. (1976).“’ Ti X (Al Sequence) The 3s23p-3s3$ transitions were frrst identified by Fawcett and Peacock ( 1967)54 and later measured by Fawcett ( 1970).s6 The compiled values are from the recent observation by Smitt, Svensson, and Outred ( 1976).“’ Fawcett (1 970)56 also reported measurements of the 3s3$ 4P-3d 4So and the 3s23p 2Po-3s23d ‘0 transitions. The 3~39 4P-3s3p3d 4D”, 3s3p4s 4Po transitions were observed by Ekberg and Svensson (1970).& However, the positions of the 3s3$ 4Plevels could not be determined. We therefore adopted approximate values for these levels, which are predicted from extrapolations along the isoelectronic sequence by Ekberg and Svensson (1 970).46 The 3p-ns, 3d-np, and 3d-nf transitions were also measured by Ekberg and Svensson (1 970).46 The transition probabilities are from the compilation of Wiese and Fuhr (1 975).‘34 Ti Xl (Mg Sequence) The spectrum of Ti XI was first observed by Edltn ( 1936).37 The resonance lines 3s2-3snp (n = 3, . . . ,7) were later analyzed by Ekberg ( 197 1):’ Fawcett (1 970)56 identified the 3s3p ‘Py-3$ ‘So, ‘4 lines. The 3s3p-3$, 3s3d, 3s4s, 3p4p, 3s4d, 3s5s, 3s5d, 3s6f transitions were observed by Ekberg (197 l).47 The 3$-3p3d and 3s3d-3p3d, 3s4f transitions were measured by Svensson and Ekberg ( 1969)‘26 and by Fawcett ( 1970),56 and the 3p3d-3p4f transitions are from Fawcett ( 1976).63 The 3$-3&s, 3sSJ; and 3s3d-3s5f transitions are also from Ekberg’s work (197 l).47 Kastner, Swartz, Bhatia, and Lapides ( 1978)9’ recently identified the 3s3d ‘D2-3p4d ‘Fg, 3$-3p4d transitions. The singlet and triplet transitions have been connected by the observation of the 3s’ ‘&-3s3p ‘PP intercombination line by Finkenthal, Bell, and Moos ( 1982).76 An improved wavelength value of 568.98 * 0.4 A, measured by Peacock and Stamp in 1983, has been used by Sugar and Corliss ( 1985)‘24 to determine the energy-level value of 3s3p 3P?. The transition probabilities are from the compilation by Wiese and Fuhr ( 1975).134 Ti XII (Na Sequence) The spectrum of Ti XII was first observed by EdlCn ( 1936).35 Ekberg and Svensson (1 975)48 and Cohen and Behring (1 976)22 extended the analysis of the series of transitions 3s-np, 3p-ns, 3p-nd, and 3d-nf up to 1 lp, 7s, 1Od, 86
Atomic
Data and Nucbar
data Tables.
Vol. 34, NO. 1, Jawmy
1986
K. MORI et al.
BRIEF
COMMENTS
Grotrian Diagrams for Ti V-Ti XXII
ON EACH TITANIUM
ION continued
and 81: The wavelengths are mostly taken from Ekberg and Svensson ( 1975).48 The autoionization resonance lines 3s ‘S-2p53s2 2P0 are from Feldman and Cohen ( 1967).” The transition probabilities are quoted from the compilation by Wiese and Fuhr ( 1975).134 Ti XIII
(Ne Sequence)
The resonance transitions 2s22p6-2s22$3sand 2s22$3d were identified by Edlin and Tyren ( 1936).36 Other resonance transitions 2s22p6-2s22p54s, . . . ) 4d,. . . , 5d, and 2s2p63pwere observed by Fawcett (1965)” and by Feldman and Cohen (1967).” The listed wavelengths are taken from the latter work. The 3p4d transitions were first observed by Kastner, Behring, and Cohen (1975).** These and the 3s-4p, 3p-4s, 3p-4s, 3d-4f; 3d-5ftransitions have recently been extensively measured by Fawcett, Bromage, and Hayes (1979).65 The transition probabilities are from the compilation by Wiese and Fuhr ( 1975).‘34 Ti XIV (F Sequence)
The 2s22p5-2s22p43s, 3d transitions were observed by Fawcett ( 1965),5’ Cohen, Feldman, and Kastner ( 1968),20 and Feldman, Doschek, Cowan, and Cohen ( 1973).72 The wavelengths of these transitions are taken from Feldman et al. ( 1973).72 The 2s2p6 2S1,2-2s2p53s2Py,2,3,2 transitions were also derived from Feldman et al. ( 1973).72 The 2s22p52P”-2s2p6 2S resonance transitions at 129.440 and 12 1.986 A were observed by Fawcett ( 197 1),57 calculated by Edlen (198 1)45 from a semiempirical isoelectronic sequence analysis, and measured by Kaufman, Sugar, and Cooper (1982).94 The listed data were taken from Kaufman et al. ( 1982).95 The 2P9j2-2P$ splitting within the 2s22psground-state configuration was observed by Lawson, Peacock, and Stamp ( 198 1)“I on the DITE tokamak. All transition probabilities are from the multiconfiguration Dirac-Fock calculations by Cheng, Kim, and Desclaux (1979).‘* Ti XV (0 Sequence)
The 2s22p4-2s2p5transitions were observed by Fawcett (197 1),58 Doschek, Feldman, Cowan, and Cohen (1 974),29 Kasyanov, Kononov, Korobkin, Koshelev, Ryabtsev, Serov, and Skokan ( 1974)T2 and Kaufman, Sugar, and Cooper ( 1982).94 The tabulated wavelengths are adopted from Kaufman et al. ( 1982).94 The 2s2p5 ‘PP-2p6 ‘SO transition was observed by Kaufman et al. ( 1982),94 Kasyanov et al. ( 1974),92 Fawcett, Galanti, and Peacock ( 1974),60 and Doschek, Feldman, Davis, and Cowan ( 1975).3’ The data by Kaufman et al. ( 1982)94 are used here. The 2s22p4-2s22p33stransitions are from Goldsmith, Feldman, and Cohen (197 1)y9 and Doschek, Feldman, and Cohen (1973)?* The wavelengths are taken from the latter. The 2s22p4-2s22p33dtransitions are from Goldsmith, Feldman, and Cohen (1971),79 Fawcett and Hayes ( 1975),62 and Bromage and Fawcett ( 1977).12 Most of the wavelengths are adopted from Fawcett and Hayes (1975).62 87
Atomic
Data and Nudear
Data Tables.
Vol. 34. No. 1. January
1986
K. MORI et al.
BRIEF COMMENTS
Grotrian Diagrams for Ti V-Ti XXII
ON EACH TITANIUM
ION continued
The following intercombination lines of Ti XV have been recently observed by Kaufman et al. ( 1982):94 2s22p4‘P2,~-2s2p5‘Pp, and 2s22p4‘D22s2p5‘p;.
The forbidden transitions within the 2s22p4ground configurations were reported by Kastner, Bhatia, and Cohen ( 1977).89 Among them, the 3P2-3Pl transition at 2545.08 A was observed in the DITE tokamak by Lawson, Peacock, and Stamp (198 l).“’ According to Sugar and Corliss ( 1985),‘24 Peacock and Stamp in 1983 measured the transition 3P2-‘D2 at 919.73 A, which is utilized to determine the position of the ‘4 level. Most transition probabilities are from the multiconfiguration DiracFock calculations by Cheng, Kim, and Desclaux (1979).‘” Ti XVI (N Sequence)
Lines of the transition arrays 2s22p3-2s2p4and 2s2p4-2$ were measured by Fawcett ( 197 1)58and Kasyanov, Kononov, Korobkin, Koshelev, Ryabtsev, Serov, and Skokan (1 974),92 and were most recently observed by Kaufman, Sugar, and Cooper ( 1982),93 from whose work the tabulated data are taken. The position of the doublet system relative to the ground state is also based on the intersystem line observations by Kaufman et al. (1 982).93 The 2s22p3-2s22p23dtransitions are taken from Fawcett and Hayes (1975).62 The transition probability data are from the multiconfiguration DiracFock calculations of Cheng, Kim, and Desclaux (1979).” Ti XVII (C Sequence)
The 2~~28-2~2~~ transitions were classified by Fawcett, Galanti, and Peacock (1 974)60 and by Kasyanov, Kononov, Korobkin, Koshelev, Ryabtsev, Serov, and Skokan (1 974).92 Additional measurements and some revised classifications were carried out by Fawcett and Hayes ( 1975)62 and by Fawcett (1975):’ and recently, accurate measurements were reported by Sugar, Kaufman, and Cooper ( 1982).‘22 The latter are used in these tables. The 2s2p32p4transitions were partially observed by Fawcett ( 1975),6’ and more recently by Sugar et al. (1982). I22 These data, complemented by some theoretical ones from the work of Cheng, Kim, and Desclaux (1979),” are tabulated here. Lines of the 2s22p?--2~~2~3sand 2s2p3-2s2p23dtransition arrays are from the work of Goldsmith, Feldman, Crooker, and Cohen (1 972).8’ The transitions from 2s22p3dterms are taken from observations by Bromage and Fawcett (1 977).13 Denne and Hinnov ( 1984)26 observed a faint line in a tokamak plasma that they identified as the 2s22pr 3P2-2s2p3‘S2 intercombination line. Goldsmith, Feldman, Crooker, and Cohen ( 1972)8’ identified two quintet transitions, but they are not connected to the known triplet levels. The forbidden transitions 3Po-3P’ and 3P,-3P2 within the ground-state configuration 2s22p2 were observed in the DITE tokamak by Lawson et al. (1981).“’ Most transition probabilities are taken from the multiconfiguration Dirac-Fock calculation by Cheng, Kim, and Desclaux (1979).” Ti XVIII
(B Sequence)
The transition array 2s22p-2~2~ was analyzed by Kasyanov, Kononov, Korobkin, Koshelev, Ryabtsev, Serov, and Skokan ( 1974),92 Fawcett and 88
Atomic
Data and Nuclear
Data Tables.
Vol. 34. NO. 1, JMuery
lS@
K. MORI et al.
BRIEF
COMMENTS
Grotrian Diagrams for Ti V-Ti XXII
ON EACH TITANIUM
ION continued
Hayes ( 1975),62 and Sugar, Kaufman, and Cooper ( 1982).‘23 The tabulated data are taken from the last paper. The 2~28-2~~ transition data are partially from observations of Sugar et al. (1982),123 and observations of Fawcett, Ridgeley, and Hatter (1 980),66 and are also partially derived from theoretical wavelengths by Chen, Kim, and Desclaux (1979).18 The 2s22p-2s2p3p and 2s2$-2s2p3d transitions are taken from Fawcett and Hayes (1975).‘j* The *PO ground-term splitting was obtained from a magnetic dipole line observed by Suckewer, Fonck, and Hinnov (1980).‘*’ The 2s22p 2P1,22~2~~4P1,2and 2s22p2P3/2 -2s2p2 4P3,2intercombination lines have been tentatively identified by Denne and Hinnov ( 1984)26 and are used to determine the position of the quartet system. The transition probabilities for transitions within the n = 2 shell are taken from the multiconfiguration Dirac-Fock calculations by Cheng, Kim, and Desclaux ( 1979).18 Ti XIX (Be Sequence)
The resonance transition 2s’ ‘So-2s2p ‘Py was initially identified by Goldsmith, Oren, Crooker, and Cohen ( 1973)82 and was recently observed in tokamak86*“8 and in laser plasmas. lo1 The 2s2p-2p2 transitions in singlet and triplet systems are quoted from Lawson, Peacock, and Stamp (198 l),“’ whose data were derived from the semiempirical analysis by EdlCn (198 l).45 The intersystem resonance line, 2s’ ‘SO-2s2p 3PY, has been observed by Denne and Hinnov ( 1984)*‘j and has been utilized to determine the intersystem interval. The transitions between n = 2 and n = 3 were observed by Fawcett and Hayes ( 1975)62 and Boiko, Faenov, and Pikuz (1978).” The compiled data are adopted from Boiko et al. (1978).” The magnetic dipole transition 2s2p(3PY-3P4)was observed in the DITE tokamak by Lawson et al. (198 l).“’ The transition probabilities for transitions within the n = 2 shell are from the multiconfiguration Dirac-Fock calculations by Cheng, Rim, and Desclaux ( 1979).18 Ti XX (Li Sequence)
The ls22s *SI,2-ls22p 2P1/2,3/2 resonance transitions were first found in solar flare observations by Sandlin, Brueckner, Scherrer, and Tousey ( 1976),‘15 and were recently observed by Hinnov ( 1979)86 in the PLT tokamak at 309.25 * 0.05 and 259.30 ~fi 0.1 A, and by Stamp and Peacock ( 1982),‘18 also in a tokamak plasma, at 309.072 + 0.010 and 259.272 f 0.004 A. The 2s-3p, 2p-3s, and 2p-3d transitions were first reported by Goldsmith, Feldman, Oren, and Cohen ( 1972).80 Boiko, Faenov, and Pikuz (1978)” made detailed measurements on 2s-np and 2p-nd transitions up to n = 9. The transitions to doubly excited levels are from Aglitskii, Boiko, Zakharov, Pikuz, and Faenov (1974),’ Feldman, Doschek, Nagel, Cowan, and Whitelock (1 974),73 and Boiko, Faenov, and Pikuz (1978).” The transition probabilities are mainly from Biemont (1977)’ and the critical tables of Martin and Wiese ( 1976).‘06 Ti XXI (He Sequence)
The theoretical energy-level values for the singlet and triplet systems calculated by Ermolaev and Jones ( 1974)50 and Safronova ( 1981)‘14 (for n 89
Atomic
Data and Nudear
Data Tat&s.
Vol. 34. NO. I. January
1966
90
K. MORI et aI.
BRIEF
COMMENTS
Grotrian Diagrams for Ti V-Ti XXII
ON EACH TITANIUM
ION continued
= 2 levels) are tabulated in this compilation. The ls*- 1~2~ transitions have been recently observed by Boiko, Faenov, and Pikuz ( 1978).” The Is*- ls3p transition is from Cohen, Feldman, and Underwood (1968).*’ The 1~2~1~2~ transitions are calculated by the Ritz combination principle. The transition probabilities are taken from Lin, Johnson, and Dalgarno (1977)“’ and the critical tables of Wiese and Fuhr ( 1975).lM Ti XXII
(H Sequence)
The 1s 2S112-2p *P52,3,2 transitions were measured by Lie and Elton ( 197 l).‘03 We give the theoretical values calculated by Erickson ( 1977),49 and Mohr ( 1983)‘09 for the energy levels of this hydrogen-like ion, which are much more accurate than any observed values. The oscillator strengths, orfvalues, for lines of hydrogen-like spectra are the same as for neutral hydrogen (thus, f= 0.416 for 1s *S-2p *P“), and the transition probabilities are Z4 times those of hydrogen. (2 is the nuclear charge; in this case Z = 22.)
Alo”&
Oata md Nudea
Oata T&k%
Vol. 34, NO. 1. Jammy
1986
TABLES. Spectroscopic Data for Ti V-Ti XXII Seepage 82 for Explanation of Tables Ti Conli~ur~iions
1 (A) 252.956
V (Ar-Sequence)
3.23P’
Iso
Energy
3~’
(*P*)
34
‘P;
1P=800900cm~~ levels
0
91
(cm-‘)
395321
(99.300eV)
Int
f/Type
A (I-‘)
ACC
900
3.63-l
1.26+11
C
ReferellCeS
24.
5'7.
‘78.
24.
51.
95’.
57'.
95'.
121.
1 2a”
363.145
3r*3P’
Iso
3~'
(*P*)
36
‘P;
0
275312
323.365
3023P”
‘so
3~’
(*P*)
34
“D;
0
308252
3P5
t2P4)
4s
‘P@1
0
443153
225.341
65
1 .a-3
4.0+7
E
24.
95’.
400
3.3-l
1.4+10
E
95A.
12a”
250
a. l-2
4.1+9
E
95A.
12a”
226.909
3rP3p‘
‘so
3P5
(‘PV
4s
‘Pi
0
436650
162.964
3rZ3p’
‘so
3P5
(‘P*)
58
‘P;
0
613556
20
95’.
a 5. 12 a0
164.446
3a’3p”
‘so
3P’
(‘P’)
5s
SP;
0
608101
35
a 5A.
95.
146.891
3s’3p”
‘so
3~'
(‘P’)
6s
‘P;
0
660746
95”.
128O
145.79
3rZ3p6
‘so
3~'
(‘P’)
6s
‘P;
0
685940
8 5A.
12 a0
‘P;
0
691797
6
90.
0
687960
6
SO”.
144.551
3*3p64p
145.354
3rt3pa
‘so
120.624
3tZ3p’
‘so
313P”SP
‘P;
0
627650
121.138
3r23p”
‘so
3%3P‘SP
SP;
0
625500
112.495
3.‘3P’
Iso
383~~6~
‘P;
0
866930
10
112.696
3rP3p”
‘so
3=3~‘6~
‘P;
0
685110
0
106,443
3S23P’
‘so
3‘3P’lP
‘P;
0
108.611
31*3P”
IS@
313PblP
‘P;
106.154
3.‘3P’
‘so
3‘3P”rJP
106.308
3rZ3p”
‘so
104~111
3“3P’
104.732
12
9sA.
124
so4
80”.
124
90”.
I24
SO=.
124
922140
904.
124
0
920120
SO”.
124
‘Pi
0
942030
90”.
124
3%3P66P
‘P;
0
940660
90".
124
‘so
3r3P68P
‘Pi
0
955010
0.8
90”.
124
3.23P”
‘so
313P6SP
SP;
0
954620
0.5
SO'=.
124
103.733
3.‘3P6
‘so
3*3P’lOP
‘P;
0
964010
0.8
SO”.
124
103.154
3S’3P”
‘so
3.3P”lOP
‘P;
0
963820
0.8
80”.
124
103.059
3**3P”
‘so
3.3P‘llP
‘P;
0
870320
SO-.
124
557.115
3d
‘Do t
3,3p’3d
‘D,
0
309433
488829
556.562
1
309252
466929
0
1 2aA
549~083
*
309433
481559
6
1 2gA
309252
491559
1 2aa
309433
492567
1 2aA
307429
491558
548.533
I
546.062
*
643.103
3
* *
00
1
12aA
12gA
129’
12a”
129’
129
92
TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti Configurations
1 (A) 504.665
V (Ar-Sequence)
3d
'D,
(cm-‘)
*“t
f/TYPO
A (*-I)
Reference.
488929 431.559
129
493.183
289050
491559
I 2sA
491.358
289050
492567
1 2sA
287277
492567
129”
275372
488929
277311
491559
274440
488929
277311
492567
5
1 2sA
275312
491559
3
1 2sA
311434
506225
8
129*
*
487.115
4
36
‘P’ 1
3
3s3pe3d
‘D,
466.149
z
466.224 464.562
2
3
462.565
513.314
3d
'Fe a
501.631
3d
‘D* *
3r3pb3d
‘D?
306875
506225
507.683
3d
‘Do L
3s3p63d
‘D2
309252
506225
301429
506225
503.031
464.143
36
‘F’ 2
3s3P’3d
‘D2
290779
506225
901.692
3d
‘PO I
3s3Ps3d
‘DI
395321
506225
934.530
3d
‘Pa 1
4P
'P,
395321
496891
838.315
3d
‘PO I
4P
Iso
395321
514609
534.297
3d
‘F” 2
4P
'rJ*
306875
494036
12
ACC
290779
468.257
3s3pb3d
ICVAlS
(9’9.300eV)
290779
438.050
‘F’ 2
Energy
IP=800900cm-’
12sA
3
1 2gA 129* 129’
129* 6
12sA 12sA
00
12 gA
1 2sA
0
129” 1 2sA
0
129"
AtomicDataand
Nuclear
DataTabIas.Vol.34.No.
1,January
1986
93
TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti ConfIgurations
1 (A)
524.113
3s*3ps
349.514 346.128 342.595
341.109
3S3P'
*s,,*
Z/2 3r23p5
5829 0
L/X 3P’
1nt
f/Type
A (s-l)
Act
References
196628
900
51.
35'.
121°
196628
000
51.
95A.
127O
5829
288412
6
5P.
95A
1/Z
X/Z
5829
231890
6
5P.
95a
S/Z
I/*
0
288412
1
SP.
95A
Z/2
3/Z
0
291890
35
51°.
95&
29assl
20
SP.
95'
Z/2
3,’
0
29assl
20
51°.
95A
330.703
Z/2
S/t
0
302386
60
SP.
95A
373814
200
52.
57O.
95"
0
379874
250
52.
51°.
95A
3s*3p5
3~’
3~’
*p;,*
263.246
(*P)
36
(cm-')
*P 1/Z
*p;,*
(*P)
levels
(119.53eV)
334.451
267.343
3**3p5
*p;,*
IP=964100cme1
(Cl-Sequence) Energy
*p;,*
508.575
353.877
VI
('0)
3d
3d
3/*
5829
I/X *P S/Z
5829
391583
250
52.
51'.
95"
1/Z
1/*
5829
393644
250
52.
51°.
95A
255.315
3,’
S/Z
0
391583
300
52.
51’.
18.
254.06
*/*
I/X
0
393644
200
52.
51'.
95'
251.071
3rZ3p5
*p;,*
'S 1/*
5829
257.855
259.232
3 S23PS
*D S/2
3p'
*p;,*
3~’
(ID)
(ID)
3d
3d
*D*,*
127
404123
100
52.
51'.
18.
95".
121
250.482
S/Z
S/X
0
399231
000
52.
51’.
18.
9SA.
127
241.450
Z/2
X/2
0
404123
250
52.
51°.
95A
0
331221
20
95A.
12 5O
95"
301.913
3S23P5
*pi,*
286.355
3SZ3PS
*p;,*
3~’
('D)
3d
*F 5/*
3~’
C'S)
3d
*D */*
5829
95”.
352625
60
51°.
283.586
X/2
Z/2
0
352625
20
51°.
9gA
282.215
J/2
S/2
0
354340
5P.
95A
0
301411
95".
