Speleothems, travertines, and paleoclimates

Speleothems, travertines, and paleoclimates

QUATERNARY RESEARCH 20, l-29 (1983) Speleothems, Travertines, and Paleoclimates G.J. HENNIG, R. GRCJN,AND K. BRUNNACKER Geologisches Institut...

2MB Sizes 0 Downloads 49 Views

QUATERNARY

RESEARCH

20,

l-29

(1983)

Speleothems,

Travertines,

and Paleoclimates

G.J. HENNIG, R. GRCJN,AND K. BRUNNACKER Geologisches

Institut der Vniversitiit D-5000 Kcj;ln-1. Federal

za KBln, Ziilpicher Republic of Germany

Strasse

49,

Received May 10, 1982 Age data for about 660 speleothems and about 140 spring-deposited travertines were collected, including many unpublished results. These data were plotted as histograms and also as errorweighted frequency curves on a 3.50,000-yr scale. These plots clearly show periods of increased speleothem/travertine growth as well as times of cessation. The periods of most frequent speleothem growth were between approximately 130,000 and 90,000 yr ago and since about 15,000 yr ago. Suchperiods before 150,000 yr ago, however, cannot be yet recognized because of a lack of sufftcient data and the associated uncertainties of dates in this age range. A comparison with the oxygen-isotope record of deep-sea core V28-238 shows a clear relationship, indicating that terrestrial calcite formation is controlled by paleoclimatic fluctuations. The evident climatic stimulation of Quaternary calcite formation is readily explained geochemically and is substantiated by the obvious difference in speleothemitravertine growth as a function of geographic position.

deposited travertine calcite. Plants at the surface of limestone areas give rise to the production of humic soils with high concentrations of CO*, mainly generated by putrefactive bacteria and autooxidation processes. The corrosive, CO,-rich seepage waters are able to dissolve an increased amount of limestone and hence supply more Ca(HCO,), to the growing speleothem. Rapid speleothem growth therefore will generally correspond to exuberant flora on the cave-bearing rock. The conclusions can be practically substantiated: Tropical caves generally show huge, ornamented speleothem formations (e.g., in Jamaica or Mexico), whereas caves in colder regions mostly contain few and only small-sized speleothems (Waltham, 1977; Bauer, 1969; Jakucs, 1977; Moore and Sullivan, 1978). In many caves it is even possible to distinguish between several “generations” of stalagmites (Trimmel, 1953), which would most likely correspond to different periods of climates favorable to growth of speleothems.

INTRODUCTION

Two types of terrestrial calcites were formed quite frequently during the Quaternary: speleothems (cave calcites) and spring-mound-deposited travertines (calcite tufa). These Quaternary calcites were precipitated from Ca-rich, bicarbonate waters descending or ascending through limestone deposits. Consequently, the formation of such calcites was impossible in the absence of water during extremely glacial or arid climates. The presence of speleothems in caves of present-day deserts (e.g., the Namib or Negev Deserts) must therefore be regarded as an unequivocal indicator of the past humid climate in these areas. Similar considerations apply to speleothems of the high alpine caves. Humid paleoclimates marked by increased plant growth will have enhanced limestone dissolution as well as accelerated travertine and speleothem precipitation. Factors controlling the erosion of limestone have been discussed in detail (Atkinson and Smith, 1976) and shall not be reviewed here. In general, plants such as moss consume carbon dioxide from the bicarbonate spring-mound waters and, consequently, cause a more rapid formation of spring-

PALEOCLIMATIC DATA FROM SPELEOTHEMS

Various attempts to use quantitative data gained from speleothems for the purpose of 1 0033-5894183 Copyright All rights

$3.00

D 1983 by the University of Washington. of reproduction in any form reserved.

2

HENNIG.

GRUN,

paleoclimatic interpretations have been reported. Quaternary calcites undoubtedly contain much climatic information, e.g., in their pollen content, in enclosed relics of the paleofauna, or in embedded limestone breccia broken by frost (“frost rubbles;” Brunnacker, 1963). The morphology and stratigraphy of speleothems have been suggested as bases for the evaluation of paleoclimatic data (Franke, 1971; Dreybrodt, 1980) as has the occurrence of aragonitic speleothems (Moore, 1956). Isotopic variations in layered speleothems (Hendy and Wilson, 1968; Hendy, 1971) and of their fluid inclusions (Thompson et al., 1974; Harmon, 1979a, Schwartz et al., 1976) also appear to be important in the reconstruction of paleotemperatures. However, there is some evidence for nonequilibrium isotopic fractionation in stalagmites and stalactites (Fanditis and Ehhalt, 1970), and the presence of recent carbon contamination in many stalagmites (Hennig et al., 1980a) would also affect the stable (H, C, and 0) isotope ratios if recent CO, and H,O are present. Fluctuations of trace elements in speleothems and temporal variations in the amount and composition of detrital minerals (e.g., quartz, feldspars, clay minerals) can also serve as geochemical tracers for paleoclimatically induced changes in weathering processes (Ikeya, 1978; Hennig, 1979). Absolute dating techniques can be used to date speleothems, and resulting data may be used for paleoclimatical interpretations. As previously mentioned, speleothems would have grown predominantly during warm and humid climates; consequently an increased number of age data within a certain period would presumably reflect such paleoclimates. On the other hand, the absence of age data within certain time intervals possibly would indicate glacial ages, during which speleothem growth ceased. In principle, such age histograms of speleothems (or of sectioned speleothem layers) will therefore reflect paleoclimatic variations, although such a graph may not

AND

BRUNNACKER

bear a direct relation to paleotemperatures. The interrelation of speleothem growth (as deduced from the distribution of age data) and alternating paleoclimates should only be regarded as a general hypothesis, with some exceptions possible. For example, the question of whether CO, released from melting glacier ice can also give rise to a certain amount of speleothem growth should also be examined. Moreover, highly corrosive karst waters, such as those produced in tropical climates, may sometimes enter a cave before being saturated in calcium. As a consequence, partial speleothem dissolution may even occur during climatic intervals which are generally associated with accelerated speleothem formation. The first “frequency histograms” of speleothem age data were based upon radiocarbon dates, and suggested a glacial period for central Europe between 20,000 and 12,000 yr B.P. (Geyh, 1970). Since uranium-series dating with its extended age range of approximately 350,000 yr has proven to be reliable for dating speleothems, several histograms of this type have been published (Harmon et (I(., 1977; Hennig et al., 1980b; Gascoyne, 1981). Although these histograms of U-series age data apparently indicate periods of more frequent speleothem formation as well as those with reduced growth, the limited age data have been a strong handicap when attempting an unequivocal interpretation of paleoclimatical changes. This is because only 50- 100 randomly distributed age data (over a 350,000-yr time scale) will also simulate minima and maxima in “speleothem growth,” as demonstrated by four independent examples of 100 statistically distributed age data in Figure I. AGE-FREQUENCY

DATA

We have collected for the present study the highest possible number of U-series ages of speleothems and spring-deposited travertines available to us, including many unpublished data from our group. The re-

SPELEOTHEMS.

TRAVERTINES,

:lLLI,d& JI&.L.r L

0

50

100

150

200

250

300

350

0

5b

160

150

200

250

360

350

0

50

100

150

200

250

300

350

0

50

100

150 200 AGEllO'yrBPI

250

300

350

B

FIG. 1. Four examples of histograms depicting random distribution of 100 age data in 5000-yr intervals over a 350,000-yr time interval.

sulting histograms of age frequencies are then compared to reliable paleotemperature records such as those being obtained from the *sO/1”O variations in ice cores (Dansgaard et al., 1969) or from deep-sea cores (Shackleton and Opdyke, 1973; Emiliani, 1978). In our present study we have summarized 805 U-series age data of terrestial Quaternary calcites, 664 of which are from speleothems and 141 from spring-deposited travertines. Both species have been subdivided into two climatic regions according to the classification of Troll (1964). Region I corresponds approximately to former glacial and periglacial areas such as Canada, northern United States, and northern and central Europe. Region II approximately denotes warmer climates similar to those of Mexico, Jamaica, and the Mediterranean . Twenty-eight percent of the speleothem data have been obtained by our group, as well as seventy percent of the travertine ages, and include many unpublished data. The rest were collected in a thorough study

AND

PALEOCLIMATES

3

of published data, although we cannot claim total completeness. All age data are summarized in the appendix. Apart from the most reliable and abundant 239h/234U ages, all 231Pa/235Uages of speleothems have been included in the tables as well. We did not exclude any of the collected U-series ages, even if they are denoted as being questionable or less reliable, except for the 234U/238U data from speleothems which are regarded as completely unreliable (Harmon et al., 1978b). Infinite ages, i.e., those greater than approximately 350,000 yr, were of no use for this study and were disregarded. Furthermore, it was held to be disadvantageous to include age data of speleothems and travertines other than those gained by U-series dating techniques. Other dating methods, such as 14C, TL, or ESR, often exhibit considerable deviations from the corresponding 230Th/234U ages, which cannot be explained in each case (Wintle, 1978; Hennig et al., 1980a). Moreover, the presently published number of ages by other techniques is relatively small compared to the total number of U-series ages included in the present study. A certain problem in setting up an age frequency for Quaternary calcites is raised by the presentation of “corrected” Useries ages. These data have generally been corrected for detrital thorium, which may be introduced into the growing calcite together with clay or similar, noncarbonate detritus. Detrital 230Th (as well as detrital 231Pa) will shift the apparent ages of impure speleothems and travertines to higher values, necessitating a correction procedure for this interference. Various correction procedures for detrital thorium have been suggested (Ku et al., 1979; Hennig, 1979; Schwartz, 1980; Ku and Joshi, 1981). However, there has not existed a unique way to overcome this interference. We have therefore always used those age data that have been preferred by the original authors. In cases of doubt, the noncorrected age data were chosen. All U-series age data have been compiled

HENNIG,

4

GRUN,

AND

BRUNNACKER

6 I I

17

18'9

‘STAGE I

1

I I

q r

record -1

Core

i

Travertines

N 2(

\

V28-238

I

I I

I

I

I I I

I I I I

I

I I

I I I I

I I I

I I / I

II

I

10

NW

I

0

-II

_

I

I

I

I n I

I I

I /

100

FIG. 2. Histograms (N) of uranium-series subdivided into two climatic zones, I squares: Data with ? 1 o errors of less +I0 and 20%. White squares: Data core V28-238 (Shackleton and Opdyke, Quaternary calcites. For calculation of Figure 3.

200

I

I I

I /

300

AGE [103yr B P] age data for speleothems and of spring-deposited travertines and II, according to the classification of Troll (1964). Black than 2 10%. Hatched squares: Data with r I o errors between with -1 v errors over 220%. Oxygen-isotope record of 1973) (top) is shown for comparison with age frequencies of frequency curves (F) (shown below histograms) see text and

SPELEOTHEMS,

TRAVERTINES,

in four histograms in Figure 2, with 88 travertine ages and 482 speleothem ages for the moderate climate region I, and 35 travertine and 116 speleothem age data for region II. The histograms were constructed using 5000-yr class intervals. All histogram data have been labeled according to their relative statistical uncertainties. In cases where no errors were given in the original publications, we had to choose appropriate errors according to the age value itself: (1) Ages up to 200,000 yr were considered to be associated with uncertainties of less than +lO% (black squares). (2) Ages between 200,000 and 300,000 yr were defined with errors of + 15% (hatched squares). (3) Ages older than 300,000 yr, but still finite, were defined with errors of &20% (hatched squares). Although the last two cases are both represented with hatched squares, it is useful to distinguish their respective errors for the calculation of error-weighed curves (Fig. 2). The presentation of ages in the form of a histogram has some disadvantages. It is not possible, for example, to reflect the differences in the statistical uncertainties of the ages. This shall be demonstrated by the following, arbitrary example on three values of age data: 98,000 + 1000, 100,000 f 2000, and 106,000 t 8000 yr. When presented in the form of a histogram with 5000-yr class intervals, these data will result in an absolutely uniform plateau from 95,000 to 110,000 yr. The different errors associated with these three measurements would, however, suggest a higher probability of “increased speleothem formation” around 98,000-99,000 yr ago, which certainly cannot be deduced from the histogram plot. We have therefore included an additional form of presentation that takes into account the relative errors of the ages as well: the height (F) of each age rectangle is determined by the relative error of each date, and F is obtained by simply dividing the age by the sum of the total & 1 (T counting errors. In the case of our arbitrary example

AND

PALEOCLIMATES

5

the following heights (F) would be obtained: 98/(1 + 1) = 49, 100/(2 + 2) = 25, and 106/(8 + 8) = 6.625, respectively. The frequency distribution of these three “error-weighted” ages is given in Figure 3, which shall serve as an explanation for the frequency curves given in Figure 2. It is obvious from Figure 3, that the highest probability of the age frequency is in fact displayed in the expected age range of 98,000-99,000 yr. According to Figure 3, four graphs were calculated from all speleothem and travertine age data and their respective errors (Appendix), which are subdivided into climatic zones I and II. These four error-weighted curves are presented below the corresponding age histograms in Figure 2. The curves of climate region II are given by dotted lines. As with the histograms, only infinite U-series ages and 234U/23xU ages of speleothems were excluded from these graphs. Ages up to 10,000 yr were rounded off to full lOO-yr values, and ages over 10,000 yr were rounded off to full lOOO-yr values for the calculations. Some age data with infinite upper limits of errors were included as well for the purpose of completeness. In these cases the lower uncertainty (-- 1 a) was doubled in order to calculate the frequency curves (Fig. 3), and the resulting height F was taken up to the age of 350,000 yr. PALEOCLIMATICAL

INTERPRETATIONS

Some care is certainly advised when interpreting the age frequencies of speleothems and travertines in Figure 2. Only the relatively large number of speleothem age data in climate zone I seems sufftcient to be

FIG. 3. Calculation of an error-weighted three arbitrary ages: 98,000 -t 1000, 100,000 and 106,000 h 8000 yr B.P.

curve of -t 2000,

6

HENNIG,

GRtiN,

of statistical significance, at least up to approximately 200,000 yr ago. For the other age data, a larger number of samples would be desirable for a safer interpretation. A few interesting results can be deduced from Figure 2. The Holocene (stage 1 of the V28-238 deep-sea isotope record) conventionally starts with the Preboreal at 10,000 14C yr ago in central Europe. A large number of speleothems and a few travertines obviously fall within this postglacial period. The beginning of speleothem formation in climate zone I (e.g., in central Europe) seems to have started even earlier than 10,000 yr ago, at about 20,000-15,000 yr B.P. Because of the possible shifting of younger age data by detrital thorium, we prefer the younger age of approximately 15,000 + 3000 yr for the beginning of Holocene speleothem deposition in central Europe. Most notable is the absence of practically any speleothem data in region I between 30,000 and 20,000 yr B.P., which most likely reflects the maximum of the Wtirm glacial age. This minimum in age frequency is astonishingly concordant to the minimum of stage 2 in the 1sO/160 paleotemperature record (Fig. 2) (Shackleton and Opdyke, 1973). A possible cessation in speleothem and travertine growth seems to have occurred earlier in climate region II (compared to region I), but this slight indication needs to be substantiated by a larger number of dated samples. Moderate speleothem growth undoubtedly took place during isotope stage 3 of the marine record. The present data for region I seem to indicate at least two smaller frequency maxima around 40,000 -+ 5000 and 55,000 t 5000 yr, which might reflect relatively warm interstades, e.g., the Stillfried B interstade. An interstadial soil formed about 40,000 yr B.P. is also supported by a recent TL study of loess deposits at Wallertheim, Rheinland-Pfalz (Wintle and Brunnacker, 1982). Only some Mediterra-

AND

BRUNNACKER

nean travertines (zone II) seem to fall into stage 3 of the paleotemperature record. One notable result of the present study can be observed in the abundant spekothem formation between 130,000 and 90,000 yr B.P., which is most obvious for climate zone I. Here, a distinct maximum appears between about 125,000 and 115,000 yr. which is in excellent correlation with the temperature maximum in substage 5e of the V28-238 paleotemperature record. It is remarkable that there seems to be no increased formation of spring-deposited travertine during substage 5e, but a systematic shift of these age data cannot be ruled out. It should be noted that while recent growth of speleothems is well documented in most central European limestone caves, the formation of spring-deposited travertine has not been reported. Another, less-pronounced maximum seems to be present around 1 lO,OOO100,000 yr ago, which is exhibited by the speleothems of region II and also by the travertines of region I. There are only four travertine dates for region II that would support the same maximum around 1lO,OOO100,000 yr. The period between 130,000 and 90,000 yr undoubtedly coincides with the last interglaciation, although the paleotemperature record from case V28-238 suggests that this interglaciation lasted until approximately 80,000 yr B.P. This interglaciation is conventionally denoted as the Riss - Wtirm Interglaciation. The question has to be raised whether this interval is coincident with the Eemian, because the duration of the Eemian was estimated to be only about 11,000 yr long by Mtiller (1974a) through counting of annual rhythmites. In the same way Mtiller (1974b) deduced a period of only about 16,000 yr for the Holstein Interglaciation. According to the fauna1 investigations of von Koenigswald (1973), the beginning of the Wiirm should be placed at around 100,000 yr B.P., in which case the period of

SPELEOTHEMS,

TRAVERTINES,

1lO,OOO- 100,000 yr would constitute part of the Eemian of the terrestrial chronology. The frequency of speleothem formation, however, indicates a possible second temperature maximum around 120,000 yr ago, which would be coincident with the maximum of marine substage 5e. This second maximum is supported by the U-series dating of Victoria Cave speleothems (Gascoyne et al., 1981). This suggested that the splitting of the last interglaciation needs to be substantiated by a larger amount of age data. Another approach to support this idea would be the investigation of speleothem growth rates from U-series dating of single, pure successive growth layers for a stalagmite of the last interglaciation (e.g., Duplessy et af., 1970). For ages beyond 130,000 yr B.P., the total number of reliable travertine and speleothem ages is obviously insufficient for paleoclimatic interpretation. During the penultimate interglaciation (stage 7 of the V28-238 record) there seems to be a flat maximum in the travertine frequency curve of climate zone I. Several reasons may account for the flatness of this maximum: (1) The statistical uncertainties in the U-series ages grow exponentially beyond values of approximately 200,000 yr. (2) For calcites that have formed during the penultimate interglaciation (stage 7), there has been a much longer time of exposure to postdepositional alteration, which can be associated with uranium loss or accumulation. This has been clearly demonstrated for travertines of the penultimate interglaciation in comparison to those of the last interglaciation; .the older travertines

AND

PALEOCLIMATES

7

display much larger fluctuations in their 23@Th/234Uratios of successive growth layers than the younger ones having an age of approximately 100,000 yr (Griin et al., 1982). Therefore the 230Th/234U ages of speleothems generally are more reliable than those of travertines having similar ages. (3) The small amount of age data in the age range beyond 130,000 yr does not allow statistically safe conclusions to be drawn. In fact, the probability of collecting older speleothem samples is generally lower than that for younger ones, as the former are frequently buried by younger sediments or by more-recent speleothem formations. The reason for the occurrence of the flat maximum in stage 7 is mainly due to an investigation of travertine sites of the penultimate interglaciation (Grun et al., 1982). CONCLUSIONS

The present study demonstrates that the carbonate turnover during the Quaternary was stimulated by climatic conditions, making travertines and speleothems valuable sources of paleoclimatic information. APPENDIX

The compilation of age data is divided into speleothems (Table 1) and springdeposited travertines (Table 2). Each set of uranium-series age data is preceded by the name of the cave and its location according to the original publication. The country of each cave is abbreviated according to the national car road signs.