1 2s"
331.767
3S13P5
*p;,*
201.311
3523P5
*p;,*
3~’
f*P)
3d
‘P I/Z
3P’
(*P)
4s
*P Z/2
199.759
L/2
l/2
196.977
Z/2
3/*
191.460
X/2
I/?
194~300
90
3s”.
95”
0
502511
400
3s”.
95&
0
506432
200
3s”.
954
200
39.
95".
125O
518797
250
39.
95A.
125O
192~110
S/2
J/X
0
518914
20
39.
95”.
125’
548995
35
39O.
95&
0
548335
so
3s”.
s5A
125O
3P’
(‘3
4s
J/2
5829
1/Z
497389
3
95”.
*/*
5/*
0
492126
6
95A.
125O
201.865
*/*
*/*
0
495380
3s”.
95A
3SZ3PS
*p;,*
*s 1/Z
5829
203.200
153.255
3s*3ps
*D X/Z
95A
200
518314
*p;,*
4s
3s”,
506432
0
182.151
('D)
502511
5829
512
203.434
3~’
5829
X/2
3sZ3p"
*p;,*
6
192.1s4
184.106
3S23P5
5829
*p;,*
151.897
154.168
3P'
3~’
fSP)
('P)
4s
4d
3/* 3SP3PS
*p;,*
'P 1/Z
'P S/I
5829
5829 0
S/1 3~'
fsP)
4d
*II X/2
5829
658339
3
3s”.
35A
658339
1
95".
125'
6
55O.
35"
55O.
95A
5P.
95A
55O.
95A
651960
153.550
J/Z
5/*
0
651255
153.384
S/Z
S/1
0
651960
0
656437
152.338
3s*3ps
*p;,*
3~’
('PI
4d
*F 5/*
125
35 3
10
94
TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti A IA)
149.560
VI
ConfiPurations
3.'3$.5
‘Pi,,
150*315
(Cl-Sequence) Enoray
3~'
(ID)
Id
‘S I/I
3~’
(‘D)
4d
levela
0
IP=964100cm-’ (cm-‘)
668630
1nt
f/Type
IO
(119.53eV) A (I-‘)
ACC
References
s5O.
95A
95’
*P I/*
5829
671096
3
5s”.
ISO*
IA
5829
611549
3
9 5A.
12 5O
149.010
3,)
95’
149.392
3~’
675207
10
55O.
95’
674297
20
55°.
95A
148.104
3/t
0
675207
5s”.
95’
9gA.
125O
5s".
9sA
9 5A.
12 so
55O.
9s”
55O.
95”
5P.
95A
5P.
9?
5s".
9sA
f’s)
4d
154.161
5629
3SZ3P5
‘P;,,
3~’
(‘P)
4d
3/t 38’3P5
*p;,*
‘Q 3/I
5829
S/l 3P’
?P)
5s
*P 1/2
704263
653166
5829
3/3
0
712034
139.911
3/I
I/I
0
114742
3p’
‘P;,*
(‘D)
5s
‘D S/3
5829
3/P
S/3
0
131455
136.67
3,)
3/2
0
731453
0
708652
31’3P5
lP;,*
3P’
?P)
5%
‘P 3/l
130.113
3.f3P5
1P;,a
3~’
f3P)
Sd
‘D 3/*
20 3
131453
136.714
141.113
10
114142
s/2
3r’3pS
3
654503 0
140.443
131.813
3
104270 0
s/1
152.960
141.061
‘D 3/*
5829
5P.
0
141.988
‘D 3/I
20
s/3
3p’
4d
671096
146.303
143.176
(‘D)
0
10
5 5O. 9 5d 39O.
9sA
5s".
9c
95A
774306
3
55O.
129.249
3/Z
S/3
0
773702
6
55O.
9sA
129.148
3/P
3/2
0
774306
5s".
95’
126.566
31’3P’
*p;,z
125.669
126.330
(‘D)
5d
3SZ3PS
zp;,*
3~’
(‘D)
54
‘P;,r
‘D S/3 S/I
3/I
3r’3p5
*P 3/t
5829
S/3
3/3
125.456
128,450
3~’
5829
6
3~’
(“P)
5d
‘Q S/1
795615
1
95’.
126’
0
795615
6
9 P.
12 5O
0
797092
0
779513
5829
797406
3 10
1
95’.
125O
9fsA.
125'
55O.
9sA
TABLES. Spectroscopic Data for Ti V-Ti XXII Seepage 82 for Explanation of Tables Ti A (A)
VII
Configurations
(S-Sequence) Energy
521.561
3S3P'
“Pi
levels
95
1P=1136000cm~’ (cm-‘)
lnt
f/Type
(140.8eV) A (1-l)
ACC
ReferellCeS
4534
196266
250
54.
57.
95’.
127’
515.008
5888
200059
125
54.
57.
95'.
l27O
511.442
4534
509.511 505.899
125
54.
57.
95’.
127’
196266
550
54.
57.
95A.
127’
202202
100
54.
57.
95’.
127O
0
200059
125
54.
51.
95”.
127’
4534
499.853
509.127
3r23p'
's4
3S3P5
440.361
3s23p'
'D2
313P
270.148
3*13p'
4P.
3~'
269.759
L
266.502
I
268.106
200059 0
3r*3p4
3P.
(*Do)
s
3d
'P' I
54801
251214
60
95'.
'P;
24130
251214
125
34.
54.
5888
375235
10
51.
95'.
4534
375235
90
57.
95*.
125’
57.
95A.
125’
'So 1
0
3~'
(*Do)
36
375235
200
127'
'PO L
5888
318812
57.
95A.
I
4534
377614
200
52.
57.
4534
378872
60
57.
95A.
35
268.035
I
267.136
I
265.059
L
57,
95'.
264.823
2
0
377614
250
52.
57.
263.944
*
0
378872
35
57.
95'.
255.076
3r'3p'
SP,
0
3~~
254.687
0
254.022
2
253.811
I
252.162
2
250.913
2
(*P')
36
"D;
4534
381608
90
57.
95a.
125'
125' 95*.
125'
125’ 125O 95A.
125'
125'
4534
396572
250
57.
78.
95A.
125’
5888
398527
200
57.
78.
95A.
125’
78.
0
393667
800
57,
77.
398527
200
57.
95*.
125'
0
396572
200
57.
95".
125'
0
398527
3
51.
95'.
125'
4534 2
95'.
305.730
3r23p'
's,
3~'
('Do)
34
'PO I
54801
381894
1
57.
95A.
125’
332.081
3~~3~'
'DI
3~~
(*De)
36
'0;
24130
325261
6
57.
95'.
125'
296.056
3~~3~'
'D2
~P'('D-)
3d
'Fe 3
24130
361904
57.
95".
125'
279.516
3s*3p4
ID*
3p'('D*)
3d
'PO I
24130
381894
200
57.
95*.
125O
260.704
3r*3p4
'D*
~P'(~P*)
3d
'D;
24130
407703
250
52.
57.
252.571
3S23P'
'so
3~'
(*PO)
3d
'P' 1
54801
450729
57.
95”.
252.275
3~~3~'
ID1
3~'
('PO)
3d
'F;
24130
420522
57.
78.
282.898
3r23p'
ID*
3~'
(*De)
3d
'P;
24130
377614
24130
378872
24130
396572
281.898
I
268.493
3s'3~'
'DI
265.951
3aZ3p'
SP4
264.997
I
261.851
*
246.037
38'3P'
JP,
179.107
3.*3P'
SPo
178.673
~P'('P*)
36
'D' I
3~'
36
'P;
(*P')
3d
‘D;
60
800
I 200
I
95A.
125'
95A.
125'
95’.
125’
5888
381894
60
95*.
125’
4534
381894
35
95".
125'
381894
60
95A.
125'
95'.
125'
0
3~4
1
(*Do)
35
3
l27O
95*.
125’
125’
95A.
4534
407703
5888
564217
10
38.
95'.
125’
4534
564217
20
38.
95'.
125'
125'
125'
TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti
VII
Configurations
A (A)
117.238
!sncrty
*
172.353
(S-Sequence) level*
0
I 3~'
(*Do)
4s
'D;
IP=11361100cm~1 (cm-?
564211
1nt
f/Type
60
(140.8eV) A (s-1)
ACC
Rcferenccr
38.
95A.
125O
5888
586092
6
36.
95’.
125’
111~952
4534
586092
6
38.
95”.
125O
Ill.888
4534
586308
20
38.
95’.
125O
20
38.
95’.
125’
38.
95’.
125’
110~559
0
586308
110~358
0
586998
3pa
166.087
?P4)
4%
SP;
125
5888
601982
38.
95'.
125'
165.836
4534
601538
38.
95”.
125’
165.116
4534
601982
38.
95’.
125’
165.403
4534
609116
6
38.
95'.
125'
0
601982
3
36.
95’.
125’
0
609116
10
38.
95'.
125’
164.418 164.113
2
10
118~572
3*'3p'
'so
3PJ
('PO)
4s
'P;
54801
614194
10
38.
9 5”.
12 5O
115~812
3s'3p'
'DI
3~’
('D')
4s
'D;
24130
592918
90
38.
95".
125'
111~216c
3r'3p'
'Dt
3PS
(*Pv
4s
SPO1
24130
601982
20
38.
95”.
125
*
24130
609116
38.
95'.
125'
10
38.
95A.
125'
110.938
t
168.652
3r'3p'
3Pl
138.814
3123p'
3P.
138.548
1
137.661'
2
132.133
3SZ3P'
SP2
132.522
133.633
3ps('Do)
4s
'D;
3~'
Id
'0' 1
('S.-j
3ps('Da)
4d
3n23p’
SP,
126211
39.
55.
95’.
125’
4534
126303
10
39.
55.
95A.
125’
0
126424
20
39.
55.
95’.
125’
0
153393
10
0
154591
152850
95A.
125O
0
155132
95”.
125’
95A.
125’
'D; I
3p3
+D*)
44
'P;
4534
*
132.982
3sP3P
SP,
129.122
3.=3p4
'P,
3~’
('Do)
3ps('Po)
129.603
I
128.25
2
592918
5888
3
2
132.322
0
3
6
95A.
125'
95'.
125'
Id
'S;
4534
156518
4d
'D;
4534
115416
3
95'.
125'
4534
716122
I
95A.
125O
119699
95'.
125'
125O
0
s
132.351
3n’3p’
'DI
3ps('Po)
Id
'0;
24130
119699
95”.
136.615
3rZ3p’
‘so
3p3
4d
'P" I
54801
185116
39.
132.149
30’3~’
'Dt
~P'(~P'?
4d
'0;
24130
180853
95”.
125’
132.093
38’3~’
ID1
3p'('P')
4d
'P;
24130
181110
95'.
125'
136.261
30’3~’
'D)
3ps(*D")
4d
'D;
24130
757984
135.801
3~~3~’
'D2
3p’(*D’)
4d
'F;
24130
160504
(*P")
6
20
55.
95A.
125O
39.
55.
95’.
125’
39.
55.
95A.
125’
AtomicDataandNudearDataTaMes,Vol.34.No.l.January1986
97
TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti A (A)
VII
Configur.stions
3r*3p3
538.241
1,) 3n’3p*
481.428
(P-Sequence)
Encrsy
*p;,*
535.381
I
*D;,*
313~’
*D*,*
level*
IP=1374000cm~‘(170~4eV) (cm-‘)
4
46.
1114
1
46.
Ill4
33256+X
240972+x
3
46.
1170b
241426+X
11
46.
lllM
10
4 6. 56.
5/Z
J/Z
3/*
32191+x
240972+x
55634+X
278038+X 278038+X
*pa,*
R.S,er.S”CeS
240912+x
5/*
3s3p’
Act
241426+x
478.971
*pi,*
A (1-l)
54189+x
33256+X
3s*3p3
I/TYPC
55634+X
480.316
449.633
1nt
1
56.
5 I.
9 5. 11 7‘=
11706
443.49
1/Z
3/2
54189+x
440.681
1/z
1/2
54189+x
281108+X
2
117”
55634+X
290234+X
6
56.
117”
54189+x
290234+x
3
56.
117m
57.
95.
l17M
426.258
3s*3p*
3n3p’
*pi,*
423.649
Is,,*
L/2
408.528
3s*3~*
L/2
*D;,*
3S3P’
*p*,*
71
33256+X
278038+X
7
56,
406.756
9/*
S/2
32191+x
278038+X
3
1 17A
401.739
J/2
L/2
32191+x
281108+X
6
56.
57.
95.
Illa
12
46.
54.
56.
57.
383P’
514.206
‘P*,*
0
194475
95.
1 I 7504.801
0
198098
8
46.
56.
57.
95.
117”
500.116
0
199954
5
46.
56.
57.
95.
117”
324.207
55634+X
364082+X
I
4 6’.
57,
95n
322.698
3r23p3
*pi,* L/2
3~*
S/Z
54189+X
364082+X
1
4 P.
57.
956
319.463
3/Z
I/Z
55634+X
368663+X
1
4 EP.
57.
95&
317.952
1/Z
1/2
54189+X
368663+X
I
4 6O.
51.
95A
*D 5/2
3p*
263.564
(‘P)
C’S)
3d
36
*P a/*
55634+X
435049+x120
4 6’.
57.
95’
262~718
55634+X
436210+X
10
4 6O.
57.
95’
261.125
54189+X
436210+X
60
4 6O.
57.
95&
60
4 6’.
51.
95’
4 6’.
57.
95”
4 6’.
57.
95A
302
272
*P S/I
33256+X
364082+X
301
291
3.’
3p*
S/1
S/I
32191+x
364082+X
297
197
3/*
1/*
32191+x
368663+X
3s*3p*
*Do S/1
3p*
(*P)
269
533 178
267
401
271
591
210
530
279
940
218
806
0
311012
175
9.6-l
5.9+10
E
46’.
53’.
57.
95”
s/*
J/1
312887
120
6.2-l
5.8+10
E
46O.
53’.
57.
95’
a/*
L/I
0
313911
3.1-l
5.8+10
E
46’.
53’.
51.
95’
1,)
I/*
277
813
a/*
276
101
1/Z
290
971
289
315
273
118
272
843
5/*
272
369
272
073
(‘D)
3d
3S23PS
55634+X
423834+X
3
4 6’.
57.
95A
1/*
54189+X
423834+X
1
46’.
57.
95’
*P 1/Z
55634+X
412856+X
20
4 6’.
57.
95”
54189+X
412858+X
25
4 6O.
51.
95A
3/*
55634+X
415589+X
35
4 6’.
57.
95A
S/2
54189+X
415589+X
10
4 6’.
57.
95A
*D S/2
55634+X
399323+x
35
46’.
51.
95”
S/l
54189+X
399772+x
46’.
57.
95”
*D S/2
33256+X
399323+x
4 6’.
57.
95”
S/I
33256+X
399172+X
4 6’.
57.
95A
3/Z
S/2
32191+x
399323+x
10
4 6’.
51.
9sA
S/2
S/l
32191+x
399172+x
SO
46’.
51.
95d
*pi,*
3~*
‘Pi,*
3p*
(ID)
(‘D)
3d
36
I/* 3~~3~’
60
*S I/Z
l/1 3s23p*
20
0
3~’
3d
6
‘P 5/*
*pi,*
(*P)
36
268
3a*3p*
‘si,*
3~*
*D;,*
3p*
(‘D)
3d
1
90 6
TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti 1 (A) 258.610
VI
Configurations
31*3P'
‘D;,,
162.401
I I
(P-Sequence)
Energy
levels
IP=1374000cm~‘(170~4eV) (cm-‘)
3~'
(‘0)
36
‘P 1/t
33256+X
419939+x700
3P'
?P)
4s
lnt
f/Type
A (*-I)
ACC
Reference8
4 6'.
51.
tP I/*
55634+X
671405+X
1
46'.
95’
182.016
I/*
54189+X
671405+X
1
46'.
95’
161.290
t/t
55634+X
675631+X
6
46'.
95’
160.914
s/t
54189+X
675631+x
1
46'.
95’
tD L/I
55634+X
690446+X
3
46'.
95’
157.472
3p*
3/*
55634+X
690672+X
3
46'.
95’
151.112
S/I
54189+X
690672+X
3
46'.
95’
151.528
156.444
tP i/t
32191+x
671405+X
10
46'.
9 5'
s/t
33256+X
675631+X
20
46'.
95’
155.456
.3/t
32191tx
615631+X
46'.
9 5'
46'.
95'
46'.
95A
46'.
95'
3r'3pS
‘D&t
3~'
?P)
4s
155.675
152.164
3p*
(‘PI
I’P)
4s
*D 5,)
33256+X
690448+X
151.915
3/t
4s
5/*
32191+x
690446+X
151.864
S/P
5/t
32191+x
690672+X
1
20 1 10
149*981
55634+X
722394+x
1
46O.
SSA
149.653
54189+X
122394+x
3
46'.
95A
151.484
‘P I/*
0
660135
10
46'.
95’
150*861
3.'3PB
‘s;,* 3/P
3PZ
($P)
4s
3/2
0
662835
35
46'.
95A
150.039
S/P
S/1
0
666493
60
46'.
95A
18.
95A.
121
99
TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti 1 (A) 518.100
IX
Confiaurationr
3*'3p'
SP*
(Si-Sequence) Energy
393~’
levels
IP=1549000cm-’ (cm-‘)
lnt
f/TYPG
'Do z
7262
200293
0
516.215
*
s
7282
201000
a
507.365
1
I
3119
200209
507.174
I
I
3119
499.419
0
I
447.101
3S3P’
3P;
0
(192.leV) A (.-I)
ACC
RCfcrelICeS
1 llA 56.
57.
95.
117”
95.
Ill=
117
200293
6
56.
57.
200293
2
56.
117”
57.
95.
117"
54.
56.
57.
57.
95.
117"
7282
230645
447.484
t
7282
230754
439.145
0
3119
230524
6
95.
117”
Illa
439.513
1
3119
230645
3
54.
56.
57.
95.
439.302
I
3119
230754
2
56.
57.
95.
117~.
433.567
1
54.
56.
57.
95.
341.691
3P23P’
3r3pa
IPl
3s;
336.895
L
1
333.385
0
L
0
230645
7282
299944
3119
299944 0
56.
57.
95.
117"
56.
57.
95.
lllM
299944
56.
57.
95.
117"
56.
57.
95.
lllM
57.
95.
117"
6
400.041
3rP3pZ
‘so
3S3P
3
Ip’
I
61100
311087
443.512
3s23P2
‘D2
383P
s
LD@ 2
28555
254028
353.942
3r23p”
‘D?
3a3pa
'P;
28555
311087
56.
368.482
3~~3~'
‘D2
3a3pa
3s;
28555
299944
1 I?”
579.896
3S23pp
‘DI
3~3~’
“D;
28555
201000
0
117”
405.272
3*23Fl2
3P2
363~
9 I D20
7282
254028
0
I1 Id
329.159
3SZ3PZ
JP*
3X3P
3
7282
311087
3119
311087
324.712
289.579
'Pi
I
3P3d
95.
117”
7282
352632
90
4 6’.
57.
95A
2
3119
352632
20
4 6O. 57.
95&
285.981
*
I
1282
356962
4 6’.
57.
95
282.613
I
1
3119
356962
46’.
57.
95
281.446
1
*
3119
358427
6
46’.
57.
95”
280.141
0
I
356962
3
46’.
57.
95A
3P2
3P3d
'P;
lllA 0
I
3S23P’
SP2
117”
286.112
280.027
3S'3P'
I
10
"D;
0
7282
364414
20
4 6’.
53.
57.
9sA
279.074
2
2
7282
365611
20
4 6’.
53.
57.
95*
278.713
2
s
7282
366074
225
4 6O. 53.
51.
95A
276.185
1
I
3119
364414
20
4 6’.
53.
57.
95&
275.861
1
2
3119
365611
60
4 6’.
53.
57.
95&
274.411
0
I
364414
10
4 6’.
53.
57.
95&
20
46’.
51.
95A
4 6O.
53.
57.
4 6O.
57.
95h
0
285~128
3s*3p2
‘so
3p3d
'P;
61100
411820
267.941
3a*3p*
‘DI
3P3d
'P;
28555
401771
260.916
3~~3~’
‘DI
3p3d
'P;
28555
411820
308.568
3~~3~'
‘D2
3p3d
'P;
304.498
138.548
2 3.P3P’
SP*
I 3PlS
“P;
28555
352632
28555
356962
7282
729111
I20
35
.I
4 6’.
5 7. 9 5A
46O.
51.
95A
4 6O. 57.
9sA
95&
ill-
100
TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti
IX
(Si-Sequence)
IP=1549000cm~‘(192~leV)
137.991
I
0
3119
727806
3
4P.
51.
95A
131.143
I
t
3119
129111
1
4 P.
57.
95&
137.37'1
1
7.
1262
735208
137.153
0
I
136.595
1
t
0 3119
4 6O.
51.
95A
135208
6
46O.
51.
95&
I
4 6'.
51.
95A
4e.
57.
95A
Iso
3P4S
‘Pi
61100
140648
140.443
38’3~~
‘Dp
3p4a
‘P;
28555
140648
3~44
‘D;
3~44
‘F;
111.345
3~~3~'
‘D2
28555
95'
3
3SZ3P2
1282
4 6O. 51.
729111
147.157
110.283
20
35
914040
59
926660
59
Atomic Data and Nuclear
Data Tables.
Vol. 34, NO. 1, January
lSS0
TABLES.
101
Spectroscopic Data for Ti V-Ti XXII
See page 82 for Explanation of Tables Ti .J (A) 488.911
X (Al-Sequence)
Configurltionr
3S23P
Energy
ZP;,*
481.654
IP=1741500cm~‘(215~92eV)
3~3~'
'Da,*
a/*
5/*
levels(cm-')
InI
f/Type
A (SC')
ACC
ReferenCeS
1543
212055
0
5.0-3
1.4+8
E
Ill".
1543
212606
6
4.5-Z
8.4+8
D
54. 131.
411.574
L/Z
0
S/Z
212055
5
5.2-2
1.1+8
D
54. 131.
389.231
3S23P
'P;,*
3S3P2
*sI,2
1543
264456
54.
134. 56.
35.
111".
95,
111”.
56,
95.
lll".