8

HENNIG, TABLE 2

1

Kingsdale 20

Yorkshire, GP2 GP3 Yl Y3:l Y3:2 Y3:3 Y5 Master Cave, KM1

4

11 8 <.5 63 13 1350 >350 127 63 332 172 9

Column Column Column

6 1 -

6 1

OF SPEL~OTHEMS" 6

7

Th/U

St St St St St FI FI Fl Fl Fl St St

ThiU

St St St St St St Ff

Th/U

Fl

Th/U

St St St St St St St St

Th/U

St St

19 3

19 3

-

-

25 11 z 26 2.5

25 11 100 26 2.5

9 1 18 4 5 5 1

9 1 18 4 5 5 1

14 6 131 63 92 112 12 Yorkshire,

GB >350

-

-

GB 12 13 <5 6 90 225 14 17

Cherdyntsev, V. V., et nt. (1%5) Akhshtyr Cave, SU 29 3 30 30 4 <33 1: 2: 3: 4: 5: 6:

5

BRLJNNACKER

GB

White Scar Cave, Yorkshire, 21 WSl 22 ws2 23 WS3:l 24 WS3:2 25 ws3:3 26 ws5 27 WS6: 1 28 WS6:2

u Column Column Column Column Column Column

AND

1. AGE DAIA

3

Atkinson, T. C., et al. (1978) G. B. Cave, Mendip Hills, GB 1 GBIA 2 GBlB 3 GBlC 4 GBlD 5 GBlE 6 GBBB 7 GB17:l 8 GB20: 1 9 GB23A 10 GB24 11 GB27 12 GB29 Gavel Pot, 13 14 15 16 17 18 19

GRijN,

2 7 -

2 7 -

2 11 75 7 4

2 11 45 7 4

5 -

Consecutive numbering of samples. Original sample labeling. Mean age value (lo3 yr B.P.). Plus one o error (103 yr). Minus one o error (lo3 yr). U-series dating methods: Th/U: 230Th/23’U; Th/Th: *3~h/234Th; P&J: =‘Pa?u; Pa/Th: 23’Pa/230Th. 7: St: stalagmite or stalactite Fl: flowstone. 8: Additional remarks. 9: I: climate zone I (see text); II: climate zone II (see text).

5 -

8

9

I

SPELEOTHEMS,

1

TRAVERTINES,

3

2

AND

9

PALEOCLIMATES

TABLE

l--Continued

4

5

6

I

8

Fomaca-Rinaldi, G. (1968) Romanelli Cave, Lecce, I 31

40

3.3

3.3

St

ThfTh

All‘onda 32

39

3.2

3.2

St

TblTh

Cave, Lucca, I

Chiostraccio Cave, Siena, I 33

<7

-

-

ThlTh

St

Th/Th

St

ThlTh

St

Scoglione Cave, Sorrento, I

II

34

2

20

Buca Tana, Lucca, I 35

<7

2

II

-

-

Gascoyne, M., et al. (1979) Blue Hole, Andros Islands, BS 36 37 38 39 40 41 42 43 44 45 46 47

II

76016-p 78032-5

158 139 162 128 104 123

BH-M BH-L 76015-3

76015la 76015-lb

119 101

76016-3 76016-4

97 129

76016-la 76016-lb

122 11

76015-7

13 Th/U

13 8 21 8.9 10 9.1 9.3 1.5 6.8

8 21 8.9

10 9.1 9.3 7.5 6.8

11

11

38

27

PalTh 1.1

1.1

Selected cc tryst. Selected cc tryst. St St St St St St St St St St Tb/U

Gascoyne, M. (198lb) Lost John’s Cave, GB 48

115

Th/U

Fl

300

ThfU

Fl

Th/U

Fl

TNU

Fl

Kingsdale Master Cave, GB 49

Ingleborough 50

Cave, GB >120

Easegill Caverns, GB 51

-

52

-

240

White Scar Cave, GB >350

-

-

Th/U

Fl

>80

-

-

Th/U

St

Coffee River Cave, JA 53

Oxford Cave, JA 54

190

Th/U

Fl

Gascoyne, M. (1981a) Caves of the Yorkshire Dales, GB 55 56-60 61-64 65,66 67-69 70-71

9

o-5 5-10 10-15 30-35 35-40 40-45

Th/U

See Fig. 1

10

HENNIG,

1

2

AND

BRUNNACKER

TABLE

I-Conrinued

4

5

1 0.7 0.6 35

1 0.7 0.6 44

6

7

8

5-50 50-55 55-60 65-70 70-75 75-80 85-90 90-95 95-100 loo- 105 105-110 110-115 115- 120 120- 125 125-130 130- 135 135- 140 140- 145 160- 170 170- 180 180- 190 190-200 200-210 210-220 220-230 230-240 240- 250 250-260 260-270 270-280 280-290 290-300 300-310 310-320 320-330 330-340 340-350

72 73 ,?4 75 76 77,78 79 80,81 82-86 87-91 92-95 96- 101 102- 108 109-114 115-121 122- 126 127- 128 129 130 131 132,133 134,135 136 137,138 139,140 141-144 145- 148 149- 152 153- 157 158, 159 160, 161 162- 164 165, 166 I67- 170 171-173 174- 176 177 178 Gascoyne, Castleguard 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

3

GRiiN,

M., and Latham, Cave, GB 80502 80501 80503 7703 1 77032 77032 77032 77033 79014 77034 77034 77035 77036 77037 79011 79012

A. G. (1981) 13 6 7 332 ,350 278 >350 >350 >350 >350 >350 >350 38 >350 109 243

-

Th/U

26

-

22 -

1 -

PaiTh TNU

1 -

3.6 22

3.5 18

St St St F1 St St St St St Fl Fl St F1 FI Fl Fl

Base TOP Same as 184

Top Base

Top

9

SPELEOTHEMS,

1 195 196 197 198

2 79012 79016 80024 80025

TRAVERTINES, TABLE

l-Continued

3

4

5

,350 143 121 >350

-

Pietrowa Szczelina Cave, Cracow-Wielun 200 349 300

6

6 6

-

I Fl Fl Fl Fl

6 5 -

Glazek, J., and Harmon, R. S. (1981) Kozi Grzbiet Quarry, Holy Cross Mountains, PL 199 360 195 24

Mala Cave, Cracow-Wielun 201 353

AND PALEOCLIMATES

19

Th/U

FI

Upland, PL 80 40

Th/U

Fl

Upland, PL 112

8

Th/IJ

Fl

Mckra Quarry, Cracow-Wielun Upland, PL 202 355 117 Wierzchowska Gorna Cave, Cracow-Wielun 203 362 120 204 363 124

8

9 9 Upland, PL 9 9 9 9

ThJU

Fl

TNU Th/U

St St

Niedzwiedzia 205

Cave, Sudetes. PL 356 180

21

17

Th/U

St

Mietusia Cave, Tatra Mountains, PL 206 414 60

5

5

TNU

Fl

Bandzioch Cave, Tatra Mountains, PL 207 359 124

66

14

Th/U

St

Harmon, R. S. (1979b) Grotte Valerie, Nahanni Region, CDN 208 NGV- 1 290 209 NGV-2 200 210 NGV-3 217 211 NGV-4 <2 212 720263 145 213 72030-7 191 214 72030- 10 280 215 72030-9 320 216 72057-2 350 217 72066-4 278 218 75021-2 10 219 75028-2 15

cc 20 17 16 21 27 35 27 0.5 2

50 20 17 16 21 27 35 27 0.5 2

Th/U

St St St St St

Trou Claudette, Nahanni Region, CDN 220 NTC-1 275

75

35

Th/U

St

Th/U

Fl

11

8

9

Base

Fl FI Fl Fl FI St St I

Speleothem Cave, Nahanni Region, N.W.T., CDN 221 72034- 1 >350 -

I I

Cave 12A, Nahanni Region, N.W.T., CDN: 222 72067-4 301 24 223 72067-5 315 41

24 41

Th/U

St St

Igloo Cave, Nahanni Region, CDN: 224 7305 l-5 >350 225 73051-4 >350

-

Th/U

St St

22

Th/U

Fl

I -

Ice Curtain Cave, Nahanni Region, N.W.T., CDN 226 73052-6 304 22

I

12

HENNIG,

2

1

Coral Canyon 227 228 Tower 229

Region, 319 >350

Cave, Nahanni 73057-l

Castleguard 230 231 232 233 234 235 236

Icefield

Eagle Cave, 239 Middle 240 241 242

Crowsnest E-2

Sentry,

Yorkshire 243

Pot,

Gargantua 244 245 246 247 Middle 248

Pass Area,

Logan 252

Bear

Cave,

Porcupine 253 254

Harmon, Crystal 257 258

7

32

TMU

FI

Region,

Range,

Uinta >350 >350

CDN St Fl St St St St

6

St

9 32

Columbia, TNU

Columbia, 6 ThiU 16 13

St St Fl

CDN Fl Fl Fl

Columbia, CDN 10 Th/U Columbia, ThlU

-

St

CDN

16 22 45

St St St St

Columbia. CDN Th/U

St

-

Th/lJ

Fl

-

Th/U

Fl Fl

Th/U

Fl

Region,

Utah,

USA 5

5 Region, 12 34

Region, -

Utah, 12 34 Utah,

USA ThKl

I Recent

CDN

Columbia, CDN 13 Th/U

Alberta-British -

Range, Uinta 120 153

Range,

R. S., et al. (1981) Cave, BS 35”N, 65”W 75008:02 75008:Ol

Uinta 90

Columbia, Th/LJ

12

Alberta-British 16 22 60

Utah, USA >350 >350

Fl

6

Alberta-British 6 16 13

Utah, USA >350

Th/U

12

Alberta-British 9 32

Pass Area, 350 219 184 290

River Range, 74034-2 74034- 1

Bear River 74038- 1 74040- 1

I 26

Alberta-British 0.2 0.2 2 2 0.5 0.5 0.2 0.2 3 3

Pass Area, Alberta-British 178 10

Bear River 74036- 1

I

Alberta-British 198 13

Pass Area, >350

9

Fl

Crowsnest YP-1

Crowsnest 69001-6

8

CDN

Pass Area, 102 191 273

Cave, Bear River 74037- 1 74037-2

White Rocks, 255 256

6

Crowsnest MS-1 MS-2 MS-3

178-ft Pit, Bear River Range, 249 74033- 1 Surface. 250 251

5

N.W.T., 32

Pass Area, 235 296

Cave, Crowsnest GAR-1 72025-4 72038-l 72038-2 Caves,

4

4 57 1 3 92 147 120

Cave. Crowsnest CT-l CT-2

BRUNNACKER

14onri,ru~d

Region, N.W.T., CDN 346 m

Cave, Columbia CC-1 73008-3 73009-3 73009-4 73010-7 73010-6 73011-2

Coulthard 237 238

AND

TABLE

3

Cave, Nahanni 73056-l 73056-3

View

GRiiN,

Fl Fl

USA TNU -

St F1

II 68 97

6 9

6 9

Tl-dU

St

TOP

St

Base

SPELEOTHEMS,

1

2

259 260 261 262

7752o:Ol 11520:03 77520:02 77522:Ol

Harmon, R. S., et al. (1978a) Davies Hall, Kentucky, USA 263 72041: 13 264 72041:09 265 72041:05

R. S., Cave,

AND

l-Continued

3

4

5

10 39 111 134

2 7 9 11

2 7 9 11

121 159 202

5 10 21

5 10 21

ThiU

St St St

USA 0.8 15

0.8 15

Th/U

3 1

3 1

St St St St St FI St Fl Fl Fl Fl Fl St Fl

-

6

-

1 11 -

33 -

25 -

28

22

13 17

13 17

I

St St St St

I 11

13

PALEOCLIMATES

TABLE

Hess, J. W., and Harmon, R. S. (1981) Flint-Mammoth Cave System, Kentucky, 266 77540 7 267 77544 123 268 77545 2 269 77546 40 270 77547 15 271 80501 >350 272 71100 6 273 77538 141 274 72035: 1 >350 275 72035~2 213 276 72036:5 >350 277 72036:4 >350 278 72037: 1 >350 279 74000: 1 247 Lively, Mystery 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

TRAVERTINES,

8

9

TOP Middle Base Top

Base Top Base Top

et al. (1981) Minnesota, MC-2 MC-2a MC-3h MC-3g MC-3 MC-3c MC-4a MC-4hg MC-5 MC-5a MC-5b MC-6 MC-1Oa MC-lob MC-lla MC-llb MC-13 MC-14 MC-16 MC-16a MC-17 MC-18 MC-20a MC-20b MC-26 MC-26a

USA

I 151 183 300 136 126 142 163 125 97 104 104 161 106 119 143 131 104 125 146 147 102 122 142 107 120 40

-

12 11 11 15 8 8 8 21 10 9 11 9 6 4 11 10 6 5 6 12 5 5 1

12 11 11 15 8 8 8 21 10 9 11 9 6 4 11 10 6 5 6 12 5 5 1

Th/U

Fl St St St St St St St Fl

Bottom Middle Middle Top Bottom Top Replicate Replicate

analysis analysis

Replicate

analysis

Fl

Fl Fl Fl Fl Fl St St Fl St

Bottom Top

14

HENNIG,

1

2

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

3

MC-26b MC-26c MC-19 MC-19 MC-19 MC-19 MC-21 MC-1 MC-7 MC-8 MC-9 MC-24 MC-25a MC-251, MC-27

Rifle Hill 321 322 323

Quarry, Minnesota, RHQ-a RHQ-c RHQ-d

Fairview 324 325

Blind

Valley, ZB-1 ZB-2

Schwartz, H. Chaise-de-Vouthon 327 328 329 Schwartz, Mammoth 330 331 332 333 334 335 336 337 Crystal 338 339 340 341 342 343 344 345

P., and Debenath. (Charente), 1 2 3

BS, 35”N, 73036: 15 73036: 15 73036: 15 73036: 15 73036: 15 75004: 14 75004:5 75004:4

5

BRUNNACKER

6

7

115 125 59 55 38 35 43 13 13 9.8 8 8.8 13 13 12

6 5 5 5 2 2 I 0.7 0.4 0.5 0.4 0.5 0.4 0.4 0.7

6 5 5 5 2 2 1 0.7 0.4 0.5 0.4 0.5 0.4 0.4 0.7

48 51 44

4 4 3

4 4 3

Th/U

FI Fl Fl

USA 28 52

4 6

4 6

Th/U

FI Fl

2 2 5

2 2 5

ThiU

St St St

10 16 30

10 16 30

Th/U

FI Fl Fl

194 179 164 156 139 115 100 97

Th/U

st St St St St St St St

185 177 176 172 166 150 120 117

ThiU

C. (1969) F 93 100 129

St St St St St St St Fl Fl FI FI St St Th/U

9

8 Middle Upper middle Bottom Lower middle Middle Top

Bottom Middle Top Bottom Replicate

analysis

Fl

A. (1979) F

H. P.. et al. (1976) Cave, Kentucky, USA 72041:2 72041:3 72041:4 72041:5 72041:7 72041:ll 72041: 12 7204l:lO Cave,

4

AND

USA

Minnesota,

Nguyen, H. V., and Lalou. I’Aven d’orgnac (Ardeche), 325 326 327

GRijN,

106 146 185

65”W

See also 265

II St St St St St St St St

SPELEOTHEMS,

1

2

346 347 348 349 350 S6tano 351 352 353 354 Norman 355 356 357 358 359

75004:7 75004:9 75004: 13 75004:ll 75004: 12 de1 Arroyo, San Luis 71042: 10 71042:s 71042:3 71042: 1 Bone

Grapewine 360 361 362 363 364 365 366 367 368 Schwartz, Hayonim 369 Zuttiyeh 370 371 372 373

H. P., et al. (1980) Cave, 11 76HY7- 1

Umm Qatafa 374 Es Skhul 375 376 377 378

AND

TABLE

l-Continued

4

5

3

6

Potosi,

7

8

9

MEX

II

95 78 55 53

USA 159 159 159 104 97 70 70 60 60

Th/U

St St St St

TNU

St St St St St

Th/U

FI Fl Fl Fl Fl Fl Replicate

analysis

Fl Fl

II 163

62

40

Th/U

Fl

I1 76ZU 1 76ZUla 76ZU4 76ZU6

95 164 148 97

10 21 6 13

10 21 6 13

Th/U

Fl Fl Fl Fl

Cave, I1 76UQ3

115

19

19

Th/U

St

79 >350 >350 >350

4

4

Th/U

Fl Fl Fl Fl

0.6 4.4 2.4 3.5 6.9 1 11 1.5

Tb/U

St St St St St St St St

Caves, I1 76SK2 76SK.5 76SKlOa 76SKlOb

15

PALEOCLIMATES

St St St St St

114 107 104 102 101

Cave, West Virginia, USA 200 NB 105F 197 NBlO4F NBl03F 174 HBlO2F 172 NBlOlF 169

Cave, West Virginia, GV2F8 GV2F7 GV2F6 GV2F5 GV2F4 GV2F3 GV2F3 GV2F2 GV2Fl

Cave,

TRAVERTINES,

II

II II

Thompson, P., et al. (1975b) Norman Bone Cave, West Virginia, USA 379 NBl-1 6 380 NBl-2 69 78 381 NB l-3 382 NBl-4 82 383 NBl-5 93 384 NBl-6 118 385 NBl-7 129 386 NBl-8 134

-

-

0.6 4.4 2.4 3.5 6.9 1 11 1.5

16

HENNIG,

1

2

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401

NBl-9 NBlO-1 NBlO-2 NB 10-3 NB 10-4 NB 10-5 NB 10-6 NBlO-7 NB2-1 NB2-2 NB2-3 NB2-4 NBll-1 NBll-2 NBl l-3

Grapewine, 402 403 404 405 406 407 408 409 410

West Virginia, GV2- 1 GV2-2 GV2-3 GV2-4 GV2-5 GV2-6 GV2-7 GV2-8 GV2-9

GRUN,

BRUNNACKER

TABLE

l--Contirnrrd

3

4

5

137 105 163 173 183 203 195 199 2.5 4.5 5.5 3 2 2.1 3.5

7.8 4 6.8 6.9 9.7 11 10 8.8 1 I 0.5 0.3 0.1 0.1 0.2

7.8 4 6.8 6.9 9.7 11 10 8.8 1 1 0.5 0.3 0.1 0.1 0.2

60 81 70 69 86 80 97 105 159

2.9 6.6 3.6 2.8 3 2.1 2.5 2.7 6.9

2.9 6.6 3.6 2.8 3 2.1 2.5 2.7 6.9

Th/U

St St St St St St St St St

2 4 2 6 5

2 4 2 6 5

TNU

St St St St St

ThJU

Fi

6

7

R. S., et al. (1979) Territories, CDN RHN-1

I

-

14

Th/U

Fl

Biermann 418 419

65”W 58 101

5 18

5 18

Th/U

FI Fl

114 153 168 179 195 110 130 150 178

9 9 18 14 20 14 11 16 21

9 9 18 14 20 14 11 16 21

Th/U

St St St St St St St St St

Cave,

BS, 35”N. 73036: 11 73036: 10 73036: 12 73036: 13 73036:09 73037:08 73037:06 73039:07 73039:08

BS, 35”N,

13.4 cm from the top 72 cm from the top 128.8 cm from the top 193.5 cm from the top 233.4 cm from the top