56.
95.
lll”.
56,
95.
lllm.
56.
95.
lllm.
56.
95.
Ill’==.
56.
95,
111".
134' 56. 134.
131 318.135
1/2
0
L/Z
'264456
54. 131
365.628
3E23P
lP;,*
3S3PZ
fP,/)
1543
281045
54. 131
360.133
S/2
3/*
1543
285218
54. 131
355.815
I/Z
0
I/Z
281045
6
54. 131
350~610
*/2
0
S/2
285218
5
54. 131
'SO Z/2
164164+X
421188+x
5 4. 5 6. 51.
383.93
S/2
5/t
160655+X
421188+X
56.
51.
95'
319.74
l/2
S/2
151850+x
421188+X
56.
51.
95'
389.99
296.04c
3s3p*
'D 3/*
1543
345329
1.4-2
5.1+9
E
134’
S/2
S/2
1543
345851
35
6.1-l
3.4+10
D
56.
51'.
95'.
134'
289.573
l/2
3/2
345329
so
1.9-l
3.1+10
D
56.
51'.
95'.
134'
3a3p2
ZP;,*
'Pg,2
3%'
3a3P
('9
('PO)
36
9 5'
295.584
293.198
3E13P
3PJ
'Ps,*
3d
'D&
0
1
164164+X
505134+x
293.684
5/2
T/2
164164+X
505266+X
10
290.815
S/2
1/*
160655+X
504516+X
230~294
S/1
160655+X
288.462
S/Z
151850+x
41
142.681 142.595
126.651 125.456
3.*3p
4 6'.
51.
95A.
126
4 6'.
51.
95A.
126
I
46'.
51.
95A.
126
505134+x
1
4 6O.
51.
95".
126
504516+X
1
4 6O.
51.
95”.
126
OF01/*
345851
1046634
S/2
345329
1046622
*pi,*
1543 0
1/f
102.106
1543 0
101.353
10 3
46'.
95&.
126
46'.
95A.
126
191113
20
46'.
95".
126
197113
10
46'.
95A.
126
986919
20
46'.
95A.
126
986655
35
46'.
95’+.
126
124.391
164164+X
968680+X
6
46'.
95'.
126
124.143
160655+X
966116+X
3
46'.
95’.
126
123.103
151850+x
966116+X
3
4 6'.
9 5".
12 6
123.657
164164+X
913441+X
6
46'.
95A.
126
123.331
151850+x
968680+X
3
4 6'.
95A.
126
123.036
160655+X
913441+X
6
46'.
95’.
126
119.891 119.822
104.568 104.516
3/*
S/2 5f
zF;,g 5/*
212606
1046694
6
4 6'.
9 5*.
I26
212055
1046622
1
4 6O. 95A.
126
345851
1302170
0
46'.
95".
126
345329
1302120
0
46'.
95’.
126
102
TABLES. Spectroscopic Data for Ti V-Ti XXII Seepage 82 for Explanation of Tables Ti
X (Al-Sequence)
A (A)
85.262
Enersy
zp;,*
3%‘3P
84.711
79.110
3n*3p
*P;,r
91.855
36
‘Ds/z
91 ,806
10.625
5d
‘Pi,*
61
6d L/I
*&./E
levels
7543
(cm-‘)
7543 0
1nt
I/Type
(215.92eV) A (r-‘)
*cc
R.Z,l?r.?“Ce*
4.P.
95’.
126
1180390
8
4P.
95”.
126
1271680
3
46O.
95A.
126
1211465
1
46O.
95A,
126
1180390 0
I/?
S/I
38’3P
2sl/* 1/t
1/*
16.655
TO-265
55
I/2
IP=1741500cm-’
10
tF” I/P
345851
1434560
0
46'.
95&.
126
S/2
345329
1434560
0
46'.
95”.
126
*Ds/I 1/P
1543 0
1423410
1
46'.
95’.
126
1423160
0
46'.
95’.
126
103
Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables
TABLES.
Ti Configurations
A M)
386
XI
3rZ
140
Wg-Sequence) Enarry
's I
3S3P
‘P;
IP=2131400cm-’ I eve
0
I I (cm-‘)
258973
1nt
(265.0eV) A
~/TYPE
3
1.0
(SC’)
l.S+lO
ACC
Refcr.?IlCt?S
D
34.
41°.
54,
9 5A. 126.
568
a7
98
3r*
's 0
3S3P
“Pi
725
302
's 0
384P
'P;
175753
1139920
35
2.9-l
8.4+10
D
68.
76.
37.
41°.
57.
68.
116.
95.
124’
95’.
11 6’.
126
65
3r*
403
's 0
3S5P
'P;
0
1528980
I
9.9-2
5.1+10
D
47'.
95’.
116..
126
57
891
3s'
's 0
3~6~
'P;
0
17213aO
I
47'.
95’.
126
54
322
3s'
's 0
3S?P
'P;
0
1840880
1
41'.
95'.
126
446
69
667
34c
429
60
3s
('S)
3P
3S3P
3s
PS)
3P
'P;
3p*
's 0
258973
482840
1.2-l
l.2+10
D
3'.
'P;
3~'
‘D 2
258973
408820
1.1-I
g-a+8
D
17..
"Pi
3PZ
sP I
la1399
414150
8.2-2
4.9+9
D
I?*. 95.
425
14
0
175753
410640
1.1-l
1.2+10
D
17’. 95.
419
45
175753
414150
3.0+9
8.0-2
D
17’. 95.
411
85
2
181399
420700
8.9+9
2.3-l
D
17.. 95.
415
07
173187
3.5-l
414150
4.8+9
D
17'. 95.
408
175753
28
420700
1.2-l
3.0+9
D
17.. 95.
56'.
56.
41°.
51.
68.
95
68
54.
51.
66.
54.
57.
68.
54.
57.
68.
54.
51.
68.
54.
57.
68,
57.
68.
71.
124 47O. 124 41°. 124 47O. 124 41°. 124 54O. 124
. 321
192
314
03=
313
710
3S3P
31
(*St
3P
‘P;
“P;
3r3d
‘DI
3934
'D,
*
2
258973
564604
181399
499841
181399
500162
8.0-l
4 16
3.0+10
C
47'.
3-3
4.8+8
D
68.
4-2
4.3+9
C
41'.
69.
69.
126.
124.
68.
95A.
56.
134'
134. 124.
134. 313
308
229
s
2
568
161399
115753
i
500651
499841
10
3
35
I
5-l
l-1
l.?+lO
?.6+9
C
C
4T”.
54.
9 59.
124.
57.
47'.
68.
95A.
124.
68.
95'.
124.
68.
95A.
124.
68.
134'
134. 308
250
175753
1
500162
10
3
2-l
1.4+10
C
41'. 134'
306
144
173181
0
499841
14
3-l
1.0+10
c
47'. 134.
374
00
3P2
‘s
349
91
3~'
327
22
322
75
434
94
3s
(‘S)
3~
(*PO)
36
‘P;
482840
750220
5 6'.
57.
95
'D *
3~
(*P*)
3d
'D;
408820
694610
56'.
66.
95
3PZ
sP P
3~
('P")
36
'PO 2
420100
726300
56'.
57.
95A.
3P0
sP *
3~
(*P’)
3d
“D;
420100
730560
5 E".
57.
68.
95.
124
'DQ
3~
('P'l
36
'0;
500651
730560
56'.
51.
68.
95.
124
36
0
3
124
TABLES.
104
Spectroscopic Data for Ti V-Ti XXII
See page 82 for Explanation of Tables Ti Configuration*
1 (A) 3io.aloc
543.23
XI
3p'
3s
(‘9
36
Energy
‘D 2 ‘D,
(Me-Sequence)
3P3d
3~
(*P')
36
IP=2137400cm-’ I eveI
s (cm-‘)
‘D;
408820
730560
'F;
499841
683920
1nt
f/Type 1
(265eOeV) A (a-‘)
Act
References
9e.
124.
126
5 6O.
57.
66.
68.
95.
51.
66.
68.
95.
51.
66.
68.
95.
124 533.55
500162
687580
56'. 124
522.66
500651
691980
56'. 124
538.747’
3s3d
‘D2
3p3d
'P;
564604
150220
1
95A.
126
6ia.440c
3s3d
‘DI
3p3d
'P;
564604
126300
3
95A.
126
123.946
3S3P
'P;
258973
10651ao
47'.
126
115.015
3S3P
3P;
la1399
1050850
20
31.
41°.
95".
124
175153
1050850
LO
31.
47'.
95A.
124
173187
lo50850
6
37.
47'.
95A.
124.
114.272 113.940
0
126
110~019
3s3d
ID2
3p4d
'F;
564604
1473538
91
135.179
3s3d
'D2
3s4f
'F;
564604
1304360
41'.
126.042
3s3d
'Da
3~41
'F;
126
500651
1294040
35
31.
41'.
95".
124
125.919
500162
1293940
20
37.
41°.
9SA.
124
125.940
499841
1293870
6
31.
41°.
95'.
124
3
9 5&.
124.
126
124.
126
131.413c
3s3d
'DI
3s4f
IF;
564604
1293940
84.711
3S3P
SP;
3P4P
ss,
la1399
136llao
41°.
175153
1361780
41.
173187
1345660
84.321
I
1
85.290
3S3P
SP;
3p4p
'DS.LI
85.114
3P4P
SP,
84.876
0
84.835
3
41'.
124
95A.
161399
1356280
41'.
124
175153
1353940
41'.
124
P
181399
1360140
41°.
95.124
84.525
1
173187
1356280
4 IO.
12 4
84.433
2
175753
1360140
41°.
124
41
100.591
94.085
3S3P
‘P;
,3s4d
‘Dz
258973
1253100
3S3P
JP;
3s4d
'D2
la1399
1244260
3
37.
124.
126
47'.
9 5'.
124.
41°.
95A.
124.
41'.
95".
124.
47'.
95'.
124.
41'.
95A.
124.
126 94.053
2
3
181399
1244630
35
31. 126
93.626
115753
1243920
10
31, 126
93.569
175153
1244260
20
37. 126
93.395
113187
1243920
6
37. 126
121.268
3p
('PO)
3d
'Do 2
3~
('Pa)
4f
'D2
730560
1516300
63'.
124
TABLES. Spectroscopic Data for Ti V-Ti XXII Seepage 82 for Explanation of Tables Ti
XI
Energy
Coniipuratianr
A (A) 123.055
3p
(*P"l36
123~070
3~
(*PO)
3d
30;
3~
('P')
41
'F 4
730560
'F' 3
3P (*P")
41
$6‘
122.305
124.138
117.171
5 3~
(‘P’l
3d
3p*
‘D’ 2 3P I
116.310
3~
(*PO)
41
3PlS
'FQ
"Pi 2
2
116.387
0
*
116.028
100.835
(Me-Sequence) levels
105
IP=2137400cm-’ (cm-'1
I",
f/TYPG
(265.0eV) A (a-')
ACC
References
1505420
63O.
124
687580
1500130
63'.
124
631380
1505620
63'.
124
694610
1502030
63'.
124
414150
1267600
41°.
124
420100
1276040
41'.
124
410640
1263840
41'.
124
414150
1276040
41'.
124
3P'
's 0
3P4d
'P;
482840
1414559
31
33.303
3~'
'D 2
3p4d
IF;
408820
1473538
31
36.246
3PZ
3P,
3p4d
‘D;
414150
1453120
91’.
124
410640
1453120
31'.
124
41'.
126
35.
47O.
35.323
Ill.664
90.366
3~~
3s3d
ID 2
3~41
'F;
408820
1304360
IDS
3s5f
3F;
500651
1539360
3
35&.
124.
126 30~327 30.308
36.288
2 3s3d
500162
1539340
3
47'.
35'.
124.
126
433841
1539850
1
4 IO.
95'.
124.
126
35A.
126
'D1
3s5f
'F;
564604
1603140
47
‘D 2
3r5f
‘F;
408820
1603140
47
258973
1431140
1
41'.
181393
1484620
1
4
9 5’.
12 4. 12 6
175753
1484620
I
41°.
9 5".
12 4. 126
35".
126
83.732
3~'
81.113
3S3P
'P;
3sss
'so
76.731
3S3P
'Pi
3sss
$s,
76.403
I
7’.
75.415
3S3P
'P;
3s5d
'DI
258373
1584970
1
41'.
71.603
3S3P
3P;
3r5d
'Ds
181393
1577980
6
37.
47'.
35”.
124.
126
*
175753
15'77820
3
41'.
3 5".
12 4. 12 6
L
113187
1577670
1
47'.
35&
124.
126
'F;
500651
1765260
I
47'.
35'.
124.
126
3. *
500162
1763630
1
47'.
35A.
124.
126
71.323 71~202
79.076 73.027
0 3s3d
'DJ 2. I
3s6f
106
TABLES. Spectroscopic Data for Ti V-Ti XXII Seepage 82 for Explanation of Tables Ti
XI
Configurations
1 (A)
I (Na-Sequence) Energy
level*
0
0
351.024
3P
lP=2351080cm“
211042
(cm-‘)
tnt
(291.502eV)
f/Type
208385
1.55-I
217042
3.23-l
501922
3.7-Z
A (1-l)
4
5
2
ACC
49+9
B
OS+9
B
0+9
D
R.3fereIlCeS
22.
34.
42.
51.
95.
134.
46'.
54.
2 2. 34.
4 2. 4 a".
51.
95.
134'
22.
4a".
54.
5 4.
51.
95.
134' 349.929
217042
340.612
208385
140.361
4P
139.884
116.591
502814
41
36
3.3-l
501922
3.1-l
1
I
2+10
c
1+10
c
34.
42.
95.
134'
22.
34.
42.
51.
95.
134'
48'.
54.
4a".
54.
*POl/9.
501922
1214390
1
4.60-Z
3
c
2zA.
46O.
95.
134.
S/1
502814
1211700
3
5.5-Z
z.a1+10
c
22”.
4a”.
95.
134’
'PO I/L
502814
1380470
9.1-I
3.36+11
C
2ZA.
35.
42.
48’.
95.
35.
42.
48’.
95.
35.
48'.
95.
35.
48'.
95.
35.
48'.
95.
35.
48’.
95.
35.
48O.
95.
35.
48'.
95.
35.
4a".
95.
90
11+10
22. 51.
134. 116.491
I/Z
501922
1360310
60
9.1-l
2.99+11
C
22’. 134.
109.107
3P
211042
1133513
8.4-Z
35
9.4+10
D
22'. 134.
108.086
208385
1133573
10
8.4-Z
4.8+10
D
22'. 134.
90.541
3P
211042
1321430
6
2.3-Z
1.8+10
E
22". 134.
90.512
211042
1321810
90
2.1-l
1 * l+l
1
D
2ZA. 134.
89.844
208385
1321430
2.4-l
60
9,8+10
D
22’. 134’
82.344
3=
4P
'Sl/2
*PO1/t
0
1214390
20
5.88-z
5.19+10
c
2zA. 134.
82.121
0
S/1
I/*
1211100
1.18-l
90
5.a4+10
c
2 2*. 134*
81.426
5P
81.364
*p;,2 s/2
51
32.368
*F;,*
501922
1645160
502814
1641440
2
48
502814
1116920
6
1.5-l
l-1+11
D
22'.
48'
2zA.
35.
42.
48'.
95.
35.
42.
4a".
95.
134' 82.301
S/2
S/1
501922
1116840
6
1 .6-l
l.O+li
D
2zA. 134.
11.981
3P
11.545
61.555
3P
61~111
60.762
2P' S/1
217042
1606160
3
1.5-Z
3.8+10
D
2zA.
4a".
95.
l/2
208385
1606160
1
1.5-Z
l-9+10
D
22'.
48'.
95
211042
1697320
35
2 zA.
34.
4a".
95
206385
1691110
10
2zA.
35.
4a".
95
2zA.
35.
4a".
95.
tP;,z l/2
3*
1645160
zsl/*
3
1.8-Z
3.3+10
D
134'
134' 60.101
I/P
s/*
164.1440
10
3.8-z
3.4+10
D
2 zA. 134.
3 5. 4 ao.
9 5.
TABLES. Spectroscopic Data for Ti V-Ti XXII Seepage 82 for Explanation of Tables Ti
I1
031 986
3d
I
(Na-Sequence) Energy
Confi#uratione
4 (A)
IO
XI
6f
*b/1
‘P;,t
S/2
S/1
107
IP=2351080cm-* levels
(cm-‘)
1nt
f/Type
(291.502eV) A (.-‘I
References
ACC
502814
1910680
1
5.1-Z
5.7+10
D
2ZA.
42.
48’.
501922
1910630
6
6.0-Z
5.3+10
D
2ZA.
35.
42.
134’ 40’.
134.
61
286
60
911
59
435
59
133
53
451
53
433
65
511
65
540
3p
6*
*p*,*
3P
l/1
3d
3P
D
22".
48'.
95.
134'
9.4+9
D
2ZA.
48'.
35.
134.
217042
1899540
2zA.
4a0
208385
1899500
6
2zA.
4E0
0
1810660
1
22".
48O.
95
0
1811490
3
22'.
48'.
95
42.
48O
10
3
2zA.
I
2 2O. 42.
zP” X/2
217042
1989000
3
2zB
1/X
208385
1989000
2
2za
2P’ 2/t
211042
2020690
3
2zA.
4a0
I/*
208385
2020620
1
2 Z6.
48'
443 181
49
912
39
*s,/*
62
410
3d
*&.A
62
433
*POI/Z.
IP
Bf
140
52
836
47
906
39
*St/*
51
669
3P
'Pi,,
51
446
5/*
*pi,* 1/* 8P
*POI/P.
9d
3s
*sI/*
3P
*Pa S/I
X/1 SP
IP* 1,x. 106
S/1
22
2103610
1
22'.
48'.
124
501922
2103590
1
22'.
48'.
124
217042
2098880
I
22".
48'
206385
2098880
22'.
4a0
2081400
22
217042
2152300
22
208385
2152300
22
2144000
22
211042
2190500
22
208385
2190500
22
0
0
2,)
*D*,*
1/*
2003500
45.183
3s
*s,/*
10 p *p:/*.
x/2
0
2184200
22
45.167
3s
*s,/*
1 1p
J/Z
0
2214000
22
959.345
4P
*Pa 3/*
4d
*%t
1217100
1321870
48
251.43'
4P
*pi,*
5'
*s,/t
1211700
1606160
51
*FO1/*
1321870
253.142
27
818
21
480
2~~3s'
*p;/*.
*P;,* L/I
48'
502814
x/1
*Ds/z
1/*
0
s/2
*F;,*
X/2
53
448
I.$+10
5.2-3
2027100
55
614
5.3-3
1
2027730
55
50
1
1848640
501922
161
3P
1848640
208385
502814
431
3P
217042
X/X
*Dm
56
50
1/X
*PO S/2
56
46.641
*S,/z
I/9.
1.4-l
2.8+10
9 5O.
126.
IT16320
$5'.
126
0
3594100
11
0
3637900
11
135'
95.
TABLES. Spectroscopic Data for Ti V-Ti XXII Seepage 82 for Explanation of Tables Ti
XI
I I
(Ne-Sequence)
IP=6354300cm-‘(787*84eV)
26.960
2.'2P6
'so
0
3109200
6.3-Z
1.9+11
D
3 6'.
95.
134.
26.641
zs'zp'
'so
0
3753600
I.
2.3+11
D
3 B".
95.
134‘
23.991
2r22p'
'so
2~'
(*P;,,)
3d
'
'P;
0
4168200
36'.
95
23.698
2E12P8
'so
2~'
(LP;,r)
3d 1;) '
'P;
0
4219600
3.3-l
l.3+12
D
3 LP.
95.
134.
23.356
zs*zP'
Is.0
2~'
(*P;,,)
3d
'D;
0
4281600
2.4-l
9.'7+12
D
3tY.
95.
134'
19.943
2r'2p8
'so
0
5014300
50
1.1-Z
6.3+10
D
loo.
95A.
134'
20.135
2S22P'
's,
0
4966500
50
1.7-2
9.3+10
D
loo.
95&.
134.
19.204
2**2p6
'so
2 P5 ?PO ,,*)
4d
ItI
'
'P;
0
5201200
250
4.5-l
2.1+12
D
51.
19.366
2s22ps
'so
2 ps ?P' 3,2)
Id
I;,
'
'0;
0
5163100
200
2.6-1
1.7+12
D
5 1. 7 o".
(I
(1
'
5-2
TOO. se.
9 5&.
134'
17.727
2s22p6
'so
Sd
'PO I
0
5641100
100
11.869
zs'zp'
'so
5d
'De I
0
5596300
21.035
2s22ps
'so
2s2~'3P
'P;
0
4154000
350
51.
21.127
ZS'ZP'
'so
2~2~~3~
"P;
0
4133300
100
TOO. 95"
50
1.6-l
1.1+12
D
IDo.
95'.
134.
1.4-l
9.7+11
D
loo.
95A.
134'
loo.
81.153
3921900
5143100
65.
aao
80.290
3900700
5141100
65.
8S0
3964600
5201000
56.
8P
'
3950200
5163700
88
3
3904000
5111500
65.
4d
81.611
'F;
81.318
4d
tf.
$0;
3, '
(;I
60~602
4d
61.255
'F;
(f,
I,
*
3965800
5197200
88
'0;
tf.
;, '
3912900
5170000
88
. 80.494
4d
3P
'P,
299.61’
3s
'P;
3P
'so
3153600
4087300
4.9-2
l.lO+lO
D
134'
264.4aT
3s
"P;
3P
'so
3709200
4081300
2
a.1+9
E
134'
3s
JPO"
3P
'P,
2
411
.25T
389.71’
3s
'Pi
3s
SP,
366.91T
3~
ID*
3~
'Dt
2
a-2
3745300
3912900
4 ' o-3
2.5+1
E
134.
L
3709200
3912900
1.3-l
3.7+9
D
134.
1
3693300
3912900
6.7-3
3.6+8
E
134.
3753600
3965800
2.3-l
4.219
D
134'
3709200
3965800
4 's-3
l.3,8
E
134*
3693300
3965800
2.0-3
l.O+E
E
134'
*
791.14T
3s
'P;
3P
$s,
3153600
3660000
2.2-3
2.3+1
E
134.