I 350

14

Crystal 420 421 422 423 424 425 426 427 428

9

St St St St St St St St St St St St St St St

Harmon, R. S., et al. (1978). Government Quarry Cave, BS, 35”N, 65”W 417 73018:E 162 Quarry Cave, 73023:09 73023:08

8

USA

Duplessy, J. C., et al. (1970) Avert d’orgnac, F, 43”50’N, 4”30’E 411 92 412 93 413 loo 414 120 415 129 Harmon, Northwest 416

AND

II II

65”W

II Overgrowth Top Upper middle Lower middle Base Rim Center Top Middle

SPELEOTHEMS,

1 429 430 431 432 433 434 435 436 437 438 439 440

2 73039:06 75001:03 75002:03 75002:04 75003:04 75003:03 75004: 15 75004: 14 75004: 13 75004: 12 75004: 11 75004: 10

Spalding, R. F., and Mathews, Ben’s Hole, BS, 35”N, 65”W 441

TRAVERTINES, TABLE

l-Continued

3

4

5

195 38 102 113 10 27 6 99 104 109 114 119

19 2 9 12 2 4 2 5 6 8 8 13

19 2 9 12 2 4 2 5 6 8 8 13

6

17

PALEOCLIMATES

7

St St St St St St St St St St St St

8

9

Base Top Base Top Base Overgrowth Top Upper middle Middle Lower middle Base

T. D. (1972) II 22

0.4

Thompson, P., et al. (1976) Norman Bone Cave, West Virginia, USA 442 NB3 >300 443 NB4-C5 60 444 NB4-C4 53 445 NB4-C3 102 Thompson, Blanchard 446 447 448 449 450 451 452 453 454 455

AND

G. M., et al. (1975a) Spring Caverns, Arkansas, BS2-10 40 BS2-9 90 BS2-8 90 BS2-7 95 BS2-5 57 BS2-4 128 BS2-3 76 BS2-2 218 BS2-1 >350 BSl-1 97

0.4

Th/U

St

Th/U

St St St St

ThKJ

St St St St St St St St St St

Th/U

St

I 6.4 5.7 25

6.4 5.7 25

4 7 7 7 5 11 6 36

4 7 7 7 5 11 6 36

USA

-

6

Harmon, R. S., et nl. (1977) Grotte Valerie, Nahanni Region, 456 75029 457 75030- 1 458 75030-2 459 75037- 1 460 75037-2

N.W.T., >350 >350 >350 >350 >350

CDN -

Hennig, G. J. complete laboratory Alte Hiihle, Hemer, D, 51”23’N, 461 AHP-IA 462 AHP-lB3 463 AHP-2A 464 AHP-2 465 AHP-3 466 AHP-4/J 467 AHP-WA 468 AHP-5A 469 AHP-5B 470 AHG

series 7”42’E 5.5 50 4 103 16 138 69 232 16 145

5 3 1 16 2 15 6 66 2 15

6

-

FI Fl St St

5 3 1 16 2 15 6 39 2 15

TNU

St St St St St St St St St St

Top

and base

18

HENNIG,

1

3

2

GRUN,

AND

TABLE

l--Continued

4

5

BRUNNACKER

6

7

TNU

St St St St St

ThiU

FI Fl Fl St St St St St St St

Th/U

St

9 I

Prinzenhohle, 471 472 473 474 475

Hemer, PRI-6AB PRI-7/A PRI-8/A PRI-8/J PRI-9A

HeimichshBhle. 476 477 478 479 480 481 482 483 484 485

Hemer. D. 51”23’N. 7”42’E HEI-10/l 20 2 HEI20 2 HEI-10/3 19 2 HEIl/l 348 @z HEI- 1112 180 43 HEIl/4 199 168 HEI50 4 HEI140 21 HEI12 2 HEI-18D 13.50 -

Feldhofhohie, 486

D, 51“20’N, FELlS

6”52’E

Schleddehiihle, 487 488 489 490 491 492 493 494

Letmathe, LET-IA LET- 1lJ LET-21 1 LET-212 LET-213 LET-214 LET-215 LET-216

D, 51”23’N, 276 344 133 106 89 80 62 60

7”43’E m x 23 11 8 7 24 4

104 129 19 II 8 7 24 4

Th/U

St St St St St St St St

Geisloch, 495

D, 51”23’N,7”42’E 10 19 3 9 4

GEIS-5

99

17

14

Th/U

St

SILBE

165

12

11

Th/U

St

13”43’E 61

68

Th/U

St

80

A, 47”25’N, 6

15”15’E 6

Th/U

St

221

52

34

Th/U

FI

195

2

2

TNU

St

301

110

61

Th/U

St

226 139

L-Z 33

57 24

TNU

St St

E, 36”44’N, 6”48”W 252 m 247 140

58 75

Th/U

St St

93

Th/U

St

I 2 0.5 1 2

1.3

0.8

1 2 0.5 1 2 2 2 2 130 30 44 4 21 2 -

0.8

D

Silberhohle, 496

8

I D

I

Verfallene 497

Burg, Am Stein, VBURG

Rettenwand 498

Hohle, Bruck RE’l-TE

Hunas, 499

D

Grotte 500

Petite,

A, 47”33’N, 226 a.d.Murr,

I I I

HUNAS F, 44”20’N, ARD-1

4”30’E

Elba, I, 42”44’N, 10”15’E 501 ELBA Dilara 502 503

Cave,

Cueva 504 505

de Pileta, Ronda, PIL-20 PIL-21

Cueva 506

de Neja,

I II

Antalya-Kemer, DIL-1 DIL-2

TR

E, 36”45’N, NER-22

II

3”53’W 328

II

II =

SPELEOTHEMS,

1

2

Formentera, 507

de Rull,

Cueva 510

de 10s Rotas, ROT-l

Pamassos 511 512 Alistrati, 513

CR, Cave,

Laichinger 535 536 537

CR,

4

5

6

7

4

Th/U

St

4 12

Th/U

St St

53

Th/U

Fl

Th/U

Fl FI Fl

19

8

O”O9’W 4 12

Chalkidiki, PET- 1 PET-211 PET-212 PET-213 PET-U4 PET-215 PET-4 PET-5 PET-7 PET-8 PET-912 PET- 11 PET-13 PET-Isa PET- 16b PET-17 PET-19 PET-20 PET-2 1 PET-22 PET-25-A

O”O6’W 226 38”20’N, >350 14

II 115 22”15’E 3

-

-

-

Th/U

Fl

II

-

Th/U

Fl Fi Fl Fl Fl Fl Fl Fl FI Fl St Fl Fl Fl Fl Fl FI St St St St

3

Hemer, HEI-18A HEI-18B HEI-18C

Gessarthohle, 543

Ltidenscheid, GESSA

II >350

CR, 40”22’N, >350 304 170 75 93 86 >350 >350 127 350 88 >350 >350 >350 126 >350 229 164 177 59 157 D, 48”28’N,

Sariopolis, CR, DYROS 600 DYROS 630

23”Ol’E CJo 42 18 22 10 12 11 25 58 25 26 6 35

II 79 29 16 18 10 12 11 25 36 20 20 6 25

9”43’E 169 191 174

114 60 58

56 44 38

Th/U

Fl Fl Fl

36”36’N, 64 73

22”22’E 16 13

14 12

Th/U

St St

4 30 30

4 30 30

Th/U

Fl Fl Fl

7”38’E 18

16

ThKJ

St

60 15

Th/U

St St

D, 51”23’N,

Canonhohle, Winterberg, CAN-1B GIGA-

9

II

23”55’E

Heinrichshiihle, 540 541 542

GroBe 544 545

l-Continued

4

E, 38”50’N, 49 102

E: 38”50’N,

Tiefenhohle, LAI-IA LAI-1B LAITZ

Caves,

TABLE

PALEOCLIMATES

II 17

Pego, Valencia, RULL1 RULL-3

41”04’N, ALIS-

AND

l”30’E

Cave, Galaxidi, PARC-8 PAR-12

Petralona 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534

Dyros 538 539

3

E, 38”40’N, FORM1

Cueva 508 509

TRAVERTINES,

I

7”42’E

42 130 150 D, 51”14’N, 120

D, 51”48’N, 320 140

Submarin Submarin

lO”l4’E 30 15

I

GRON,

HENNIG,

20

2

1

3

ZoolithenhBhle, 546 547 548 549 550

Burggailenreuth. ZOOLl ZOO2L ZOOLB ZOOL2 ZOOLl

Knitterthbhle, 551 552 553

Letmathe, KNIT5 KNIT7 KNIl2

Charcadio 554 555 556

Cave, Tilos, T7507 T767S T766S

Rowing 557 558

Hills

Mieru 559 560

Hiihle,

Punkra 561

CS, 49”N, MIERl MIERZ

Sijhnstetten 562

TNU

St St St

36”28’N, 27”23’E 108 16 58 10 72 9

14 10 7

Th/U Th/U

St St St

Th/U

Fl Fl

ZA, 22”31’S, 2350 >350

9

Replicate

analysis I

II

14”48”E

-

II

-

I 1 8

2 1

1 1

TNU

St St

16”45’E 190

48

45

TNU

St

II

2

2

TNU

St

87 108

12 15

12 15

Th/U

St St

11

1

1

Th/U

St

BAERlO BAERI 1 BAER12

3 17 15

1 2.5 1.5

1 2.5 1.5

Th/U

St St St

KAM13

14

2

Th/U

St

YU VIL14 VILl5

52 82

5 10

TNU

St St

82

13

TNU

St

I I

YU, 45”45’N, ZELS9

14”20”E

I

II

D

Kaminloch, 569

8

I

5 2 1

Zelske 565

I

D Hdhle.