142.3gT
3s
SP;
3P
Jsl
3145300
3660000
6.1-3
2.7+1
E
134'
88'
95A
134'
12 4.
TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti
XI I I (Ne-Sequence)
585.48’
1
I
3709200
3a80000
535.6ZT
2
L
3693300
3880000
.38
‘P;
3p
lP=6354300cm-'(787~84eV)
6
o-2
2
0+8
E
134.
7-2
2
6+9
D
134.
3753600
3921900
l-3
5
8+7
E
134.
I
0
3753600
3947300
5-2
1
1+9
E
134'
I
,
3753600
3964800
o-2
I
a+9
D
134'
3P
470.15T
SP*
109
3109200
3921900
2-1
2
1+9
D
134.
455.5aT
SP2 I
3745300
3964800
2-l
2
4+9
D
134’
431.45'
2
3693300
3921900
o-2
2
8+9
D
134.
419.9gT
0
3709200
3947300
8-2
4
3+9
D
134’
368.3ZT
1
3693300
3964800
5-3
5
3+8
E
134.
3753600
3950200
4-2
1
9+9
D
134'
2-l
1 8+9
D
134.
9-l
1
8+9
D
134'
508.65'
3s
IP0 I
3~
‘D,
522.1gT
3s
3P;
3~
'Dt
8 6
3109200
3900700
488.04'
0
1
3745300
3950200
1
4~72.16~
2
*
3693300
3900700
6
6-2
1
9+9
D
134'
414.61T
2
I
3693300
3904000
2
o-1
4
2+9
D
134*
414.94T
I
1
3?09200
3950200
2-4
2
0+1
E
134.
110
TABLES. Spectroscopic Data for Ti V-Ti XXII Seepage 82 for Explanation of Tables Ti 1 (Al
XIV
Configurations
(F-Sequence) Energy
129.440
282P’
2s,,2
I~velt
47219
IP=6961000cm~’ (cm-‘)
1nt
i/Type
819712
(Bfi3.leV) A (SC’1
6.5-2
2.58+10
ACC
C
ReiercllCCl
18..
45.
95.
101.
58. 118.
61.
94'.
124.
134 121.985
0
l/2
C
18..
29.
45.
94O.
95.
101.
124.
134
41219
4043600
50
12".
1/t
47219
4065500
60
7Pw.124
24.128
,/*
0
4043600
10
20.
51.12".
24.592
1/t
0
4065500
75
72".
124
124
2P’
(‘P)
3s
6.3+10
IP S/I
25.206
?P)
1.0-2
24.891
25.025
2P’
819112
95.124
‘P a/t
47219
4014100
6
12”.
I/I
47219
4035900
4
72”.
25.025
S/1
0
3996000
50
20.
51.
12-
24.907
a/*
0
4014100
IO
20.
51.
12-s
4221000
20
12".
124
4221000
90
72".
124
4113600
15
20.
51.
4112700
60
20.
51.12-.
3s
2s I/I
47219 0
1/* 24.592
2~’
(ID)
3s
24.315
‘D S/1
41219 0
I/O 2~’
72-.
124 95
47219
4494600
15
20.
720°.
124
S/1
41219
4525500
30
20.
72".
124
22.248
1/P
0
4494600
10
20.12'=.
95,
22.099
3/2
0
4525500
20
20.
I24
36
4506400
40
12-e
0
4506400
30
20.12='.
22.066
0
4531900
60
20.72"
0
4512200
30
12A
*D S/I
22.162
2~’
(‘P)
34
‘P S/I
22.518
2~’
(‘P)
3d
‘P 10
47219
72".
22.190
22.426
(‘P)
3d
124
‘P I/Z
2~’
(‘P)
124
22.328
22.486
4488300
20
72-.
22.328
I/I
0
4478700
30
l2A
22.279
3/*
0
4488300
40
72=.
S/l
0
4501500
30
12'
22.215
47219
22.279
2~‘
(‘P)
3d
‘P S/Z
0
4488500
40
lZ6
21.82
2~’
(‘D)
36
*S I/?
0
4583000
60
72'
21.958
2~’
(‘D)
3d
‘P S/2
47219
4601400
50
72’.
21.883
2~’
(‘D)
36
‘D 3/t
47219
21.132 21.657
S/1
12'
a/*
0
4617200
10
12-.
124
124
124
124
4893600
50
20.
72-s
4685800
40
20.
72"
21.304
S/I
0
4693800
212P5
OP)
2111.01
2%‘2P’
3s
*D 3/t
41219
124
0
25.086
36
1206.
10
124
S/1
25.260
(‘Sl
10
4601500
6
12-e
124
124
)P’ S/1
819772
4178600
30
20.
I/?
819712
4806100
20
12-v
124
18O’.
124
yp;,y
0
47219
Ml
1.87+3
C
124
124
21.341
21.522
2~’
4611200 0
61.
118.
124
25.011
2P'C'Sl
3s
58.
51.
72".
124
TABLES.
Spectroscopic Data for Ti V-Ti XXII
111
See page 82 for Explanation of Tables Ti a (A)
148.588
XV
Configurations
2s*2P'
(O-Sequence) Enarryy
'P,
2S2P)
3P;
IP=7597000cm-’ levels
39288
(cm-‘)
112218
(941.9eV)
1nt
f/Type
500
4.52-2
A (*-I)
8.2+9
ACC
C
Rl?IerellCeS
18’. 64. 110.
142.750
42345
0
742877
250
1.08-l
1.18+10
C
18’. 64. 118.
142-130
39288
I
742877
200
2.82-2
9.3+9
C
18.. 64. 118.
140.395
0
*
712278
800
8.3-2
2.81+10
C
18’. 64. 118.
138.351
39288
L
762056
300
3.92-2
4.10+10
C
18.. 64.
134.609
0
I
1a9-62c
2SZ2P'
'S(
2‘2PS
131.146
2**2P'
'so
2S2P
s
742877
‘P;
215528
742877
'P;
215528
978031
400
60
3.11-2
1.91+10
C
4.3-3
2-8+8
D
6
a.4+9
c
5-2
2~~2~'
‘DI
2S2P
s
115.031
2.*2~'
‘Dz
2S2PS
'Pi
108730
712278
'PO 1
108730
918031
350
3
5-3
8.7+8
D
1
37-l
1.15+11
C
2.'2P'
SPg
2S2PS
'PO I
106*5ZC
42345
978031
39288
102-24’7
0
2
6-3
5.1+8
D
29. 92”. 124. 29. 92'. 124. 29. 92'. 124. 29. 92’. 124.
18’.
45.
101.
118.
18’.
224
la*.
29. 92'.
45.
45.
45.
18..
64.
61.
95.
101.
134 45.
58.
94O.
61.
95.
101.
134 45.
58.
94’.
61.
95.
101.
134 92’.
94’.
124.
45. 94O.
124
124.
101.
58.
94O.
94’.
118.
61.
95.
134
18..
29.
101. 134
58.
94’.
134
92A.
61.
95.
124.
124.
LB*.
58.
84’.
110.
64.
106.874
118.
il8.
64.
165.690
29. 92’.
45. 94O.
134
58. 95.
58. 95.
61. 101.
61. 101.
134
94’.
124
978037
3.8-4
2.2+8
E
18’.
64.
95.
124
978031
4.8-3
5.1+9
D
18..
45.
64.
94’.
45.
60.
101.
124
141.436
2s2p5
'PO *
2P"
's 0
918031
1656300
50
1.30-l
1.20+11
C
18.. 64.
31. 92’.
94O.
110.
124
23.193
2Sf2P'
SPp
23.177
1
22.961
*
22.109
2S22P'
‘P)
22.139
2r*2p4
SPg
22.724
1
22.518
*
22.464
*
2PS
('So)
3s
3S0 L
2p'
(‘PO)
38
‘P;
2p'
(*Do)
3s
‘D;
42345
4354100
28'.
124
39288
4354100
200
2 a”.
79.
95&.
124
0
4354100
200
2a”.
19.
95’.
124
0
4523000
100
19O.
95A
28'.
124
2a".
95'
95".
124
95”.
124
42345
4440200
39288
4440400
I
0
4440400
0
4451600
23.034
2S'ZP'
'so
2P3
(*PO)
3s
‘PO I
215528
4551300
22.482
2~~2~'
‘D?
2p"
tPO)
38
‘P’ I
lo8730
4557300
22.936
2~~2~'
‘D1
2ps
(‘DO)
3s
‘Da *
108730
4469100
200
28'.
124
350
2aD.
95A
150
2 a'.
19.
28'.
124
28’.
79.
300
61,
112
TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti Confisurations
A (A) 23.41'
21'2p'
2~~3.
zs'zp'
20.313
0 2s22p'
39288
3d
'PO I
39288
42345
('DO)
3d
'Pa 1
2s22p'
('SO)
3d
'Do *
1
39288
2p3
3d
'Do L
ACC
References
8.6-5
6.3+8
89'
4310000
3.9-4
4 .a+9
89.
4950000
300
4950000
4185000
6Z".
124
19'.
95'.
lz".
124
12'. 450
50 150
79'.
9gd
6 2'.
19.
4984000
58.
39288
4984000
1 z".
20.133
39288
5006000
58.
62'
58,
62'.
0
2~'
20.70
(*DO)
3d
'Do 1
20.611
4987000
4813000
62
4891000
62
4898000
5 8. 62'
12
0
z*tzp'
'so
2p3
('P-1
36
'P;
215528
5046000
20.823
28'2~'
'Dz
2~'
t2Do)
3d
'0;
108730
4911000
20.389
Zs*Zp'
ID2
2pJ
(*PO)
3d
IF;
108730
5014000
20.700
20~2~'
'Dt
2p3
c2D0)
34
'F;
108130
4940000
20.312
2r22p'
SP,
L?p'
('PO)
36
'D;
2**2p4
3Pt
2522P'
SP,
2ntZp'
'Dt
ZS'ZP'
'so
2S22P'
JP,
2s22p'
'Dt
1440.3c 919.13
567.44c
2.121
39268
2s*2p4
SP,
108730
39288 0
K,
2s22P'
'so
12.
200
39288
0
39288
95A
124
19.
79.
62'.
95A
95'
124
6 2'.
19.
12'.
124
89'.
4962000
0
2
62'.
300
124
124
110.
39288
20.701
936.30C
62'.
42345
20.418
2545.08
100
95A.
?P.
42345
20.051
124
124
12.
20.23
20.31
(*P")
A (a-')
4310000
4180000 0
3
f/Type
4965000 0
2p3
SP,
20.891
lnt
4965000
39288
2
(Fin-')
(941*9eV)
4950000 0
*
2p3
SP,
20.422
(*P')
IP=7597000cm-’ levels
0 2ps
$P, I
21.094
'S;
*
20.317
20.538
(O-Sequence) En*r(yy
SP,
23.20'
20.364
XV
95d
Ml
1.27+3
C
18'.
215528
E2
1.4+1
D
la'*.
108130
Ml
2.44+2
C
18'.
89.
101.
124
108130
Ml
2.55+3
C
18..
89.
101.
124'
215528
Ml
2.41+4
C
18..
89'.
36751194
101.
124
124
101.
124
103
AtomiC Data and Nuclear
Data Tables.
Vol. 24. No. 1, January
1986
113
TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti Configurations
i (A) 163.740
XVI
2S22PJ
‘s”s,*
(N-Sequence) Energy
2S2P’
‘P*,*
levels
0
0
0
168.38’
2s*2p3
*pi,*
167.242
2~2~’
*D*,*
S/Z
162.503
S/2
I,’
3/*
IP=8420000cm~’ (cm-‘)
583140
620470
633660
219250
813080
219250
817210
197700
813080
1nt
f/Type
400
6.6-2
250
150
200
60
4.69-Z
2.46-Z
(1044eV) A (SC’1
1.02+10
l.ZO+lO
1.32+10
ACC
c
C
C
References
18..
29.
32&.
33O.
118.
134
18’.
29.
9 2”.
9 3O.
58.
61.
64.
9 5, 10 1.
134 29.
92*.
9 3O. 9 5. 10 1.
118.
134
4.2+8
D
18’.
101.
4.64+9
C
18..
29.
9 2”.
33O.
c
64.
18’.
1.80-3
2.61+3
61.
9 5. 10 I.
118.
2.92-z
2.07-Z
58.
118.
124.
18’.
23.
92&.
9 P.
58.
61.
64.
124 58.
61.
64.
9 5, 10 1. 134 58. 35.
61.
64.
IO 1.
134
146-57
2~~2~~
*D;,*
2~2~’
*D*,*
130720
813080
30
1.30-3
6.1+8
D
18..
64.
92”.
18..
29.
58.
32A.
93O.
101.
134 145.665
143.459
1,’
142.57
138.760
130720
S/2
3,’
3,’ 2r*2p*
*pi,*
5,’
ZSZP’
*s,,*
116030
817210
813080
600
400
116030
817210
100
213250
939320
20
7.4-2
8.5-2
2.33+10
2.75+10
C
C
1.2-4
2.6+7
E
1.21-Z
8.4+9
C
95.
61.
64.
101,
118.
124.
18’.
29.
134
9 zA,
9 3O. 9 5. 10 1.
58.
118.
134
la*.
64.
92m.
18*.
30.
58.
szA.
93O.
95.
61,
64.
134
61.
64.
10 I.
134
*/*
134.724
1,’
197700
933920
200
7.1-2
2.6lClO
c
18’.
61.
74.
92”.
33’.
9 5. IO 1. 1 I a. 12 4. 134
132.022
2p*zp*
128.381
*POZ/2
2SZP’
‘P*,*
L/Z
124.793
S/2
3/*
l/2
213250
197700
219250
976650
976650
1020500
150
60
350
2.28-Z
2.69-Z
7.1-Z
a.7+9
c
5.4+9
C
6.1+10
C
16..
29.
9 2O.
9 3O. 9 5. 10 1.
124.
134
18’.
29.
9zA.
93O.
118.
124.
18’.
29.
58.
58. 95.
61.
64.
61.
64.
101.
134 58.
61.
64.
9 2A. 9 3O. 9 5. 10 1. , 121.534
121.382
118,215
116.198
l/2
2s’2p3
2s22p3
*D;,*
*D;,*
9/*
1/P
2S2P’
2S2P’
*s,,*
197750
116030
*p*,*
130720
3/*
116030
1020500
939920
976650
976650
20
150
600
100
1.23-2
2.65-Z
1.04-l
2.34-2
5.6+9
2.40+10
7.4+10
1.45+10
C
C
C
C
118.
124.
18..
29.
93’.
101.
18’.
64.
101.
118.‘124
18’.
29.
9 2A.
93O.
118.
124.
Ia*.
29.
9zA.
93O.
116.
124.
134 61.
64.
124.
74.
58. 95.
92’. 134
3ZA.
61.
93O.
64.
101.
134 58. 95. 134
61. 101.
64.
TABLES.
114
Spectroscopic Data for Ti V-Ti XXII
See page 82 for Explanation of Tables Ti
XVI
Confi;urationr
A (A) 110.561
(N-Sequence) Enoray
l/l
1/t
levels
116030
1P=8420000cm-L (cm-‘)
1020500
(1044eV)
lnt
f/Type
A (*-‘I
ACC
150
3.08-2
3.36+10
C
Rsferences
18’.
29.
92A.
93O.
118.
124.
58. 95.
61.
64.
101.
134
106-39c
2PZ2P’
‘s;,*
282Q’
*St,2
0
939920
3.5-4
4.1+8
E
18’.
64.
124
102.393
2Sf2P3
‘s;,’
2S2P’
‘P*,*
0
976650
1 e 9-3
1.2+9
E
18..
64.
93’.
124
101
124 91.9gc
193.37c
l/l 2S2P’
*p,,*
118.240
0
L/I 2P5
l/I
*POl/2 l/l
1020500 976650
1020500
1.1-4
1.5+8
E
18’.
64.
1537660
2. 55-2
2
27+9
C
18..
64.
101.
1531660
20-l
2
52+10
C
18’.
58.
61.
92. 176.261
1,’
L/I
1020500
1587830
14-1
2
45+10
C
18’.
93’.
124 62.
64,
124
64.
101.
93’.
64.
101.
93’.
61.
64.
92.
61.
64.
124
58.
61.
124 163.610
l/l
I/*
916650
3. 86-2
1581830
1
83+10
C
18’. 124
167.297
2S2P’
*s,,*
2Qs
*POa/*
939920
1537660
60-2
5
5+9
C
18’.
93’.
124 154.34c
138.600
I/l 2S2Q’
*D*,*
2Qs
1/*
939920
1581830
*I” ,/a
811210
1537660
20
6
8-4
1
8+8
E
l-2
3
48+10
C
18’.
18.. 64.
138.020
1,)
l/l
813080
1531660
129.015
l/l
I/*
813080
1587830
2
51-2
8
8+9
C
4
‘76-2
3
El+10
C
18’.
31. 92’. 31.
93’.
95.
64,
93’.
58.
61.
62. 124 95.
124 10
18.. 64.
31. 92’.
20.101
2.*2Q*
*p;,r
2Q*
(*P)
3d
*P t/t
219250
5194100
62’.
124
19.551
2~~2~’
‘Ds’,*
2p*
(*P)
3d
*F l/l
130720
5245500
62’.
1.24
19.310
2~~2~~
*D;,*
2Q’
(*P)
36
*D 5,’
130720
5293300
58.
19.71
2s*2p*
*pi,*
2Q*
(*P)
36
*D S/l
219250
5293300
62’.
19.112
21*2Q’
‘8;,*
2p*
(*P)
36
‘P 1/*
0
5232300
58.
62O.
l/1
0
5238600
62.
124
130720
5336300
58.
62’.
116030
5348100
62’.
124
19.089
19.210
l/l 2s*2~*
*D;,*
19.110
210.4’
2Q*
(ID)
l/l 2s*2p*
*p;,*
3d
*I’ l/l S/1
62’.
219250
589140
2
8-4
1.1+1
E
18..
124
*/*
l/1
219250
620470
5
9-4
6.3+1
E
18’.
103.
241.3’
l/l
L/t
219250
633660
6-1
3.1+4
E
18’.
124
236.5’
I,’
*/*
191700
620410
9
S-6
5.9+5
E
18’
229.1C
1,’
L/I
191700
633660
3
2-4
4.1+7
E
18,
‘F’s,*
130720
589140
2-4
1,3+7
E
18’.
103
211.4’
S/l
5/I
116030
589140
6-4
9.6+7
E
18..
103
204.2’
S/1
l/l
130120
620470
o-5
1.2+6
E
18.
198.2’
l/l
l/1
116030
820410
6-5
9*5+6
E
18’
193.zc
l/l
1/*
116030
633660
2-4
4 * 3+7
E
18.
813080
3 * 8-4
1. I+8
E
18..
218.1’
123.0c
2**2p*
!2s*zQ*
*D;,*
‘s;,’
282Q’
282D’
‘Ps,*
*D*,*
0
95
124
124
249.2=
2S2Q’
93’.
103
95,
124
95.
124
124
62.
115
TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti Configurations
1 (A)
122.4’
2~~2~'
(N-Sequence) Energy
s/* 2rZp'
1493.0C
XVI
0
S/I
‘P,,*
Ieva
IP=8420000cm-’ (cm-'1
817210
1nt
(1044eV)
f/Type
1’
l-5
A (*-I)
ACC
RefcrclllCet
3.3+6
E
la*.
124
124
633660
1537660
3.9-4
i.l+a
E
18’.
I/*
620470
1531660
5. a-4
3.3+8
E
18’.
124
S/1
589140
1531660
9.1-4
a.?+8
E
la*.
124
t/1
633660
1587830
4.8-4
2.9+8
E
LB*
S/I
620470
1587830
4.3-5
5.4+7
E
18.
18.
130720
197700
E2
4.0-l
D
1224.4’
'D;,* S/I
2“ZPa
*p;,* I/P
116030
191100
Ml
1.3a+3
c
18..
101
1129.6c
5/2
5/*
130120
219250
MI
1.ao+3
c
i a*.
101.
124
968.8’
a/*
S/i
116030
219250
Ml
4,69+3
C
i a*.
101.
124
0
116030
Ml
2.23+3
C
18’.
101
0
130120
7.1+1
c
18..
101
0
191100
Ml
4.9a+3
c
18..
101
0
219250
Ml
1.6+3
c
1 a*.
101.
a6i.ac 765.0'
505.8c 456.1'
S/I 2rt2P"
's;,,
2‘*2PS
‘P;,*
S/1
1/*
6601.'
2*'2pS
'l&
116030
130120
Ml
2.60+1
C
18’
4640.'
2S22P'
‘P:,*
191100
219250
Ml
7.a+1
c
18-s
2.104
K,
0
36982000
103
124
124
116
TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti Configurations
1 (A)
191.1Eic
XVI
zs*zp*
JPz
I
(C-Sequence)
Energy
2~2~'
"0;
IeVe,*
55130
IP=9120000cm-‘(1131eV) (cm-')
Int
518890
190.11c
2
55130
580110
188.312
2
55730
586760
f/Type
4
250
8-4
A (‘-I)
8.8+7
Act
E
Rafercncel
18'.
61.
124.
134
29658
I
518890
95.
5
o-5
1.5+7
E
18..
64.
95.
124.
3
90-2
5.2+9
C
18..
60.
61.
62.
92b.
95.
101.
1 2 2O. 182.072
64.
5
5-2
6.6+9
C
18'.
124. 60.
101.
134 64.
118. 134
61.
62.
64.
9 5. 10 1. 11 8. 12 2’. 181.61C
29658
1'72.380
580110
0
2S2P
s
3P;
158.469
55130
2
580110
680910
55730
686780
6
150
20
100
3-3
8
6-2
8.5-3
5.1-2
1.3+9
6.4+9
3.1+9
1.35+10
D
C
D
C
124.
134
18..
61.
124.
134
29658
153.554
618450
29658
680910
1.94-2
30
3.00-2
1.63+10
8.5+9
C
C
101.
61.
62.
18*.
60.
9 2".
10 1. 118.
124.
134
18'.
61.
118.
122'.
18'.
60.
14.
9 2A.
122'. 154.133
64.
64.
64. 12 2’.
92".
101.
124. 61.
134
62.
64.
10 1. 11 8.
124
18’.
60.
118.
122’.
64.
18'.
60.
97.
118.
101. 124.
61.
134
64.
122'.
92'. 124.
134 152.114
29658
146.856
686180
0
0
6.0-3
680910
3.68-2
1.0+9
3.80+9
D
C
18’.
60.
118.
122’.
18..
64.
12 2O. 127.782
2S'2P'
SP*
55730
838340
250
6.8-2
4.63+10
C
18..
14.
123.654
29658
838340
100
5
2-2
2.21+10
C
0
0
838340
20
5
1-2
8.0+9
C
2S22P'
'so
2a2pS
'PO I
242180
943500
1.23-l
1.35+10
C
122’.
18'.
60.
74.
92A.
18'.
60. 92b.
122'.
141.948
2r'2pP
‘DI
2~2~'
'Do *
140660
845140
400
1
11-l
3.81+10
C
18'.
134
61.
221.51'
2s22pz
'D2
'Dt
212pJ
2S2P
224.16'
185.1C
2~~2~'
'D2
2s2pa
'PO I
'
'0;
140660
943500
350
1
2-2
5.2+10
C
118.
61.
62.
101.
124.
60. 95.
61,
124.
LB*.
60.
74.
9 26.
118.
122’.
140660
580110
2.9-4
6.2+7
E
101..
124
s
140660
586760
3.4-3
3.2+8
D
lOI*.
124
3P' 1
140660
680910
6.0-4
1.9+8
E
101’.
124
64.
118. 134
101.
60.
64.
134
62.
64.
118. 134
61.
62'.
64.
9 5. 10 1.
I1 a. 12 2O. . 2.'2~*
64.
134
62.
101.
6 9. 9 2'.
124.553
62.
124. 61.
124.
74.
18'.
134 118.
9 2A. 9 5. 10 I.
118.
92.
101.
60.
122O.
142.589
101. 124.
124.
122O. 119.284
64.
61.
12 4. 13 4
62.
64.
9 5. 10 I. 124.
134
117
TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti
183.11C
2
XVI
I
(C-Sequence)
*
140660
1P=9120000cm~‘(1131eV)
686780
5. 6-4
1
l+a
E
lOl*.
124
126.676
2r22p*
JP*
2s2p3
IDo 2
55730
845140
2-3
3
0+9
D
10 1’.
118.
122O.
109.432
2*22;2
3P,
2rzp3
‘PO I
29658
943500
9-3
2
2+9
D
10 1’.
122O.
359.8
2EZ2P2
SP*
2s2p3
5s" 2
55130
333660
6-4
8
I+6
D
18..
124
124
26’.
89.
101.
124
124 328.9’
29658
I
0
333660
6-4
5
a+6
D
1 a*.
89.
101.
838340
1271380
5-2
5
6+9
C
I a’.
61.
64.
124
838340
1313280
5. a-2
a
7+9
c
1 a*.
61.
64.
124
838340
1319740
2. 31-2
1
07+10
c
1 a’.
64.
124
3P 2
686180
1271380
54-2
3
51+9
c
I a*.
61,
64.
124
!69.36c
1
2
680910
1271380
97-2
2
75+9
c
1 a’.
61.
64.
124
159.6ZC
2
1
686180
1313280
36-2
1
03+10
c
18’.
61,
64.
124
680910
1313280
5. 4-4
1
4+a
D
I a’.
61.
64.
124
l?l.06c
2t2p3
“Pi
2P'
158.13’ 151.52'
0
L
678450
1313280
3. 78-2
3
39+9
c
1 a*.
64.
124
156.54c
I
0
680910
1319740
16-2
1
44+10
c
1 a’.
64.
124
3P 2
586160
1271380
2
58+10
C
1 a*.
61.
62.
146.061
2s2ps
‘Do 3
2P'
5. 9-2
64.
122’.
124 144.66'
580110
1271380
1
5+9
D
18..
61.
64.
124
144.405
578890
1271380
2. 95-2
6-3
9
4+9
c
la*.
61.
64.
122’.
136.393
580110
1313280
3. 11-2
1
14+10
c
61.
64.
122’.
61.
62.
64.
122’.
61.
62.
64.
122’.
124 18’. 124 136.160
578890
1313280
3. 26-2
1
95+10
c
1 a*. 124
135.202
580110
1319740
2. 68-2
2
93+10
c
1 a*.
124
163
049
2*2p'
'P' I
2P'
's P
943500
1556810
8.3-Z
6.2+10
C
18..
64.
122’.
228
93=
2S2PS
'PO I
2~'
'D2
943500
1380290
4.49-2
3.43+9
C
18..
64.
124
186
863
2~2~'
‘Do 2
2~'
'D 2
845140
1380290
1.39-l
2.66+10
C
18..
64.
122’.
126
004
2s2p3
‘Da I
2~'
'D 2
586760
1380290
20
183
2S22P2
'so
2~3s
'P;
242180
5200000
20
19
118
2s22p2
'DI
2~3s
'P;
140660
5200000
40
19
651
2S22P2
JP*
2~3s
'P;
55130
5144000
19
459
55730
5193000
19
369
29658
5193000
18
665
2SZ2PZ
'so
2p3d
'P;
242180
5612000
18
651
2s22p*
IDI
2p3d
'D;
140680
5502000
18
269
2~~2~~
'D2
2p3d
IF;
140660
5614000
18
141
2sZ2p'
IP*
2p3d
"P;
55130
5568000
122’.
124
124
124
81’.
95’.
124
81’.
95”.
124.
134.
20
a lo.
95”.
124.
134
60
al’.
95A.
I 24.
i 34
8lo.
95’.
124.
134
180
20
4.2-z
1.2+4
C
13.
13’.
100
40
81’.
95’.
124
124
13.
62’.
81.
95’.
124
13.
62'.
81.
9SA.
124
118
TABLES. Spectroscopic Data for Ti V-Ti XXII !ke page 82 for Explanation of Tables Ti
18.091
18.218
XVI
I
ZS'ZP'
I
'P,
2P3d
'0;
I
(C-Sequence)
IP=9120000cm-1
29658
5568000
(1131eV)
80
81'.
29658
5519000
18.116
P
55130
5557000
18.141
1
29658
5542000
13O.
124
5412000
13'.
124
5502000
13O.
124
18.757
2s'Zpt
'Dt
2p3d
'F;
18.350
ZS'ZP'
JP)
2p3d
'D;
19.501
2S2P
19.415
16.939
'
55130
124 62'.
81.
95'.
31
'D *
518890
5101000
60
81'.
95'.
124
2r.2PS
5s;
212P'('P)
3s
sP 2
333660
5484000
40
81'.
95'.
124
212pt
'D;
202~'('P)
3d
tF 3
578890
5859000
81'.
124
586760
5906000
62'.
124
s 2rZp'
18.154
2S2P
s
zr*zP'
'D;
ZrZpt(*D)
5s;
2s2p2
SP,
3370.6
('P)
2‘22P2
36
'F 4
586160
6025000
60
81'.
95'.
124
3d
'P 3
333660
5842000
60
81'.
95A.
124
'P*
55130
Ml
2.20+2
C
18..
101’.
124
29658
MI
4.47+2
C
18'.
101’.
124
242180
EZ
8.6+0
D
18"'.
124
55130
140660
Ml
2.43+3
C
18'.
lOlo.
29658
140660
MI
1.96+3
C
18’.
101’.
124
29658
242180
Ml
2.53+4
C
81'.
101’.
124
29658 0
0
990.3
21'2~'
1112.p
2S12P
*
'D2
z.*zp*
'so
3 P*
2stZp'
'Dt
898.'
I
2.688
13.
282~*(tD)
18.381
470.2'
40
124
'D;
18.799
3834.6
140660
13O.
95'.
ZS'ZP'
JPl
K.
21*2F.t
'so
140660
0
31230000
103
124
TABLES.
Spectroscopic Data for Ti V-Ti XXII
119
See page 82 for Explanation of Tables Ti a (A)
2oo.18c
XVI
Confipur*tions
2s*2p
*pi,*
I I (B-Sequence) Energy
212~~
*D,,*
level*
56240
IP=9850000cm-‘(1221eV) (cm-')
Int
f/Type
555860
1.2-3
A (s-1)
2.0+6
ACC
D
References
18..
23.
61.
61.
62.
64.
101.
64.
101.
124.134 197.838
S/1
I/'
56240
561700
4.01-Z
4.56+9
C
I a'. 123O.
119~902
161.91c
1,)
2SZ2P
*pi,*
0
*/*
2s2p*
*s,,*
56240
555860
6.11-2
613680
1.21-3
6.43+9
6.29+6
C
D
18'.
61.
101.
123O.
L/I
0
t/*
613680
20
8.37-2
2.60+10
D
I a*. 95.
134 62.
1a*. 23. 101.
148.438
124.
64.
92.
134
61.
124.
64.
96.
134
61.
62.
101.
64.
92'.
123’.
124.
134 141.601
21*2p
*p;,*
144.159
2S2PZ
X/2
*PI,*
I/*
56240
133150
56240
141010
20
30
4.01-2
9.89-2
2.56+10
3.25+10
C
C
18'.
61.
101.
123O.
62.
i a*.
30.
9zA.
101.
64.
92A.
124.
134
62.
64.
61.
123’.
124,
134 136.280
l/2
133750
l/2
1.41-2
5.19+9
c
I a*. 123O.
133.852
I/*
141010
3,’
20
2.11-2
5.32+9
c
61.
62.
64.
124.
I a*.
30.
92&.
101.
101.
134 61.
62.
64.
123O.
124.
134
56240
309980
7.1-5
6.5+6
E
I a*. 64.
S/Z
56240
333110
4.1-5
2.4+6
E
18.. 120.
124
3,'
512
56240
360960
3.5-a
1.4+7
E
I a’.
64.
101’.
322.6
I/I
1,'
0
309980
3.0-4
I.$+1
E
18..
26".
64.
300.1P
I/*
'/I
0
333110
1.2-5
4.4+6
E
4
1
C
394.1P
29*2p
'Pi,*
2r2p*
361.1
X/2
328.2'
166.225
2SZP'
'P*,*
2P*
‘P*,*
'2.' I/'
360960
962100
60
26-2
56+10
2/t
153.23
153.15f
S/L
,/*
124
18’.
64.
101’.
la*.
61.
62.
4
41-2
70-z
1
5
la+10
16+9
C
C
18..
61.
123.
124.
18:
61.
123.
124.
124
64.
62’.
64.
92’.
64.
92.
134 62'. 134
1 2.0 8 a 0 0
3
46-2
2
OO+lO
C
18..
64.
66’.
124
561700
1221100
2
59-2
I
II+10
C
18..
64.
66'.
124
148.83T
X/2
*/*
555860
1221100
1
13-2
3
46+9
C
la'.
64.
66'
*D* 1,'
561700
1078800
1
14-2
3
05+9
C
la’.
64.
66O.
124.
64.
66’.
124.
66.
134 lSl.23p
'/I
‘/I
555860
107aaoo
3
62-2
6
6+9
C
la*. 134
lag.663
S/2
181.55'
I/I
2,'
6/P
561700
555160
ioaasoo
1088900
5
I
20-Z
30-Z
9
1
6+9
64+9
C
C
18..
64.
124.
134
18..
64.
123'.
66'.
124.
134
301.40=
ZSZP'
*p*,*
ZP*
92’.
134
555860
2p'
*PO l/2
4
124 101.
S/2
ID*,*
2p*
962100
10
124.
101.
5/*
2x2~~
*D,,*
309980
962100
124
64.
150.15T
193.36'
ZrZp*
3/*
333170
101’.
120.
123’. 158.94
26'.
*Do 2/t
141010
1018800
1
1-3
a
7+7
D
18..
124
292~47c
*/*
L/t
747070
1088900
5
o-2
2
6+9
C
18’.
64.
124.
134
289.16'
I/f
*/*
733750
ioiaaoo
3
44-2
1
31+9
C
18..
64.
124.
134
TABLES.
Spectroscopic Data for Ti V-Ti XXII
See page 82 for Explanation of Tables Ti A (A)
XVI
Conilgurations
I I
(B-Sequence)
Energy
(cm-‘)
1nt
i/Type
A (SC’)
ACC
Reference*
*Pa ,/*
747070
1208800
8.2-3
2
3+9
D
16..
64.
124
210.51T
l/2
l/P
733750
1206600
6.6-2
9
V+V
C
18’.
64.
66’.
124
208.07T
S/O
s/*
747070
1227700
7
2+10
C
18..
64.
66’.
124
202.46c
I/I
S/I
733750
1227700
4.0-3
3+8
D
18’.
64.
124
fP’ 1/2
673680
1208800
1.77-3
38+8
D
18..
66.
124
S/Z
673680
1227700
3.78-Z
84+9
C
18..
64.
66
*Do I/Z
673680
lo78800
5.12-2
18’.
64.
124
124
216.54’
2r2p*
2S2P2
2P3
levels
IP=9850000cm~‘(1221eV~
*p*,*
2p’
*s,,* */*
246.79’
16.939
2.2P2
*s,,,
2S22P
‘Pi,*
16.90
16.624
2p*
2SZP
(‘PO)
3P
*P 5/*
t/t 2S’2P
*p;,,
16.561
56240
*/* 2~2~
(*P’)
3~
*D*,*
1/Z
3
ll3+9
5960000
62’.
0
5917000
62
6072000
6 2’.
0
6038000
62
56240
5/Z
v-2
95.
17.920
2~2~~
*D*,*
2~2~
(*P”)
36
*D;,*
561700
6142000
6 2’.
17.715
ZS~P*
*D*,*
2~2~
(*PO)
34
*F;,*
555860
6201000
62
561700
6234000
62’.
124
17.630
5/*
1/*
12 4
17.28
2S2P2
‘Ps,*
2~2~
(*P’)
3d
‘Pi,,
360960
6148000
62’.
124
17.30
2S2P2
‘Ps,*
282~
(‘Pa)
3d
‘D;,*
360960
6143000
62’.
124
17.587
2S2P2
*p*,*
252~
(‘PO)
36
*D’ S./Z
747070
6433000
62’.
124
17.150
2s2Pz
*D*,*
2~2~
(‘PO)
3d
*POI/*
561700
6 3 9.3 0 0 0
62’.
124
1a.3ac
28’3s
2S,,2
18.1gc
17.3VC
2r*2p
‘Pi,*
2s*3d
*D*,*
17.36’
S/Z
5/2
17.22’:
l/Z
3/*
13,4sc
2S22P
*pi,,
13.3sc
1777.95
2.667
56240
5497000
2.0-Z
5497000
2. o-2
4
56240
5807000
6
4-2
1.41+12
D
134.
56240
5815000
5
8-l
8.6+12
D
23.
124.
5.307000
6
5-1
7.3+12
D
23.
134*
74913!lo
4.3-3
3
2+11
E
134.
7491300
4.5-3
1
6+11
E
97.
134.
C
16’.
89.
0
l/P
28’4s
tS,,2 1/Z
I/I 2.‘2P
‘Pi,*
29’2P
K.
*pi,*
0
56240 0
0
0
56240
Ml
8+11
D
134.
O+ll
D
134.
1.6+3
37490000
124
134’
119’.
124
103
Atomic
Data and Nuclear
Data Tables.
Vol. 34. No. 1, January
1986
121
TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti
XIX
IP=10860000cm~*
(Be-Sequence)
0
589692
250
1.75-l
(1346eV)
1.42+10
B
18.. 64.
44.
45.
66.
82.
61.
62.
86.
92A.
9 5. 9 6. 10 1. 11 8O. 124.
328.3
2s2
's 0
2r2p
“P;
0
304600
6.6-4
1.4+7
E
18.. 95.
305.01
2s2p
'P;
‘2~~
ID 2
589682
917580
6-78-2
Z-92+9
B
134
26’. 96.
44.
45.
101.
IS’.
44.
45.
66'.
82.
101.
18’.
44.
45.
6 6'.
101.
64.
124
61.
64.
124.
134
194.37
218.50
2S2P
2S2P
‘Pi
3P”?
2p2
2P2
's 0
9P 1
589692
341240
304600
212.22
341240
206.10
304600
199.89
1104170
804890
4.28-2
150
775810
832410
1.55-2
2.16-Z
150
804890
4.42-2
1.69-2
2.27+10
3.61+9
9.60+9
7.03+9
2.82+9
B
B
B
B
18..
44.
45.
66'.
80.
9ZA.
124.
134
18’.
45.
124.
134 61.
64.
44.
45. 9ZA.
134
82.
92.
64.
101.
66'.
82.
45.
61.
64.
18’.
18’.
64. 134
61.
66O. 124.
61.
124.
101.
61.
64.
101.
66’.
124.
134 133.54
288130
189.47
115.33
304600
2S2P
"Pi
2~'
163.1C
17.181
2~’
17.076
2S2P
804890
832410
50
100
8.8-2
3.06-Z
4.24+3
3.41+9
B
B
16..
44.
45.
66O.
82.
3f.
134
18*.
44.
45.
6 6O.
82.
32A.
124.
134
66’.
347240
917580
6. a-3
1.5+9
D
18..
304600
317580
7.7-4
1.2+8
E
18*.124
‘D 2
2p3d
‘D;
917580
6738000
‘P;
2s3d
IDI
589632
6445900
5.3-l
7.2+12
D
64.
101.
124.
‘D 2 *
61.
61.
64.
101.
101.
124
9. 1 o”.
69.
124
9. 1 o”.
62.
63.
112..
124
16.514
2SZP
"Pi
2r3d
'DJ
341240
6402700
6.3-l
].I+13
D
10'.
6 2. 6 3.
L 12'.
124 16.43
2
304600
6389200
5.5-l
8.1+12
D
9. 10.
6 2O. 6 3. 11 2’.
124 16.414
1
288190
6380600
7.5-l
6.2+12
D
9. 1 rJ”.
69.
112*.
16.802
2~'
'D t
2p3d
'F;
317580
6871700
3. 1 o".
62.
63.
16.811
2~~
'D 2
2P3d
'P;
317580
6866000
9. 10'.
69.
124
16.736
2PZ
3P *
2p3d
"0;
832410
6801600
9. 1 o”.
62.
63.
1.1-l
1.2+13
124 16.119
I
332410
6813600
9. 1 o”.
69.
124
16.71
2
804890
6789100
9. loo.
62.
69.124
124
124
112..
122
TABLES. Spectroscopic Data for Ti V-Ti XXII Seepage 82 for Explanation of Tables Ti
XIX
Configurations
A (A)
IP=10860000cm-’
(Be-Septtet~~e) !iner(ly
I eve1
s (cm-‘)
1nt
f/Type
(1346eV) a(*-‘)
11.016
ZSZP
tp;
2s3r
ss,
304600
6160600
16.116
ZSZP
‘P;
2~3~
‘Dt
589692
6110900
2.2-l
3
4+12
15.742
262P
SP;
2~3~
‘Dt
341240
6699700
1.1-l
2
1+12
ACC
References
9. 1 o”.
69.
124
D
9. 1 o”.
69.
112’
D
9. 1 o”.
62.
69.
112’.
124
15.671
2r2p
tp;
2~3~
‘Pt
304600
6695800
9. I o”.
69.
124
15.138
2S2P
tp;
2~3~
$8,
341240
6701300
9. 1 o”.
69.
124
15.666
2rt
‘s 0
2~3~
‘P;
9. 1 o”.
62.
69.
0
6303200
6.4-l
5
7+12
c
124
2344.6
212P
‘Pi
2S2P
tp;
304600
341240
Ml
1
00+3
c
69.
lOlo*.
I24
104’.
TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti Configurations
1 (A)
309.012
11’2s
Is,,*
(Li-Sequence) Ensray
lS'2P
259.272
lol.gc
XX
*pi,*
f/f
levels
(cm-‘)
385695
lnt
f/Type
2.12-2
5.86-2
(1425.9eV) A (s-1)
1.49+9
2.54+9
ACC
B
B
References
18’.
4 3. 15.
115.
118’.
18’.
43.
115.
118O.
*Pa S/I
8148000
9130000
3.1-2
3.00+10
c
I'.
124
10l.BC
I/?
I/Z
6741000
9130000
2.61-2
3.36+10
C
I*.
124
101.8’
2,'
2,'
8141000
9130000
5.2-3
3.4+9
D
I'.
124
4d
4Q
64 .700c
*%/z
'p;,'
56
8732000
9140000
5.82-l
I-97+11
c
106'.
124
'/I
S/P
8732000
9?40000
5. a-2
3.9+10
D
106..
124
S/1
5,’
8732000
9140000
5.24-l
2.37+11
C
106..
124
8132000
10278000
1.41-l
1.12+11
c
106..
124
2,’
2,'
8732000
10278000
1
2.2+10
D
106..
124
64.691C
2,’
S/P
8732000
10278000
1-27-l
1.35+11
c
106*.124
4Q
*p;,*
6d
*Dz/P
75,
64.100C
53.8'
4P
5Q
IP=11501000cm~*
323549
2/t
123
*P' L/1
8132000
10601000
6.13-2
1.1+11
c
106'*.
124
l/2
l/2
8732000
10601000
6.1-3
1.4410
D
106'*.
124
53.2'
1,'
5,)
8132000
10601000
5.51-2
8.8+11
c
106'*.
124
gd
8732000
10812000
3.28-2
4.73+10
c
I'*.
124
48.1'
S/2
l/2
8132000
10812000
3.3-3
9.6+9
D
I'*.
124
41.8T
S/P
5,'
8732000
10812000
2.91-2
5.8+10
C
I’*.
124
41.210'
4Q
*pi,*
'Dw
4-2
53.8'
48.1'
Id
*Da/z
6616000
8132000
1 .24-2
5.6+10
C
I*.
124
41.123'
1,'
I/’
6610000
8732000
1. o-2
6.3+10
C
7’.
124
47.123'
2,'
3/P
6610000
8132000
2.1-3
6.3+9
D
I*.
124
46.030'
3d
3Q
4P
*4/z
*Dm
'P' '/I
6574000
8141000
5.8-2
1.8+11
C
106..