Geistalh(ihle, 572

Euerwanger 577

FI Fl Fl Fl FI

5 2 1

D

Fuchsberg, 576

7

TNU

Tropfsteinhiihle, LANG7 LANG8

Silberh(ihle, 573 574 575

6 1.5 6 4 2 1

Langenfelder 563 564

Vilenica 570 571

5 1 l”l2’E 1.5 5 3 2 1

Hiihle. D: SOHNS

BPrenloch, 566 567 568

4

BRUNNACKER

19”40’E

CS, 49”23’N, PUNK4

Hiihle,

I-Cor~tinucd

D. 49”50’N, 17 6.5 44 13 18

Cave, Namibia, K0164 K0165

HBhle,

TABLE

D, 51”23’N. 7”43’E 45 18 9.1 GR,

AND

I

D, 45”56’N, GE116 Kehlheim, SIL-17 SI-18A SI-181

I

7”23’E

I

D, 48”55’N,

ll”50’E

I

115 106 98

10 10 11

10 10 11

Th/U

St St St

FUCHS

153

15

15

Th/U

Fl

Btthl, D BUHLZ

180

24

19

TNU

Fl

D

I I

SPELEOTHEMS,

1 Cueva 578

2 de RuIl,

Sontheimer 579 580 581 Makapan, 582 583 584 585

3

1~: 38”50’N, RlJLL

Hohle, Laichingen, SONT6 SONT3 SONT2

TABLE

l-Continued

4

5

21

PALEOCLIMATES

6

-

7

8

9 II

62

4

5

Th/U

St

196 154 3.1

cc 19 0.4

67 16 0.5

Th/U

St St St

Th/U

Fl FI Fl Fl

D

I

ZA

II

M.4KCT M.4KCS M.AKBA MAKA2

>350 202 324 >350

du Prince, Grimaldi, GDP-02 GDP-01

Caune 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604

de pArago, F, 42”45’N, YCP- 1 YCP-2 YCP-3 YCP-4 YCP-5 YCP-16 YCP-21 YCP-22 YCP-23 YCP-24 YCP-25 YCP-26 Y CP-27 YCP-28 YCP-29 YCP-30 YCP-3 1 d’Aldene,

Herault, ALD-22 ALDE-2 ALDE- 1 AL.DE-1 AL.DE-2 AL.DS- 1 AL.D2- 1 AL.D2-3a AL.D2-3b AL,D2-3c AL.D2-4 AL.D2-5a AL.D2-5b AL,DS-3 AL.DB-4

Volmehanghohle, Hagen, 620 VGLM-2 621 VGLM1 Loisia, 622

-

AND

O”O9’W

Grotte 586 587

Grotte 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619

TRAVERTINES,

Sud de Lons GIGNY

-

-

49 m -

29 72 -

I 210 217 2”44’E 55 225 249 73 105 >350 >350 308 221 139 101 157 >350 165 268 148 258

24 63

19 38

Th/U

Fl FI

3 30 145 5 12 m

3 23 60 5 11

Th/U

Fl Fl Fl Fl Fl St St Fl Fl Fl FI Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl

54 26 11 14 20

36 12 16 23 -

17 80 16 60

15 44 14 38

9 55 7 7 9 57 24 61 103 22 43 59 29 82 14

8 35 6 6 8 35 18 37 50 18 30 25 22 44 13

Th/U

D, 51”18’N, 7”30’E 163 22 19 2

17 2

Th/U

St St

19

ThU

St

F, 43”16’N, 106 166 104 100 102 225 169 230 269 246 214 242 235 267 129

de Saunier,

F, 168

2”44’E

Replicate Replicate

analysis analysis

I

I 23

22

HENNIG,

1

2

Courterolles 623 624

3

Nutts, St. George, GEOR-4 GEOR-3 GEOR-2 GEO-1W GEO-1R

Skhul Caves, 630

I1 SKHUL

Grotte 631 632

Arriege, ELEN-2 ELENE

Cave,

Kuizhon, 635 636 637 638 639

Tj

Caune 641 642

Dietfurt, 644

BRUNNACKER

--

6

-

7

9

8

F >350 >350 191 240 >350

-

54

TNU

Fl Fl

TNU

Fl Fl Fl Fl FI

TNU

Fl

Th/U

Fl Fl

St St

35

I -

27 44

22 31 -

-

II

85

44

I

F 39 43

Chalkidiki, PET-25-B/1 PET-25-B/2

GR,

40”22’N. 113 98

5.1 5.8

4.9 5.5

II

23”Ol’E 12 10

10 10

Th/U

19 17 82 190 115

2 3 4 35 14

3 2 3 26 13

TNU

65

6

6

ThiU

304 255

cc 75

61 42

TNU

226

18

14

TNU

258

73

41

TNU

102 120 104 126 135 131 125 123 71 114 129 119

12 7 6 10 9 9 7 7 3 5 6 5

11 7 6 9 8 8 6 7 3 5 6 5

TNU

Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl

Th/U

St Fl

11

Beijing, CHKT-I

Altmtihltal, PFRAU

Replicate

analysis

Tj

de I’Arago, F ARC-5-CU ARC-S-DU

Pfraundorf, 643

5

-

271

QUIZ-3-A QUIZ-3-B QUIZ-4 8012-A 8012-B

Chou-Kouthien. 640

4

>350 199

Les Valerots 625 626 627 628 629

Petralona 633 634

AND

I

D’AvaIIon. F COUR-2 COUR- 1

d’Enlene,

GRON,

D

Oberpfalz, D DIETF

Gascoyne, M., er al. (1981) Victoria Cave, GB 645 79000- 1 646 79000-2 647 79001-l 648 79001-2 649 79001-3 650 79002- 1 651 79021-l 652 79023- 1 653 79025-l 654 79025-2 655 79025-3 656 79026 1 Green, H. S., et nl. (1981) Pontnewydd Cave, Wales, 657 D-188 658 D-187

GB

J 20 125

-

6

6

See Fig.

3

SPELEOTHEMS,

1 6.59 660 661 662 663 664

2 D-292 co D-604 D-312 D-312 D-47 1 TABLE

1

2

Harmon, R. S., ef al. (1980) Bilzingsleben, DDR 5 373 6 374 7 375 8 376 Schwartz, H. P., ef al. (1979) Nahal Mor, I1 9 76NZ3-2 10 76NZ3-2A 11 76NZ4B-2A 12 76NZ4B-3 13 76NZ4B-4a 14 76NZB-4a 15 76NZ4A- 1 16 76NZ5-2 Nahal Aqev, I1 17 76NZ6e- 1 18 76NZ6a- 1 19 76NZ6a-2 20 76N.Z6a-4 21 76N:Z6d-3 22 76N:Z6d-4 23 76N:Z 1 (I Column Column Column Column Column Column

AND

TABLE

l-Continued

3

4

5

180 180 162 90 91 180

35 11 10 3 2 20

35 11 10 3 2 20

3

23

PALEOCLIMATES

6

7 Fl Fl Fl St St Fl

2. AGE DATA OF SPRING DEPOSITED

Cherdyntsev, V. V., et al. (1965) Tata, H 1 7 116 Verteszollos, H 2 9 3 10 4 8

TRAVERTINES,

4

5

6

16

16

Th/U

35

Th/U

8

Top Base

TRAVERTINE~

7

225 2250 >300

35 -

228 234 223 228

17 18 16 17

12 13 11 12

Th/U

2.5 2 3.1 1.8 13 3.6 5.2 4.2

2.5 2 3.1 1.8 13 3.6 5.2 4.2

Th/U

Travertine blocks

46 54 25 36 19 10 5

ThKJ

Fossil spring

-

9

8

II 51 49 42 25 42 47 45 46

II 258 228 214 191 211 85 74

86 127 33 5 19 10 5

1: Consecutive numbering of samples. 2: Original sample labeling. 3: Mean age value (lo3 yr B.P.). 4: Plus one o error (lo3 yr B.P.). 5: Minus one o error (lo3 yr B.P.). 6: U-series dating method: Thm: z3~h/*34u. Column 7: Additional remarks. Column 8: I: climate zone I (see text), II: climate zone II (see text).

24

HENNIG.

1

Ein Aqev, 24

TABLE

2--Continurd

12

5

-

-__

6

8

II -

Th/U

115

30

30

TNU

70 190 >270

20 45

20 45

ThiU

60

15

15

TNU

70

18

18

ThiU

175

44

44

Th/U

190

42

42

Th/U

I

average

of 11 samples

I

I

H

H 32

Budapest-Kriscall. 33

H

Tata-Tovaros. 34

H

Vertesszollos, 35

H -

>350

-

Th/U

Nguyen, Barrage 36 37 38 39

H. V., et al. (1973) du Dragon, AFG 4T320 3T367 2T363 lT157

16 28 45 47

Sources 40 41

de Paimouri, lOT344 1 lT346

18 80

2 5

Th/U

Barrage 42

de Band-e-Amir, 9T324

113

15

Th/U

Hennig, G. J. Complete Bad Langensalza, DDR 43 TBLS-1 44 TBLS-2 45 TBL-3.1 46 TBL-3.2 Briihheim, 47

7

ThiU

-

Cherdyntsev, V., et al. (1975) Weimar-Ehringsdorf, DDR 27 Pecsi. M. (1973) Vertesszollos, H 28 1 29 2 30 3

0.9

0.9

Schwartz, H. P., et al. (1980) Mayan Barukh, I1 24 76MB4 >350 25 76MB3 >350 >350 26 76MBl