124
45.996'
S/P
*/*
6574000
8148000
5.3-l
l.l+12
B
106‘.
124
45.650'
I/'
2,’
6556000
8747000
6. O-l
9.6+11
B
106*.
124
I/P
6466000
8732000
4. 2-l
4.8+11
C
106..
124
*Pa S/1
44.601'
39
*s,/*
32.124'
3d
*%t
4d
*pi,*
4Q
*p;/*.
‘Dm
6616000
9730000
5-3
2.4+10
D
I*.
124
32.056'
2,)
I/*
6610000
9130000
2. l-3
2.7+10
D
I*.
124
32.056'
S/i
2,'
6610000
9730000
4. o-4
2.6+9
E
7*.
124
9.2+10
D
106’.
124
5.49+11
C
106..
124
1 C
106’.
124
124
31 .591C
5Q
6514000
9140000
4-2
31.586'
2,’
6514000
9140000
1 . 23-l
31.411C
1/*
6556000
9140000
37-l
4.64+1
2,'
6466000
9130000
07-l
2.54+11
C
106'.
3Q
*pi,*
30.868'
3s
*s*/*
21.4T
3d
*Ds/z
5Q
*p;,*.
*P* 2,'
6616000
10214000
9. 2-4
1.20+10
D
I'*.
124
21.3T
*/*
*/*
6610000
10214000
8-4
1.40+10
D
I0 ‘,
124
21.3'
S/l
2/t
6610000
10274000
1. 6-4
1.4+9
E
I'*.
124
6514000
10218000
5. 6-3
5.1+10
D
106..
124
10276000
5. 01-2
3.05+11
C
106..
124 124
21.001'
3Q
6~
*pi,*
6d
*“z/z
27.000c
S/1
S/2
6574000
26.810'
I/I
2/t
6556000
10278000
5. 60-2
2.58+11
C
106'.
z/z
6466000
10214000
4, l-2
1.5+11
C
106O*.
124
6514000
10601000
2. 9-3
3.1+10
D
1060’.
124
26.2T
39
*s,/*
24.9'
3Q
*pi,*
6~
*P;/z.
76 *Dz/z
8 6. 9 5. 124.
134
86.
95.
124.
134
TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables
124
Ti 4 (A)
24.2'
Configurat~onr
XX
(Li-Sequence) Energy
IP=11501000cm“ levels
(cm-‘)
In1
(1425.9eV)
f/Type
A (.C‘)
References
ACC
6556000
10601000
2.9-Z
1
57+11
c
106".
124
6574000
10601000
2.61-Z
1
a9+11
c
106"'.
124
6466000
10600000
2.48-Z
9
4+10
c
106':
124
6574000
10812000
1.7-3
2
O+lO
D
7O'.
124
6556000
10812000
1.7-2
1
lCl1
c
7".
124
6574000
10812000
1.6-2
1
2+11
c
7O'.
124
6466000
10815000
1.54-Z
6
5+10
c
7'*.
124
1.76-Z
8
7+11
c
1. 10.
385695
6466000
124. 16.218
16.067
16.049
323549
6466000
385695
6610000
6616000
385695
1.77-Z
6.8-Z
6.1-l
4
1
1
5+11
8+12
05+13
c
B
B
1. IO.
6610000
6.71-l
8
84+12
B
134.
1 oO.
43.
124.
134
1 o”.
1 o”. 106'.
0
15.253
6556000
1.25-l
3
58+12
B
43.
124.
106’. 323549
4 3, 80’.
1 o”.
95.
134’ ao”.
95.
97-e
43.
80.
124. 43.
106’.
95.
97’.
134 80.
124.
95.
97;.
134
43.
80.
95.
106'.
1 oO. 43.
80.
95.
106'.
95.
106*,
95.
106..
95.
124
124.134 0
15.211
6574000
2.43-l
3
50+12
B
124.134
8748000
385695
1.1-l
3
4+12
B
1 Do. 80. 124.
11.872
385695
8747000
323549
8747000
11.452
0
8732000
1.2-2
2-l
5
6+11
2.8+12
C
B
134
106.
1 o”.
80.
124.
134
1 oO. 80.
9. 9-2
134’
10.690
9140000
385695
4. 05-Z
1.5a+12
c
1 o”.
8 0. 9 5. 10 6’.
124 IO.690
385695
9740000
4. 5-3
2.6+11
D
10.620
323549
9740000
4. 53-2
1.34+12
c
106. 1 o”.
80.
95.
106..
95.
106’.
124
0
10.278
385695
9730000
10278000
4. o-2
98-Z
a.4+11
8.6+11
c
C
1 o”.
80.
124.
134
1 o”.
80.
95.
106..
80.
95.
106..
124 IO.109
385695
10278000
2. 2-3
1.4+11
D
10.046
323549
10278000
2. 21-2
7.3+11
c
106’ 1 o”. 124
10274000
2. 1 l-2
4.95+11
c
10’.
106’.
124.
134
10600000
24-2
3.1+11
c
1 o”.
106..
124.
134
TABLES. Spectroscopic Data for Ti V-Ti XXII See page 82 for Explanation of Tables Ti Confipuratlcns
d (A) 9.246
XX
(Li-Sequence) Enerrv
2s zst/2
IP=11501000cm~‘(1425~9eV) levels
0
125
(cm-')
I"t
f/Type
A (P-'1
Act
References
10815000
1.7-3
2.0+11
D
I’.
10’.
124
9.188
385695
10601000
1.13-2
5.26+11
C
lll6’*.
124
9.788
385695
10601000
1’ 2-2
8.6+10
D
lOB"*.
124
9.133
323549
10601000
1.26-Z
4.45+11
c
106'*.
124
9.591
385695
10812000
1.9-4
5.7+10
E
P ‘.
9.591
385635
10812000
7.1-3
3.4+11
D
7..
9.534
323549
10812000
6.0-3
2.9+11
D
7 *, 1 Do.
9.128
2s
*St/*
9p
‘p;/*.
3,2
9.549
2P
*pi,*
9d
'D J/Z.
5/2
2.6355
2P
2.630C 2.6295
2P
124 12 4
10955000
10’.
124
385695
10960000
10’.
124
*PO 3/2
385695
38329000
1.9-l
1.2+14
D
IO.
10,
73.
124,
130'
t/2
323549
38319000
3.1-l
1.5+14
D
lo.
10.
13.
124.
130’
323549
38334000
2.8-l
2.7+14
D
73.
385695
38416000
3.3-l
3.2+14
D
I.
103.
124.
2.6319
*p;,* 3/2
lS2P2
zP,,2 I)/*
0
124 10’.
124. 10.
134.
AtomicDataandNuclearDataTables,Vd.34.No.l.January1986
134' 73’.
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
TABLES. Spectroscopic Data for Ti V-Ti XXII Seepage82 for Explanation of Tables Ti Confisurationn
1 (A) 2.6101
XXI
1s*
‘s 0
(He-Sequence) Energy
lS2P
‘P;
levels
0
IP=50401000cm~‘(6249~00eV) (cm-‘)
38301120
1nt
f/Type
A (3-l)
Act
7.35-l
2.40+14
B
Reference*
1. 10’. 103.
2.6204
I*2
lS2P
“Pi
‘s 0
lS3P
‘P;
lS2S
‘so
lS2P
‘Pi
182%
Ss,
lS2P
“Pi
lS2
51i9.83c
‘s I
14.521’
lS2S
‘so
14.203’
1s2s
Js,
0
0
38131630
38125540
3.46-2
1.12~13
B
I.
32’.
73.
95.
32’.
73.
95.
124
IO’.
103.
124
45018280
1.41-l
6.35+13
C+
21’.
95.
38307120
3.29-2
2.28+8
B
23.
105..
124.
124
37923330
38114090
4.01-3
2.93+8
B
23.
105..
124
1
I
37923330
38125540
1.22-2
3.31+8
B
23.
105..
124
1
I
37923330
38180210
2.69-2
7.07+8
B
23.
105..
124
38131630
45018280
3.73-l
3.93+12
c
23.
124.
23.
124.
134’
1.24-l
4.10+12
C
23.
124.
134.
23.
124.
134’
lS3P
‘P;
lS3P
3P;
37923330
44964290
14.197c
I
I
37923330
44967230
14.164c
I
2
37923330
44983570
126
134.
134.
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
TABLES. SpectroscopicData for Ti V-Ti XXII See page 82 for Explanation Ti
XXI
I
of Tables
(H-Sequence)
IP=53440800cm-’
0
40054190
0
40141335
4.16-l
(6625.81eV)
2 3’.
95.
23.
103’.
40054190
124
40141335
124
40056141
124
2p;/r 1/*
47500810
124
41526101
124
3s
*S 1/P
41501659
124
34
*D J/Z
47526656
124
S/2
47535163
124
50103648
124
50114539
124
4s
50103982
124
4d
50114519
124
50118110
124
50118104
124
50119890
124
127
103’. 124
124
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
REFERENCES FOR TABLES AND COMMENTS
1. E.“.
Aglirskii,
Faenov:
V.A.
lithium-like
V
Zakhharov,
transitions
ions
S.A.
from
contained
Pikuz,
doubly
in a laser
and
excited
plasms”,
A.Ya.
17.
levels
of
JETP Lett.
Ali
18.
and
H.U.
Joy:
4 S-3p2(%,3d Holec.
“Oscillator
strengths
4P transitions Phys.
Atom.
in
2 (1970)
ions
Ar
to Fe XII”,
IV
and
Ayner
E.
probabilities (1977) 4. 8.
in
of
the
first-row
.I. Phys.
(1979)
“Relativistic
effects
MB isoelectronic
P.D.
: “Lifetime
spectroscopy”,
on
sequence”.
5. D.R.
Beck:
Dumont.
Opt.
sot.
transition
in
transition
Phys.
Gsmir.
Ti
Am. 3
"Many-electron
quadrupole
H.P.
measurements J.
Bhatia,
U.
populations
effects
III,
Rev.
A u
N. Grevesse. IV and
(1980)
464-466.
in
operator
and
probabilities”.
z
(1980)
7. E.
Feldman.
of highly
20.
Phys.
and
ionized
Yheoretfcal
isoelectronic
V
L.
Li
R.U.
Datla.
and
B.
beam-foil
using
21.
L.
forms
Rev.
for
electron
&3 (1981)
A
22. L.
159-171.
G.A.
Doschek:
“Atomic
tot-k
plasmas”,
data
and
J.
strengths
(3~2~22)“.
Astron.
in
and
A 16
line
strengths
(1977)
263-272.
Desclsux:
"Electric
probabilities
through
F”,
dipole.
of ions
Atom.
Data
qudrupole,
isoelectronic
Nucl.
Dsta
to
Tables
24
Astrophys.
(1968)
Cohen,
U.
Cohen
Feldman,
and
Griem:
Rev.
“Spectroscopic
12 (1975)
A
S.O.
Kastner:
sequence
from
mses~renents
140&1418.
“Spectra
of
SC XIII
to
ions
in
the
Cu XXI”,
J.
Opt.
331-334. and
by a vacuum
J.H.
spark”,
W.E.
isoelectronic
Phys.
23.
24.
lithium
Suppl.
and
isoelectronic
Am. E
H.R.
Phys.
U. Feldman. I
and
plasmas”,
Sehring:
sequence
Underwood:
J. Opt.
from
“Study
Sot.
Am. s
“Uavelengths
and
K IX
Un XV”,
through
of
the
(1968) levels
of J.
X rays
843-846. the
Opt.
Na I
Sot.
Am. 66
899-904.
level
Appl.
the
spark
Cohen.
produced
Ti for
oscillsror
sequence
and J.P. transition
atoms,
Cilliers,
U.A.
Sot.
1464-1480.
niemont:
mergies Rev.
111-200.
(1976) 6. A.K.
Rim,
dipole
fluorine
Saudinet-Rohinet,
T-K.
on V~CUM
821-832.
niemont
Johnson: "Excitation sequence”, Phys.
1552-1557.
Luc-Koenig: the
Cheng, magnetic
19. 3. H.
K.T. and
and wave-lengths of
K.T. Cheng snd U.R. in the MB isoelectronic
_?f?
g-10.
N.A.
3P’ B:
S.M.
af
T f and
(1974) 2.
Boiko.
“Identification
E
C. Corliss XXII”, J. R.D. 2
(1977)
and Phys.
Cowan: (1968)
J. Sugar: “Energy levels Chem. Ref. Data 8 (1979)
“Theoretical
study
of titeniu.. l-62.
Ti
pq -p m-l I spectra".
of
I through
J. opt.
Ti
SK.
Am.
924-933.
489-504. 25. W. 8. E.
“Theoretical
Bienont:
Astron.
Astrophys.
9. V.A.
Boiko,
Be-like plasmas”,
10.
J.
Boikc,
V.A.
Suppl.
S.A.
ions
Pikuz,
U.I.
nuclear
Phys.
8: Atom.
ions
Transfer
19
Safronova,
and
from
ions
and
Phys.
AeTa.
s
(1977)
J.
26.
of
and
8. Denne
L. Brillet,
“.I.
intrsshell
transitions
27.
spectroscopy
and in
of
Phys.
R.J.
Dewhurst.
soft
X-ray
solid 28.
A.S.
F-like
“Theoretical
Safronova:
ions”,
Opt.
study
Spectrosc.
3
and
snd
B.C.
isoelectronic
Pawcere: ions”,
“The
2p4-2p33d Not.
Non.
R.
transition sstr.
29.
array
Sot.
178
Doschek,
G.A.
Bromage
and
isoelectronic
and B.C Paucett: spectra”,
“The
2p2-2p3d
Ilon.
Not.
transition R. astr.
array Sot.
and
from
highly E
(1976)
lines
of Al
VII,
Al
IX.
and
3442-2443.
G.J.
Pert:
plasmas
Phys.
“Investigations
produced
8: Atom.
U. Feldman. 2p4-2p33s”,
Doschek,
G.A.
30.
G.A. the
G.E.
for
Astrophys.
by
of XW
picosecond
pulses
y
2301-2310.
Molec.
Phys.
(1975)
Cohen:
"0 I isoelectronic
and from
and
L.
J. Opt.
Sot.
Am. 63
(1973)
sequence:
1463-1466.
U.
Feldman,
of
the F I. 0 I (1974) 417-422.
J. E
R.D.
Cowan, and
end
N I
L.
Cohen:
"Transitions
isoelectronic
sequences”,
of Fe
(1977)
591-598. 13.
A 29 (1984)
Khan,
J.
zs22pk-2*2pk+I
Bromsge
XIX
N.A.
targets".
"Intercombination
Rev.
emission
Astrophys. C.E.
approximation Astron.
of
(1980)
231-234.
12.
"Brett-Paul1
up to Fe XXII”,
Spectrosc.
Quant.
11-50.
Safronovs,
Trefftz: ions,
and E. Hinnov:
transitions Il.
E.
boron-like
Al X ions",
laser-produced
1253-1263.
“X-ray
plasmas”,
“Spectra
Paenov:
34 from
Pikur:
S.A.
laser
Dankwort
ionized
(11~2>26,“.
93-98.
Z-22,-----,
Molec.
(1978)
sodium-like
285-290.
charge
Fsenov,
A.Ya.
for
31 (1978)
with
multiply-charged Radiat.
f values
of Fe XXI
Daschek.
31. G.A.
178
(1977)
for
allowed
ls2p
Astrophys.
ions”.
U. Feldman.
B I isoelectronic Doschek,
lines
of
end L.
sequence",
U. Feldman,
highly
J.
ionized
Cohen: J.
Davis,
iron”,
“Transitions
Opt.
Sot.
and R.D.
Phys.
2s22p-282~’
Am. 65 Cowan:
(1975) "Density
A 12 (1975)
Rev.
in
463-464. sensitive
980-966.
605-610. 32. G.W.F. 14.
R.T.
Brow,
and
nd-n’f
transitions
J. 176
(1972)
J.-L.,,. in
Carter: the
“Oscillator
helium
strengths
isoelectronic
sequence”,
P.
Burkhalter.
Schneider: Phys.
16.
B
"Unified relativistic 2 1 So frequencies and
Phys.
Rev.
As
(1979)
theory
for
ls2p rates
transifion
'Pl-1s in
'
'S o and
helium-like
1387-1397.
267-270. 33. P.D.
15.
Drake: lP1-1s
J. “X-ray
(1979)
P.G. Burthalter, satellite spectra
Davis, line
J.
Rauch,
spectra
from
W. Clark,
G.
exploded-wire
Dshlbocka, arrays”.
end J.
and J.
U. Peldman: Opt.
Sot.
Appl.
beam-foil
spectroscopy
34.
"L-series Am. 69
Garnir.
q ensurements
(1981) R.D. Cowan. and Fe XVI”.
H.P.
"Lifetime
705-711.
L. Cohen. in Ti XII
Dumonr,
R.
N.A.
in
1133-1140.
Kbrahim,
plasmas”,
128
Bsudinent-Robinet, IV-VII
between
400
Usi"8 and
and
M.
transitions
BOOA”.
J.
Kapenyak: observed
Opt.
Sac.
in
Am. 2
502-503. M.C.
“Space-resolved
(1979)
Y. Ti
Richardson.
extreme J.
Appl.
Phys.
G.A.
ultraviolet s
(1980)
Alomic Date and Nuclear
Doschek. emission
and from
U.
Feldman:
laser-produced
182-189.
Data Tables.
Vol. 34. No. 1. January
1986
Grotrian Diagrams for Ti V-Ti XXII
K. MORI et al.
REFERENCES FOR TABLES AND COMMENTS
35.
8.
Edldn:
Zeits.
"Ha
f.
I-ehnliche
Fhys.
E
Spektren
(1936)
der
Elemente
Kalilla
his
53.
Kupfer",
B.C.
Favcett.
XII
621-635.
t”
z 36.
B.
Edld"
bis
and
Chrom
Zeits. 37.
Tyrb:
"Die
K X, K XI,
f.
Fhys.
8. Edlln: XI,
F.
Ca XI,
x
(1936)
SC XII.
de?
‘Ii
Ele.e"te
XIII.
” XI”
+I" XIV,
A.“.
Fe XVIII
(1967)
der
Elemente
Titan
Co XVI",
und
his
Zeits.
54.
Cr XV”,
Cobalt.
Ti
Fhys.
-103
f.
and
their
F.A.H.
Saunders:
isoelectronic
“New
sequences”,
spectra
Froc.
of
Fe
Fhys.
Sot.
863-867.
B.C.
Fawcett
elements".
Fe Xv und
Gabriel. and
Kaliua
206-213. Spektren
Cr XIII,
L-Spectre"
Ca XII,
(1936)
“Mg I-ahnliche
" XII,
optische"
continued
55.
B.C. of
N.J.
N.J.
iron
period
"Highly
Sac. 91
(1967)
Peacock,
and
of lines
in
strengths
the
Peacock:
Fhys.
Fawcett,
oscillator
536-541.
and Proc.
elements",
ionized
spectra
of
the
973-975.
R.D. the
Cowan:
far
J.
Fhys.
of
the
"Classification
and
ultra-violet
spectrum
vacwm, 8: Atom.
Ilolec.
Fhys.
I
(1968)
295-306. 38.
8.
Edldn:
"S 1 ahnliche
V VIII,
Cr IX,
Spektre"
der
Mn X und Fe XI”,
Elemente
Zeits.
f.
Titan
Fhys.
bis
m
Eise".
(1937)
Ti VII. 56.
188-193.
B.C.
Fsveett:
ionized 39.
B.
Edlen:
Cs IV, w 40.
"Zur
Kenntnis
Ti VI.
(1937)
der
V VII,
Cl I-ahnliche
Cr VIII,
&h, IX,
Spektren
Cl
I,
Fe X und Co XI”,
A II,
Zeits.
Fhys.
57.
407-416.
8. EdlB":
Solar
B.C.
Favcett:
t”
“Z-dependence
2~~2~4”.
of
Physics
the
26
level
(1972)
intervals
in
2s22p2,
2s22p3
B.
Edld"
and
Ti
III".
Physics
J.W.
AM-R4
and
356-367.
B.
Edldn:
12
“The
spectrum 21-32.
of
doubly
ionized
titani*.
"I%e
transition
38-3~
the Ns I iso-electronic 43.
end
sequence".
3p-3d Physica
B. Edldn:
"Accurete
semi-empirical
formula
Li
spectra”,
Fhysica
19
I-like
Scripta
and the Scripta
for
(1979)
ionization s (1978)
the
energy
energy 565-574.
in
struct"re
B.C.
of
60.
255-266.
B.
Edldn:
"A critfcal
specfrs”,
Physic8
survey Scripte
the
of
2
Iw
(1979)
configuration
in
B.
Edlen:
“A
critical
configurations Fhysica
compilation
2sm2pk(m=2.
Scripta
11
of
61. energy
1. 0) of P I-,
(1981)
levels
0 I-
B.C.
J.O.
Ekberg
and L.A.
in
the
and Be I-like
SC and
Ti
(1970)
283-297.
isoelectronic
of
with
F I.
Si
the XDV Spectra
I end Al
I”,
Fhys.
J.O.
Ekherg:
of
Fhysice
K,
Ca,
Scripts
48.
3.0.
Ekherg
Physics 49.
50.
Fhysica and
Seripta
C.“.
Erickson:
Ref.
Data
A.N. “‘.3p
state
(1974)
(1975)
"Energy
Erm"laev
the
! Q I-like
4 (1971)
Svensson:
L.A.
12
5 (1977)
corrections
of Scripta
spectra
K VIII,
Ca IX.
64.
and
term
system
B.C.
16
Faweett
**cr.
sm.
B.C.
Fsvcett:
one-electran
atcs.8".
J. phys.
65.
Chem.
end
M.
s of
two-electron
"Ionization
p"te"tial8,
carrections ions”,
J.
in Fhys.
the
radiative graund.
B: Atom.
66.
” Is38
MC&C.
and
170
B.C.
Fhys.
1
the E
"wn
I and
(1965)
“Spectra
of
scandium,
fluorine
I
isoelectronic
titanium.
vanadium.
sequences",
and srgo”
Froc.
Fhys.
n-1 M
tra”sitions
in
B.C. of
Fawcett
the
isoelectronic
calcium
Fhys.
Hayes:
4 (1971) "New
iron oxygen
981-985.
classificario"s spectra",
Peacock:
and
nitrogen,
"Scwtral
of
J.
Phys.
B:
classifications
seq~nce”.
J.
Fhys.
B: Atom.
1149-1153. classifications
of
transitions,
emission
2128”.
Atm.
lines
due
Data
Nucl.
135-164.
R.W.
Hayes:
“Classificatio”
(1975)
of spectra
to Fe solar
flare
of K, ca,
lines”,
Hon.
observations
of
SC.
Not.
R.
185-197. of Ca X and J.
Opt.
spectral
Sot.
Am. 66
(1976)
calcium,
632-633.
B.C.
Sot.
oscillator
transitions
and for
N I.
Fawcett, t"
B.C.
‘3 I series,
G.E.
strengths 2s22p”
2~2S”.
Bromage,
4 transitions Sot.
Favcett. the
Fawcett
fram
?lg IX (1981)
in
for
Atom.
Date
“+l
2s22p”-2s2p
“forbidden”
and
R.W.
Hayes:
Fe XVII
and
isoelectronic
c
(1979)
A.
Ridgeley.
and
shell
belonging
second J.
B.C. 3
“Theoretics1
Nucl.
trsnsitions
and Be I.
Data
-22
Tables
Opt.
Sac.
spectra
spectra”,
due Mon.
t” Not.
113-116. A.T.
“otter: t"
of
between
transitions argon
and
1349-1354.
“Analysis
and F XI.
“Spectra
elements
Am. 70 (1980)
and A. RidBeley: to Fe XXIV
"Observed
of n-3
XII”,
J.
to n-4
Fhys.
spectra
8: Atom,
for
Holec.
ions Fhys.
203-208.
1087-1089. 68.
52.
due
473-489.
vanadium”,
199-207. Fawcett:
R.U.
between of carbon,
V and isoelectronic 2143-2151. and N.J.
“Spectrum
C I.
within
67. 51.
period
isaelectronic
and titanid’.
R. astr.
Jones:
singlet-triplet
and
Fawcett: 2s2p n+l-2p”+2
n-3
831-869.
and
and
Calanti.
(1975)
B.C.
(1978)
of
Cowan.
V and Cr and extrapolation
B I,
of Ti XII”,
116-118. levels
lines
trsnsitions”.
SC X
101-109.
“Spectrm.
emission n-3-3
2 63.
"Analyses
and Ti XI",
other
those
Holec.
“Wavelengths and “+I and 2sZp”-2p”+’
Tables
scandium, 47.
8: Atom.
1 (1974)
the
with
to Fe XXIII
Fawcett:
Data 62.
“Analyses
highly 2 (1970)
spectra”,
593-602.
Svensson:
".
Fe XIX
2s22p”-2s2p
Ti. 46.
of Fhys.
Be l-like
129-137.
to 45.
Fhys.
K.D.
Favcett, the
of
and
in
ionized Ni, Co. Cr. “olec. Fhys. 2 (1972)
B.C. in
classifications
isoelectronic J.
Fnwcett,
highly Aton.
and
"Classifications lines
fluorine”,
Molec. 44.
levels
)lolec.
(1971).
Favcett:
and 59.
42.
energy
8: Atom.
3s23p”-3s23p”-13d
(Culham)
5.3. B.C.
(1975)
Svensson: Scripta
lover
J. Fhys.
"Wavelengths
3s23p”-3s3p”+l,
of emission II.
elements".
1732-1741.
K III, f.
"Classification
transition
iron
and A.“. period
Gabriel: elements
sequences”,
Froc.
“Spectra in
the Fhys.
from
3p”-3p
chlorine Sot.
sr(l966)
I
and
sulphur
B.C.
Percett:
within
I
between
262-264.
579-596.
129
the
“Calculated third
shell
S V and
Ni
oscillaror for XVII”.
ions Atom.
strengths in
the Data
m-like Nucl.
for
allowed
isoelec~ro”ic Data
Tables
transitions sequence -28 (1983)
K. MORI et al.
REFERENCES 69.
B.C.
Fawcett:
encrBy XXV”. 70.
U.
“Calculated
levels
for
Atom.
Data.
Peldmsn
wsvelenBths.
allowed
n-2-3
Nucl.
and
L.
Data
Cohen:
in
,o
“Newly
l equences”,
isoelectronic
Tables
FOR TABLES
oscillator
transitions
and
ions
AND COMMENTS 87.
0 \I to Ni
lines
J. 49
E. Hinnov and S. ionized titanium.
in
(1967)
the
Ne
I
88.
265-267.
S.O.
Kastner,
72.
atoms
(1967)
1128-1129.
L.
G.A.
Doscbek.
“Satellite
line
192
(1974)
213-220.
“.
P’eldmsn,
G.A.
(1976)
of
Opt.
B.D.
Cowan,
laser-produced
and
R.R.
plasmas”,
L.
G.A.
Dnschek,
D.K.
laser-produced
Prinr,
plssrus
Am. 11
the
89.
90.
Whitelock:
J.
J.
91.
“Space-resolved Appl.
S.O.
92.
Phys.
61
“B
I-like
Ti
rokamak 77. A.“.
XI,
”
plasma”,
in
Nature
the
a
XII,
Lett.
B.C.
Fncett.
spectrum
of
(1965)
and
g
the
“Intercombination
Moo‘:
Cr XIII.
Phya.
Gabriel,
lines
and N.V.
lines
Fe XV spectr.
A (1982).
in
and
C. Jordan: and Zeta
obtained
from
configurations
in
six-,
u
S.O.
(1977)
Kastner,
A.M.
Gabriel.
s
93.
the
of
range
167A
iron
“III
to
and
their
Sot.
87
XII
and
lines
isoelectronic (1966)
SC XIV,
in
C. Jordan:
the
solar
seqwnces
“Classification
extreme
from
argon
of
ultra-violet
iron
spcctru
to nickel”.
U. Feldman,
and
L. J.
Cohen: Opt.
Proc.
577-502.
S.O.
Kastner.
(1977)
spectra
U.
Feldman,
of K XVII
through
Astrophys. 61.
S.
J.
174
Goldsmith,
‘peCt=a Sot.
(1972)
Am. 61
U.
Feldman. Ti XVII
(1972)
Oren,
and in
L.
the
Cohen:
trsnsitions
chromium
through
A.
Crwker.
615-618.
“The
snd
L.
the
96.
region”,
Cohen: range
of
S.
Goldrith,
L.
97.
V.
tr.nnitions (1973) 83. Z.B.
J.
98.
Opt.
P.P.
the
spectrs
of Ca XVII
and
and Ti
L.
XIX”,
Cohen:
)(Dlcc.
Phya.
Crurdev:
Spectrosc.
“The
3rd
14
(1981)
nB ConfiBurations
Astrophys.
J.
99.
m
(1969)
Ti
III”,
J.
Phys.
sequence
100. of oxygen
0 I ----Fe
XIXn’.
Opt.
P.P. Gruzdev and N.V. the .tc. and ions of opt.
SpeCtrO‘C.
49
“Radiation lifetimes of the levels Afmaseva: I. I-Ni XVIII isoelectronic series of sodium”.
E. Ninnov: chromiu. (1979)
“Observed iron
L197-L199.
and
eight-
electron
and
Bhatis,
and
HE I and
Si
Opt.
Sot.
Kononov,
and
2pk and
2p k-13;
ions”,
Physics
Cohen:
V.V.
Cr VII.
J.
IQ III snd
Phys.
“Observations for
elements
1558-1564. K.N.
“lnrrashell ions
snd Al
Fe IX”.
Lspides:
I sequence
Korobkin,
tltaniu
“Observstion
neonliks
Am. 68 (1978)
Skokan:
charBed
L.
in
Ti V. V VI,
and E.V.
(1974) J.
Koshelev,
A.N.
transitions
(Ti
XV-T1
in
XIX)“,
the
Opt.
4-6.
Sugar
and
26
D. m-l
of Zs=Zp”-2s far Cl XI,
Scripta
v.
KaufDan,
2p K XIII,
(1962)
“N I Cooper: n+l Intersystem Cs XIV,
isoelectronic
sequence:
trensitions
and
SC XV, Ti XVI,
improved
and V XVII”,
163-167.
J.
SUB*?
and
observations
improved 2
“F I ~lzpll+l
D. Cooper:
of
2sm2p”-2.
meawrements (1982)
K.L.
Kelly
2000
~“B‘tr~‘.
E.Ys.
E.Ya.
for
Cl,
K.
md
0 I isoelectronic
i”tersy‘tem
Ca,
SC, Ti
transitiona
and
V”,
Physica
623-626.
.snd L.J.
“Atomic
Palubo:
Hydrogen
Kononov,
K.N.
charged
through
and
ionic
krypton”,
Koahelov,
and
berylliulike
Kononc.”
snd
emission
NBL 7599
L.I.
ions”.
U.I.
of
with
Z-10-100’*,
P.G.
Kruger
P.C.
lines
(1973)
Podobedova: opt.
Safronova:
outer
Opt. and
L-shell
below
299-321.
“Transitions
Spectro‘c.
“Energy
11
structure
electrons
Spectrosc.
R.S.
‘3
Pattin:
scandiu
VI,
I and
Kruger.
for
(1977)
“The
VII
sulphur
S.C.
C. Laughlin:
and I”,
in
(1974)
l-3.
snd
highly
level
ionized
.t-
l-3.
extreme
other
Phys.
HeissberS.
“Nuclear
‘*%’
trsnsition‘
Atom.
Molec.
Phys.
K.D.
L.,,son.
N.J.
(1980)
n-2-2
of
u1rrsvi01et
l lewnts Rev.
and L.V.
charge in
52
spear.
of
isoelectronic (1937)
with
621-625.
Phillips:
isoclectronie
“The
spectr.
sequence
A I
of SC IV. to Ie
Ix”,
the
l rp.nsion
heliu
& (1973)
vthod
for
isoelectronic
1snL
1.361sn’
sequence”,
J.
I’
Phys.
B:
1942-1952.
Peacock. of
J.
Phys.
the
and
“.F.
l lewnts
B: Ato..
St-:
Ti. )(olec.
“Allowed
Cr.
Fe,
Co and
Phys.
14
(1981)
and
forbidden
RI in
tokauk
1929-1952.
341-344.
resonance nickel
trsnsitions
dischsrges”. 102.
86.
with
297-299. 10,.
85.
“Prediction
B:
615-630.
“Isoelectronic 27
of
Cohen:
I)ehrinB.
Ti V. nn VIII snd Fe IX in the Phys. Rev. 51 (1937) 1090-1091.
Goldschidt:
XIX”,
“2.-2p
1021-1026.
Atom. 04.
in
Croaker.
the J.
multiply
Kaufman.
scandiu A.M.
Ni
“Carbon-like lbZZA”,
260-264. Oren(Kats),
A.K. in
Serov.
j$
and
SC IV.
E.Y.,.
R.V.
L.
associated
U.E.
Swrtr,
Kasyanov,
~ phosphorous 82.
to
Ca XI
lithi-like
extreme-ultrsviolet
in
of subordinate
from
ns2np6-nsnp’.p
zinc”,
clsssification
and V XVIII
“Observation
spectra
(1971)
209-214.
Of SC XVI, Am. 62
L.
Un XXIII
M.
n-3-l-4
multiply SO. S. Goldsmith.
(1980)
Phys.
“Extreme-ultrsviolet
Sot.
Croaker.
A g
Scripts 95.
Ti XV and V XVI”,
A.U.
Rev.
and
825-839.
79. C. Goldsmith, of
XIV
and
highly
BA
259-267.
Ca III,
Yu.S,
and
seven-
IV and srBonlike
physica 94.
Fsvcett.
in Lett.
to ZZOA”,
390-392.
B.C.
Phys.
ions
transitions
transitions
sequences: 78.
trsnsitions
777-780.
autoionizing
observations .easurements
“Classification in
dipole nickel”,
NB
165-168.
sun
neon-like
Bhstia, some
Spectrosc. Bell
A.K. of
spectra R.E.
(1975)
Kastner,
Kyabtsev,
1341-1350.
76. W. Pinkenthal.
and
and L. Cohen:
in
identiflce.tion
of
Asrrophys.
NaBel:
XW”.
BehrinB.
transitions J. E
Scripts
Cohen: “Transitions sequence”. Astrophys.
and D.J.
in
iron
highly
Sot.
Cowan, and L. Cohen: “Fluorine sac. Am. 63 (1973) 1445-1453. Nagal,
from
lines J.
613-616.
U. Feldman, of
re‘o”‘nee sequence”,
Doschek, K.D. Cowan. and the N I and C I isoelectronic
of
(1975)
spectra
D.J.
spectra
2s22pk-2s2pk+l
75.
“Autoioni‘etion
Na I isoelectronic
G.A. Doschek, R.D. sequence”, J. opt.
Feldun.
J. 196
Cohen:
of the
U. Feldman, i‘oelecrronie
73. “.
74.
and
ionized
“MsEnetic
Suckever: chromium,
U.E.
2p54d-2p53p Astrophys.
71. U. Feldman
continued
298-300.
l-26.
identified
Aetrophys.
strengths, Be-like
(1984)
Grotrian Diagrams for Ti V-Ti XXII
in
line‘ tokamak
of highly diacharBes”,
ionized
titani”% Astrophy‘.
J.
30
Y.S.
Lee,
valence neutr.1 Phys.
8.
Sun. H.G.
Sheppard.
hamiltonian description .nd ion valence state‘ 2
(1980)
1472-1474.
and K.P. of of
Freed:
electron tr.nsition
“Ab
initio
correlation metal atou”,
effective for J.
the Che..
K. MORI et al.
REFERENCES 103.
T.N.
Lie
and
R.C.
tr.nsitions
in
“X
Elton:
a highly
radiation
ionized
from
dense
FOR TABLES
optical
plasma”,
Grotrian Diagrams for Ti V-Ti XXII
and
Phys.
AND COMMENTS
inner-shell
Rev.
A2
119. (1971)
C.D.
Phys. Lin
and V.I.
isoelectronic 105.
C.D.
Suckever,
Lin,
states
Johnson:
sequence”. V.R.
Johnson.
of He-like
“Oscillator Phys.
ions”,
Rev.
strensths
for
(1977)
1046-1052.
A 15
and A. Dalgamo:
“Radistive
Phya.
(1977)
Rev.
A g
the
beryllium
120.
of
the
121.
n-2
in
Rev.
S.
106.
G.A. Hertin snd W.L. Wiese: strengths for the lithiu isoelectronic Data
107.
of
2 (1976)
g. &we: 22
evaluated
sequence”.
J.
solar
X-radiation
from
1 to
Phys.
Chem.
122.
Ref.
Yu.A.
Mikhailov,
Fedotov:
109.
S.A.
plasma”,
P.S.
Pikur.
“Observation
laser
Kohr:
of
Opt.
C.V.
Ti
levels
Sklirkov,
XXI-Fe
Spectrosc.
“Energy
electrodynamics”. (1983) 453-466.
60 ;“,
Solar
G.V.
Peregudov.
E.A.
Yukov:
plasmas Phys. 111.
J.R.
A.Y..
XXV spectra
42
(1977)
40,
Faenav.
in X-ray
E.N. the
Ragozine.
XW
(1978)
titanid,
emission
Data
I.Yu. of
spectra
predicted
and Nucl.
Skobelev,
electron
of
T . Andersen, absolute
Nucl.
124
by quantwa
Dsta
Tables
A.V.
Vinogradov.
in
laser-produced
density
oxygen-like
and
ions”.
G. Sorensen:
oscillator
Instr.
Safronova.
dipole
“.I.
matrix
J.
Phys.
for
SSSR. Ot.
6/SB
(1976).
U.I.
Ssfronova
and
measurements
for
Cl XII,
states
of
Atom.
Data
Ilo
Safronova,
for
(1973)
and
126.
of ato,,ic
neutral
and
127.
ionized
Scripts
Sugar.
J.
He.
Fir.
Xhristenko:
“Calculation
strengths
and
Be and Ne isoelectronic Astron.,
and T.G.
Institut
ions
vith
Nucl.
Lisina:
Z-6.
Data
8.
of
Tables
24
“Relativistic
Scripta
23
Sandlin.
in
constants
the
(1979)
and
(1981)
G.E.
“High-temperature Astrophy%. J.
116.
117.
P.
Sharer,
205
C.D.
R. Smitt.
L.A.
!4.F. (1982)
and
D.
Post:
recombination
Large
Torus”.
dipole
2278.
of
highly
PPPL-1636
(1980).
X XIV,
Cs XV,
isoelectronic
sequence:
trsnsitions
SC XVI.
Ti
and
XVII.and
i.proved
V XVIII”,
189-193.
Akad.
Preprint
of
129.
No.
2 (to
L.A.
Stamp
and
W.R.
Physica
in the Scripte
effects
Scherrer, the
(1982)
293-295.
C.H.
Corliss:
“Atmic
through
be published and
Svensson
50 to 425A”.
L.A.
Svensson:
isoelectronic in
Ca XVI,
and
levels
J.
sequence:
SC XVII
SC XVII,
energy
nickel”,
Ekberg:
of
Phys.
“Spectra
Arkiv. J.O.
for
snd
improved
Ti
XVIII”,
the
Chem.
iron
Ref.
period
Date
l4,
for
17 (1968)
“The
titenim
g
(1969)
Fysik
transitions
3 (1971)
of Ti V, Ti VI and Ti VII
Fysik
Ekberg:
Arkiv. “The
Scripta
I
1985).
J.O.
and
from
J.W.
Svensson
and
Ti
S.
IV”.
L.A.
Svensson:
in
65-84. vacuum-spark
spectrum
145-163. k+l
3s23pk-3s3p
of
Ti VI and Ti VII”,
111-112. Edlen:
Physica
L.A.
“The
Scripta
13
Veinstein
“The
spectrum
Scripta
ions”,
spectrum (1976)
and
probabilities
sequence”,
in
and
solar
He-like
Phys.
Rev.
and H. Outred:
“An
ians”.
of
9 (1974)
three
times
ionired
titanilm,
Ti
335-337.
of
Atom.
of
LI.1.
Snfronove:
satellites
Date
four-times-ionized
V”,
235-236.
to
Nucl.
Data
“Wavelengths
re8ona”ce
Tables
g
lines
and of
(1978)
transition
H-
and
Se-like
49-68.
A.V.
Vinogradov.
E.A.
Yukov:
N.J.
Peacock:
“Improved
in
ionised
titenid,
J.
Phys.
(1977)
vsvelengths B: Atom.
132.
density
Perequdov, of the
in
a laser
E.N. spectrum
Regorin,
I.Yu.
Skobelev.
of hydrogen-like
plasma”,
Sov.
J.
and
ions
puentm
on
the
Electron.
8
615-618.
for
study
133.
the
of
of
134.
n-2-2 Phys.
Weissberg
W.L.
and P.G. Phys.
Wiese.
Kruger:
Rev.
U.W.
19
135. y
Vol.
1”.
W.L.
Wiese and
J.
Chem.
S.A. ls2
L703-L707.
with
131
and
scandirrm Phys.
2-2
J.R.
B.U.
Glennon:
neon
(a
Puhr:
“Atomic
(a critical
Ref.
Data
V.G. 3P2 and
to 137”.
terms
in Ti VX. V VII,
Cr VIII
872-873. “Atomic
critics1
data
transition compilation),
(1966).
titanim
Zapryagaev. l So-ls2p
and
through
NSSDS-NBS4
“Deep
(1936)
Smith,
probabilities-hydrogen
isoelectronic
Holec.
S.G.
and Mn IX”,
1109-1116.
experimental end Al I
G.V.
“Dependence
Tousey: 171A-630A”.
strengths
A 16
P I. Si I, 293-307.
sod
R.
spectrum
‘~Oscillstor
Johnson:
Cl I. S I, &3 (1976)
lines
2
Svenssan
electron
sequence”,
“B
K XV,
regionlOO-40OA”.
L.A.
D. Cooper: intersystem
Cl XIII.
potasslln
Physica
autoionization
Be isoelectronic
radiative
in
for
and
and
2s2p2-2p3
49-93.
V.E.
lines L47-L50.
Svensson,
and 3s3pk+’
transitions
Brueckner.
Lin
isoelectronic
sequence”,
118.
Nulse.
D. Caper: “C I 6-l 2p n+l intersystem
(1982)
Kaufman of
titanium,
241-248.
flare (1976)
magnesium
3s23pk
magnetic
A 22 (1980)
transition
sequences”.
Spektroskopii.
“Atomic
lo-42
V.
Sugar
(1978) G.D.
z
Scripts
Physics
131.
115.
X-VII”,
119-125.
S.V.
oscillator
the Ob.
Safronova:
Physica
J.
the
130.
U.I.
and
2sm2p”-2s
elements:
29
D: Appl.
“Determination
strengths
nethod
elements.
probabilities
114.
R. exchsnse
in Princeton
of
measurements
of a
128.
113.
on the
Rev.
Bitter,
charge
ritsniln
Kaufman
V.
observation
S.I.
2305-2311.
and
Nauk.
Sugar,
Suppl.
Roberts.
A.S.
Phys.
M. of
observations
Physics
stems
Atom.
and
469-471.
of hydrogen-like
10 -’ 7. 2
"Measurements
from x
lifetimes
112.
J.
Physica
Physics
125. 110.
dipole
Ti XV and Ti
459-491. 123.
108.
Hinnov.
snd
magnetic
XIV,
“Cwment
titanirn”,
evidence
iron
“Observed of Ti
oscillator
537-570.
“Cslculsted
0972)
critically
E.
Hinnov: terms
and B. “inno”:
ionized
Suckewer,
E.
stste
924-927.
R. Fonck,
“Experimental
154-161.
and
Bround
(1980)
of highly
ionfled “Tables
the
A2
S. Suckever. lines
dec.ys
R. Ponck,
transitions
865-871. 104,
S.
continued
Opt.
i
(1975)
transitio,, dsta
probabilities
compilation
of allowed
far lines)“,
263-352.