Tata,

BRUNNACKER

II

I1 76NZ8

Budapest-Obuda. 31

AND

4

3

2

GRUN,

DDR TBRU-4

II Th/U

AFG

II

AFG

II

laboratory

series I 14 14 9 10

1 2 0.6 0.7

Th/U

I

>350

-

Th/U

SPELEOTHEMS,

TRAVERTINES, TABLE

1

2

Burgtonna, 48 49 50

5

6

8 9 7

8 9 7

Th/U

115 118 151

20 12 18

18 11 14

ThiU

212 167 244 159

30 27 50 16

24 21 34 14

Th/U

79

8

8

Th/U

Bilzingsleben, DDR 59 TBI-21.1 60 TBI-21.2 61 TBI-22 62 TBI-23 63 TBI24.1 64 TBI-24.2 65 TBI-25.1 66 TBI--25.2 67 TBI-26.1 68 TBI.-26.2

83 81 179 244 >320 301 185 186 222 88

6 4 22 54

5 4 17 35

Th/U

Weimar-Ehringsdorf, DDR 69 SWIG14 70 SWEG 13 71 SWE-12 72 SWEI-11 73 SWES-1 74 S WE:-2 75 S WE:-3 76 S WE;-4 77 SWE:-5 78 S WE-6 79 S WE:-7 80 SWEi-8 81 S WE:-9 82 SWE.-IO

121 132 31 71 >350 80 105 212 102 159 1350 >350 145 177

13 14 135 24 26 17 19

133 106 105 105

21 6 9 4

17 6 7 4

Th/U

D 101 95

5 6

4 5

Th/U

197 255

20 82

17 46

ThiU

Weimar, DDR TWE-IO. 1 TWE-10.2 TWE-11

Parktravertin, 54 55 56 57 Komer, 58

Weimar, TWE-12 TWE-13 TWE-14 TWE-15

Thiiringen, TKG20

7

8 I

104 101 111

Taubach, 51 52 53

25

PALEOCLIMATES

2-Continued

4

3

DDR TBUR-5 TB UR-6 TB UR-7

AND

I

DDR

I

DDR

Stuttgart-Unterturkheim, 83 TBD-1 84 TBD-2 85 TBD-3 86 TBD.-4 Heinrich-Ebner-Str., 87 THE-- 1 88 THE-2 Katzensteigle, Stuttgart, 89 TKN-1 90 TKN-2

1 I

cc 20 14 40 3

58 17 11 29 3

13 17 3 7 -

11 15 3 6

Th/U

12 13 55 19 20 14 16

D

Stuttgart,

I

I

D

26

HENNIG,

GRUN,

TABLE 2

1 Kursaal 91

3

Bad Cannstatt, TKU Haas, Stuttgart, THA-I THA-2 THA-4 THA-5 THA-6A THA-7 THA-6B THA-IA THA-8B

Steinbruch 101 102 103 104 105 106 107 108 109 110 111 112 113

Lauster, TLA-1 TLA-2 TLA-3 TLA-4 TLA-5 TLA-6 TLA-7 TLA-8 TLA-9 TLA-10 TLA-11 TLA-12 TLA-13

Muggendorf, 114

D MUGG-2

Streitberg, 115

D TLANG

Stuttgart.

Neustift, 120 Pammukkale, 121 122 El Kown, 123 124 125 126 127 128 129

6

8

7

I

D 41

1

2

TWU

174 235 134 285 243 166 >350 209 260

36 45 96 50 34 62

29 31 41 34 27 40

Th/U

I

-

D 192 245 171 225 266 182 267 212 227 178 67 >350 221

31 23

59 68 31 58 98 52 35 64 26 32 7

35 41 24 36 50 36 27 41 21 25 7

-

82 107 >350

Th/U

33

9.6

D, 50”34’N, 8.1

41 28

-

>350

Wasserleitung, TROM-2

5

D

Libyan Desert. LAR 116 LIBY-3 117 LIBY-2 LIBY- 1 118 Romische 119

BRUNNACKER

2-C’ontinued

4

Stuttgart,

Steinbruch 92 93 94 95 % 91 98 99 100

AND

24 -

Th/U

1.4

1.5

Th/U

6 9

5 8

Th/U

0.7

0.7

Th/U

-

-

6”4l’E

D NEUST

12

0.3

0.4

Th/U

TR PAM- 1 PAM-2

15 17

2.1 2.6

2.2 2.5

ThiU

16 157 140 80 247 102 99

0.6 22 10 4 30 8 8

0.6 20 10 4 25 8 8

Th/U

84 104

6 9

6 9

ThiU

SYR AINB-1 HUMM-2 OUMM-3 OUMM-4 OUMM-5 TELL-6 TELL-6

Koppeth-Dagh-Gebirge. 130 DAGH131 DAGH-2

II

Replicate

IR 1

analysis II

SPELEOTHEMS,

TRAVERTINES,

TABLE 1

27

PALEOCLIMATES

2-Continued

3

4

5

101 98

10 8

10 8

TNU

Vertesszollos, H 134 VERT-2 135 VERT-6 136 VERT-7 137 VERT-8

128 210 248 135

20 151 30 12

17 51 67 11

Th/U

Dunamaals, H: 138 DUN-09 139 DUN-10

291 >350

~0 -

82

Th/U

-

Buda, H: 140 141

>350 160

-

-

Tata, H 132 133

2

AND

6

7

8 I

TATA- 1 TATA- 13

I

I

I BUD-11 BUD-12

38

ACKNOWLEDGMENTS The authors wish to express thanks to the following persons and institutions for their help: Professor Dr. W. Herr of the Institute of Nuclear Chemistry, University of Cologne, who supported our geochronological studies; Miss M. Winter for her assistance in many U-series analyses; Dr. N. Wiehl for writing a convenient computer program for U-series evaluation; Dr. J. Eberth and the Institute of Nuclear Physics, University of Cologne, for supplying surface barrier detectors; and Mr. J. Loftus for his assistance with the English version of this manuscript. We furthermore gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft and the Bundesministerium fur Forschung und Technologie.

REFERENCES Atkinson, T. C., Harmon, R. S., Smart, P. L., and Waltham, A. c’. (1978). Paleoclimatic and geomorphic implications of *30Th/234U dates on speleothems from Britain. Nature (London) 272, 24-28. Atkinson, T. C., (and Smith, D. I. (1976). The erosion of limestones. In “The Science of Speleology” (T. D. Ford and C. H. D. Cullingford, Eds.), pp. 151- 177. Academic Press, New York. ohne Sonne.” Bauer, E. (1969). “Hohlen-Welt Ravensburger Taschenbuchverlag Nr. 565, Ravensburg. Brunnacker, K. ( 1963). Die Sedimente in der Hohlenrinne von Hunas (Nordliche Frankenalp). Eiszeifalter und Gegenwart 14, 117- 120. Cherdyntsev, V. V., Kazachevskiy, I. V., and Kuzmina, Y. A. (1965). Dating of Pleistocene carbonate formations by lthe thorium and uranium isotopes. Geokhimiya 9, 1085- 1092. [translation.] Cherdyntsev, V., Senina, N., and Kuzmina, E. A. (1975). Die Altersbestimmung der Travertine von

Th/U 27

Weimar-Ehringsdorf. Abh. Zentr. Geol. Inst. 23, 7- 14. Dansgaard, W., Johnsen, S. J., Mgller, J., and Langway, C. C., Jr. (1969). One Thousand centuries of climatic record from Camp Century on the Greenland ice sheet. Science 166, 377-380. Dreybrodt, W. (1980). Deposition of calcite from thin film of natural calcareous solutions and the growth of speleothems. Chemical Geology 29, 89- 105. Duplessy, J. C., Labeyrie, J., Lalou, C., and Nguyen, H. V. (1970). Continental climatic variations between 130,000 and 90,000 years BP. Nature (London) 226, 63 l-633. Emiliani, E. (1978). The cause of the Ice Ages. Earth and Planetav

Science

Letters

37, 349-352.

Fanditis, J., and Ehhalt, D. H. (1970). Variations of the carbon and oxygen isotopic composition in stalagmites and stalactites: Evidence of nonequilibrium isotopic fractionation. Earth and P/anetary Science Letters 10, 136- 144. Fornaca-Rinaldi, G. (1968). *30Th/234Th Dating of cave concretions. Earth and Planetary Science Letters 5, 120- 122. Franke, H. W. (1971). Morphologie und Stratigraphie des Tropfsteins-Rtickschliisse auf Grossen des Palaoklimas. Geologisches Jahrbuch 1971, 473-501. Gascoyne, M. (198la). A climate record of the Yorkshire Dales for the last 300,000 years. In “Proceedings, 8th International Congress of Speleology,” pp. 96-98. Gascoyne, M. (198lb). Rates of cave passage entrenchment and valley lowering determined from speleothem age measurements. In “Proceedings, 8th International Congress of Speleology,” pp. 99- 100. Gascoyne, M., Benjamin, G. J., Schwartz, H. P., and Ford, D. C. (1979). Sea-level lowering during the Il-