Palchikov. 2 1 so-ls2s
and U.I. Sefronova: “Probability 3 S1 radiative transitions for
Spectrosc.
g
1s
Atomic Data and Nuclear
(1978)
Data Tablet.
of ions
239-242.
Vol. 34. No. 1. Jammy
1986
K. MORI et al.
GROTRIAN
Grotrian Diagrams for Ti V-Ti XXII
DIAGRAMS.
Ti V-Ti XXII
Seepage84 for Explanation of Grotrian Diagrams
‘S
994.533
P 3*239e 1 1 I
i-t-:
‘P
,po(91
‘s
0 I
I
I
I
Ti
1
I
I
I
I
I
1
V(Ar-Sequence)
132
AtaM
Data a-d Nudesr
Data Tablea. Vd. 34, No. 1, Janmy
1996
Grotrian Diagrams for Ti V-Ti XXII
K. MORI et al.
GROTRIAN
DIAGRAMS.
Ti V-Ti XXII
See page 84 for Explanation of Grotrian Diagrams
u
0 t
Iu t
383P'Sd 506225
513.314
N SsSv'Sd 506225
501.631 LI
I4
3s3p63d 506225
464.143
t
A t
534.291
-
494036
SSSP~lOP 963620
103.154
S~SF-~~P 940660 313PfilP 920720
106.611
3~3~~6~ 335170
112.696
3s39~59 325500
121.133
3,
313P64P 667960
145.354
3~'(~P*)61 630746
146.391 3PvP')5. 603101
164.446 SFvP')4. 436650
221.909 3~5(zP'b3d 275372
363.145
r23p’ ‘s 0 I
I
1
I
I
Ti
1
I
t
1
I
1
V(Ar-Sequence) 133
AtonicDataandNudeerDataTables.Vd.34.No.l,January1986
P
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams
‘D
323.335
3D’(ZPr)3d 309252
Ti
V( Ar-Sequence)
134
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams
p’(‘DMd 553630
3v'('D)3d
259.232 251.a55 255 315 254:os
L
Ti
3111644
VI(Cl-Sequence)
135
Alcmic
Data and Fludear
Data TaiSm, Vd. 34. No. 1, January
1986
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams
3P’OP)ld 65643’1
152.336
301.913 I
1
“F
NIL.7 39’C’D)Sd 331221 I
I
I
Ti
I
I
VI(Cl-Sequence)
1
I
1
I
K. MORI et al.
GROTRIAN
Grotrian Diagrams for Ti V-Ti XXII
DIAGRAMS.
Ti V-Ti XXII
Seepage84 for Explanation of Grotrian Diagrams
1 141.113
203.i94 203.200 201.165
‘P
‘F
I
I
I
1
1
I
I
Ti VI(Cl-Sequence)
137
I
I
1
1
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage 84 for Explanation of Grotrian Diagrams 0 iu k
0 ; X
” 1
% I
121.515
171.572 D t
Sv’(ZPo)2d 450722
252.511
0
t
205.720 Sp’(*D’)Sd 381894
272.511
‘P 0 t
SISP
508.127
251214
N t
4.
3839
1
251214
nl
u
t
S,‘(“P’)ld 160252
132.149 u
N
t
2p’(2D*)4d 15lD84
i.sB.257 u
(v
t
SP’(~D’)~S 59291:
115.212 Y
Sp’(*D’)4. 522918
IS&.552 *
3p3(*P*)2d 401102
260.104 Id
b’(‘P*)Sd 40170s
242.021 lu
1
S&‘D*)3d 325261
Ti
VII(S-Sequence)
138
‘D
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII See page 84 for Explanation of Grotrian Diagrams
Y
SP’C2P*)3d 420522 Id
11 t
298.056
1 3~~39
3v3(2D’Md 361904
‘D
24130
3p’(2D*)4d ?56518
119.107
ss
270.141 20.759 268.502
Ti
VII(S-Sequence)
139
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams
r
1
2
I
I
1
Ti
I
VII( S-Sequence)
140
I
I
P4D
K. MORI et al.
GROTRIAN
Grotrian Diagrams for Ti V-Ti XXII
DIAGRAMS.
Ti V-Ti XXII
See page 84 for Explanation of Grotrian Diagrams
r w
N t
132.351 NV w
3p3(zPnMd 119699
129.122 129.603 12a.25
13a.ald 13a.54a 137.661
112.353 171.952 171.aaa 170.559 170.351
m
261.493 "e.J
3p'('P*)3d 396572
I
I
Ti
I
VII(S-Sequence)
141
I
1
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams
-:7,
149.911
#
149.653 N:7bl u
m)ISp*('D)Sd
211.561 210.550
423114
+x
160.614
“Izw II
156.444 155.616 155.456
‘P
I
1
Ti
VIII(
r
P-Sequence)
I
I
I
K. MORI et al.
GROTRIAN
Grotrian Diagrams for Ti V-Ti XXII
DIAGRAMS.
See page 84 for Explanation
Diagrams
WIV NIU
NIW tune
152.164 151.615 151.864
It
NI4
N,” t
Ti V-Ti XXII of Grotian
255.610
.%~*(‘D)34 419939+x
Ti
VIII(
P-Sequence)
143
Atordc
Data arid Nuclear
Data Tables.
Vol. 34, No. 1, January
I!366
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN
DIAGRAMS.
Ti V-Ti XXII
See page 84 for Explanation of Grotrian Diagrams
‘P
I
Ti
t
1
VIII(
P-Sequence)
144
I
I
I
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN
DIAGRAMS.
Ti V-Ti XXII
Seepage84 for Explanation of Grotrian Diagrams
L
w
t
sp(2P*)4f 1505420
12B.055 Y
ru t
SPtZP*)Cr 1502090
124.131
19.016 19.027
90.986 90.927
90.901
126.042
u
N
Sr4f
t
-hJw
137.47SC
1293940
"w c Sp(2P*)sd
543.23 533.55 522.66
123.070 122.905
3p(2Po)3d
‘F’
II L
Ti
XI(Mg-Sequence)
153
Atomic
Data and Nwkar
Data Tables,
Vol. 34. No. I, Jmmry
1986
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams
Atomic
Oats and -
Oata Tat&s.
Vd. 34, No. 1. January
1988
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DiAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams 0 ;o x
0 b x
0 b, x
0 i x
b X
i-3 X
h X
&J X
i X
‘P
Ti
X(Al-Sequence)
147
Atomic Data md Nudear
Data T&&S,
Vol. 34. No. 1. Jarwary
1966
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams 0 i X
0 iu X
0 br X
0 bo X
I I
Fu X
_-4. _---
n
-...II
I
b X
h X
b. X
r t%!St28
b. X
-9 ‘L
U’V
I 142.62? 142.585 I%:%%%%
2P* I -
-xv-
4
I
Ti
X( Al-Sequence)
148
s
I
0
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams
I
I
I
I
l-. 3
0
J385B
t
11.119
-, 1491140
$2 b% ;"o -::
0 t
446.69
3141
123.946
1065710
3 .!.
+-[3p2482340
1 SSSP
I
‘S
'P.
258S15
1 SSlP
54.322
.
1a4oa30 SldP
1
1721380 385P
65.403
1521910
0 t
100.835
31.125 533.14lC
3v4d 147455~ 3a4v 113!3*20
‘F
~-~393;50220
+Yr~SPW~ -3xm-i3’3:5,9,3
u t
t
385d
15.415
100.591
L534SlO lu 1384d 1253100 'II
L-inb-A3s3:84104 667.34'
+-i1p2403320
Ti
XI(Mg-Sequence)
149
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII See page 84 for Explanation of Grotrian Diagrams
::u l-o 4Olb20 Y
m
3151
t
96.233
1803140 0
u I
3151
as.132
1603140 Y
N t
SP44
110.010
1413533 w lSP4d
N t
33.300
l413533 Y I3r4f
N t
135.179
1304350 w
N t
Sal! 111.654
1304360
-n.J #
18.731 13.403
1434820
-w # 0,
4. 4.
1 1
1361150
u
1050150
1
Ti
I
XI(Mg-Sequence)
150
I
1
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams
420.60 425.14 410.45 417.55 415.01 405.21
‘P
1 ?%lbi
1
I
Ti
1
XI(Mg-Sequence)
151
I
1
Grotrian Diagrams for Ti V-Ti XXII
K. MORI et al.
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams
u
N
+
127.281
W’P’MI 1519300
Y i : 3P4P
85.290
1s45060
-lo 0
c srsp
Sp(*P’)Sd
‘P’
1
0, It
‘DO
730560
99.249 95.929
Ti
XI(Mg-Sequence)
152
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN
DIAGRAMS.
Ti V-Ti XXII
Seepage84 for Explanation of Grotrian Diagrams
L
w
t
sp(2P*)4f 1505420
12B.055 Y
ru t
SPtZP*)Cr 1502090
124.131
19.016 19.027
90.986 90.927
90.901
126.042
u
N
Sr4f
t
-hJw
137.47SC
1293940
"w c Sp(2P*)sd
543.23 533.55 522.66
123.070 122.905
3p(2Po)3d
‘F’
II L
Ti
XI(Mg-Sequence)
153
Atomic
Data and Nwkar
Data Tables,
Vol. 34. No. I, Jmmry
1986
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams
“I.%.! It
1. . 4 WI-
VL 108.107 101.086
1808180 1125572
Ti
XII(Na-Sequence)
154
Grotrian Diagrams for Ti V-Ti XXII
K. MORI et al.
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams
1
I
I
I
I
r-.
1
3
45.167
WINIY 1OP
4 .
1 NIYWI.. 295SG
e;’ L.z:N ww bE 00 ::lz z ‘;;
21 616 21:460
I
3637900 3594700 1lP -
I
2214000
2164200 JKJ
47.906
,’
2037400
ai; 4 -
4 . 1
2003500
NIY NIcn 31.426
tl
.
I
62.344 62.121
,”
4
f8%d8
iit::
YL
P
479.661 460.741 217042 206365
502614 501922
Ti
XII(Na-Sequence)
155
Atomic
Data and Nudew
Data Tables.
Vd. 34. No. 1. January
1886
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII See page 84 for Explanation of Grotrian Diagrams
Ti
XII(Na-Sequence)
156
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams a b x
b x
7 Ln x
Ti
cu b x
N ;I x
w b x
w b x
0e X
XII(Na-Sequence)
157
AtwnicOataandNuc*larOataTebles,Vd.34.No.l.Jarmary19ffi
K. MORI
et al.
Grotrian
Diagrams
for Ti V-Ti
XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII See page 84 for Explanation of Grotrian Diagrams b X
w b X
P & X
w 0 X
VI b X
01 b X
4 b X
N-O 596.66T 460.92= 455.97t
3912900
19.204
295('P:,z)4d[p 5207200
20.135
295(2Pj,,)4*(!.~)e 4966500 2129'39 4754000
21.035 23.698
2d29'
‘P
295(ZPj,,)3d[;l* 4219600 ~D~(~P;,~)~s(~ a9753600
26.641
01
22
i)" "I
'S
0
471.25'
369.71T 366.97* 1
i+ K n
‘D
: 3965800
I
Ti
9965600
I
XIII(Ne-Sequence)
158
I
I
I
K. MORI et al.
GROTRIAN
Grotrian Diagrams for Ti V-Ti XXII
DIAGRAMS.
Ti V-Ti XXII
Seepage84 for Explanation of Grotrian Diagrams
u
N
*
61.255
t
a
5191200
‘F ,” 1c;
-
“0
3965600
-
594.16T 516.26’ 413.42.t
0”
% -, 0 “0 410.15* 455.56’ 431.45t 419.991 366.32’
Ti
XIII(Ne-Sequence)
159
Atomic Data and Nuclear
Data Tables,
Vol. 34, NO. 1, Janufny
1986
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams
1 19.943 2SZF4’3P 1733300
21.127
.
26.950
Ti
2~‘(PPj,p)3d~~)o 4168200
1
zPvPj,,n.(~.~) 3709200
XIII(Ne-Sequence)
160
z z
z
no
K. MORI et a!.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams
Ti XIII(Ne-Sequence)
161
Atmic
Data and Nudear
Data Tables.
Vol. 2.4. No. 1, January
1966
K. MORI et al.
Grotrian J&grams for Ti V-Ti XXII
GROTRIAN
DIAGRAMS.
Ti V-Ti XXII
See page 84 for Explanation of Grotrian Diagrams
4221000
25.016
2
Ti
XIV(F-Sequence)
162
P0
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN
DIAGRAMS.
Ti V-Ti XXII
Seepage84 for Explanation of Grotrian Diagrams r 0 x
h),I
N b x
0 b x
sr b X
-2 b X
NIU u1w 21:311 21 522 1.
4 NIU w,w
PaII
m b X
r D x
21.223 1. 21.657
cutI
NJW UIU
22.190 22.426
2p’C’P)Sd
22.068
4591900 4506490
4. 24.315
2p’(‘P)Sd 4512200
22.162
Nl.8 *rx ,,
,c 25 206 25:071 25.025 24.907
29
cu)IY
2P‘t’P)Sd 4418500
22.279
Ti
‘F
XIV(F-Sequence)
163
Alcmic
Data and N&ear
Data T&k..
Vol. 34, No. 1, January
1986
164
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams
2~~29’
‘D
2~29’
1 -
‘P*
971037
3~W0
0 t
23.034
2?‘(ZP*)ss 4557300
22.412
29’(*P*m 4557300
N I
lu1 c 2~~29~
‘S
21.5528 1017.30
aI
21229’
1
108130
L44~.3= 919.73
‘D
Pa
t
. 1 r.J t
20.823
N
I.4 t
29’(‘P’)$d 4962000 L) 293~2D’)S4 4911000
‘D
29’(*D’)S. 4469100 I
I
I
Ti
I
XV(O-Sequence)
I
I
I
I
K. MORI et al.
GROTRIAN
165
Grotrian Diagrams for Ti V-Ti XXII
DIAGRAMS.
Ti V-Ti XXII
Seepage84 for Explanation of Grotrian Diagrams
1
I-. 3
u
7.4
2p”tzP’)3d
t 2.
A,
5014000
9
EG $$
Y
N
2~3~2D’)3d 4940000
I
z=: ; A
12~~2~
ID
1011730
23.193 23.177 22.961
1
1
Ti
1
XV(O-Sequence)
I
1
I
I
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams
LI IL
2t22Q’
‘P
84 2Q32t 5s
2s 41P 2i20’
t I
4310000
I
I
Ti
I
I
I
I
t
XV(O-Sequence)
166
Alcmic
Data and Nudaw
Data Tab&s,
Vol. 34, No. 1, Jomay
1966
K. MORI et al,
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams
WI.4
2P2(3P)Sd 5194100
20.101 VL 132.022 126.381 124.793 121.534 10 0500 91 8 650 Uh
YL
116.215 116.198 110.561 10205 0 97065
8
167
K.
MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII See page 84 for Explanation of Grotrian Diagrams
te c 70 :Y
14sa.oc 1224.4c 1129.6' 966.6'
:1!388
"G.3
PsQ9’
t
505.6' 459.1C WT88
I
I
Ti
I
XVI(N-Sequence)
168
t
I
1
I
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams
NIU NlVl 2aZp’
123.0’ 122.4’ 8f318
,,u NIU 2.‘2P’ 6607 c 130720 ’ b!% 2rZZp’ 661.1C 765.6’ t ff 8 :szoo
WI4
110
f
1.
2Pz(‘P)3d 5245500
1
Ti
XVI(N-Sequence)
169
K. MORl et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams
._.-
63360 88X::
219.lC 211.4c 204.2’ 199.2’ 199.2’
‘P
%
Ti
XVI(N-Sequence)
170
K. MORI et al.
GROTRIAN
Grotrian Diagrams for Ti V-Ti XXII
DIAGRAMS.
Ti V-Ti XXII
Seepage84 for Explanation of Grotrian Diagrams
-
2r22p2 242160 470.2'
2pSd
I .
5612000 2~3% 5200000
122p2 140660
55130 296.56
1172.' 396.'
G.
Ti
XVII(
C-Sequence)
172
K. MORI et al.
Grotrian Diagrams for Ti V-R XXI1
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams
u
I2pSd
1 .
5502000 N
2PSd
11.350
5502000
‘D
I.3
w t
2PSd
18.269
5014000
L)
127.782 123.654 119.214 838340
Ti
XVII(C-Sequence)
‘F
K. MORI et al.
0 L x 04 I
“L
0 L X
04 1
u0
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams 0 0 0 0 Q 0 i L b b, L bD X X x X x x 04 04 04 0-3 04 z4 I I I I I 1
0
146.067 144.66C 144.405 136.563 136.160 95.202 1318 \ 40 MS%%
ZAP2 1
3834.6 3370.6
W%
Ti
XVII(C-Sequence)
173
0 la x D4 I l-
b x z-3 I
K. MORI et al.
GROTRIAN
Grotrian Diagrams for Ti V-Ti XXII
DIAGRAMS.
Ti V-Ti XXII
See page 84 for Explanation of Grotrian Diagrams
11.211 18.176 11.141
-63
"
282Q' =tL
N
227.57' 224.19c
888%
-"
28'2Q'
'D
I ::
c
Y t
2*2Qa(%)Sd 0025000
1 . 0.
"w I . I .
#
N
”
2Q3d
18.751
SF
5412000
Ti
XVII(C-Sequence) 174
AtomkDataandNudesrDMT~Vd.34.No.l.Jsnuary
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams
w
u
A.2 0-m
2S2Q2(‘P)3d 5242000
t u
N t
y2
2r2~*C’P)3.
19.415
-::
5434000
1ZSZQ”
3
5P
3
.!
=s*
333680 I
I
1
I
Ti
I
t
I
I
I
t
,
XVII(C-Sequence)
175
Atomic
Data and Nudea
Data Tebles.
Vd. 34. NO. 1, January
1986
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams
56240 0
v7ld 2r2P('Pe)sP stn ? 888 I.2
V7Y
141.607 144.759 136.260 133.652 w:x
166.64' 12.0.50~ Fail88 UJY NlVl
-:L 153.15f 150.15T 146.6ST
HWX L2P
1711.95 56240
Ti
XVIII(B-Sequence)
176
K. MORI et aI.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams
VI2r’2p
I1 l-
*PO
i6240
NIL.
u,w t
2s2p('P")3d 6433000
lt.sa7
N&L” t
y;,VL
NIL. 2s2p(‘Pa)3d 6142000
17.920 301.4oc 292.47c 269.76’
!8#B%88
WI4
17.150 h),o NI-2
2r2p('P*)Sd 639.3000
17.715 1 .
I
I
I
I
Ti
I
I
XVIIICB-Sequence)
177
I
I
I
I
178
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII See page 84 for Explanation of Grotrian Diagrams
D
6240 %
NIO I
nJ)Iu 282p(‘P*)Sd 814aooo
1 .
4P
NI4
2rPp(‘P’Md 6143000
11.30
I
I
I
I
Ti
I
1
‘D I
I
I
1
XVIII(B-Sequence)
Atcsrdc Dab
&xl N&ear
Oata Tetks.
Vol. 34, No. 1. Jenuar~
1988
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
179
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams
N
2926
16.611
t
6666000 2rsv 6303200
-41azP;62&s216S.560
'P
N t
2Q3D
16.176
6770900 N
t
213d
11.076
6145900
i+2*38~iOL -vu
u 175.33 163.1' 917560
'l-l
aJ
N
‘D’
t
N
w
t
2~3d
16.802
‘F’
6811100
h( t 2s t
es39
17.016 I
6160800
I
I
Ti
XIX(Be-Sequence)
I
I
t
180
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams
IN
.
t
0,
2Q3P 6685800
1
-N
N 218.50 212.22 206.10 189.8S lSS.54 119.47
Y
N I 0,
15.142 -N Y
N
Ill
16.514 16.43 16.414
6402100
=
I.J
2QSQ (699100
tw88
1.
16.119 16.11
,” u w L
.a
822410 104890
L
Ti
XIX(Be-Sequence)
Grotrian Diagrams for Ti V-Ti XXII
K. MORI et al.
181
GROTRIAN DIAGRAMS. Ti V-Ti XXII See page 84 for Explanation of Grotrian Diagrams
1 we..
“r!ck,
It
0 ”
1 . . I
6466000
“S
,’
9.129
10955000
:I;
h),t
c
22.9'
10315000
:I; OI -
. 4
10315000
2:;
me.. t
--4 24.2T
10600000 ai;
9.434
v
UIW NIU
2:; m = ::I; ,”
10274000
=
WI.t
26.ZT
10274000
9.733
NIW NIU It
10600000
:I;
IOl.SC 101.6' lOl.IC
WI” NIU :I; s a .a,.NIY
10274000
9730000
32.124L 32 056' 32:056'
2P
9730000 El;
urt
,”
30.666'
10.276
NJW NIV) w’ WI.t
9730000
t
DKJ
..,,O: :I; 44.601'
a v
9730000
6132000
II; t
11.452
I
I
Ti
XX(Li-Sequence)
1
6732000
I
I
182
Grotrian Diagrams for Ti V-Ti XXII
K. MORI et al.
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams
15.253 15.211
t.Jlc.8
(D
0.549
t
-
23.5' 23 5= 23:s'
100s0000
10312000
.‘AL
II
10312000 Eli
PITTI
ma2
BIti 24.0T 24 5' 24111
10601000
10601000
%L It
10213000
Ti
XX(Li-Sequence)
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
183
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams
II
31.591c 21 5565 31:411c
10.690 10.60
10.
I,:[
vu," NI.8
-?.7...
It
9740000 XII
v7,
16.061 16.049 1.
Ti
XX(Li-Sequence)
VI e
9740000
K. MORI et al.
Grotrian Diagrams for Ti V-Ti XXII
GROTRIAN DIAGRAMS. Ti V-Ti XXII Seepage84 for Explanation of Grotrian Diagrams
9
0 182P
2.SlOl
38307120
0 :
112s
u
l,Y L
's
1
391316SO
0
ls2v
2.6264
38125540
O..524.22' 494.54= 319.29=
sP0
:: : !
38180210 #W
1 192s
's
D
37929330
0 I
I
I
Ti
XXI( He-Sequence)
Ti
XXII(H-Sequence)
I
I
I