28

HENNIG,

GRON,

linoian glaciation: Evidence from a bahama “Blue Hole.” Science 205, 8066808. Gascoyne, M., Currant, A. P., and Lord, T. C. ( 1981). Ipswichian fauna of Victoria Cave and the marine paleoclimatic record. Nafurr (London) 294, 652-654. Gascoyne, M., and Latham, A. G. (1981). The antiquity of Castleguard Cave as established by uranium-series dating of speleothems. In Proceedings, 8th International Congress of Speleology. pp. 101-103. Geyh, M. A. (1970). Zeitliche Abgrenzungen von Klimaanderungen mit C-14 Daten. Beiheftr Geobgisches Jahrbuch 98, IS - 22. Glazek, J., and Harmon, R. S. (1981). Radiometric dating of polish cave speleothems: Current results. In Proceedings. 8th International Congress of Speleology, pp. 424-427. Green, H. S., Stringer, C. B., Collcut, S. N., Currant, A. P.. Huxtable, J., Schwartz, H. P., Debenham, N., Embleton, C.. Bull, P., Molleson, T. I., and Bevins, R. E. (1981). Pontnewydd Cave in Wales-A new middle Pleistocene hominid site. Natrrrr (Lendon) 294, 707-713. Grtin, R.. Brunnacker, K., and Hennig, G. J. (1982). 2D”Th/234U-Daten mittelund jungpleistozaner Travertine im Raum Stuttgart. Jahresberichrr und Mitteilungen des Oberrheinischen Geologischen Verrins, N.F. 64, 201-211. Harmon, R. S. (1979a). “Late Pleistocene Paleotemperatures in North America as Inferred from Isotopic Variations in Speleothems.” PhD. thesis, Department of Geology, McMaster University, Hamilton, Harmon, R. S. (1979b). U-series dating of speleothems and a-glacial chronology for western North America. NSS Bulletin 41, lO2- 104. Harmon, R. S.. Ford, D. C.. and Schwartz, H. P. (1977). Interglacial chronology of the Rocky and Mackenzie Mountains based upon 230Thi’34U dating of calcite speleothems. Canadian Journul of Earth Sciences 14, 2543-2552. Harmon, R. S.. Glazek, J., and Nowak, K. (1980). s30Th/‘34U dating of travertine from the Bilzingsleben archaeological site. Nature (London) 284, l32- 135. Harmon, R. S., Ku. T. L., Matthews, R. K.. and Smart, P. L. (1979). Limits of the U-series analysis: Phase 1 results of the uranium-series intercomparison project. Geology 7, 405-409. Harmon, R. S., Land, L. S., Mitterer, R. M.. Garrett. P., Schwartz, H. P.. and Larson, G. J. (1981). Bermuda sea level during the last interglacial. Nature (London) 289, 481-483. Harmon, R. S., Schwartz, H. P., and Ford, D. C. (1978a). Stable isotope geochemistry of speleothems and cave waters from the Flint Ridge-Mammoth Cave system Kentucky: Implications for terrestical climate change during the period 230,000 to 100,000 years B.P. Journal of Geology 86, 373-384. Harmon, R. S.. Schwartz, H. P.. Thompson. P., and

AND

BRUNNACKER

Ford, D. C. ( 1978b). Critical comment on “uranium series dating of stalagmites from Blanchard Springs Caverns, Arkansas, U.S.A.” Geochimica et Cosmochimica Acta 42, 433-439. Hendy. C. H. (1971). The isotopic geochemistry of speleothems. Part I-The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimatic indicators. Grochimica et Cosmochimicu Actu 3.5, 801-824. Hendy. C. H., and Wilson, A. T. (1968). Paleoclimatic data from speleothems. Nature (London) 219, 48-51. Hennig, G. J. ( 1979). “Beitrage zur Th-230/U-234Altersbestimmung von Hohlensintern sowie ein Vergleich der erzielten Ergebnisse mit denen anderer Absolutdatierungsmethoden.” Dissertation. Universitat zu Koln. Koln. Hennig, G. J.. Bangert. U.. Herr, W., and Freundlich, J. ( 1980a). Uranium series dating of calcite formations in caves: Recent results and a comparative study on age determinations via 230Th/2R’U, 14C, TL and ESR. Revue d‘Archueometric 4, 91- 100. Hennig. G. J., Bangert. U., and Herr. W. (1980b). Dating of speleothems by disequilibrium in the Udecay series. Proceedings of the 19th International Symposium on Archaeometry and Archaeological Prospection, London, March 28-31, 1979. In “British Museum Occasional Papers” (R. Burleigh. Ed.), Vol. 10, pp. 73-83. British Museum Research Laboratory, London. Hess, J. W., and Harmon, R. S. It7 “Proceedings, 8th International Congress of Speleology.” pp. 433-436. Ikeya. M. (1978). Spin-resonance ages of brown rings in cave deposits. Natur,vissenschaftrn 65, 489. Jakucs, L. (1977). “Morphogenetics of Karst Regions, Variants of Karst Evolution.” Hilger, Bristol. Koenigswald, W. v. (1973). Lagurus lagurus im jungpleistozlnen Travertin des Biedermannschen Steinbruchs (Stuttgart-Unterttirkheim). Nertrv Jahrbuch .feur Ceologie und Pal~1~~ont(,i(,gir, Moncushefte 1973, 667-673. Krolopp, E. (1977). Absolute chronological data of the Quaternary sediments in Hungary. Forldr. Koe:/. 101, 230-232. Ku. T. L.. Bull. W. G., Freeman. S. T.. and Knauss. K. G. (1979). ‘30Th/234U Dating of pedogenetic carbonates in gravel desert soils of Vidal Valley, Southeastern California. Geologiccrl .‘$ociefy of America RuDetin 90, 1063- 1073. KU, T. L., and Joshi, L. U. (1981). Measurements of YJ and 230Th in impure carbonates for age determination. Journal of Radioanalyrical Chemistry 67, 35 I-358. Lively. R. S., Alexander. E. C.. and Milske, J. (1981). A late Pleistocene chronologic record in Southeastern Minnesota. In “Proceedings, 8th International Congress of Speleology.” pp. 623-626.

SPELEOTHEMS,

TRAVERTINES,

Moore, G. W. (1956). Aragonite speleothems as indicators of paleotemperature. American Journal of Science

254,

746.

Moore, G. W., and Sullivan, G. N. (1978). “Speleology-The Study of Caves,” 2nd ed., Zephyrus, Teaneck. Mtiller, H. (1974a). Pollenanalytische Untersuchungen und Jahresschichtenzahlungen an der eem-zeitlichen Kieselgur von Bispingen/Luhe. Geologisches Juhrbuch A21, 149- 169. Mtiller, H. (1974b). Pollenanalytische Untersuchgen und Jahresschichtenzahlungen an der holsteinzeitlichen Kieselgur von Munster-Brehloh. Geologisches Jahrbuch A21, 107- 140. Nguyen, H. V., and Lalou, C. (1969). Comportement geochimique des isotopes des families de l’uranium et du thorium edansles concretionements de grottes: application a la datation des stalagmites. Compfes Rendus Hebdomadaires des Sciences Serie 560-563.

D:

des seances de I’dcademie Sciences Natyralles 269,

Nguyen, H. V., Lang, J., Elbez, G., Lalou, C., and Lucas, G. (1973). Existence d’un dtsequilibre eleve entre les isotopes de l’uranium. Influence sur la datation des travertines de Bamian (Afghanistan Central) par la methode 23Th1234U. Comptes Rendus Hebdomadaires 2233-2236.

des Seances

de 1’Academie

276,

Pecsi, M. (1973). Geomorphological position and absolute age of the lower paleolithic site at Vertesszbllos, Hungary. Foeldr. Koezl. 97, 109- 119. Schwartz, H. P. (1980). Absolute age determination of archaeological sites by uranium series dating of travertines. Archaeomerry 22, 3-24. Schwartz, H. P., Blackwell, B., Goldberg. P., and Marks, A. E. (1979). Uranium series dating of travertine from archaeological sites. Nahal Zin, Israel. Narure (London) 277, 558-560. Schwartz, H. P., and Debenath, A. (1979). Datation absolue des restes humains de la Chaise-de-Vouthon (Charente) au moyen du desequilibre des series d’uranium. Comptes Rendus Hebdomadaires des Seances

de I’Academie

des Sciences,

Serie

D 288,

1155-1157. Schwartz, H. P., Goldberg, P. D., & Blackwell, B. (1980). Uranium series dating of archaeological sites

AND

29

PALEOCLIMATES

in Israel. Israel Journal of Earth Sciences 29, 157- 165. Schwartz, H. P., Harmon, R. S., Thompson, P., and Ford, D. C. (1976). Stable isotope studies of fluid inclusions in speleothems and their paleoclimatical significance. Geochimica et Cosmochimica Acta 40, 657-665.

Shackleton, N. J., and Opdyke, N. D. (1973). Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes of a lo5 year and IO8 year scale. Quafernary

Research

3, 39-55.

Spalding, R. F., and Mathews, T. D. (1972). Stalagmites from caves in the Bahamas: Indicators of low sea level stand. Quaternary Research 2, 470-472. Thompson, G. M., Lumsden, D. N., Walker, R. L., and Carter, J. A. (1975a). Uranium series dating of stalagmites from Blanchard Springs Caverns, U.S.A. Geochimica et Cosmochimica Acta 39, 1211-1218. Thompson, P., Ford, D. C., and Schwartz, H. P. (1975b). U234/U238ratios in limestone cave seepage waters and speleothem from West Virginia. Geochimica et Cosmochimica Acta 39, 661-669. Thompson, P., Schwartz, H. P., and Ford, D. C. (1974). Continental Pleistocene climatic variations from speleothem age data. Science 184, 893-895. Thompson, P., Schwartz, H. P., and Ford, D. C. (1976). Stable isotope geochemistry, geothermometry, and geochronology of speleothems from West Virginia. Geological Society of America Bulletin 87, 1730- 1738. Trimmel, H. (1953). Beobachtungen tiber die Ausbildung von Sintergenerationen in osterreichischen Hohlen. Die Hiihle 4, 6- 10. Troll, C. (1964). Karte der Jahreszeiten-Klimate der Erde. Erdkunde 18, 5-28. Waltham, A. C. (1977). “Die Wunderwelt der Hohlen in Farbe.” Stidwest Verlag, Munchen. Wintle, A. G. (1978). A thermoluminescence study of some Quatemary calcite: Potential and problems. Canadian Journal of Earth Sciences 15, 1977- 1986. Wintle, A. G., and Brunnacker, K. (1982). Ages of volcanic tuff in Rheinhessen obtained by thermoluminescence dating of the loess in which they occur. Naturwissenschaffen 69, 181- 182.